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1  | INTRODUC TION

Children vary widely in their abilities to deploy cognitive re-
sources in support of complex behavior, reasoning, and decision 
making. Individual differences in children’s cognitive develop-
ment and academic achievement have immediate consequences 
for their mental health (Deary, Strand, Smith, & Fernandes, 2007; 
Gottfredson & Deary, 2004) and life course consequences for their 

psychological, physical, and economic wellbeing (Deary, 2008; 
Harden et al., 2017; Koenen et al., 2009). Given the importance 
of cognitive skills to a wide variety of social, economic, and health 
outcomes, researchers have long been interested in investigat-
ing the sources of these individual differences, with the hope of 
identifying etiological factors that are amenable to intervention. 
Indeed, a broad variety of health, educational, and parenting fac-
tors has been examined in relation to children’s cognitive abilities 
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Abstract
Behavioral and molecular genetic research has established that child cognitive ability 
and academic performance are substantially heritable, but genetic variation does not 
account for all of the stratification of cognitive and academic outcomes across fami-
lies. Which specific contexts and experiences contribute to these shared environmen-
tal influences on cognitive ability and academic achievement? Using an ethnically and 
socioeconomically diverse sample of N = 1728 twins ages 7–20 from the Texas Twin 
Project, we identified specific measured family, school, and neighborhood socioeco-
logical contexts that statistically accounted for latent shared environmental variance 
in cognitive abilities and academic skills. Composite measures of parent socioeco-
nomic status (SES), school demographic composition, and neighborhood SES ac-
counted for moderate proportions of variation in IQ and achievement. Total variance 
explained by the multilevel contexts ranged from 15% to 22%. The influence of family 
SES on IQ and achievement overlapped substantially with the influence of school and 
neighborhood predictors. Together with race, the measured socioecological contexts 
explained 100% of shared environmental influences on IQ and approximately 79% of 
shared environmental influences on both verbal comprehension and reading ability. In 
contrast, nontrivial proportions of shared environmental variation in math perfor-
mance were left unexplained. We highlight the potential utility of constructing “poly-
environmental risk scores” in an effort to better predict developmental outcomes and 
to quantify children’s and adolescents’ interrelated networks of experiences. A video 
abstract of this article can be viewed at: https://youtu.be/77E_DctFsr0
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and academic achievement (e.g. Burchinal, Peisner-Feinberg, 
Pianta, & Howes, 2002; Dupéré, Leventhal, Crosnoe, & Dion, 
2010; Leventhal & Brooks-Gunn, 2000; Needham, Crosnoe, & 
Muller, 2004; Pinquart, 2016).

One approach to understanding the sources of individual dif-
ferences in cognitive and academic skills has been to partition the 
variance in the outcome of interest into latent genetic and environ-
mental factors using quantitative genetic methodology (Neale & 
Maes, 2004). Most commonly, a twins-raised-together design com-
pares identical (monozygotic; MZ) twins’ similarity on a phenotype 
to fraternal (dizygotic; DZ) twins’ similarity on that phenotype. This 
comparison leverages the differences between MZ and DZ pairs’ ge-
netic similarity in order to decompose phenotypic variance into three 
primary factors: additive genetic influences (A), which make individ-
uals from the same family more similar on the outcome of interest; 
shared environmental influences (C), or experiences shared by the 
twins that make them more similar on the outcome, above and be-
yond genetic similarity; and nonshared environmental influences (E), 
or events that individuals from the same family experience uniquely 
and make the individuals more distinct in the outcome, regardless 
of genetic similarity. To the extent that the phenotype is measured 
with error, E also encompasses variance due to measurement error.

The quantitative genetic approach to understanding the sources 
of individual variation has highlighted the contribution of genetic 
variants to cognitive ability (Bouchard & McGue, 1981). In middle 
childhood and adolescence, about 50% of the variation in general 
cognitive ability is attributable to additive genes (Tucker-Drob, 
Briley, & Harden, 2013). This estimate increases to about 70% by late 
adolescence and remains similarly high for much of adulthood (Briley 
& Tucker-Drob, 2017; Pedersen, Plomin, Nesselroade, & McClearn, 
1992). In addition, behavioral genetic studies have also revealed 
moderate—but consistent—effects of shared family-level factors (C) 
on these traits. Shared or family-level factors are experiences com-
mon across children raised in the same household.

Although C has often been conceptualized as representing the 
home environment (e.g. parental socioeconomic status [SES], access 
to goods and services), it actually comprises all factors that serve to 
make children raised in the same family more similar on the outcome 
of interest, regardless of their genetic relatedness. This may include 
parenting styles, shared classroom experiences, and neighborhood 
characteristics. Nevertheless, estimates of C do not indicate which 
specific experiences or contexts that cluster within families give rise 
to between-family stratification in cognitive ability and academic 
achievement. Rather, C is a latent variable that serves as a place-
holder for potentially myriad environmental factors that have yet to 
be measured or identified.

Initial efforts to incorporate measured environments into genetic 
models primarily focused on individual environmental measures and 
individual genetic variants (reviewed by Nigg, Nikolas, & Burt, 2010; 
Rutter, Moffitt, & Caspi, 2006). Candidate gene-by-environment 
studies have used many measured psychosocial contexts, includ-
ing SES and childhood adversity composites (Retz et al., 2008), yet 
the contexts are seldom modeled simultaneously, yielding a limited 

representation of participants’ environments. As a separate matter, 
candidate gene studies have generally evinced poor replication.

Twin studies, which provide omnibus estimates of both ge-
netic and environmental influences, have also used the measured 
environment approach to assess relative contributions of specific 
contexts on child and adolescent outcomes such as substance 
use (Dick et al., 2007; D’Onofrio et al., 2008) and cognitive ability 
(Hart, Petrill, Deater-Deckard, & Thompson, 2007; Petrill, Deater-
Deckard, Schatschneider, & Davis, 2005). Measured contexts range 
from parenting practices and behaviors (Dick et al., 2007; D’Onofrio 
et al., 2008; Koenen, Moffitt, Caspi, Taylor, & Purcell, 2003) to a 
composite index of family-level SES (Hanscombe et al., 2012; Hart 
et al., 2007) to neighborhood disadvantage (Burt, Klump, Gorman-
Smith, & Neiderhiser, 2016). Explicitly measured contexts have also 
been examined with respect to nonshared environmental influences, 
comprehensively reviewed in Turkheimer and Waldron (2000). 
Although many studies have examined multiple environmental indi-
ces in conjunction with genetically informed approaches, they have 
tended to incorporate the indices into separate, single-predictor 
models, rather than entering them into multi-predictor models that 
consider their joint and unique effects. Notable exceptions have 
considered the cumulative effect of multiple indices of the environ-
ment, for instance by constructing composites representing parental 
involvement (Petrill et al., 2005), familial negativity (Pike, McGuire, 
Hetherington, Reiss, & Plomin, 1996), and the school environment 
(Walker, Petrill, & Plomin, 2010); or by assessing multiple contexts 
measured at varying proximities to the child (Asbury, Wachs, & 
Plomin, 2005). Fortunately, behavioral genetics has been at the 
forefront of comprehensively characterizing the developing child’s 
experiences, which presents additional opportunities to investigate 
environmental influences in a multivariate framework (Boivin et al., 
2012; Klump & Burt, 2007; Leve et al., 2013; Trouton, Spinath, & 
Plomin, 2002).

RESEARCH HIGHLIGHTS

•	 Behavioral genetic work indicates that shared environ-
ments explain 10–30% of variance in children’s cogni-
tive outcomes, but this methodology alone cannot 
specify which experiences are relevant.

•	 We examined the extent to which constellations of 
measured socioecological contexts accounted for 
shared environmental variance (C) in children’s and ado-
lescents’ cognitive and academic abilities.

•	 Along with race, the measured home, school, and neigh-
borhood contexts accounted for 100% of shared envi-
ronmental variance in IQ.

•	 Socioecological contexts and race explained lower—but 
substantial—proportions of C for verbal reasoning, read-
ing, and math abilities (78%, 80%, and 50% of C, 
respectively).
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In summary, the majority of genetically informed work typi-
cally models a small number of measured environmental factors 
at one time, with attention focused on family-level indicators. 
Indeed, characteristics of the parent or home environment pro-
vide a broad proxy for children’s experiences. However, a large 
body of work within developmental psychology has demon-
strated that child outcomes are associated with an interrelated 
network of socioeconomic contexts spanning multiple settings, 
including school and neighborhood quality (Ellen & Turner, 1997; 
Hart, Hodgkinson, Belcher, Hyman, & Cooley-Strickland, 2013; 
Sampson, Raudenbush, & Earls, 1997). For example, school-aged 
children’s academic performance has been linked to multiple psy-
chosocial contexts across family, school, and neighborhood levels, 
including classroom quality (Pianta, Belsky, Vandergrift, Houts, & 
Morrison, 2008; Tarr et al., 2008), parent involvement (El Nokali, 
Bachman, & Votruba-Drzal, 2010), and neighborhood resources 
(Theokas & Lerner, 2006).

Prominent theoretical frameworks, such as Bronfenbrenner’s 
ecological systems theory of child development (Bronfenbrenner, 
1992), posit that human development is shaped by contexts ranging 
from very proximal to distal from the individual in question. That is, 
an individual is influenced not only by more direct home and class-
room contexts, but also by broader contexts related to neighbor-
hoods, politics, the media, and cultural attitudes. According to this 
perspective, the contexts that are meaningful for cognitive abilities 
and academic achievement are thought to come from a variety of 
sources, not just those occurring in the home. These experiences 
are thought to combine and potentially interact with one another 
in their effects on child outcomes (Bronfenbrenner, 1992; Brooks-
Gunn, Klebanov, & Duncan, 1996; Hart et al., 2007; Leventhal & 
Brooks-Gunn, 2000).

The current project aims to deconstruct latent shared environ-
mental variation in cognitive abilities, reading, and mathematics 
achievement using a multivariate constellation of measured fam-
ily, school, and neighborhood factors. The multilevel battery of 
contextual measures was selected based on an expansive litera-
ture from sociology, developmental psychology, educational psy-
chology, and human ecology (e.g. Duncan, Yeung, Brooks-Gunn, 
& Smith, 1998; Farah et al., 2008; Lee & Burkam, 2002; Luby 
et al., 2013; Luo & Waite, 2005; Sirin, 2005; Tucker-Drob & Bates, 
2016). Drawing on a sample of third through twelfth grade twins 
from the Texas Twin Project, we (1) employ behavioral genetic 
models to estimate the degree to which a broad factor repre-
senting shared environmental influences contributes to individual 
differences in cognitive and academic abilities; (2) use measured 
indices of home, school, and neighborhood factors previously im-
plicated in child cognitive and behavioral development; (3) incor-
porate the measured socioecological indices into the behavioral 
genetic model to estimate the extent to which they account for 
the latent shared environmental variance estimated in step 1. In 
other words, to the extent that behavioral genetic models indicate 
that the cognitive and achievement outcomes are influenced by 
a latent shared environmental variance component, we attempt 

to explain this influence with multilevel predictors relevant to 
cognitive ability and academic achievement. Adding a measured 
predictor to a behavioral genetic model reduces the latent shared 
environment estimate by a proportion equivalent to the degree of 
variance that predictor explains (Turkheimer, D’Onofrio, Maes, & 
Eaves, 2005). If a measured environment is a meaningful correlate 
of an outcome, residual shared environmental contributions will 
be reduced when the environmental measure is included in the 
model.

The goal of the paper can be understood in relation to an analo-
gous effort by geneticists to account for latent genetic effects with 
measured genetic variants. Recognizing that genes play a critical role 
in cognitive outcomes, molecular geneticists have begun to identify 
the specific genetic variants that contribute to latent heritability 
estimates from twin and family studies. Genome-wide association 
studies are identifying an increasing number of specific genetic 
variants that account for non-trivial proportions of variance in cog-
nitive abilities (Davies et al., 2011; Deary et al., 2012; Okbay et al., 
2016; Sniekers et al., 2017; Trzaskowski, Yang, Visscher, & Plomin, 
2014), with the discrepancy between the latent estimate of herita-
bility from twin and family studies and the proportion of variance 
accounted for by measured genetic variants commonly referred to as 
the ‘missing heritability gap’ (Manolio et al., 2009). As more variants 
related to cognitive ability are discovered, the missing heritability 
gap for cognitive ability narrows (Plomin & von Stumm, 2018). Thus, 
just as genetic association studies aim to identify specific, measur-
able constituents of latent heritable variance in a phenotype, the 
current project aims to identify measurable characteristics of chil-
dren’s environments that account for latent shared environmental 
variance in cognitive abilities and academic achievement.

2  | METHODS

2.1 | Participants

Families of twins and other multiples were recruited from public 
school rosters as part of the Texas Twin Project (Harden, Tucker-
Drob, & Tackett, 2013). The current sample consisted of 1,728 
children and adolescents in grades three to twelve, 212 of whom 
returned for repeat testing no earlier than one year after the 
previous visit (age rangevisit1 7.80–20.11 years, M = 12.85, SD = 
2.96; age rangeall visits 7.80–20.11 years, M = 13.11, SD = 2.97). 
Repeat observations were included to cover a wider range of 
schools and census tracts, as many participants changed schools 
and residences between lab visits. Statistical adjustments for the 
inclusion of repeat participants are described in the Analyses sec-
tion. As we did not employ a model that separated levels from 
longitudinal change, the current analyses should be considered 
cross-sectional.

Across all 1953 data points (individuals and time), 50% of the 
sample consisted of females. Of families reporting race and ethnic-
ity, 58.9% were Caucasian, 22.2% were Hispanic, 8.0% were African 
American, 4.4% were Asian, 0.4% were another race/ethnicity, and 
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6.1% were multiple races/ethnicities. Race and ethnicity were en-
tered as effect-coded, mutually exclusive categories in the analyses, 
with effect codes for each category weighted by group size as a pro-
portion of the sample. Thirty percent of the families reported receiv-
ing needs-based public assistance (e.g. food stamps; women, infants, 
and children benefits) at some point during the twins’ lives. Three 
families had two sets of twins, putting the total number of unique 
families at 847. The current sample consisted of 1026 pairs: 927 twin 
pairs and 99 pairwise combinations from 33 triplet sets.

Opposite-sex pairs were classified as dizygotic (DZ). To deter-
mine the zygosity of same-sex pairs, we conducted a latent class 
analysis that included experimenters’, parents’, and (for high school 
students) self ratings of each pair’s physical similarity. Using latent 
class analysis to assess zygosity from physical similarity ratings has 
been reported to be over 99% accurate, as compared to genotyping-
based classifications (Heath et al., 2003). The current sample in-
cluded 364 (35.5%) monozygotic (MZ) pairs, 352 (34.3%) same-sex 
dizygotic pairs, and 310 (30.2%) opposite-sex dizygotic pairs.

We collected a broader set of academic achievement measures 
from a subsample of 1064 third through eighth graders, 45 of whom 
returned for repeat testing (age rangevisit1 7.80–15.25 years, M = 
10.79, SD = 1.76; age rangeall visits 7.80–15.25 years, M = 10.83, SD 
= 1.76; 50% female across data points). The subsample was highly 
similar to the full sample on race (59.0% Caucasian, 23.7% Hispanic, 
6.4% African American, 4.0% Asian, 0.6% other race, 6.3% multi-
ple races), receipt of public assistance (29%), and zygosity (35.9% 
MZ, 34.2% same-sex DZ, 29.9% opposite-sex DZ). For analyses con-
ducted on the younger subsample alone, weighted effect codes for 
race/ethnicity were based on group size within the subsample.

2.2 | Measures

2.2.1 | Adversity and socioecological deprivation

We compiled multiple indices of adversity and socioecological dep-
rivation at each of three measurement levels: home, school, and 
neighborhood. Table S1 in the Supporting Information provides de-
tails about and sources for the selected measures of adversity and 
deprivation. Home variables came from parent reports of income, 
education, financial difficulty, major changes during the twins’ lives, 
and parental conflict. Parent SES constituted one measure of the 
home environment; this composite was computed as the average of 
standardized parent educational attainment and standardized, log-
transformed income. Another home variable was cumulative adver-
sity, which was created by averaging eight variables that measured 
the presence or absence of financial difficulty during the twins’ life-
time, as well as major life changes in the six years preceding the twins’ 
study participation (for an overview of cumulative risk measurement 
in childhood, see Evans, Li, & Whipple, 2013). The final home variable 
was parent conflict, which assessed children’s exposure to conflict 
related to finances, discipline, etc. (Porter & O’Leary, 1980).

To characterize school and neighborhood quality, we drew 
upon publicly available reports of structural (i.e. resource-based) 

and compositional (i.e. people-based) characteristics for all schools 
and census tracts represented in our sample. Variables of interest 
were chosen to represent each of several dimensions on an a pri-
ori basis, drawing on previous theoretical and empirical work (Ellen, 
Mijanovich, & Dillman, 2001; Franzini, Caughy, Spears, & Fernandez 
Esquer, 2005). Variables were formed into composite scores by ex-
tracting the first principal component from each set, using separate 
principal components analyses (PCAs). School variables were de-
rived from yearly state-mandated reports of student demographics, 
student achievement, and teacher characteristics (Texas Education 
Agency). We pulled the same outcomes of interest for each school 
year from 2011 to 2015 for each of the 230 schools that participants 
in the current sample had attended. The final school composites 
were school performance (attendance, as well as proficiency on a 
statewide test of math and reading); student demographics (stu-
dents’ racial/ethnic minority status, English language learner status, 
low SES by virtue of eligibility for free/reduced lunch, and mobility); 
and teacher characteristics (years of teaching experience, salary, and 
student-to-teacher ratio).

Neighborhood variables came from the American Community 
Survey, an annual survey administered by the US Census Bureau 
to gather information on resident demographics, employment, and 
housing characteristics (United States Census Bureau). We pulled 
the same variables of interest from 2011 to 2015 for each of the 239 
census tracts in which the current sample’s participants resided. 
The final neighborhood variables were SES (educational attain-
ment, single motherhood, management positions, impoverishment, 
and unemployment); residential instability (housing owned, reloca-
tion in the past year, maintain the same residence for a decade, 
and number of children and adolescents); and diversity (a weighted 
composite of racial/ethnic minority status and immigration).

To derive school composites, estimates for each variable of inter-
est (e.g. ratio of students to teachers in each school) were averaged 
across available years, producing 11 cross-year indicators of school 
quality for every school. The same approach was taken for the neigh-
borhood data: Tract-specific estimates for each of the 12 variables of 
interest were averaged across available years to generate cross-year 
indicators of neighborhood quality for every tract. The cross-year av-
erages for each measure and each school/tract were submitted to a 
series of PCAs using the nsprcomp package (Sigg & Buhmann, 2008) 
implemented in R version 3.2.3 (R Core Team, 2015). In total, six 
PCAs were conducted on distinct sets of indicators representative of 
the following contexts: school performance, student demographics, 
teacher characteristics, neighborhood SES, residential instability, and 
neighborhood diversity (see Table 1). To ensure that PCA results were 
not biased by the number of families in a particular school or tract, 
each school and tract was included once in each PCA.

We extracted the first principal component from each PCA. 
By definition, the first principal component explains the maximum 
amount of variance possible for a one-dimensional representa-
tion, while simultaneously maximizing parsimony (Jolliffe, 2002). 
We next weighted the raw, year-specific school and neighborhood 
data by the corresponding unstandardized loadings derived from 
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the PCA. Finally, we computed weighted composite scores for each 
family by averaging the weighted indicator scores comprising each 
component. For example, the neighborhood diversity composite 
was formed by averaging the weighted estimates of proportion of 
Hispanic residents, proportion of non-Hispanic African American 
residents, and proportion of immigrants. In total, three school com-
posites and three neighborhood composites, specific to the year of 
testing, were created for each family. This approach ensured that 
PCA scores specific to year of testing were derived for each fam-
ily, but that the PCA weights were not biased by dependencies that 
would have resulted from entering each individual year for the same 
variable into the PCA.

2.2.2 | Cognitive abilities

To assess intelligence, we administered the Wechsler Abbreviated 
Scale of Intelligence (WASI-II; Wechsler, 2011), which consists 
of two tests measuring verbal comprehension (Vocabulary and 
Similarities) and two tests measuring perceptual reasoning (Block 
Design and Matrix Reasoning). Scores on each test are standard-
ized relative to a nationally representative reference sample, and 
standardized scores are combined to form a full-scale intelligence 
quotient (FSIQ). Average FSIQ across all observations was 103.83 
with a standard deviation of 13.75, which is comparable to national 
norms, which carry a mean FSIQ of 100 and standard deviation of 

Component
Indicator

Unstandardized PC 
loading

Standardized PC 
loading

Proportion 
of variance

School performance 0.82

Met standard on statewide 
reading test

0.28 0.53

Met standard on statewide math 
test

0.96 0.99

Attendance 0.08 0.57

Student demographics 0.87

African American race 0.08 0.46

Hispanic ethnicity 0.57 0.96

Low SES 0.73 0.99

English language learner 0.33 0.81

Student mobility 0.15 0.64

Teacher characteristics 0.62

Average years’ experience 0.77 0.93

Average salary 0.64 0.87

Ratio of students to teachers 0.02 0.02

Neighborhood SES 0.96

Educational attainment above 
grade 12

0.75 0.99

Single mother −0.01 −0.60

Management position 0.66 0.98

Impoverished −0.02 −0.72

Unemployed −0.06 −0.53

Residential instability 0.82

Housing owned −0.90 −0.99

Moved in last year 0.32 0.89

Same residence for 10+ years −0.29 −0.61

Children and adolescents −0.08 −0.46

Diversity 0.72

African American race 0.49 0.67

Hispanic ethnicity 0.04 0.62

Immigrant 0.87 0.94

Note. Each PC and its indicators correspond to a separate analysis from which the first PC was ex-
tracted. Standardized loadings were computed by multiplying the unstandardized loading by the 
ratio of the standard deviation of the PC to the standard deviation of the indicator. The final column 
refers to the proportion of variance associated with the first PC.

TABLE  1 Loadings on and variance 
explained by first principal components 
(PCs)
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15. We also used the WASI-II to examine specific components of 
intelligence using the verbal comprehension index (a composite of 
age-standardized Vocabulary and Similarities scores) and the per-
ceptual reasoning index (a composite of age-standardized Block 
Design and Matrix Reasoning scores).

2.2.3 | Academic achievement

To assess more specific reading comprehension and mathemat-
ics skills, participants in grades three through eight completed the 
Passage Comprehension and Calculation subtests, respectively, 
of the Woodcock-Johnson III Tests of Academic Achievement 
(Woodcock, McGrew, & Mather, 2001). The dependent variable 
for the reading and math subtests is total number of items correct. 
Descriptive statistics for cognitive and academic outcomes are pro-
vided in Table S2 of the Supporting Information.

2.3 | Analyses

2.3.1 | Multiple regressions

We fit a series of structural equation models in Mplus Version 7.11 
(Muthén & Muthén, 2012) to estimate associations between the socio-
ecological deprivation components, race, and each of the outcomes. 
We implemented the Complex Survey option in Mplus to correct for 
the nonindependence of data from repeat participants and from in-
dividuals nested within families. Cognitive and academic scores were 
residualized for age and sex prior to being entered into models. Race 
variables (Caucasian, Hispanic, African American, Asian, other, and 
multiple) were effect coded, with other race serving as the reference 
group.

2.3.2 | Commonality analyses

Multiple regression is well suited for identifying predictors 
that account for variance incremental of all other predictors in-
cluded in the model. Because the predictors we included corre-
lated with one another, we were also interested in the extent to  
which overlapping variance among the socioecological contexts 
and race contributed to prediction of the cognitive and achieve-
ment outcomes. To achieve this, we extended the multiple regres-
sion framework to commonality analysis, which estimates the 
amount of variance in a dependent variable that is uniquely pre-
dicted by individual predictors, as well as variance in the dependent 
variable that is shared across sets of predictors (Ray-Mukherjee 
et al., 2014). Commonality analyses were carried out with R pack-
age yhat (Nimon, Oswald, & Roberts, 2013), producing R2 ex-
plained by each of 16,383 combinations of the predictors.

2.3.3 | Univariate behavioral genetic analyses

We fit behavioral genetic models in Mplus to decompose the  
variance in each outcome y (σ2

y) into additive genetic (a2), shared  

environmental (c2), and nonshared environmental (e2) variance, 
which includes measurement error, or: 

σ2
y
=a

2+c
2+e

2 (Neale & Maes, 2004).

To provide estimates of these variance components, behavioral 
genetic models leverage differences in the patterns of MZ twins 
(who share 100% of the genes that vary across humans) and those 
of DZ twins (who share 50% of their genes). For twins raised in the 
same household, within-pair covariances (cov) for an outcome can 
be expressed as:

where twin similarity is attributable to shared genetic factors (100% 
overlapping for MZ twins, 50% overlapping for DZ twins) and shared 
environmental experiences (100% overlapping for both pair types). 
Rearranging and substituting terms from the above equations al-
lows us to derive the following equations for estimating heritability, 
shared environmental variance, and non-shared environmental vari-
ance, respectively:

Data from triplet pairs were down-weighted by 50%, as  
each triplet was included in two pairwise combinations in the 
behavioral genetics dataset. We implemented the Complex  
Survey option in Mplus to correct for the nonindependence of 
data from repeat participants and multiple pairs nested within 
families.

2.3.4 | Inclusion of measured contexts into 
behavioral genetic models

Recall that the c2 estimate from the univariate analyses serves as 
a theoretical upper limit of variance that can be accounted for by 
the measured environments shared by family members. We in-
corporated the socioecological composites and race—which are 
necessarily constant across members of a twin pair and therefore 
categorized as a shared environment—into the models as predic-
tors, which allowed us to estimate the extent to which the meas-
ured shared environmental variables accounted for latent shared 
environmental variance in the cognitive and academic outcomes. 
In a series of individual models, we assessed how much of the 
total C variance in each outcome was attributable to the follow-
ing sets of predictors: home contexts, home contexts and race, 
school contexts, school contexts and race, neighborhood con-
texts, neighborhood contexts and race, all contexts, all contexts 
and race. For example, the following equation would be used to 
estimate contributions to IQ from additive genetic sources (a), 
three home contexts, residual or unexplained shared environmen-
tal sources (cresid), and nonshared environmental sources (e):

covMZ=1a2+1c2 and

covDZ=0.5a2+1c2

a
2=2(covMZ−covDZ)

c
2= covMZ−a

2

e
2=σ2

y
−covMZ
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We applied false discovery rate (FDR) corrections to the signif-
icance estimates of each set of nested models that incorporated 
the measured environments into the ACE estimations for a given 
outcome. FDR corrections were conducted with the Benjamini-
Hochberg procedure at an FDR of 0.10 (Benjamini & Hochberg, 
1995). Continuing with the example above, we evaluated the signifi-
cance estimates of the three home composites across four separate 
models in which IQ scores were regressed on (1) the home contexts 
alone, (2) the home contexts and race, (3) all of the contexts, and 
(4) all of the contexts and race. Original significance estimates that 
were greater than the critical value assigned using the Benjamini-
Hochberg procedure (i.e. significance estimates that did not pass 
FDR correction) are noted in the tables.

For all analyses, the latent ACE parameters were standardized 
with respect to total variance of the outcome, not with respect to re-
sidual variance after accounting for the composites. This allowed us 
to track the residual shared environmental variance estimate across 
stepwise models in which additional sets of measured family-level 
predictors were added. As these measured predictors accounted 
for an increasing amount of variance in the phenotype, we expected 
to observe a corresponding reduction in the proportion of residual 
shared environmental variance. Standardizing the ACE parameters 
with respect to total variance also kept the a2 and e2 estimates con-
stant across models for a given outcome, even as the residual c2 es-
timate changed with the addition of family-level predictors. In the IQ 
example, a2 and e2 estimates would be the same as in the univariate 
model (σ2

IQ = a2 + c2 + e2), and contributions from the home contexts 
would lead to reduced residual c2, as those contexts would account 
for a portion of the total or univariate c2 estimate.

2.3.5 | Polyenvironmental risk score construction

Estimating the extent to which measured environments account 
for the latent shared environment parallels the polygenic risk 
score approach in molecular genetics, in which scores represent 
the combined effect of many genetic variants on behavioral out-
comes. To test the viability of this approach with respect to en-
vironmental measures, we constructed “polyenvironmental risk 
scores” and assessed the degree to which they predicted cogni-
tive and academic outcomes by conducting k-fold cross-validation 
in R. The k-fold procedure entails (1) shuffling observations within 
the dataset; (2) partitioning the shuffled data into k (ten, in this 
analysis) equally sized samples or folds; (3) assigning nine of the 
folds to a training set and the remaining fold to a test set; (4) 
within the training set, regressing an outcome on the nine socio-
ecological composites and five race variables; (5) extracting the 
regression coefficient for each predictor from the training model 
output; (6) weighting the predictor values from the test set by 
the corresponding regression weights from the training model; 
(7) summing the weighted values to produce predicted values for 

the test set; (8) computing R2 from the predicted values of the 
test set; (9) repeating steps 3 through 8, but using a new fold for 
the test set until each fold has been used exactly once as a test 
set. The predicted values from the test sets represent polyen-
vironmental risk scores whose weights have been informed by 
an independent sample (the training set). For each outcome, we 
computed mean R2 for test sets across ten iterations of the k-fold 
procedure. We then compared the mean R2 to the shared envi-
ronmental variance estimates from the initial behavioral genetic 
model.

3  | RESULTS

3.1 | Descriptive statistics and correlations

Principal component loadings for the socioecological adversity com-
posites are reported in Table 1. Correlations between the nine com-
posites, age, sex, race, and the cognitive and academic outcomes are 
reported in Table 2. The signs of these and subsequent relationships 
are driven, in part, by the valence of the composites and their constit-
uent variables. The absolute magnitude of intercorrelations among 
composites from the same domain (home, school, or neighborhood) 
was high, with the exception of correlations between parent conflict 
and the remaining home composites. Correlations between the com-
posites and the outcomes measured across the full sample (full-scale 
IQ, verbal comprehension, perceptual reasoning) were all significant 
at p < 0.05, aside from correlations with parent conflict.

Correlations were highly similar when only the younger par-
ticipants were considered (see upper diagonal of Table 2). In this 
younger subsample, cognitive and academic outcomes (full-scale IQ, 
verbal comprehension, perceptual reasoning, reading, math) signifi-
cantly correlated with all socioecological composites except for par-
ent conflict and teacher characteristics.

3.2 | Multiple regression results

We conducted a series of multiple regressions to estimate the extent 
to which each socioecological composite and race independently 
predicted the cognitive and academic outcomes. Here and in Table 3, 
we report standardized regression coefficients from these models 
for the composites and standardized mean effect sizes (Cohen’s d) 
relative to the mean of the outcome across the sample.

The total proportion of variance in the outcomes accounted for 
by race and the socioecological measures ranged from 0.15 for per-
ceptual reasoning to 0.22 for reading performance (see final row of 
Table 3). Incremental of one another and of the other predictors, full-
scale IQ was significantly predicted by parent SES, schoolwide student 
demographics, neighborhood SES, and Caucasian, Hispanic, African 
American, and Asian race designations. With the exception of student 
demographics and Asian race, the same predictors significantly con-
tributed to variance in verbal comprehension. Perceptual reasoning 
was incrementally predicted by parent SES, student demographics, 
Caucasian, African American, and Asian race. Within the subsample 

IQ=a+ �SES ∙SES+�adversity ∙adversity+�conflict ∙conflict+cresid

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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of third through eighth graders, parent SES, Caucasian race, Hispanic 
race, and African American race independently accounted for vari-
ance in full-scale IQ, verbal comprehension, and perceptual reasoning. 
Incremental to these and the other predictors, neighborhood SES pre-
dicted IQ; and teacher characteristics, neighborhood SES, and Asian 
race significantly predicted perceptual reasoning. Table S3 in the 
Supporting Information details the complete set of estimates.

Within the subsample of third through eighth graders, for 
which a broader set of academic achievement measures were 
available, reading scores were incrementally predicted by parent 
SES, schoolwide performance, Caucasian, Hispanic, and African 

American race. Math was independently predicted by parent SES 
and Asian race.

3.2.1 | Commonality analysis results

In addition to estimating the effects of each predictor individu-
ally, we sought to understand commonalities across the predictors 
in their impact on the outcomes of interest, in particular because 
of substantial correlations between the socioecological con-
texts. We used commonality analyses to partition the total vari-
ance explained for each outcome (i.e. R2) into variance uniquely 

TABLE  3 Multiple regression results for cognitive and academic outcomes

Predictor

Cognitive or academic outcome

Full-scale 
IQ

Verbal  
comprehension

Perceptual  
reasoning Reading Math

Parent SES 0.22*** 0.25*** 0.13*** 0.25*** 0.18***

[0.03] [0.03] [0.03] [0.04] [0.05]

Cumulative adversity −0.04 −0.02 −0.03 −0.02 −0.05

[0.03] [0.03] 0.03] [0.04] [0.04]

Parent conflict −0.03 −0.03 −0.02 0.00 −0.03

[0.02] [0.03] [0.02] [0.03] [0.03]

School performance 0.02 0.03 0.00 0.06* 0.02

[0.02] [0.02] [0.02] [0.03] [0.03]

Student demographics −0.09** −0.03 −0.13*** −0.02 −0.04

[0.03] [0.03] [0.04] [0.05] [0.05]

Teacher characteristics −0.01 0.05 −0.05 0.01 0.07

[0.03] [0.03] [0.03] [0.03] [0.03]

Neighborhood SES 0.07* 0.07* 0.05 0.06 0.10

[0.03] [0.03] 0.04] [0.05] [0.05]

Residential instability 0.00 −0.02 0.02 −0.04 −0.02

[0.02] [0.02] [0.03] [0.03] [0.03]

Diversity 0.02 0.03 0.01 −0.02 0.03

[0.03] [0.03] 0.03] [0.04] [0.04]

Race: Caucasian 0.09*** 0.08*** 0.07** 0.09** −0.05

[0.02] [0.02] [0.02] [0.03] [0.03]

Race: Hispanic −0.16** −0.17*** −0.09 −0.15** −0.05

0[.05] [0.05] [0.05] [0.06] [0.06]

Race: African American −0.47*** −0.25** −0.56*** −0.49*** −0.09

[0.08] [0.08] [0.07] [0.13] [0.12]

Race: Asian 0.26* 0.09 0.35** 0.02 0.89***

[0.11] [0.11] [0.11] [0.12] [0.15]

Race: Multiple 0.06 0.04 0.07 0.12 0.07

[0.08] [0.09] [0.08] [0.10] [0.11]

Multiple R2 .21 .18 .15 .22 .17

Note. Estimates for the socioecological contexts correspond to standardized regression coefficients; estimates for the race variables correspond to 
Cohen’s d effect sizes relative to the sample mean. Standard errors are reported in brackets. Full-scale IQ, verbal comprehension, and perceptual rea-
soning came from the full sample; reading and math came from the younger subsample. Socioecological composites and age- and sex-residualized 
outcomes were standardized prior to model fitting.
*p < 0.05; **p < 0.01; ***p < 0.001.
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attributable to each predictor and that shared by sets of predic-
tors. Table S4 in the Supporting Information reports the unique 
and common contributions of each predictor to the cognitive and 
academic outcomes.

Parent SES emerged as the primary contributor to variance in 
all five outcomes, both in terms of its unique effects (accounting for 
an average of 13.39% of total variance explained) and in its effects 
shared with other predictors, namely cumulative adversity, school-
wide student demographics, and neighborhood SES. Unique and com-
mon effects of predictor subsets accounting for the greatest amount 
of total explained variance in each outcome are depicted in Figure 1.

3.3 | Behavioral genetic results

3.3.1 | Univariate ACE models

We decomposed variance in the cognitive and academic out-
comes into their respective genetic and environmental factors. As 

age-residualized outcomes were standardized prior to modeling, all 
estimates reported here and in the tables may be interpreted as stand-
ardized values. Twin correlations and ACE estimates are reported in 
Table 4. For all outcomes, within-pair correlations were higher for MZ 
pairs (r = 0.65 to 0.77) than for DZ pairs (r = 0.33 to 0.49). Additive 
genetic and nonshared environmental influences significantly contrib-
uted to variance in each of the five outcomes. Shared environmental 
contributions were significant for all outcomes aside from perceptual 
reasoning (c2 = 0.02, p = 0.67). The estimates presented in Table 4 
were highly consistent when only the younger subsample was consid-
ered: full-scale IQ rMZ = 0.77, rDZ = 0.42; verbal comprehension rMZ = 
0.66, rDZ = 0.42; perceptual reasoning rMZ = 0.72, rDZ = 0.32.

3.3.2 | Incorporating measured contexts into 
ACE models

After characterizing the genetic and environmental structures 
of our outcomes, we incorporated the measured socioecological 

F IGURE  1 Commonality R2 estimates for predictor subsets explaining the most variance in cognitive or academic outcomes. 
Note: R2 and 95% confidence intervals from commonality analyses. Each plot displays the 10 predictor subsets that explained the greatest 
proportion of total variance in the respective outcome. All depicted subsets explained at least 2% of total variance in the respective 
outcome. Effects of a subset are independent of all other subsets. Confidence intervals were computed by bootstrapping 70% of the data 
(randomly selected with each iteration) 1,000 times. Full-scale IQ, verbal comprehension, and perceptual reasoning came from the full 
sample; reading and math came from the younger subsample for which data on these outcomes were available. SES = socioeconomic status, 
cumul advers = cumulative adversity, demo = demographics, neigh = neighborhood, Hisp = Hispanic, Amer = American, mult = multiple
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composites and race into the models to estimate the predictors’ con-
tributions to shared environmental influences (C) acting on scores. 
Separate models were run with each set of home, school, and neigh-
borhoods alone; with race added to each set of contexts; with all 
nine socioecological contexts; and with all nine socioecological con-
texts and race.

Table 5 reports the residual C variance for the outcomes that ex-
hibited significant shared environmental variance at the univariate 
level. Parameter estimates for the standardized regression coeffi-
cients or effect sizes corresponding to the predictors can be found in 
Tables S5–S8. Incorporating race into the model for full-scale IQ re-
duced the remaining shared environmental variance to from 0.19 to 
0.07. In other words, race differences accounted for 63% of the total 
shared environmental variance for IQ (total C variance from the uni-
variate model, minus C variance remaining after race was included, 
divided by total C variance). Incorporating only the home compos-
ites into the model accounted for 75% of shared environmental in-
fluences on IQ; school composites alone accounted for 63%; and 

neighborhood composites alone accounted for 71%. Adding race to 
models for home, school, and neighborhood influences explained, 
respectively, 97%, 86%, and 91% of shared environmental variance 
in IQ. Modeled together, the nine socioecological contexts explained 
94% of the shared environmental variance in full-scale IQ, and 100% 
of the original shared environmental contributions to IQ were sta-
tistically accounted for by the measured environments and race. 
Figure 2 displays the proportion of variance in cognitive and aca-
demic outcomes that was attributable to the measured and residual 
shared environmental components.

With respect to verbal comprehension, a significant portion of 
unexplained C remained when the home, school, or neighborhood 
contexts were incorporated by themselves or with race. When all 
composites were added as predictors, 71% of total shared environ-
mental variance was explained, and residual C variance reached non-
significant levels. Adding race to the full set of contexts increased 
the percentage of total C accounted for to 78%. The estimates for 
full-scale IQ and verbal comprehension as measured in the younger 

Outcome

Twin 
correlations Variance components

MZ DZ a2 c2 e2

Full-scale IQ 0.77 0.45 0.55*** 0.19*** 0.25***

Verbal comprehension 0.65 0.41 0.40*** 0.22*** 0.37***

Perceptual reasoning 0.71 0.33 0.65*** 0.02 0.32***

Reading performance 0.68 0.49 0.34*** 0.32*** 0.33***

Math performance 0.72 0.49 0.39*** 0.30*** 0.30***

Note. Full-scale IQ, verbal comprehension, and perceptual reasoning came from the full sample; 
reading and math came from the younger subsample. Age- and sex-residualized outcomes were 
standardized prior to model fitting. MZ = monozygotic, DZ = dizygotic, a2 = additive genetic vari-
ance, c2 = shared environmental variance, e2 = nonshared environmental variance.
***p < 0.001.

TABLE  4 Univariate twin correlations 
and ACE estimates

Environmental context

Residual c2 estimates by outcome

Full-scale  
IQ

Verbal  
comprehension Reading Math

None 0.19*** 0.22*** 0.32*** 0.30***

Race 0.07*† 0.13*** 0.19*** 0.23***

Home 0.05 0.10** 0.15** 0.22***

Race & home 0.01 0.07* 0.09 0.18***

School 0.07* 0.12*** 0.17*** 0.23***

Race & school 0.03 0.09* 0.12* 0.19***

Neighborhood 0.06 0.10** 0.17*** 0.21***

Race & neighborhood 0.02 0.08* 0.11* 0.17***

All contexts 0.01 0.07 0.11* 0.18***

Race & all contexts 0.00 0.05 0.07 0.15***

Note. Residual c2 estimates correspond to squared standardized coefficients. Models were  
conducted separately for each outcome and each set of contexts. Socioecological composites and 
age- and sex-residualized outcomes were standardized prior to model fitting.
*p < 0.05; **p < 0.01; ***p < 0.001; †not significant after FDR correction.

TABLE  5 Residual shared 
environmental variance estimates (c2) 
from behavioral genetic models of 
cognitive and academic outcomes, 
incorporating measured environments 
into c2 component
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subsample are reported in Tables S9 and S10 of the Supporting 
Information. The socioecological composites and race together ac-
counted for 100% of shared environmental variance in IQ and 69% 
of shared environmental variance in verbal comprehension.

In the younger subsample, unexplained shared environmental 
variance in reading scores reached non-significant levels when home 
contexts and race were incorporated into the ACE model; together, 
they accounted for 72% of total C. The percentage of shared envi-
ronmental variance in IQ explained by all socioecological contexts 
and race was 80%. Measured environments accounted for relatively 
lower proportions of total shared environment variance on math 
performance, from 25% when race was considered by itself, to 50% 
when all nine contexts and race were included. Residual shared en-
vironmental estimates remained significant across the inclusion of 
different predictor sets.

To better understand the explanatory utility of incrementally 
adding predictors into the model for each outcome, we employed a 
model comparison approach in which the regression coefficients cor-
responding to predictors of interest were freely estimated and those 
for the remaining predictors were fixed at zero. This method has the 
benefit of maintaining a common baseline model for each outcome, 
against which the models that include measured contexts can be com-
pared. Although this approach is uninformative in terms of absolute 
fit of the data to the model, it facilitates comparison across models 
for the same outcome. Comparative fit statistics for all models are 

reported in Table S11. Across outcomes, model fit comparisons based 
on the χ2 statistic (for which larger p-values indicate better fit) and the 
Akaike Information Criterion (for which lower values indicate better 
fit) favored the inclusion of all contexts and race in the estimation of C. 
The only exception was the behavioral genetic model for verbal com-
prehension in the younger subsample; fit indices favored the model in 
which only home composites and race were included in the C estimate.

3.3.3 | Polyenvironmental risk scores

We conducted k-fold cross-validation analyses to establish the pre-
dictive power of polyenvironmental risk scores. The single-value 
scores were computed by summing the predictor values from a test 
set that had been weighted by the multiple regression coefficients 
from an independent training set. Across ten iterations of this proce-
dure, the mean R2 for full-scale IQ was 0.20 for the training set and 
0.19 for the test set. The R2 for the test set is consistent with the es-
timate of total shared environmental variance from the unconditional 
behavioral genetic models (0.19; depicted in the first data column in 
Table 5 and in the non-green portion of the first bar in Figure 2). For 
verbal comprehension, mean R2 was 0.17 for the training set and 0.14 
for the test set, with the latter estimate constituting 65% of total c2 
for this outcome. For perceptual reasoning, mean R2 was 0.14 for 
the training set and 0.12 for the test set. Mean R2 for reading ability 
among the younger subsample was 0.19 for the training set and 0.16 
for the test set, the latter estimate comprising 50% of total c2 for 
reading. For math ability, mean R2 was 0.16 for the training set and 
0.11 for the test set, or 38% of total c2 for this outcome.

4  | DISCUSSION

Academic and cognitive skills predict economic, social, and physi-
cal wellbeing across the life course. Behavioral genetic research 
indicates that family-level environments stratify cognitive ability 
and academic achievement in childhood. Previous work in sociol-
ogy, human ecology, and developmental psychology has identified 
a wide assortment of socioecological contexts that are related to 
child development (Huston & Bentley, 2010). The current study inte-
grated these two approaches: Using detailed measurement of family, 
school, and neighborhood contexts, we attempted to account sta-
tistically for latent shared environmental variation in cognitive and 
academic outcomes, as estimated with a twin approach.

Parent SES significantly predicted all cognitive and aca-
demic outcomes, independent of the other predictors. Relative 
to the sample mean, Caucasian, Hispanic, and African American 
group membership also emerged as consistent predictors across 
a majority of outcomes. Of the socioecological contexts beyond 
family-level characteristics, student demographics and neighbor-
hood SES accounted for incremental variance in a smaller number 
of outcomes. Furthermore, commonality analyses revealed that 
the relations between SES and cognitive and academic outcomes 
was composed of a mixture of effects unique to SES, as well as to 

F IGURE  2 Proportion of variance in cognitive and academic 
outcomes attributable to shared environmental factors. 
Note: Home composites were entered into the behavioral genetic 
model first to determine their specific effect on cognitive 
and academic outcomes. School composites, neighborhood 
composites, and race were added sequentially to estimate effects 
incremental to previously added predictors. Residual shared 
environmental variance (c2) came from the final model that included 
all socioecological composites and race. The absolute height of 
each bar represents total c2. Estimates may be interpreted as 
standardized values, as outcomes were standardized prior to 
modeling. FSIQ = full-scale IQ
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variance shared with other measured socioecological contexts, no-
tably school demographics and neighborhood SES. The identified 
sociocontextual correlates of cognitive and achievement outcomes 
were situated at varying proximities to the developing child. In ad-
dition, the contexts that were meaningful for key cognitive traits 
were inter-correlated, suggesting that researchers interested in 
characterizing children’s and adolescents’ experiences should con-
sider a wider, interrelated network of environmental exposures.

Together, the socioecological composites and race accounted for 
100% of the shared environmental variance in full-scale IQ. That is, 
there remained no unexplained C variance in intelligence after the 
predictors were included in the behavioral genetic model, meaning 
that the measured variables we constructed are markers for the 
statistical dimensions that make up the latent shared environment. 
Similar patterns were observed for the more specific skill domains 
of verbal comprehension and reading ability; residual C variance was 
negligible after including the measured contexts into the behavioral 
genetic models.

The results for math achievement diverged from the general 
pattern, such that 53% of latent shared environmental variance 
remained after accounting for the socioecological composites and 
race. In addition, identifying as Asian was the only racial variable 
that significantly related to math performance incremental of the 
other contexts and race categories. These results suggest that 
the environmental experiences that are meaningful for IQ, verbal 
comprehension, and reading ability may not be entirely the same 
as those that are meaningful for math ability. Future research is 
needed to identify measures beyond those examined here that can 
fully account for shared environmental contributions to math out-
comes. For instance, it is possible that the quality of math lessons 
specifically, as opposed to overall school quality, accounts for ad-
ditional shared environmental contributions to performance. More 
generally, the total latent C estimate was slightly higher for specific 
abilities than for the broader IQ dimension, which may explain, 
in part, why residual C was higher for specific abilities even after 
including the full set of predictors. In other words, relative to gen-
eral cognitive abilities, mathematics performance may be affected 
more greatly by a wider assortment of family, school, and neigh-
borhood environmental factors.

The dimensions we analyzed likely index a host of experiences 
that were not themselves directly measured. For example, the 
teacher characteristics composite may serve as an indirect proxy for 
teaching skill and preparedness in a given school. The results do not 
imply that increasing one teacher characteristic, salary for example, 
would necessarily raise student achievement. Instead, we may expect 
that the broad range of skills indexed by the teacher characteristics 
measured here indirectly constitute the true causal elements in cog-
nitive development and academic achievement. A related concept 
that we wish to emphasize is that no single measure represents the 
broad construct of socioecological inequality. Rather, many dimen-
sions added together form the larger amalgam of environmental risk. 
The composites that we implemented themselves indexed a range 
of experiences, suggesting that the network of specific experiences 

relevant for cognitive ability and academic achievement is vast and 
highly interconnected. Overall, the environments selected for the 
current study accounted for approximately one-fifth of phenotypic 
variance in the outcomes under study. Although moderate at first 
glance, the R2 values in the current study are within range of those 
from previous investigations of the impact of family resources and 
demographics on achievement (Hart et al., 2007; Sirin, 2005). In ad-
dition, results of the twin models highlighted significant genetic influ-
ences on all of the outcomes, suggesting that a substantial increase 
in R2 by shared environmental measures alone would be implausible.

In the current sample, latent C was estimated at zero for per-
ceptual reasoning in both the full sample and the younger subsam-
ple. However, perceptual reasoning was still associated with several 
of the socioecological measures. It is possible that the estimate 
of C is imprecise or biased due to simplifying assumptions of the 
twin approach. Alternatively, measures of environmental contexts 
are known to be correlated with children’s genotypes. Therefore, 
correlations between measured environments and child outcomes 
are potentially confounded by genetic differences (Dickens & 
Flynn, 2001; Domingue, Belsky, Conley, Harris, & Boardman, 2015; 
Kendler & Baker, 2007; Meyers et al., 2013; Plomin & Daniels, 1987). 
In the case of family-level environments, the most common source 
of genetic confounding is passive genotype–environment correla-
tion (rGE), in which the same genetic factors that affect parents’ 
social attainment are inherited and affect their offspring’s cognitive 
development. It is likely that the measured environments included 
in the current paper are partly associated with children’s cognitive 
abilities via rGE, rather than purely environmental mechanisms. (For 
a review of this issue with regard to twin studies that employ mea-
sured environmental variables, see Turkheimer et al., 2005.) For the 
purposes of this paper, we did not attempt to control for genetic 
influences on the presumed environmental influences, as our goal 
was not to investigate the contexts as causal mechanisms per se. 
Future work using complementary approaches (e.g. a children-of-
twins or parental genotype design) would be needed to determine 
the extent of rGE relative to strictly environmental contributions to 
the outcomes (Koellinger & Harden, 2018; Kong et al., 2018).

It is also important to emphasize that the heritable component 
of variation may encompass environmental processes that occur via 
active and evocative rGE (Hambrick & Tucker-Drob, 2015; Tucker-
Drob et al., 2013; Turkheimer et al., 2005), whereby children select 
and evoke different environmental experiences on the basis of their 
genetically influenced traits. These processes are thought to accu-
mulate over development, such that genetic predispositions toward 
traits are increasingly reinforced by environmental exposures (Briley 
& Tucker-Drob, 2013, 2017; Scarr & McCartney, 1983; Tucker-Drob 
& Briley, 2014). The result of this process is to make DZ twins in-
creasingly dissimilar on a trait, which increases A estimates at the 
expense of C estimates in the classic twin model. Although the goal 
of the current study was not to disentangle these effects, it is always 
important to consider the potential roles of active and evocative rGE 
when interpreting genetic effects on complex phenotypes (Kendler 
& Baker, 2007).
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4.1 | Limitations and future directions

In addition to recognizing the challenge that gene–environment cor-
relation poses to drawing causal conclusions about these associa-
tions, we acknowledge a number of limitations in the current study. 
We employed cross-sectional analyses, further limiting our ability to 
interpret relationships between environmental contexts and cogni-
tive outcomes as causal. Longitudinal observations are necessary 
for confirming the direction and size of the effects reported here. 
We also recognize that the chosen socioecological contexts and 
models constitute only a subset of many possible ways to measure 
environments relevant to children’s and adolescents’ development. 
For example, many of the indices we modeled were resource-based 
characteristics of the child’s environment; it would be beneficial to 
consider more nuanced, interpersonal experiences (e.g. parental 
warmth) in future work. The comparison of various predictors and 
model parameterizations is a necessary future step in the study of en-
vironmental impacts on cognitive and academic ability. For example, 
while we constrained the current analyses to linear additive effects, 
future work may incorporate interaction terms between predictors 
to better represent their synergistic effects on cognition. Another 
question motivated by our results is whether measured environ-
ments differentially account for C across age. Finally, environments 
that do not vary across schools or neighborhoods in the current sam-
ple, such as exposure to schooling itself (Gurven et al., 2017; Ritchie 
& Tucker-Drob, 2017), will not factor into C variation, regardless of 
their importance for cognitive and academic development.

4.2 | Conclusion

The results of this study hold promise for the successful integration 
of common, but impactful, socioecological contexts into pheno-
typic and genetic models of many complex traits. Even when asso-
ciations between these outcomes and individual contexts are small 
in magnitude, their cumulative effects on downstream risks may be 
important. These findings parallel advances in molecular genetics, 
specifically the use of polygenic risk scores to predict behavioral 
outcomes on the basis of many small genetic effects. By way of 
analogy, we were able to treat our multivariate battery of socio-
contextual measures as a means of constructing polyenvironmental 
risk scores that index critical environmental contexts associated 
with cognitive and academic performance. In addition to pushing 
the study of environmental exposures beyond home experiences, 
future exploration of polyenvironmental risk scores may present an 
innovative method by which we can begin to account for shared 
environmental risk factors on a host of outcomes important for chil-
dren’s and adolescents’ physical and psychological wellbeing.
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