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There is considerable interest in environmental factors 
that might improve the cognitive skills measured by 
intelligence tests, and for good reason: These skills are 
linked not just to higher educational attainment but to 
superior performance at work (Kuncel & Hezlett, 2010; 
Schmidt, Oh, & Shaffer, 2016), better physical and men-
tal health (Gale et al., 2012; Wrulich et al., 2014), and 
greater longevity (Calvin et al., 2017). The current meta-
analysis focused on a potential intelligence-boosting 
factor that is routinely experienced by children and 
young adults throughout the world: education. We 
addressed the question of whether increases in normal-
range educational duration after early childhood have 
positive effects on a student’s later intelligence.

On its face, the positive correlation between intel-
ligence test scores and years of completed education 
(Strenze, 2007) might suggest that the experience of 
prolonged education has a beneficial effect on intelli-
gence. However, the association could also result from 
a selection process, whereby more intelligent children 
progress further in education (Deary & Johnson, 2010). 

Indeed, there is ample evidence that pervasive selection 
processes operate in the intelligence-education associa-
tion: Longitudinal studies demonstrate the predictive 
power of early intelligence test scores for later educa-
tional attainment (Deary, Strand, Smith, & Fernandes, 
2007; Roth et al., 2015). The existence of selection pro-
cesses does not necessarily gainsay any causal effects 
of education, but it does create an endogeneity problem 
that renders causal hypotheses difficult to test in obser-
vational data. In recent years, however, researchers have 
increasingly capitalized on a number of sophisticated 
study designs that circumvent the endogeneity problem, 
testing the causal hypothesis that more education leads 
to higher intelligence. This unique class of studies serves 
as the basis for the current meta-analysis.
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Abstract
Intelligence test scores and educational duration are positively correlated. This correlation could be interpreted in 
two ways: Students with greater propensity for intelligence go on to complete more education, or a longer education 
increases intelligence. We meta-analyzed three categories of quasiexperimental studies of educational effects on 
intelligence: those estimating education-intelligence associations after controlling for earlier intelligence, those using 
compulsory schooling policy changes as instrumental variables, and those using regression-discontinuity designs 
on school-entry age cutoffs. Across 142 effect sizes from 42 data sets involving over 600,000 participants, we found 
consistent evidence for beneficial effects of education on cognitive abilities of approximately 1 to 5 IQ points for an 
additional year of education. Moderator analyses indicated that the effects persisted across the life span and were 
present on all broad categories of cognitive ability studied. Education appears to be the most consistent, robust, and 
durable method yet to be identified for raising intelligence.
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In a seminal review of the effects of educational 
duration on intelligence, Ceci (1991) adduced evidence 
from a wide variety of research designs, including stud-
ies of intermittent school attendance, studies of the 
“summer slide” (the drop in children’s cognitive per-
formance during summer vacation), and studies using 
regression-discontinuity methods to separate schooling 
effects from age effects. Ceci’s conclusion was that 
“schooling emerges as an extremely important source 
of variance” in intelligence test scores (p. 719). However, 
this and several newer reviews (Deary & Johnson, 2010; 
Gustaffson, 2001; Snow, 1996; Winship & Korenman, 
1997) are all exclusively narrative. In recent years, sev-
eral high-quality studies investigating educational 
effects on intelligence have been published, but there 
continues to be no overall quantitative synthesis of this 
work. We report the first such synthesis.

We analyzed results from the three most prominent 
quasiexperimental methods for testing the effects of 
education on intelligence. We defined intelligence as 
the score on a cognitive test; see below for consider-
ation of how the test scores might relate to the underly-
ing psychological processes. Each method implements 
a different approach to minimize effects stemming from 
selection processes. Full meta-analytic inclusion criteria 
are reported below, but first we describe each of the 
three designs, providing a canonical example of each.

The first research design, which we label control 
prior intelligence, is a longitudinal study in which cog-
nitive testing data are collected before and after varia-
tion in the duration of education. This allows the 
relation between education and the second test to be 
adjusted for by each participant’s earlier ability level. 
An example of this design is the study by Clouston et al. 
(2012), who analyzed data from three large U.S. and 
UK cohort studies, all of which had both an adolescent 
and a midlife cognitive test. Results indicated that com-
pleting a university education was linked to higher 
midlife cognitive ability, above and beyond adolescent 
intelligence.

The second design, policy change, relies on changes 
in educational duration that are, by all accounts, exog-
enous to the characteristics of the individuals. An exam-
ple of this design is the study by Brinch and Galloway 
(2012), who used large-scale data from a 1960s educa-
tional reform in Norway. This reform increased com-
pulsory education by 2 years; critically, it was staggered 
across municipalities in the country. This allowed the 
researchers to estimate the effect of an additional year 
of school on a later intelligence test, taken by males at 
entry to military service as part of Norway’s universal 
military draft. Under the assumption that the policy 
change affected intelligence only via increasing years 
of schooling, the authors used an instrumental-variables 

analysis to estimate the effect of 1 year of schooling on 
intelligence at approximately 3.7 points on a standard 
IQ scale (M = 100, SD = 15 in the population).

The third design takes advantage of a school-age 
cutoff. These studies use regression-discontinuity analy-
sis to leverage the fact that school districts implement 
a date-of-birth cutoff for school entry. The first study 
to use this method was by Baltes and Reinert (1969), 
but the most highly cited example is by Cahan and 
Cohen (1989), who, in a sample of over 12,000 children 
across three grades of the Israeli school system (between 
the ages of approximately 10–12 years), found that 
schooling exerted positive effects on all of 12 tests 
covering a variety of cognitive domains. These educa-
tional effects were around twice the effect of a year of 
age. The strict assumptions of this method are some-
times not fully met (Cliffordson, 2010); methodological 
issues are discussed in more detail below.

After synthesizing the evidence within and across 
these three research designs, we addressed two further 
questions. First, which factors moderate the effect of 
education on intelligence? Perhaps most important, we 
examined the moderator of age at the outcome test, 
thus asking whether any educational effects are subject 
to decline or “fadeout” with increasing age. Second, to 
what extent is there publication bias in this literature, 
such that the meta-analytic effects might be biased by 
a disproportionate number of positive results?

Method

Inclusion criteria, literature search, 
and quality control

We included data from published articles as well as 
books, preprint articles, working papers, dissertations, 
and theses, as long as they met the meta-analytic inclu-
sion criteria. The criteria were as follows. First, the 
outcome cognitive measures had to be objective (not, 
e.g., subjective teacher ratings) and continuous (not, 
e.g., categorical indicators such as the presence of mild 
cognitive impairment). Second, variation in education 
had to be after age 6 (i.e., the meta-analysis was not 
focused on interventions such as preschool but instead 
on variation later in the educational process). Third, 
the population under study had to be generally healthy 
and neurotypical. We thus did not include studies that 
focused specifically on samples of patients with demen-
tia, individuals with neurodevelopmental disorders, or 
other such selected groups.

Fourth, studies had to fit into one of the three study 
design types described above. That is, they had to (a) 
use earlier cognitive test scores as a control variable in 
a model predicting cognitive test scores after some 
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variation in educational duration (control prior intelli-
gence), (b) use data from a natural experiment that 
specifically affected educational duration prior to the 
outcome cognitive test or tests (policy change), or (c) 
use a regression-discontinuity design to analyze cogni-
tive test scores from individuals born on either side of 
a cutoff date for school entry (school-age cutoff).

We began by searching Google Scholar for articles 
that had cited Ceci’s (1991) review on the effects of 
education on intelligence, and then searching through 
the references within each of those studies. Next, we 
ran searches of APA PsycINFO, Google Scholar, and the 
ProQuest Dissertations and Theses online database, 
using search terms related to the three study design 
types in our inclusion criteria. These terms included 
combinations of general terms related to the broad 
topic—“intelligence,” “cognitive ability,” “cognition,” 
“mental ability,” “IQ,” “achievement,” “ability,” “reasoning,” 
“fluid intelligence,” “general intelligence,” “education,” 
“educational,” “school,” “schooling”—with specific terms 
related to the study designs, such as “return to educa-
tion/school,” “influence/effect of education/school,” 
“regression discontinuity,” “instrumental variables,” 
“two-stage least squares,” “difference-in-difference,” 
“natural experiment,” and “quasi-experiment.” Having 
selected the relevant studies from these searches and 
removed duplicates, we then searched the references 
within each report to find any additional studies of 
interest. Finally, we e-mailed authors of multiple stud-
ies to request any unpublished preprint articles or 
working papers that we had not already found. A flow 
diagram of the overall literature search process is 
shown in Figure S1 in the Supplemental Material avail-
able online.

After arriving at a set of studies that fit the inclusion 
criteria, we closely examined each report and removed 
any studies that we deemed did not fit our quality cri-
terion. No studies were excluded for the control-prior-
intelligence design. One study was excluded for the 
policy-change design as we judged it to have a poten-
tially confounded instrument. See Table S1 in the Sup-
plemental Material for a brief description of the design 
of each included policy-change study, along with other 
relevant details. For the school-age-cutoff design, we 
excluded five studies because they did not explicitly 
report dealing with threats to the validity of the regression-
discontinuity analysis related to selection or noncompli-
ance with the cutoff age. We detail the inclusion criteria 
and quality control for the school-age-cutoff design in 
the Supplemental Material.

We also produced one new analysis for inclusion in 
the meta-analysis, using data from a large longitudinal 
study to which we had access (the British Cohort 
Study; Elliot & Shepherd, 2006), where the critical 

control-prior-intelligence analysis had not—to our 
knowledge—previously been performed. Full details 
of this analysis are available in the Supplemental 
Material.

When multiple results were available for a single 
data set, we coded all relevant cognitive outcomes. 
However, where multiple estimates from different anal-
yses of the same cognitive outcomes within a data set 
were available, we used the following criteria to select 
the estimate for meta-analysis. First, for articles using 
an instrumental-variables approach in which an alterna-
tive ordinary least squares regression analysis was 
also available, we always took the estimates from the 
instrumental-variables analysis (although we also 
recorded the ordinary least squares regression estimates 
in our data spreadsheet). Second, to reduce heterogene-
ity due to between-study differences in what covariates 
were included, we took the analysis that adjusted for 
the fewest number of covariates. Of the effect sizes that 
remained after fulfilling the first two criteria, we took 
the estimate that involved the largest sample size. The 
precise sources (table, section, or paragraph) for each 
estimate are described in notes in the master data 
spreadsheet, available on the Open Science Framework 
page for this study (https://osf.io/r8a24/). Note that for 
two of the studies (Ritchie et al., 2013; Ritchie, Bates, 
& Deary, 2015), we had the data from the cohorts avail-
able and recalculated the estimates to remove one of 
the covariates (see the data spreadsheet). For compari-
son, we also provide an estimate where maximal covari-
ates were included. A full list of all studies included in 
the final meta-analysis is shown in Table S4 in the 
Supplemental Material.

Statistical analysis

Calculating effect sizes. We rescaled each effect size 
into the number of IQ point units, on the standard IQ 
scale (M = 100, SD = 15), associated with 1 additional 
year of education. We also made the corresponding cor-
rection to the standard error associated with each res-
caled effect size. For example, we multiplied z-scored 
per-year effect sizes by 15, and we divided unstandard-
ized per-year effect sizes by the associated standard devi-
ation of the cognitive test before multiplying them by 15 
(effect-size calculations are described in the master data 
spreadsheet). For two studies, we recalculated the effect 
size using structural equation modeling of the correlation 
matrix provided in the report (see the Supplemental 
Material). Where effect-size recalculation was not possi-
ble from the data provided in the original reports—for 
example, because of missing standard errors or the effect 
size being in units other than years of education—we 
contacted the authors to request further information.

https://osf.io/r8a24/
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Meta-analytic structural equation models. To pro-
duce the main estimates, we used random-effects meta-
analytic structural equation modeling, as described by 
Cheung (2008). This approach is mathematically equivalent 
to conventional random-effects meta-analytic approaches 
but has the added advantage of being able to capitalize on 
special features of structural equation modeling software, 
such as the correction of standard errors for nonindepen-
dence of observations.

Many studies reported effect sizes for more than one 
cognitive test outcome. For instance, they might have 
reported effects on a test of memory and a test of 
executive function. Instead of producing a per-study 
average of these estimates, we included them all indi-
vidually, weighting each estimate by the reciprocal of 
the number of effect sizes provided from each study. 
In addition, using the TYPE = COMPLEX and the CLUSTER 
functions in Mplus (Version 7.3; Muthén & Muthén, 
2014), we employed a sandwich estimator to correct 
standard errors for dependencies associated with the 
clustering of effect sizes within studies.

Moderators. We used the tau (τ) statistic, an estimate of 
the standard deviation of the true meta-analytic effect, as 
an index of heterogeneity. To attempt to explain any het-
erogeneity, we tested a somewhat different set of mod-
erators for each of the three study designs, as appropriate 
given their methodological differences. For all three 
designs, we tested the moderators of the age at the out-
come test and the outcome test category (classified in 
two different ways, as described below). For both the 
control-prior-intelligence and the policy-change designs, 
we tested the moderators of participant age at the early 
(control) test or at the policy change (for the control-
prior-intelligence design, we also tested the moderator of 
the gap between the two tests, though this was heavily 
related to the age at outcome test) and of whether the 
study was male only or mixed sex (several studies in 
these designs relied on military draft data and were thus 
restricted to male participants; note that this variable is 
confounded with the representativeness of the study 
because, aside from their single-sex nature, military draft 
studies will tend to include a more representative sam-
ple of the population than others). Where we combined 
all three study designs, we tested whether design was a 
moderator.

We classified outcome tests in two ways. The first 
was into the broad intelligence subtype: fluid tests (tests 
that assessed skills such as reasoning, memory, process-
ing speed, and other tasks that could be completed 
without outside knowledge from the world), crystal-
lized tests (tests that assessed skills such as vocabulary 
and general knowledge), and composite tests (tests 
that assessed a mixture of fluid and crystallized 
skills; in one instance, this composite was formally 

estimated as a latent factor with fluid and crystallized 
indicators). The second classification method was to 
highlight tests that might be considered achievement 
measures. To do this, we classified every test that 
would likely have involved content that was directly 
taught at school (including reading, arithmetic, and 
science tests) as “achievement,” and the remaining 
tests, which generally involved IQ-type measures 
(ranging from processing speed to reasoning to 
vocabulary), as “other” tests.

Publication-bias tests. We used four separate meth-
ods to assess the degree of publication bias in the data 
set. First, we tested whether the effect sizes were larger 
in peer-reviewed, published studies versus unpub-
lished studies (for example, PhD dissertations or non-
peer-reviewed books). If unpublished studies have 
significantly smaller effect sizes, this may indicate pub-
lication bias.

Second, we produced funnel plots, visually inspect-
ing them and testing their symmetry using Egger’s test. 
Significant funnel plot asymmetry (where, for example, 
low-precision studies with small effects were systemati-
cally missing) was taken as a potential indication of 
publication bias in the data.

Third, we used p-curve (Simonsohn, Simmons, & 
Nelson, 2015) to assess the evidential value of the data 
set using just the significant p values. A left-skewed 
p-curve (with more p values near the alpha level, in 
this case .05) indicates possible publication bias or so-
called p-hacking (use of questionable research prac-
tices, such as the ad hoc exclusion of participants or 
inclusion of covariates, in order to turn a nonsignificant 
result into a significant one) in the data set. Conversely, 
a right-skewed p-curve indicates evidential value. The 
shape of the curve is tested using both a binomial test 
(for the proportion of values where p < .025) and a 
continuous test, which produces “pp values” (the prob-
ability of finding a p value as extreme as or more 
extreme than the observed p value under the null 
hypothesis), and combines them to produce a z score 
using Stouffer’s method. We used the online p-curve app 
(http://www.p-curve.com/) to compute the analyses.

Fourth, we used the Precision Effect Test–Precision 
Effect Estimate with Standard Errors technique (PET-
PEESE; Stanley & Doucouliagos, 2014). The method first 
uses a weighted metaregression of the effect sizes on 
the standard errors, using the intercept of this regres-
sion—which estimates a hypothetical “perfect” study 
with full precision, and thus a standard error of zero—as 
the corrected “true” meta-analytic estimate (called the 
PET estimate). However, Stanley and Doucouliagos 
(2014) advised that, where the PET estimate was signifi-
cantly different from zero, a less biased estimate can be 
produced by using the variance instead of the standard 

http://www.p-curve.com/
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errors. The intercept of this regression is the PEESE esti-
mate. We followed this conditional logic in our PET-
PEESE analysis. References for all of the analysis software 
are provided in the Supplemental Material.

Results

The selection process resulted in a final meta-analytic 
data set including 142 effect sizes from 42 data sets, 
analyzed in 28 studies. The total sample size across all 
three designs was 615,812. See Table 1 for a breakdown 
of study characteristics by study design. Figure S2 
shows forest plots for each design.

Overall meta-analytic estimates

In three separate unconditional random-effects meta-
analytic models (one for each study design), we esti-
mated the effect of 1 additional year of education on 
cognitive outcomes. For all three study designs, there 
was a significant effect of 1 additional year of educa-
tion. For control prior intelligence, the effect was 1.197 
IQ points (SE = 0.203, p = 3.84×10−09); for policy change, 
it was 2.056 IQ points (SE = 0.583, p = 4.23×10−04); and 
for school-age cutoff, it was 5.229 IQ points (SE = 0.530, 
p = 6.33×10−23). An overall model including all estimates 
from all three designs found an average effect size of 
3.394 IQ points for 1 year of education (SE = 0.503,  
p = 1.55×10−11).

The overall model, considering all study designs simul-
taneously and including study design as a nominal mod-
erator variable, found that the estimate for school-age 
cutoff was significantly larger than that for control prior 
intelligence (SE = 0.564, p = 1.98×10−13) and for policy 

change (SE = 0.790, p = 5.34×10−05). There was no signifi-
cant difference between the estimates for control prior 
intelligence and policy change (SE = 0.608, p = .116).

The estimates above had minimal covariates included; 
for 27 of the 142 effect sizes, it was possible to extract 
an estimate that included a larger number of covariates 
(see data spreadsheet). This maximal-covariate analysis 
yielded reduced, though similar and still significant, 
effect-size estimates for the control-prior-intelligence 
design (0.903 IQ points, SE = 0.372, p = .015), and for 
the quasiexperimental design (1.852 IQ points, SE = 
0.508, p = 2.71×10−04). There were no additional covari-
ates to include for the school-age-cutoff design.

Heterogeneity and moderator analyses

There was significant heterogeneity in the uncondi-
tional meta-analyses from all three designs (control 
prior intelligence: τ = 0.721, SE = 0.250, p = .004; policy 
change: τ = 1.552, SE = 0.144, p = 3.40×10−27; school-age 
cutoff: τ = 1.896, SE = 0.226, p = 5.38×10−17). This was 
also the case for the overall model including all the 
data, which included study design as a nominal mod-
erator (τ = 2.353, SE = 0.272, p = 5.72×10−18). We 
explored which moderators might explain the hetero-
geneity within each of the three study designs. Descrip-
tive statistics for each moderator are shown in Table 1.

Age at early test and time lag between tests. For the 
control-prior-intelligence design, we tested whether the 
age at which the participants had taken the initial (con-
trol) cognitive test, or the gap between this early test and 
the outcome test, moderated the effect size. The age at 
the early test, which did not vary substantially (see Table 

Table 1. Descriptive Statistics for Each Study Design

Design
Control prior 
intelligence

Policy 
change

School age 
cutoff

k studies 7 11 10
k data sets 10 12 20
k effect sizes 26 30 86
N participants 51,645 456,963 107,204
Mean age at early test in years (SD) 12.35 (2.90) — —
Mean time lag between tests in years (SD) 53.17 (15.47) — —
Mean age at policy change in years (SD) — 14.80 (2.59) —
Mean age at outcome test in years (SD) 63.48 (18.80) 47.92 (19.39) 10.36 (1.60)
n outcome test category (composite:fluid:crystallized) 5:20:1 2:23:5 3:67:16
n achievement tests (achievement:other) 1:25 7:23 38:48
Male-only estimates (male only:mixed sex) 2:24 8:22 0:86
Publication status (published:unpublished) 22:4 21:9 64:22

Note: To estimate N from studies with multiple effect sizes with different ns, we averaged sample sizes across 
effect sizes within each data set and rounded to the nearest integer. “Unpublished” refers to any study not 
published in a peer-reviewed journal.
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1), was not significantly related to the effect size (−0.024 
IQ points per year, SE = 0.064, p = .706). For the youngest 
early-test age (10 years), the metaregression model indi-
cated that the effect size of 1 additional year of education 
was 1.243 IQ points; for the oldest (16 years), the effect 
size was 1.099 IQ points. Conversely, the time lag between 
the tests was a significant moderator of the effect size 
(−0.031 IQ points per year, SE = 0.015, p = .033). This 
metaregression indicated that at the smallest age gap (5 
years), the effect size was 2.398 IQ points, whereas for 
the largest age gap (72.44 years), the effect size was a 
substantially smaller 0.317 IQ points. Note that this age 
gap is almost fully confounded with the age at the out-
come test (r = .988), assessed as a moderator below.

Age at intervention. For the policy-change design, we 
tested whether the age at which the educational policy 
change produced an increment in compulsory schooling 

moderated the intervention effect. This was not the case: 
The effect size increased by a nonsignificant 0.038 IQ 
points per year of age at the intervention (SE = 0.228, p = 
.867). The metaregression model implied that at the 
youngest intervention age (7.5 years), the effect size was 
1.765 IQ points, and at the oldest (19 years) it was 2.204 
IQ points.

Age at outcome test. Figure 1 shows the effect sizes in 
the first two study designs as a function of the partici-
pants’ mean age at the outcome test. For the control-
prior-intelligence studies, outcome age was a significant 
moderator: The effect size of education declined by 
−0.026 IQ points per year of age (SE = 0.012, p = .029). At 
the youngest age (18 years) the effect size of having had 
an additional year of education was 2.154 IQ points, 
whereas at the oldest age (83 years) the effect size was 
0.485 IQ points. This effect was smaller but still significant 
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Fig. 1. Effect of 1 additional year of education as a function of age at the outcome test, 
separately for control-prior-intelligence and policy-change study designs. Bubble size is 
proportional to the inverse variance for each estimate (larger bubbles = more precise stud-
ies). Estimates in these illustrations differ slightly from the final metaregression estimate, 
which accounted for clustering. The shaded area around the regression line represents the 
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if the largest effect size (> 3 IQ points for an additional 
year) was excluded (−0.011 IQ points per year of age,  
SE = 0.005, p = .018). There was no significant moderating 
effect of age at outcome for the policy-change studies 
(0.014 IQ points per year, SE = 0.022, p = .543): The effect 
at the youngest age (18 years; 1.690 IQ points) was not 
significantly different from the effect at the oldest age (71 
years; 2.413 IQ points). There was comparatively little 
variation in the age at the outcome test for the school-age-
cutoff design (SD = 1.6 years; see Table 1); there was no 
significant age moderation effect (−0.027 points per year, 
SE = 0.399, p = .947).

Outcome test category. Splitting the outcome cognitive 
tests into three broad categories—composite, fluid, and 
crystallized tests—we tested whether the category mod-
erated effect sizes. For the control-prior-intelligence 
design, there were stronger educational impacts on com-
posite tests (1.876 IQ points, SE = 0.467, p = 5.94×10−05) 
than on fluid tests (0.836 points, SE = 0.097, p = .152), 
and the difference between composite and fluid was sig-
nificant (1.039 points, SE = 0.496, p = .036). There was 
only one crystallized outcome test for the control-prior-
intelligence design (1.893 points, SE = 0.348, p = 
5.34×10−08), so we did not include it in the moderator 
comparison here. For the policy-change design, there 
were significant effects for both composite (2.314 IQ 
points, SE = 0.869, p = .008) and fluid (2.272 points, SE = 
0.765, p = .003) but not crystallized (1.012 points, SE = 
1.125, p = .368) tests; however, the effects on the three 
different categories were not significantly different from 
one another (all difference p values > .35). Finally, for the 
school-age-cutoff design, there were significant effects of 
a year of education on composite (6.534 points, SE = 
2.433, p = .007), fluid (5.104 points, SE = 0.621, p = 
2.05×10−16), and crystallized (5.428 points, SE = 0.170, p = 
1.04×10−223) tests; there were, however, no significant 

differences between effect sizes across outcome types 
(difference p values > .5).

We then split the outcome tests into “achievement” 
tests versus “other” tests. There was only one achieve-
ment test in the control-prior-intelligence design, so we 
did not run this analysis. For policy change, there was 
no significant difference in the educational effect on 
the 7 achievement tests (2.760 IQ points, SE = 0.968,  
p = .004) versus the 23 other tests (1.784 points, SE = 
0.553, p = .001; difference SE = 1.011, p = .334). How-
ever, for school-age cutoff, which had the largest pro-
portion of achievement tests (38 of the 86 tests were 
classed as achievement tests), achievement tests showed 
a substantially and significantly larger educational effect 
(6.231 points, SE = 0.339, p = 2.85×10−75) than other 
tests (3.839 points, SE = 0.412, p = 1.11×10−20; difference 
SE = 0.371, p = 1.19×10−10).

Male-only studies. We tested whether studies that included 
only male participants showed a differential educational 
effect. This was not the case for control prior intelligence 
(effect for the 2 male-only estimates: 2.261 IQ points, SE = 
0.897, p = .012; effect for 24 mixed-sex estimates: 1.027 IQ 
points, SE = 0.110, p = 6.79×10−21; difference SE = 0.905, p = 
.173), or for policy change (effect for the 8 male-only esti-
mates: 1.683 IQ points, SE = 0.507, p = .001; effect for 22 
mixed-sex estimates: 2.215 IQ points, SE = 0.788, p = .005; 
difference SE = 0.941, p = .572). There were no male-only 
school-age-cutoff studies.

Multiple moderators. Table 2 shows the results from 
each study design after the inclusion of multiple modera-
tors. We included as many moderators as possible for each 
design, though we chose to include the “achievement” cat-
egorization of the outcome test for the school-age-cutoff 
design (instead of the alternative categorization involving 
composite, fluid, and crystallized tests, which we used 

Table 2. Simultaneous Multiple-Moderator Analyses for Each Study Design

Design
Control prior 
intelligence Policy change

School age 
cutoff

Intercept 2.079 (0.665)** –1.068 (4.429) 2.603 (4.426)
Early test age –0.011 (0.026) — —
Age at intervention — 0.137 (0.220) —
Outcome test age –0.020 (0.005)*** 0.023 (0.048) 0.111 (0.416)
Outcome test category (composite vs. fluid/crystallized) –0.689 (0.234)*** –1.479 (1.045) —
Outcome test category (achievement vs. other) — — 2.471 (0.524)***
Male only 0.874 (0.258)** –0.644 (1.766) —
τ 0.305 (0.056)*** 1.454 (0.206)*** 1.740 (0.310)***
Change in τ 0.416 0.098 0.156

Note: Values are estimates (in IQ point units); standard errors are in parentheses. The change in the τ statistic refers to that from 
the unconditional models, as reported in the row above.
**p < .01. ***p < .001.
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for the other designs) because it had such a substantial 
effect in the single-moderator model. Including multiple 
moderators reduced the τ statistic—to a larger degree for 
the control-prior-intelligence design than for the others—
though significant heterogeneity remained in all cases. 
The moderators that were individually significant (e.g., 
age in the control-prior-intelligence design or achieve-
ment tests in the school-age-cutoff design) were also sig-
nificant in the multiple-moderator model, indicating that 
their effects were incremental of the other moderators 
that we included.

Publication-bias tests

Publication status. As an initial test of publication 
bias, we tested whether the effect sizes were larger in 
studies published in peer-reviewed journals compared 
with those that were either unpublished or published 
elsewhere. For control prior intelligence, there were 4 
published versus 22 unpublished estimates; there was no 
significant difference in their effect sizes (the effect was 
0.036 points larger in published studies, SE = 0.343, p = 
.915). For policy-change studies, for which there were 21 
published and 9 unpublished estimates, the effect size 
was significantly larger in unpublished studies, though 
there were still significant effects within each set of stud-
ies (published effect = 1.635 points, SE = 0.575, p = .004; 
unpublished effect = 3.469 points, SE = 0.388, p = 
4.11×10−19; difference SE = 0.710, p = .010). For school-
age-cutoff studies, there was no significant difference 
between published and unpublished studies (for which 
there were 64 and 22 estimates, respectively; difference = 
0.509 points higher in published studies, SE = 0.689, p = 
.460).

Funnel plots. Funnel plots for the three study designs 
are shown in Figure 2. Note that, for the school-age-cut-
off design, 42 of the 86 standard errors were reported as 
approximate or as averages; because they were inexact, 
we used them in the estimates of the meta-analytic effects 
above but did not use them to estimate the funnel plots 
(or for the PET-PEESE analysis below). Egger’s test found 
no evidence of funnel plot asymmetry for any of the 
designs (control prior intelligence: z = −1.378, p = .168; 
policy change: z = −0.486, p = .627; school-age cutoff: z = 
0.941, p = .347). However, only the funnel for control 
prior intelligence displayed an approximately funnel-like 
shape. See Figure S3 in the Supplemental Material for 
funnel plots including studies from all three designs, one 
using the raw effect sizes and using effect sizes residual-
ized for the moderators shown in Table 2.

p-curve. Next, we used p-curve to examine the distribu-
tion of study p values. The p-curves are shown in Figure 
3. For the control-prior-intelligence design, the binomial 
test for a right-skewed p-curve was significant, indicating 
evidential value (p = .0007); this was also the case for the 
continuous test (full p-curve: z = −18.50, p = 2.06×10−76; 
half p-curve: z = −19.19, p = 4.49×10−82). For the quasiex-
perimental design, the binomial test was significant (p = 
.0461), as was the continuous test (full p-curve: z = 
−15.59, p = 8.51×10−55; half p-curve: z = −17.64, p = 
1.21×10−69). For school-age-cutoff studies, all three tests 
were significant (binomial test p < .0001; continuous test 
full p-curve: z = −43.72, p ≈ .00; half p-curve: z = −42.61, 
p ≈ .00). For all three designs, p-curve estimated that the 
statistical power of the tests included was 99%. Thus, over-
all, p-curve indicated that all three designs provided evi-
dential value, and there was no evidence for publication 
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Fig. 2. Funnel plots showing standard error as a function of effect size, separately for each of the three study designs. The dotted lines 
form a triangular region (with a central vertical line showing the mean effect size) where 95% of estimates should lie in the case of zero 
within-group heterogeneity in population effect sizes. Note that 42 of the total 86 standard errors reported as approximate or as averages 
in the original studies were not included for the school-age-cutoff design.
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bias or p-hacking in the studies with statistically signifi-
cant results (full output from the p-curve app is available 
on the Open Science Framework page for the present 
study).

PET-PEESE. Finally, we used PET-PEESE to obtain an 
estimate of the effect size for each study design in a 
hypothetical study with perfect precision. For all three 
designs, the PET estimate (intercept) was significant, so 
we went on to use the PEESE estimate of the intercept, 
which represents the predicted effect sizes under a counter-
factual of no publication bias (control prior intelligence: 
PET estimate = 1.034 IQ points per year, SE = 0.153, p = 
5.45×10−07; PEESE estimate = 1.091 points, SE = 0.117, p = 
1.76×10−09; policy change: PET estimate = 1.286 points, 
SE = 0.153, p = 3.69×10−09; PEESE estimate = 1.371 IQ 
points, SE = 0.142, p = 2.08×10−10; school-age cutoff: PET 
estimate = 3.299 IQ points, SE = 1.166, p = .007; PEESE 
estimate = 4.244 IQ points, SE = 0.718, p = 5.26×10−07). 
Note that only the exact standard errors (i.e., not those 
reported as approximate or averages, as noted for the 
funnel plots above) were used for the PET-PEESE analy-
sis. For all three designs, the PEESE test indicated effect 
sizes that were slightly smaller than in the original esti-
mate but still statistically significant. Graphs of the PET-
PEESE estimates for each design are shown in Figure S4 
in the Supplemental Material.

Overall, four different publication-bias tests broadly 
indicated minimal systematic bias in the results: Where 
there was an unexpected result—unpublished studies 
producing larger estimates for the policy-change 
design—this was in the opposite direction to what 
would be expected under publication bias.

Discussion

In a meta-analysis of three quasiexperimental research 
designs, we found highly consistent evidence that lon-
ger educational duration is associated with increased 
intelligence test scores. Each of the designs imple-
mented a different approach for limiting endogeneity 
confounds resulting from selection processes, where 
individuals with a propensity toward higher intelligence 
tend to complete more years of education. Thus, the 
results support the hypothesis that education has a 
causal effect on intelligence test scores. The effect of 1 
additional year of education—contingent on study 
design, inclusion of moderators, and publication-bias 
correction—was estimated at approximately 1 to 5 stan-
dardized IQ points.

Each research design had its own strengths and 
weaknesses. The control-prior-intelligence design pro-
duced precise, long-range estimates of the educational 
effect, taking into account the full range of educational 
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variation. However, this approach did not employ a 
specific instrument for introducing differences in edu-
cational duration, instead capitalizing on naturally 
occurring variation, which is itself multidetermined. 
Moreover, because the early and outcome tests were 
rarely identical (and because the early ability tests likely 
contained measurement error), the control for preexist-
ing ability levels was likely only partial.

The policy-change design produced causal estimates 
across large, population-based data sets. However, esti-
mates from this approach were relatively imprecise, as 
is typical of instrumental-variable analyses. Furthermore, 
because the policies used as instruments typically 
increased educational duration only for the subset of 
individuals who would otherwise have attended school 
at the preexisting minimum compulsory level, this design 
should be interpreted as producing a “local average treat-
ment effect” that might not generalize across the full 
educational range (Morgan & Winship, 2015, p. 305).

The school-age-cutoff design produced the largest 
number of estimates across a wide range of cognitive 
abilities, but it was restricted to comparisons across 
adjacent school years. In this design, the critical causal 
estimate is based on comparing test scores in a given 
grade with a counterfactual formed by extrapolating 
within-grade age trends beyond the cutoff dates. This 
approach is powerful, but the key assumption—that the 
age trend extrapolates—is difficult to test. Moreover, 
although this approach produced large effect-size esti-
mates, we did not identify any studies that tested 
whether these effects persisted into adulthood. These 
estimates should thus be regarded with caution.

The finding of educational effects on intelligence 
raises a number of important questions that we could 
not fully address with our data. First, are the effects on 
intelligence additive across multiple years of education? 
We might expect the marginal cognitive benefits of 
education to diminish with increasing educational dura-
tion, such that the education-intelligence function even-
tually reaches a plateau. Unfortunately, we are not 
aware of any studies that have directly addressed this 
question using a rigorous quasiexperimental method.

Second, are there individual differences in the magni-
tude of the educational effect? One possibility is the Mat-
thew effect (Stanovich, 1986), whereby children at greater 
initial cognitive (or socioeconomic) advantage benefit 
more from additional education than those at lower advan-
tage. Another possibility is that education acts as an equal-
izer, such that children at lower levels of initial advantage 
benefit most (Downey, von Hippel, & Broh, 2004). Indeed, 
some evidence of an equalizing effect was reported in a 
single study by Hansen, Heckman, and Mullen (2004).

Third, why were the effects obtained from the 
control-prior-intelligence and policy-change designs—
which generally came from increases in educational 

duration that were not explicitly targeted cognitive 
interventions—still apparent in later life, when effects 
from targeted educational interventions, such as pre-
school, have tended to show fade-out into early adult-
hood (Bailey, Duncan, Odgers, & Yu, 2017; Protzko, 
2015)? Even in the control-prior-intelligence design, 
where the effects showed a decline across time (Fig. 
1), estimates remained statistically significant into the 
eighth and ninth decades of life. One intriguing pos-
sibility is that, unlike targeted interventions, increases 
in educational attainment have lasting influences on a 
range of downstream social processes, for instance 
occupational complexity (Kohn & Schooler, 1973) that 
help to maintain the initial cognitive benefits.

Fourth, which cognitive abilities were impacted? It 
is important to consider whether specific skills—those 
described as “malleable but peripheral” by Bailey et al. 
(2017, p. 15)—or general abilities—such as the general 
g factor of intelligence—have been improved ( Jensen, 
1989; Protzko, 2016). The vast majority of the studies 
in our meta-analysis considered specific tests and not 
a latent g factor, so we could not reliably address this 
question. However, it is of important theoretical and 
practical interest whether the more superficial test 
scores or the true underlying cognitive mechanisms are 
subject to the education effect. In our analyses with test 
category as a moderator, we generally found educa-
tional effects on all broad categories measured (we did 
observe some differences between the test categories, 
but it should be noted that differential reliability of the 
tests might have driven some of these differences). 
However, further studies are needed to assess educa-
tional effects on both specific and general cognitive 
variables, directly comparing between the two (e.g., 
Ritchie, Bates, & Deary, 2015).

Fifth, how important are these effects? There is 
strong evidence from industrial and organizational psy-
chology and cognitive epidemiology studies that IQ is 
associated with occupational, health, and other out-
comes (e.g., Calvin et al., 2017), but to our knowledge, 
no studies have explicitly tested whether the additional 
IQ points gained as a result of education themselves 
go on to improve these outcomes (see Ackerman, 2017, 
for discussion of this criterion problem in intelligence 
research). A quasiexperimental study by Davies, 
Dickson, Davey Smith, van den Berg, and Windmeijer 
(2018) found that raising the school-leaving age 
improved not only IQ but also a variety of indicators 
of health and well-being. It is possible that the educa-
tional benefits to the upstream variables were partly 
mediated via the IQ increases (or vice versa), but this 
would need explicitly to be investigated.

Finally, what are the underlying psychological mecha-
nisms of the educational effect on intelligence? Ceci 
(1991) outlined a number of promising pathways, 
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including the teaching of material directly relevant to the 
tests, the training of thinking styles such as abstract rea-
soning, and the instilling of concentration and self-
control. Studies that attempt to pin down the proximal 
educational processes that might, in part, drive the effect 
(such as reading; Ritchie, Bates, & Plomin, 2015; 
Stanovich, 1993; though see Watkins & Styck, 2017); 
those that focus on the differences between the educa-
tional effect on specific subtests (e.g., Ritchie et al., 2013), 
and those that address effects of variation in the quality, 
not just the quantity, of education (e.g., Allensworth, 
Moore, Sartain, & de la Torre, 2017; Becker, Lüdtke, 
Trautwein, Köller, & Baumert, 2012; Gustaffson, 2001) 
are all promising ways to progress toward clarifying a 
mechanism.

The results reported here indicate strong, consistent 
evidence for effects of education on intelligence. 
Although the effects—on the order of a few IQ points 
for a year of education—might be considered small, at 
the societal level they are potentially of great conse-
quence. A crucial next step will be to uncover the 
mechanisms of these educational effects on intelligence 
in order to inform educational policy and practice.
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