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Abstract It is well-established that genetic factors account

for large proportions of individual differences in multiple

cognitive abilities. It is also well-established that individual

differences in performance on many different cognitive ability

measures are strongly correlated. Recent empirical investi-

gations, however, have suggested two interesting qualifica-

tions to these well-established findings: Genetic variance in

cognitive abilities is higher in richer home environments

(gene-by-environment interaction), and common variance in

different cognitive abilities is lower at higher levels of overall

ability (nonlinear factor structure). Although they have been

investigated independently, these two phenomena may

interact, because richer environments are routinely associated

with higher ability levels. Using simulation we demonstrate

how un-modeled nonlinear factor structure can obscure

interpretation of gene-by-environment interaction. We then

reanalyze data from the National Collaborative Perinatal

Project, previously used by Turkheimer et al. (2003; Psychol

Science), with a two-step method to model both phenomena.

Keywords Intelligence � Differentiation �
Gene-by-environment interaction � Nonlinear

factor analysis

Introduction

Over the course of the early twentieth century researchers

made significant progress toward the scientific understanding

of human cognitive abilities on two fronts. First, using

siblings and other relatives, early behavior geneticists sought

to decompose between-person variation in cognitive ability

estimates into proportions attributable to genetic influences

and proportions attributable to environmental influences.

Pearson (1903) asked teachers to rate their students as

either ‘‘Quick Intelligent,’’ ‘‘Intelligent,’’ ‘‘Slow Intelligent,’’

‘‘Slow,’’ ‘‘Slow Dull,’’ ‘‘Very Dull,’’ or ‘‘Inaccurate-Erratic.’’

He found that siblings correlated on these ratings at approx-

imately 0.5, the same value obtained for sibling correlations

on physical characteristics (e.g., head size and height), which

he reasoned were in large part genetic. This led him to the

conclusion that, like physical characteristics, ‘‘mental’’

characteristics are largely inherited from one’s parents.

Second, early psychometricians sought to decompose

between-person variation in performance on multiple

cognitive tests into proportions attributable to common and

unique influences. Spearman (1904) found positive corre-

lations among school children’s scores on examinations of

Classics, French, English, Mathematics, and Music, levels

of performance on pitch discrimination, weight discrimi-

nation, and visual discrimination tasks, teacher ratings of

cleverness, and peer ratings of common sense. He posited

that these positive correlations resulted from a common

influence, which he termed general intelligence (‘‘g’’).

Variation that he could not attribute to g, he attributed to

specific factors (‘‘s’’) and error of measurement.

Owing in large part to the development and refinement of

behavior-genetic and psychometric theories, data, and meth-

ods over the past century, two major phenemona are now well-

established. First, performance on many different sorts of

cognitive tests can be attributed to a smaller number of dif-

ferent abilities (e.g., spatial visualization, speed of processing,

and long term memory, to name a few), and these abilities are

strongly related to one another, such that a single common
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factor can be presumed to influence them all (Carroll 1993).

Second, approximately half of the variation in the single

common factor (or a representative composite measure) can

be attributed to genetic factors (Bouchard and McGue 2003).

Such behavior genetic and psychometric results can be

simultaneously represented using a structural equation

modeling framework. Figure 1 depicts a popular version of

such a representation, which is based on data from mono-

zygotic and dizygotic twins reared together. This model can

be subcategorized into a psychometric portion at the sub-

ordinate level and a biometric portion at the superordinate

level. The psychometric portion of the model relies on the

relations among multiple variables to infer a common

phenotypic trait, whereas the biometric portion of the model

relies on differences in the degrees of similarity between

relatives of varying degrees of genetic relatedness in order

to decompose variation in the trait into genetic, shared

environmental, and nonshared environmental components.

Although they occupy separate regions of the model,

these psychometric and biometric levels of analysis are not

independent. Rather, inference at the superordinate, bio-

metric, level of analysis is dependent on the assumptions of

the subordinate, psychometric, level. One well-known

example of this dependency is when perfect measurement is

incorrectly assumed, such that measurement error at the

psychometric level is confounded with nonshared environ-

ement (‘‘E’’) at the biometric level. The focus of the current

article is on a less well-recognized example of this depen-

dency. We are specifically interested in the consequences

for biometric analyses when a nonlinear factor structure

holds but is not modeled.

Additive linear relations among variables is a central

assumption of the standard structural equation modeling

approach. This assumption requires that the relations

between any two variables do not vary in magnitude

according to the levels of those variables or any other

variables. Recently, however, researchers have begun to

construct and employ statistical methodologies that are

capable of explicitly testing non-additive, nonlinear,

structural equation models (e.g., Eaves and Erkanli 2003;

Muthén and Asparouhov 2003; Neale 1998; Purcell 2002;

Klein and Moosbrugger 2000).

These new nonlinear methodologies are increasingly

being applied by behavior-genetic researchers to address

questions of gene-by-environment interaction. Based on

such methods, Turkheimer et al. (2003) and Harden et al.

(2007) have reported results which suggest that the genetic

and environmental contributions to children’s and adoles-

cents’ general cognitive ability differ according to socio-

economic status (a gene-by-environment interaction), such

that genetic influences are higher and environmental influ-

ences are lower at higher levels of socioeconomic status

(SES).1 These results are consistent with theories (e.g.,

Bronfenbrenner and Ceci 1994; Turkheimer and Gottesman

1991) which suggest that genetic propensities can be more

fully cultivated, expressed, and actuated in more enriched
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Fig. 1 A latent variable model

often used to examine

multivariate cognitive ability

data obtained from monozygotic

(MZ) and dizygotic (DZ) twins

reared together. Observed

variables (e.g., the different

cognitive tests, Y[m],

Y[n],…,Y[x]) are represented as

squares, latent variables (e.g.,

general cognitive ability, and its

genetic and environmental

influences) are represented as

circles, variances and

covariance relationships are

represented as two-headed

arrows, and regression

relationships are represented as

one-headed arrows. SES

represents socioeconomic

status, a family-level covariate

1 Although SES is generally considered an index of environmental

quality, it may also partially reflect genetic factors as a result of the

gene-environment correlation that occurs when children are reared by

their biological parents. While this possibility may have substantive

implications, it does not appear to affect the empirical finding that

heritability is higher at higher levels of SES (Loehlin et al. 2009).
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and supportive environments. Bronfenbrenner and Ceci

(1994; p. 572) have suggested that such mechanisms may

include ‘‘enduring forms of interaction in the immediate

environment…found in parent–child and child–child activ-

ities, group or solitary play, reading, learning new skills,

problem solving, performing complex tasks, and acquiring

new knowledge and know-how.’’

Nonlinear methodologies have also recently been applied

for psychometric scrutiny of the conventional linear factor

model. There are at least two reasons to expect the factor

structure of cognitive abilities to depart from linearity. The

first reason is that the tests themselves may be poorly con-

structed, such that they have ceiling or floor effects, or

uneven distributions of item difficulties, which can lead to

observed scores being better indications of true scores at

different levels of performance. Therefore, nonlinear factor

structure can be a methodological nuisance than needs to be

controlled for. The second reason is that the abilities them-

selves may be differentially related to one another according

to various person-characteristics. Based on an application of

nonlinear factor analysis to carefully scaled data from the

normative sample of the Woodcock Johnson III Tests of

Cognitive Abilities, Tucker-Drob (2009; see Detterman and

Daniel 1989 for an earlier approach) has recently reported

results suggesting that a common factor accounts for a

decreasing proportion of variation in cognitive abilities at

higher overall ability levels. These results are consistent with

what has been termed the ability differentiation hypothesis,2

which states that cognitive abilities are more strongly related

to one another at lower ability levels, where ‘‘central

[information processing mechanisms] are deficient [such

that] they limit the efficiency of all other processes in the

system’’ (Detterman and Daniel, 1989, p. 358). Anderson’s

theory of minimal cognitive architecture (1992, 2001) holds

that speed of processing is this central mechanism that, for

slower individuals, limits the efficiency of independent,

domain-specific, ‘‘processors.’’ However, other plausible

central mechanisms include executive functioning and

working memory (see, e.g., Ackerman et al. 2005; Salthouse

et al. 2003; Tucker-Drob and Salthouse 2009, for reviews

and examinations of how executive functioning and working

memory might be central to cognition).

As we suggested earlier, these findings from behavior-

genetic and psychometric analyses of nonlinearity may not

be independent. For illustrative purposes, consider the most

basic behavior-genetic model: a comparison of the test

scores of monozygotic (MZ) twins reared apart. The higher

the correlation between the twins’ scores, the higher the

estimated heritability. Let us assume that the true herita-

bility of general cognitive ability is constant across SES

levels. Now, if abilities are less related to one another with

increasing general ability level, and if ability levels

increase with socioeconomic status, then composite test

scores representative of general ability will be worse

indicators of the true latent ability at higher ability levels

and thus at higher SES levels (this is analogous to the

internal consistency of the composite score being lower at

higher ability levels). Consequently, the correlation

between the test scores of the first and second members of

MZ twin pairs would be lower at higher SES levels, leading

to artifactually lower estimates of heritability at higher SES

levels. This line of reasoning becomes more complex when

the design includes both MZ and DZ twins reared together.

In the current article we report the results of two sim-

ulation experiments that illustrate how an unmodeled

nonlinear factor structure of cognitive ability may influence

the estimates of gene-by-environment interaction in models

for monozygotic and dizygotic twins reared together.3 We

predict that, under empirically plausible conditions, if

abilities are indeed differentially related to one another

according to general ability level, but this phenomenon is

not modeled, heritability and environmentality will appear

to differ according to levels of a variable that is correlated

with general ability (e.g., SES). After presenting the sim-

ulation results, we present results from analyses of data on

7-year-old twins drawn from the National Collaborative

Perinatal Project, a large sample study with a high pro-

portion of impoverished and minority families (previously

analyzed by Turkheimer et al. 2003).

Analysis of simulated data

The purpose of our two simulations was to demonstrate the

impact of failure to model nonlinear relations among

2 The related age differentiation–dedifferentiation hypothesis states

that during childhood development, diverse learning processes result

in the weakening of interrelations among abilities, and that during

adulthood global sources of decline result in the strengthening of

interrelations among abilities. While there is consistent support for the

ability differentiation hypothesis, evidence for the age differentiation–

dedifferentiation hypothesis is much more mixed (compare, e.g., Li

et al. 2004, to Tucker-Drob 2009; Tucker-Drob and Salthouse 2008).

Because the data analyzed for the current study are from participants

of the same approximate age (7 years), the age differentiation–

dedifferentiation hypothesis is not examined here.

3 In more straightforward contexts, methodologists (e.g., Lubinski

and Humphrys 1990; MacCallum and Mar 1995; also see Bauer 2005,

for a treatment of this issue in multiple group factor analysis) have

demonstrated how unmodeled nonlinear (quadratic) effects can be

confused for interactions. MacCallum and Mar (1995), for example,

explain that, with increasing correlation between two predictors, the

products of the two predictors (i.e., the interaction term) is

increasingly correlated with the product of a single predictor with

itself (i.e., the quadratic term). Therefore, if the true regression model

is quadratic but an interaction model is specified, the interaction term

is likely to come out as significant.
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abilities on estimates from biometric models of gene-by-

environment interaction. In our simulations we generated

data according to models with nonlinear factor structure at

the psychometric level, additive A, C, and E contributions

at the biometric level (i.e., no gene-by-environment inter-

action; G 9 E), and a family-level covariate. We then

analyzed the data by forming unit-weighted composite

scores for the phenotype for each twin and fitting a bio-

metric model with provisions for G 9 E (Purcell 2002).

All simulations were conducted in Mplus (Muthén and

Muthén 1998–2007). The corresponding syntaxes are

available on Eric Turkheimer’s professional website (http://

people.virginia.edu/*ent3c/tuckerdrob/MPlus_Code.htm).

True models

The true models were specified to be nonlinear in the factor

loadings and statistically additive (i.e., no G 9 E) in the

ACE components.

Equivalent nonlinear cognitive ability factor structures

were specified for each twin as follows:

Y x½ �t;p¼ k0 x½ � � gt;p þ k1 x½ � � g2
t;p þ u x½ �t;p; ð1Þ

where Y[x] is the observed score on each of three tests (x),

each of which were indicators of a latent ‘‘g’’ factor. The

subscript t corresponds to the twin designation (i.e., first or

second member of the pair), and the subscript p corre-

sponds to the twin pair. g represents the latent factor

representing general cognitive ability, and u represents test-

specific residual factors, each specified to be uncorrelated,

with variances ru
2. The k0 coefficients on g represents the

linear components of the factor-variable relations, and the

k1 coefficients on g2 represent the quadratic components of

the factor-variable relations.

The g factor was specified to be influenced by four

statistically additive and independent components: a mea-

sured family-level covariate (SES), a latent genetic com-

ponent (A), a latent family-level shared environmental

component (C), and a latent individual-level nonshared

environmental component as follows:

gt;p ¼ s � SESp þ a � At;p þ c � Cp þ e � Et;p; ð2Þ

where all four components (SES, A, C, and E) were spec-

ified to have unit variances. The additive genetic factors

were correlated at 1.0 for monozygotic twins and 0.50 for

dizygotic twins.

Specified models

The specified models were fitted to unit-weighted composite

scores (created by summing the scores on the three tests for

each twin). These specified models allowed for potential

G 9 E by allowing SES to modify the influences of A, C, and

E on general cognitive ability. That is, the composite scores,

yt,p, were specified to be influenced by SES, A, C, and E, and

the interactions between SES and A, C, and E, as follows:

yt;p ¼ s � SESp þ a0 þ a1 �SESp

� �
�At;p

þ c0 þ c1 �SESp

� �
�Cp þ e0 þ e1 �SESp

� �
�Et;p;

ð3Þ

where the s, a0, c0, and e0 coefficients represent the main

effects of SES, A, C, and E, respectively, and the a1, c1, and

e1 coefficients represent the interactions of SES with A, C,

and E, respectively. These interaction coefficients allow for

the possibility that the heritability and environmentality of

general cognitive ability differ according levels of socio-

economic status. Such interactions are not present in the

true model.

Results

Two sets of simulations were conducted, one in which

the true model contained negative k1 coefficients (all

k1[x] = -0.2), such that g accounts for a decreasing

proportion of variation in test scores at higher ability levels,

and one in which the true model contained positive k1

coefficients (all k1[x] = 0.2), such that g accounts for an

increasing proportion of variation in test scores at higher

ability levels. For both simulations, the true models also

contained the following parameter specifications: k0[x] =

1, ru
2 = 0.1, s = 0.6, a = 0.7, c = 0.3, e = 0.5. This

resulted in SES accounting for 30% of the variation in the

phenotype, and A accounting for 59%, C accounting for

11%, and E accounting for 30% of the variation in the SES

residualized phenotype. Fifty datasets were generated for

each simulation. Each dataset contained complete data from

1,000 twin pairs (approximately 500 MZ and 500 DZ).

Figure 2 displays the proportion of variance in the

tests accounted for by the g factor as a function of the

score on the g factor for the true models in Simulation 1

(top) and Simulation 2 (bottom). It can be seen that in

Simulation 1 the g factor accounts for a decreasing pro-

portion of variation in the test scores at higher scores on

the g factor. Alternatively, it can be seen that in Simu-

lation 2 the g factor accounts for an increasing proportion

of variation in the test scores at higher scores on the g

factor.

Figure 3 displays the key results of the (mis)specified

models. Plotted are the average proportions of variance in

the SES-residualized composite test score accounted for by

the A, C, and E components as functions of the SES score.

It can be seen that, although not specified in the true

models, SES moderation of the A, C, and E influences was
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inferred.4 In Simulation 1, these interactions were in the

direction of lower heritability at higher levels of SES. In

Simulation 2, these interactions were in the direction of

higher heritability at higher levels of SES. Note that very

similar trends were predicted by applying the equations

analytically derived in Appendix 1 to similar sets of

assumed true values of a2, c2, and e2, k0, k1, ru
2, and s.

These results highlight the perils of failing to properly

model the (nonlinear) factor structure of the phenotype at

the psychometric level. In the next section we report results

of G 9 E analyses of real data in which a nonlinear factor

model is specified at the psychometric level.

Analysis of observed data

Participants

Here we report a reanalysis of data from the National

Collaborative Perinatal Project, previously used by

Turkheimer et al. (2003). Data were analyzed from 319

pairs of 7-year-old twins (114 monozygotic pairs, 205

dizygotic pairs) drawn from a parent sample of 59,397

children whose mothers were recruited from 12 urban

hospitals across the United States during pregnancy and

followed thereafter. One twin pair was removed as an

outlier because one member of the pair was identified as

brain damaged at birth. The dizygotic twins consisted of 81

same-sex pairs and 124 opposite-sex pairs. Previous

examinations (Turkheimer et al. 2003) revealed no differ-

ences between same-sex and opposite sex pairs, and they

were therefore combined for all analyses. Twins were 43%

White, 54% Black, and 3% ‘‘Other.’’ Many of the twins

came from impoverished families. The median years of

education for mothers and fathers was 11 years and

12 years, respectively. Note, however, that there was sub-

stantial variation in familial socioeconomic status. To

illustrate, parental education ranged from 1 year (practi-

cally no formal schooling) to 18 years (a Master’s degree).

Measures

As in Turkheimer et al. (2003), socioeconomic scores were

computed from a linear combination of combined parental

occupation, occupation status, and income, and placed on a

100-point scale.

Whereas the Turkheimer et al. (2003) analyses were

based on composite IQ measures (PIQ, VIQ, & FSIQ), data

were actually available for twelve separate cognitive tests,

many from the Wechsler Intelligence Scale for Children,

which are the basis of the analyses reported here. Here we

are concerned with the single factor common to all twelve

tests. Although contemporary representations of cognitive

ability structure include multiple cognitive abilities, it is

well-established that at the highest level of analysis, a single

factor can be statistically extracted (Carroll 1993).5 We

extract this ‘‘g’’ factor from the following twelve measures:

Arithmetic, Auditory Memory for Digits, Auditory Vocal

Association Test, Bender Gestalt, Digit Span, Harris

Drawing Test, Information, Picture Arrangement, Reading,

Spelling, Vocabulary, and Word Identification. Descriptive

statistics for these tests are provided in Table 1.
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Fig. 2 Nonlinear effects in the true model. The proportion of

variance in the tests accounted for by the g factor is plotted as a

function of the score on the g factor for Simulation 1 (top) and

Simulation 2 (bottom)

4 In Simulation 1, 96% of the a1, 60% of the c1, and 98% of the e1

parameters were significantly different from 0 at P \ 0.05. In

Simulation 2, 92% of the a1, 44% of the c1, and 100% of the e1

parameters were significantly different from 0 at P \ 0.05.

5 Although the differential age trends of fluid and crystallized

abilities (see, e.g., McArdle et al. 2002) undermines the validity of a

single common factor, this issue is not directly relevant to the current

study, because all participants were 7 years old.
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Because only total score data were available for each test,

we were unable to perform item level analyses to determine

test reliability, check for ceiling and floor effects, or carry out

item response theory scaling. Interval measurement therefore

cannot be assumed, and we are therefore careful not to make

strong substantive inferences with respect to the magnitude

or direction of the (nonlinear) results at the psychometric

level. Nevertheless, any nonlinear effects that may exist,

even if artifacts of poor test properties, are important to

account for, as our simulations demonstrate that, if these

effects are not modeled, they can lead to spurious G 9 E

findings, or even perhaps mask a true G 9 E effect.

Analytic procedure

In a first step, Mplus was used to fit a nonlinear factor

model to data from one twin per pair with maximum

likelihood estimation. This model was specified to control

for the main effects of SES, and to have linear and qua-

dratic influences of the common g factor as follows:

Y x½ �t;p¼ s x½ � �SESp þ k0 x½ � �gt;pþ k1 x½ � �g2
t;p þ u x½ �t;p: ð4Þ

The k0[x] and k1[x] parameters were then retained and a

full twin model was specified in WinBUGS using Gibbs

sampling estimation. Our movement from the Mplus

maximum likelihood estimation method to the WinBUGS

Gibbs sampling estimation method was necessary because of

the added complexity of simultaneously modeling nonlinear

factor structure and gene-by-environment interaction. As

interaction and nonlinear terms are added, a model specified

using maxim likelihood estimation in Mplus becomes

‘‘increasingly more computationally demanding’’ (p. 61,

Muthén and Muthén 1998–2007) to the point of

intractability. Alternatively, using Gibbs sampling makes

fitting such complex nonlinear and interactive models

computationally feasible (Eaves and Erkanli 2003).

The full model included a psychometric portion that was

equivalent to that specified by Eq. 4, except, rather than

freely estimating k1 and k2, these parameters were fixed to

those that had been retained from the Mplus output. Similar

to Eq. 3, the biometric portion of the model included the

main effects of A, C, and E, as well as interactions between

SES and A, C, and E. However, rather than specifying SES to

modify the regressions of g on the A, C, and E components,

SES was specified to modify the log-transformed variances

of A, C, and E. This portion of the model is written as

gt;p ¼ At;p þ Cp þ Et;p; ð5Þ

r2
A;t;p ¼ exp a0 þ a1 � SESp

� �
ð6Þ

r2
C;p ¼ exp c0 þ c1 � SESp

� �
ð7Þ

r2
E;t;p ¼ exp e0 þ e1 � SESp

� �
ð8Þ

This specification was found to yield more stable

parameter estimates in WinBugs. Both this specification

A

ai
ne

d 
by

 A

0.7

0.8

0.7

0.8
Model
True

C

ai
ne

d 
by

 C

0.5

0.6

0.5

0.6
Model
True

E

ai
ne

d 
by

 E

0.7

0.8

0.7

0.8
Model
True

Simulation 1
or

tio
n 

of
 V

ar
ia

nc
e 

E
xp

la

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.6

rt
io

n 
of

 V
ar

ia
nc

e 
E

xp
la

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

or
tio

n 
of

 V
ar

ia
nc

e 
E

xp
la

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.6

SES

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po

0.2 0.2

SES

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po

0.0 0.0

SES

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po

0.2 0.2

A

 b
y 

A 0.8 0.8
Model

C

by
 C 0.6 0.6

Model

E

d 
by

 E 0.8 0.8
Model
True

Simulation 2

 o
f V

ar
ia

nc
e 

E
xp

la
in

ed

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7True
of

 V
ar

ia
nc

e 
E

xp
la

in
ed

 

0.2

0.3

0.4

0.5

0.2

0.3

0.4

0.5True

n 
of

 V
ar

ia
nc

e 
E

xp
la

in
e

d

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7
True

SES
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po
rt

io
n

0.2

0.3

0.2

0.3

SES
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po
rt

io
n 

0.0

0.1

0.0

0.1

SES
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

P
ro

po
rt

io
n

0.2

0.3

0.2

0.3

Fig. 3 Biometric results for the fitted model (solid line) and the true

model (dashed line) from Simulation 1 (top) and Simulation 2

(bottom). The proportions of variance in the composite score

accounted for by the genetic (a), shared environmental (c), and

nonshared environmental (e) factors are plotted as functions of the

SES level. SES on the x-axis is on a Z metric
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and the Eq. 3 specification are nearly identical in

substance.

Finally, the unique A, C, and E components were also

estimated for each test. These components were not

focused on, as previous work (Turkheimer et al. in press)

suggested that the SES moderation occurs on the common

rather than unique A, C, and E components.

Psychometric results

As mentioned previously, the psychometric model was

fit to data from one randomly chosen twin per pair. The

addition of quadratic loading components (k1) to the

psychometric model significantly improved fit beyond a

simple linear model, v2(12) = 76.40, P \ 0.01. Consistent

with earlier work (e.g., Detterman and Daniel 1989;

Tucker-Drob 2009), the overall trend was one in which

the proportion of variance accounted for by the g factor

was lower at higher ability levels. This effect is displayed

in Figure 4, where it can be seen that the proportion of

variance accounted for by g differs by approximately 7%

from 1.5 SD’s below the mean factor score to 1.5 SD’s

above the mean factor score. Accounting for these non-

linear effects should ensure that they do not obscure the

true moderator effects in the biometric portion of the

model.

Behavior-genetic results

The a1, c1, and e1 interaction parameters were all statisti-

cally significant, as the 95% credible intervals for these

parameters did not surround zero. These interaction effects

are plotted in Fig. 5, where it can be seen that genetic

variance in g increases with increasing SES, whereas

shared and non-shared environmental variance in g

decreases with increasing SES. This pattern of results is

Table 1 Descriptive statistics of variables by zygosity

Variable Twin 1 Twin 2 Twin 1, Twin 2

Correlation
Min Max Mean SD Min Max Mean SD

Monozygotic twins

SES score 6.00 96.00 45.25 24.45 6.00 96.00 45.25 24.45

Arithmetic 4.00 32.00 18.54 4.30 3.00 31.00 18.30 4.94 0.78

Auditory Memory for Digits 30.00 75.00 48.28 8.11 20.00 70.00 47.67 8.85 0.55

Auditory Vocal Association Test 4.00 25.00 16.48 4.59 4.00 26.00 15.83 4.83 0.85

Bender Gestalt 12.00 30.00 22.57 4.05 11.00 30.00 22.43 4.22 0.65

Digit Span 0.00 12.00 6.35 2.03 0.00 11.00 6.23 2.22 0.59

Harris Drawing Test 7.00 33.00 19.56 6.26 5.00 37.00 19.02 6.30 0.64

Information 1.00 13.00 6.40 1.93 0.00 13.00 6.44 2.10 0.69

Picture Arrangement 1.00 5.48 2.87 1.10 1.41 5.00 2.87 1.06 0.61

Reading 6.00 71.00 31.84 11.05 0.00 69.00 30.84 11.74 0.90

Spelling 6.00 43.00 22.63 5.97 3.00 40.00 22.06 5.92 0.87

Vocabulary 0.00 35.00 15.75 6.45 6.00 32.00 15.46 5.55 0.79

Word Identification 35.00 76.00 58.25 10.41 40.00 80.00 57.22 10.52 0.83

Dizygotic twins

SES score 3.00 96.00 43.89 22.40 3.00 96.00 43.89 22.40

Arithmetic 3.00 35.00 19.14 4.38 5.00 31.00 19.13 3.95 0.52

Auditory Memory for Digits 30.00 80.00 50.82 9.86 30.00 80.00 52.66 11.18 0.32

Auditory Vocal Association Test 5.00 26.00 16.50 4.13 5.00 24.00 16.90 3.95 0.70

Bender Gestalt 12.00 31.00 22.93 4.04 11.00 31.00 22.82 3.88 0.49

Digit Span 0.00 10.00 6.42 2.05 0.00 11.00 6.50 2.05 0.43

Harris Drawing Test 7.00 35.00 19.01 5.93 4.00 34.00 19.50 5.55 0.45

Information 1.00 13.00 6.62 1.97 0.00 12.00 6.63 1.87 0.52

Picture Arrangement 0.00 5.57 2.99 1.11 0.00 5.29 2.88 1.08 0.51

Reading 8.00 81.00 32.00 11.72 3.00 63.00 31.82 11.35 0.69

Spelling 6.00 45.00 22.66 6.08 2.00 38.00 22.81 5.61 0.67

Vocabulary 2.00 37.00 15.88 5.45 6.00 30.00 16.05 4.79 0.63

Word Identification 38.00 95.00 59.34 8.87 39.00 80.00 58.97 9.94 0.63
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consistent with previous research that did not account for

the possible confounding of an unmodeled nonlinear factor

structure (e.g., Harden et al. 2007; Turkheimer et al. 2003),

and suggests that genetic factors are more influential in

richer family environments.

Discussion

The assumption of statistical additivity has historically

been one of computational convenience that has enabled

for much progress in the scientific understanding of human

cognitive abilities over the past century. With the main

biometric and psychometric features of cognitive abilities

now well-established at the population level (see e.g.,

Carroll 1993; Petrill 1997), and with continued computa-

tional, statistical, and theoretical advancements, scientific

investigations of human cognitive abilities are proceeding

in increasingly idiographic directions. Such directions

include examinations of family-specific and person-specific

modifiers of the genetic and environmental determinants of

cognitive abilities, and of the positive relations among

cognitive abilities. These directions do, however, also

come with new methodological complications. Using

simulation, we demonstrated that, if not modeled, nonlinear

structure at the psychometric level can lead to spurious

gene-by-environment interaction findings when no such

phenomena actually exist (also see Appendix 1 for an

analytical derivation).

In our analyses of observed data we found evidence for

both nonlinear factor structure and gene-by-environment

interaction. At the psychometric level, the general pattern

was one of lower ability interrelations for higher ability

individuals. After taking nonlinear factor structure into

account, a pattern of higher heritability and lower envi-

ronmentality of general cognitive ability with increasing

socioeconomic status was found. This interaction was

consistent with that indentified in previous analyses of this

same dataset, in which the nonlinear factor structure was

not accounted for (Turkheimer et al. 2003), and with that

identified in a previous study with different data (Harden

et al. 2007), which also did not have provisions for non-

linear factor structure. The interaction is consistent with

theoretical perspectives (e.g., Bronfenbrenner and Ceci

1994) that genetic propensities are most fully actualized

when environmental constraints are lifted and opportunities

to foster the propensities are in place.

Qualifications and limitations

One limitation of our real data analysis is that only raw

score, and not item-level, data were available for the

individual tests. This prevented us from running more

detailed analyses, such as testing for ceiling and floor

effects. Therefore, while the results reported here are

generally consistent with the hypotheses that abilities

themselves are differentially related according to general

ability level, we cannot rule out the possibility that the
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nonlinear factor structure observed in these data resulted

from poor properties of the measurement instruments

employed. It is of note, however, that the pattern was

consistent with that reported by Tucker-Drob (2009),

which made use of item-response theory scoring of per-

formance by an age-heterogeneous nationally representa-

tive sample (of the United States population) on carefully

constructed measurement instruments.

A second limitation is that only one type of nonlinear

function was considered—the quadratic function. The

quadratic function was chosen for a number of reasons.

First, it is the nonlinear function that is most easily

implemented in structural equation modeling software, for

which nonlinear functions are only beginning to be incor-

porated. Second, polynomial functions are well-known for

being able to closely approximate many different functions

within a bounded range. Third, the quadratic function is

composed of a linear component and a nonlinear compo-

nent, which allows for explicit testing of whether a non-

linear factor structure is advantageous above and beyond a

linear factor structure. Fourth, the quadratic function is

directly analogous to a linear-by-linear interaction, and can

in fact be recast as the interaction of a variable with itself.

It is therefore likely that for the purpose of removing bias

in a linear-by-linear interaction, a quadratic term should be

sufficient. Nevertheless, future research should consider the

use of other sorts of nonlinear functions.

Conclusion

Here we used simulation to demonstrate that the gene-by-

environment interaction can spuriously arise, or become

obscured, when a linear psychometric model is incorrectly

assumed. In an analysis of observed data, we relaxed the

assumption of a linear factor structure, and were still able

to detect a gene-by-environment interaction in the direction

of general cognitive ability being more heritable in richer

family environments. These findings suggests that previous

work supportive of gene-by-environment interaction in the

heritability of general cognitive ability is not artifactual.

Nonetheless, our simulation results suggest that it is

important to be prudent in scrutinizing linear assumptions

at psychometric as well as biometric levels of analysis in

future research.

Acknowledgements A previous version of this paper was presented

at the 2008 meeting of the Behavior Genetics Association in Louis-

ville Kentucky. Elliot Tucker-Drob was supported by grant

T32AG020500 from the National Institute on Aging, Paige Harden

was supported by grant F31DA023751 from the National Institute on

Drug Abuse, and Eric Turkheimer was supported by grant

R01HD056354 from the National Institute on Child Health and

Human Development.

Appendix 1: Analytical derivation of the consequences

of unmodeled nonlinearity

The following derivation makes use of the same notation

used in the path diagram depicted in Figure 1.

Let the true proportions of variance in the true (perfectly

measured) phenotype (g) accounted for by genes, shared

environment, and nonshared environment (the A, C, and E

components) be represented by a2, c2, and e2, respectively.

In reality, however, the phenotype is measured with some

error, such that it represents both the true phenotype and

error of measurement. The amount of variance in the

measured phenotype that represents the true phenotype is

represented as k2, and the amount that represents error of

measurement is ru
2. The intraclass correlation for the

measured phenotype in twins reared together is therefore

r ¼ k2 Z � a2 þ c2ð Þ
k2 a2 þ c2 þ e2ð Þ þ r2

u

; ðA1Þ

where Z is 1 for monozygotic twins and 0.5 for dizygotic

twins.

One can then apply the familiar equations for the pre-

dicted proportional contributions of genes, shared envi-

ronment, and nonshared environment (represented by

â2; ĉ2; and ê2respectively):

â2 ¼ 2ðrmz � rdzÞ; ðA2aÞ

ĉ2 ¼ rmz � 2ðrmz � rdzÞ; and ðA2bÞ

ê2 ¼ 1� rmz; ðA2cÞ

thereby producing

â2 ¼ k2 � ða2Þ
k2 � ða2 þ c2 þ e2Þ þ ðr2

uÞ
; ðA3aÞ

ĉ2 ¼ k2 � ðc2Þ
k2 � ða2 þ c2 þ e2Þ þ ðr2

uÞ
; and ðA3bÞ

ê2 ¼ k2 � ðe2Þ þ r2
u

k2 � ða2 þ c2 þ e2Þ þ ðr2
uÞ
: ðA3cÞ

The above equations demonstrate how the estimated

proportional contributions of genes and shared environment

are attenuated, and the estimated proportional contributions

of nonshared environment are exaggerated when the

communality of the measured phenotype is less than

perfect. Of interest in the current project is how these

estimates may be affected when, in reality, the communality

differs according to the level of the true phenotype, but this

phenomenon is not modeled, and the estimated contributions

of the ACE components are instead allowed to be conditional

on a variable that is correlated with the phenotype.

Suppose that, although not modeled, the nonlinear factor

model
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Y ¼ k0 � gþ k1 � g2 þ u; ðA4Þ

holds such that k (the function’s derivative, Y0) is a linear

function of the score on the factor, g,

k ¼ Y0 ¼ k0 þ 2 � k1 � g: ðA5Þ

Substituting Eq. A5 into Eqs. A3a–A3c demonstrates

how the predicted contributions of the ACE components

artifactually differ according to the true score on the

phenotype (g), or as a corollary, any variable that is

correlated with the phenotype (e.g., SES).

â2 ¼ ðk0 þ 2 � k1 � gÞ2 � ða2Þ
ðk0 þ 2 � k1 � gÞ2 � ða2 þ c2 þ e2Þ þ ðr2

uÞ
; ðA6aÞ

ĉ2 ¼ ðk0 þ 2 � k1 � gÞ2 � ðc2Þ
ðk0 þ 2 � k1 � gÞ2 � ða2 þ c2 þ e2Þ þ ðr2

uÞ
; and ðA6bÞ

ê2 ¼ ðk0 þ 2 � k1 � gÞ � ðe2Þ þ r2
u

ðk0 þ 2 � k1 � gÞ2 � ða2 þ c2 þ e2Þ þ ðr2
uÞ
: ðA6cÞ

The following R code can be used to plot predicted

values â2; ĉ2; and ê2 as functions of SES, under various

assumed true values of a2, c2, and e2, linear k0 and

quadratic k1 components of the factor loading, unique

variance ru
2, and the SES-phenotype relation.

a2 = .59

c2 = .11

e2 = .30

l0 = 1

l1 = -.2

su2 = .1

ses = (-100:100)/50

g = .6*ses

l = l0 ? 2*l1*g

a2hat = ((l^2)*(a2))/((l^2)*

(a2 ? c2 ? e2) ? (su2))

c2hat = ((l^2)*(c2))/((l^2)*

(a2 ? c2 ? e2) ? (su2))

e2hat = ((l^2)*(e2) ? (su2))/((l^2)*

(a2 ? c2 ? e2) ? (su2))

plot(ses,l/(l ? su2),ylim = c(.2,1),

type = ‘‘l’’)

plot(ses,a2hat,type = ‘‘l’’, ylim

= c(.1,.8), col = ‘red’)

lines(ses,c2hat,type = ‘‘l’’, col

= ‘dark blue’)

lines(ses,e2hat,type = ‘‘l’’, col

= ‘orange’)
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