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The longitudinal rank-order stability of cognitive ability increases dramatically over the life span.
Theoretical perspectives differ in their emphasis on genetic mechanisms in explaining the longitudinal
stability of cognition and how stability changes with development. However, the patterns of stability of
genetic and environmental influences on cognition over the life span remain poorly understood. We
searched for longitudinal studies of cognition that reported raw genetically informative longitudinal
correlations or parameter estimates from longitudinal behavior genetic models. We identified 150
combinations of time points and measures from 15 independent longitudinal samples. In total, longitu-
dinal data came from 4,548 monozygotic twin pairs raised together, 7,777 dizygotic twin pairs raised
together, 34 monozygotic twin pairs raised apart, 78 dizygotic twin pairs raised apart, 141 adoptive
sibling pairs, and 143 nonadoptive sibling pairs, ranging in age from infancy through late adulthood. At
all ages, cross-time genetic correlations and shared environmental correlations were substantially larger
than cross-time nonshared environmental correlations. Cross-time correlations for genetic and shared
environmental components were, respectively, low and moderate during early childhood, increased
sharply over child development, and remained high from adolescence through late adulthood. Cross-time
correlations for nonshared environmental components were low across childhood and gradually increased
to moderate magnitudes in adulthood. Increasing phenotypic stability over child development was almost
entirely mediated by genetic factors. Time-based decay of genetic and shared environmental stability was
more pronounced earlier in child development. Results are interpreted in reference to theories of
gene–environment correlation and interaction.
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Average levels of cognitive ability change dramatically over the
course of development, with impressive increases from infancy
through childhood and adolescence and gradual decreases during
adulthood (Jones & Conrad, 1933; McArdle, Ferrer-Caja,
Hamagami, & Woodcock, 2002; Tucker-Drob & Salthouse, 2011).
Moreover, individual differences in cognitive ability undergo dra-
matic changes in rank-order stability over development (Bayley,

1949). When measured in infancy, individual differences in cog-
nition are so unstable over time that many have questioned the
value of its measurement. Eschewing the view that intelligence is
“inherited, or at least innate, not due to teaching or training” (Burt,
1934, as cited in Lewis & McGurk, 1972, p. 1174), Lewis and
McGurk (1972) wrote, “It is a sine qua non of this view that
measures of intelligence have high predictive validity from one
age to another. Such validity is singularly lacking in every scale
used to assess intelligence during infancy” (p. 1174). They con-
cluded that “infant intelligence scales are invalid as measures of
future potential” (p. 1175). By middle childhood, individual dif-
ferences in cognition become impressively stable. Based on results
from a longitudinal study following individuals from age 11 to 87
years, one of the longest longitudinal studies to date, Gow et al.
(2011) concluded that “childhood cognitive ability is by far the
largest independent predictor of the level of cognitive ability in
later life” (p. 238). By early adulthood, individual differences in
cognition become so stable that some have argued that virtually no
reordering occurs whatsoever. Based on results of a longitudinal
study of general cognitive ability (g) that followed participants
from age 20 years to 38 years, Larsen, Hartmann, and Nyborg
(2008) concluded that “g measured in early adulthood predicts this
very ability later in life with a precision that equals the reliability
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of the tests” (p. 33). One of the first reports of these dramatic
increases in longitudinal stability from infancy through adoles-
cence was by Bayley (1949). Bayley’s main findings are repro-
duced in Figure 1, which plots raw test–retest stability coefficients
for intelligence by age, stratified by age at first testing. Also
apparent in Bayley’s data is a modest degree of temporal decay of
stability that diminishes with age.

What are the mechanisms that underlie continuity (i.e., stability)
of individual differences in cognition over time, and which of these
mechanisms accounts for the dramatic increases in continuity over
development? Some researchers (e.g., Sameroff, Seifer, Baldwin,
& Baldwin, 1993) have suggested that the stability of individual
differences in cognition over time results from consistent exposure
to the same exogenous environments over time, i.e., that stability
of cognition results from stability of social, educational, and eco-
nomic contexts. Others (e.g., Conley, 1984; Dickens & Flynn,
2001) have suggested that the stability of individual differences in
cognition over time results from the continuous effects of endog-
enous factors, such as genes, and that exogenous experiences tend
to be nonrecurring and produce effects that decay quickly over
time. Exogenous and endogenous factors may both contribute to
overall stability to varying extents, and it is possible that their
relative contributions may change with age. The current article
makes use of meta-analysis of longitudinal behavioral genetic
studies to examine these issues. In the following sections, we
review theories of developmental continuity and change, and dis-
cuss the relevance of questions concerning the genetic and envi-
ronmental processes underlying cognitive stability and instability

to broader questions of how genes and environments combine to
influence individual differences in cognition. We then provide an
overview of longitudinal behavioral genetic models, describe the
specifics of our meta-analysis, report our results, and discuss their
implications for theories of gene–environment coaction during
cognitive development.

Theories of Developmental Continuity and Change

There are a number of theoretical perspectives on cognitive
development that are relevant to the question of the continuity of
genetic and environmental contributions to cognition. We describe
these theories in this section, proceeding roughly from the simple
theories to the more complex and dynamic: (a) genetic set-point/
genetic canalization, (b) lasting effects of experience/experiential
canalization, (c) stability of experience, (d) Gene � Environment
interactions, (e) gene–environment transactions, (f) embedded dy-
namism.

Genetic Set-Point/Genetic Canalization

Perhaps the hypothesis most consistent with lay theories or
definitions of intelligence is what might be termed a genetic
set-point hypothesis. This hypothesis holds that, excepting for
measurement error, short-term nonsystematic fluctuations in per-
formance, and instances of neurological trauma and severe priva-
tion, (a) ability phenotypes are synonymous with ability geno-
types; (b) these same genotypes determine ability levels

Figure 1. Age curves of correlation coefficients between scores on selected initial tests and subsequent tests
given at yearly intervals. The x-axis (bottom) indicates participant age, and the y-axis (left) indicates the
longitudinal test–retest correlation. The labels at the right indicate the age at first measurement for each
corresponding connected line. The labels at the top denote the cognitive test used. yr. � years; mo. � months.
From “Consistency and Variability in the Growth of Intelligence From Birth to Eighteen Years,” by N. Bayley,
1949, The Pedagogical Seminary and Journal of Genetic Psychology, 75, Figure 7, p. 182. Copyright 1949 by
Taylor & Francis.
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throughout child development and adulthood; and (c) although
normative development will entail absolute changes in cognitive
performance, these changes occur uniformly throughout the entire
ability distribution such that they do not result in an appreciable
reordering of individuals over time. This perspective, namely, that
cognition “is stable—that is, it is determined by our genes and
largely impervious to environmental influences” is what the pop-
ular science writer Malcolm Gladwell (2007, p. 31) has character-
ized as a core tenet of “I.Q. fundamentalists.” The genetic-set point
hypothesis shares a number of core features with the genetic
canalization hypotheses that emerged in the midtwentieth century,
which hold that natural selection produces genotypes that buffer
developing organisms against environmental heterogeneity. Ac-
cording to such hypotheses, a given genotype responds dynami-
cally to varying experiential inputs encountered over the course of
development to produce a relatively constant phenotypic end state
(Conley, 1984; Waddington, 1942).

Lasting Effects of Early Experience/Experiential
Canalization

A hypothesis that offers an altogether separate mechanism for
stability of individual differences in cognitive ability holds that
early experiences have persistent effects on cognition. This hy-
pothesis is consistent with a number of related perspectives that
posit critical or sensitive periods of development including life
history theories, fetal programming theories, and developmental
cascade theories. For instance, fetal programming theories contend
that prenatal and neonatal environments, such as nutritional qual-
ity, have lasting effects on health and behavior by signaling to the
organism what sorts of environments it should be prepared to
encounter throughout its life span (Lucas, 2005). Developmental
cascade theories posit that early learning confers skills that are
foundational for later learning, such that differences in early cog-
nitive performance have long lasting consequences for later per-
formance (Duncan et al., 2007; Heckman, 2006; Knudsen, Heck-
man, Cameron, & Shonkoff, 2006; Rimm-Kaufman, 2004).

An illustrative, yet extreme, example of evidence indicating
lasting effects of early environmental experience comes from a
study of Romanian orphans (Nelson et al., 2007). Abandoned
infants were randomly assigned either to remain in institutional
care or to be placed in higher quality foster care, typically before
age 30 months. Deficits carried forward in time: Never adopted
children had IQs of 77 and 73, adopted children had IQs of 86 and
81, and a demographically matched comparison group had IQs of
103 and 109 at ages 42 and 54 months, respectively. Another
illustrative set of results was reported by Evans and Schamberg
(2009). Using observational data, these authors found a significant
relation between childhood poverty and adult working memory,
which was mediated by a physiological composite index of allo-
static load.

The experiential canalization hypothesis is not without its dis-
senters. Although a large body of observational data consistently
indicates robust associations between quality of naturally occur-
ring early life experiences and cognition across the life span
(bolstered by a few notable randomized studies in which children
were rescued from extremely severe privation and neglect), studies
of interventions designed to boost cognition have been marked
failures to evince lasting effects. In a comprehensive meta-analysis

of studies of early childhood education programs that used either
randomized assignment or quasiexperimental methods, Leak et al.
(2010) found that program effects on cognition and achievement
persisted at close to full strength for 1–2 years beyond their
completion but faded out over longer intervals. Even the random-
ized controlled study of the lauded Perry Preschool program,
which indicated lasting program effects on numerous social and
economic outcomes that persisted into adulthood, indicated com-
plete fadeout of IQ gains by third grade (Schweinhart et al., 2005).
Results of this sort have led a number of researchers to conclude
that environmental influences on cognition are ephemeral and are
therefore unlikely to contribute meaningfully to stability of cog-
nition over time.

Cross-sectional research from behavioral genetic studies has
also provoked theoretical speculation about the durability of envi-
ronmental influences, or lack thereof. Citing a vast array of studies
that indicate that the nonshared environment (environmental influ-
ences on traits that serve to differentiate children from the same
family) routinely accounts for approximately 40% or more of the
variance in psychological outcomes, Plomin and Daniels (1987, p.
1) asked, “Why are children in the same family so different from
one another?” They speculated that the answer is because of
systematic effects of measured differences in their environments.
However, a quantitative review by Turkheimer and Waldron
(2000) indicated that only minute proportions of variation in
psychological outcomes could indeed be accounted for by mea-
surable differences in experiences. These results have led a number
of researchers (e.g., Loehlin, 2007; Turkheimer, 2000) to speculate
that the nonshared environment may include variance due to
temporal trait fluctuation, i.e., true (internally consistent) psycho-
logical states that are short-lived, unpredictable, and either com-
plex to the point of being empirically intractable, or entirely
unsystematic. In other words, failures of measurable variables to
account for psychological differences between siblings have led
some researchers to suggest that the rather large differences be-
tween siblings result from little more than the short-term fluctua-
tion of traits. If this is true, then it may indeed be no surprise that
stable, measured aspects of the environment that siblings differ-
entially experience are unable to account for much variation in
behavioral outcomes.

Stability of Experience

A second environmentally centered hypothesis holds that sta-
bility of individual differences in cognition results from stability of
the exogenous determinants of ability. In other words, one possible
contribution to stability of individual differences in cognition over
time is that individuals are subjected to consistent social, educa-
tional, and economic contexts over long periods of time. These
environmental contexts need not have effects that are particularly
lasting; they simply need to recur consistently over time. This was
the view championed by Sameroff et al. (1993), who wrote,

The typical statistic reported in longitudinal research is the correlation
between early and later performance of the children. . . . The usual
interpretation of such a number is that there is a continuity of com-
petence or incompetence in the child. Such a conclusion cannot be
challenged if the only assessments in the study are of the children. In
[our study] we examined environmental as well as child factors. . . .
We found that the correlation between composite multiple risk scores
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at the two ages was . . . as great as or greater than any stability within
the child. Those children had poor family and social environments
when they were born (Sameroff, Seifer, Barocas, Zax, & Greenspan,
1987), still had them when they were 13, and probably would continue
to have them for the foreseeable future. (p. 95)

A variant of this hypothesis is that the environmental experiences
that have the most appreciable effects on cognition are those that
occur consistently over time. For instance, Brooks-Gunn and Dun-
can (1997) have reviewed evidence that environmental disadvan-
tage compounds over time, such that poverty occurring over long
durations (e.g., 4 or more years) produces more marked effects on
cognition than shorter-term exposures to poverty. In the Romanian
adoption study mentioned earlier, Nelson et al. (2007) found that
infants who were randomly assigned to be adopted out of low
quality orphanages at younger ages (i.e., those who spent less time
in impoverished conditions) had less depressed IQ scores than
those randomly assigned to later adoption. Based on this duration
hypothesis, the stability of environmental influences on cognition
is nearly synonymous with the basic concept of environmental
influence, in that the experiences most likely to affect cognition are
precisely those that are most stable.

Genetic Differences in Sensitivity to the Environment:
Gene � Environment Interaction

The theoretical perspectives reviewed thus far have all been
similar to one another in that they conceptualize genetic and
environmental influences as independent influences on cognitive
development. Although conventional genetic perspectives and en-
vironmental perspectives do not necessarily conflict with one
another—most allow genetic contributions and environmental con-
tributions to stability of individual differences to sum together to
determine overall phenotypic stability—none of the above re-
viewed perspectives directly addresses the possibility that the
genetic and environmental mechanisms of cognitive development
might interrelate and even interact in meaningful ways. Two such
processes of gene–environment coaction are Gene � Environment
interaction and gene–environment correlation. We discuss Gene �
Environment interaction in this section and gene–environment
correlation the next section. We note that these processes are not
alternatives to one another or mutually exclusive in any sense.

Gene � Environment interactions have been suggested as one
possible resolution to the nature-nurture paradox: Findings from
twin and adoption studies have indicated that the effects of the
shared environment (the resemblance between individuals who
share common rearing experiences) decrease over development,
whereas finding from studies of children rescued from poverty
indicate large and lasting effects of improved rearing experiences
(Turkheimer, 1991). If different people respond to the same rear-
ing environment to differing extents as a systematic function
genotypic variation, then individuals reared together may not re-
semble one another to an appreciable degree even though the
rearing experience has true effects on them. Instead, the variation
in cognitive performance associated with the shared rearing expe-
rience will be determined, in part, by genotype. Because the effect
of the environment depends on genetic variation, individual dif-
ferences in cognition that result from objectively shared environ-
ments can come to be attributable to genetic variation. Indeed,
Gene � Environment interactions for cognitive ability have been
reported by a number of researchers (Harden, Turkheimer, &

Loehlin, 2007; Rhemtulla & Tucker-Drob, 2012; Rowe, Jacobson,
& Van den Oord, 1999; Scarr-Salapatek, 1971; Taylor, Roehrig,
Soden-Hensler, Connor, & Schatschneider, 2010; Tucker-Drob,
Rhemtulla, Harden, Turkheimer, & Fask, 2011; Turkheimer, Ha-
ley, Waldron, D’Onofrio, & Gottesman, 2003; for a review see
Tucker-Drob, Briley, & Harden, 2013). If Gene � (Shared) Envi-
ronment interactions on cognition are either lasting or recurring,
high stability of genetic influences on cognition can result. Under
such scenarios, in which genetic effects present at early points in
development modulate the magnitude of lasting or recurrent envi-
ronmental effects, large genetic contributions to overall stability
may result. A complementary possibility is that experience-
activated epigenetic processes are particularly robust over time. In
other words, experiences “turn on” genes leading to heritable
variation in cognition, and these genes remain “turned on” for
extended periods of time.

Transactional Theories of Gene–Environment
Correlation

Gene–environment correlation refers to the possibility that,
rather than randomly experiencing different environments, indi-
viduals experience different environments as systematic functions
of their genotypes. There are three such classes of mechanisms by
which environments can come to be correlated with genotypes
(Plomin, DeFries, & Loehlin, 1977). Passive gene–environment
correlations occur when the rearing experiences that parents pro-
vide to their biological children are partly influenced by the same
genes that the children have inherited from them. Evocative gene–
environment correlations occur when children evoke or elicit ex-
periences from others based on their genetically influenced char-
acteristics and behaviors. Finally, active gene–environment
correlations occur when children actively seek out and choose
experiences on the basis of their genetically influenced prefer-
ences, motivations, and interests. Importantly, these received,
evoked, and sought out experiences have the potential to have true
causal effects on both cognitive development and on the noncog-
nitive traits relevant to learning. Under transactional models
(Bouchard, 1997; Bronfenbrenner & Ceci, 1994; Collins, Mac-
coby, Steinberg, Hetherington, & Bornstein, 2000; Hayes, 1962;
Scarr, 1997; Scarr & McCartney, 1983; Tucker-Drob et al., 2013)
a positive feedback process arises in which child behaviors lead to
experiences that reinforce those behaviors, which lead to further
experiences. As Scarr and McCartney (1983, p. 425) have hypoth-
esized, “the genotype is the driving force behind development,
because, we argue, it is the discriminator of what environments
are actually experienced.” Support for such processes is begin-
ning to accumulate from a number of sources, including find-
ings that environmental similarity covaries with genetic simi-
larity (Kendler & Baker, 2007) and findings from cross-lagged
analyses indicating reciprocal time-ordered relations between
cognitive abilities and parenting (Lugo-Gil & Tamis-LeMonda,
2008; Tucker-Drob & Harden, 2012a) and between noncogni-
tive traits and cognitive performance (Chamorro-Premuzic,
Harlaar, Greven, & Plomin, 2010; Marsh, Trautwein, Lüdtke,
Köller, & Baumert, 2005).

In their formalized transactional model, Dickens and Flynn
(2001) have proposed that recurrence of environmental experience
is a core necessity of cognitive development. Contrasting with the
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view that environmental influences represent little more than short
term trait fluctuation, they have argued that environmental expe-
riences have causal, albeit highly ephemeral, effects. Building on
this assumption, they have argued that only environments that
result from highly institutionalized processes (e.g., historical pe-
riod, social class, or race/ethnicity) or from processes driven by
endogenous (genetic) propensities are likely to recur often and
systematically enough to have lasting effects on psychological
traits. They argue that environments that occur fortuitously or by
happenstance tend to be nonrecurring and therefore have highly
time-specific effects. According to this model, environmental in-
fluences on cognition that are correlated with genes will be highly
consistent over time, socially entrenched and institutionalized en-
vironmental experiences will also be highly consistent over time,
and idiosyncratic environmental influences on cognition that are
uncorrelated with genes (typically nonshared environmental influ-
ences) will be highly inconsistent over time (see Dickens,
Turkheimer, & Beam, 2011, for further explication of the role of
the nonshared environment in the Dickens & Flynn, 2001, model).

Embedded Dynamism

A final theoretical perspective comes from lifespan psychology,
which has been described as a “metatheory” (Baltes, Staudinger, &
Lindenberger, 1999). Nesselroade (1991) has characterized this
perspective as one in which partially stable and partially changing
exogenous contexts influence individuals, individuals at the same
time select and evoke contexts on the basis of their endogenous
propensities, and the magnitude and enduringness of contextual
influences depends on both individual factors and developmental
period. He wrote,

Intraindividual change occurs in contexts: historical, cultural, societal,
and so on. These various contextual strata influence the course of
ontogenetic change through the conditions and events impinging on
the individual. Contextual factors are themselves undergoing changes
at varying rates and of differing generalities. Moreover, people are
self-constructing . . . and are involved in selecting among possible
contexts and producing new contexts to facilitate intraindividual
changes. . . . The dominant picture is one in which levels of com-
plexity are described as “dynamisms within dynamisms” . . . or
“embedded hierarchies” . . . I want to emphasize, however, that an
attribute should not uncritically be assumed to manifest high stability.
Rather, stability and the conditions of its maintenance should be foci
of empirical examination. (pp. 218–229)

To summarize, this perspective predicts that all of the mechanisms
reviewed earlier (genetic set-point/genetic canalization, lasting
effects of early experience/experiential canalization, stability of
experience, Gene � Environment interaction, and gene–
environment correlation) have the potential to simultaneously con-
tribute to the stability and instability of individual differences in
psychological phenotypes over time and that empirical investiga-
tion is necessary to determine the relative contributions of each of
these processes to the stability and instability of the specific
phenotypes of interest. Although this perspective does not make
strong empirical predictions, it highlights the likelihood that many
of the mechanisms discussed above are likely to cooperate and that
the relative contributions of each mechanism may change over the
course of development.

Developmental Changes in Continuity
Over the Life Span

To what extents do the continuities of genetic and environmen-
tal influences on cognition change over the course of the life span?
Moreover, to what extents do genetic and environmental factors
account for increases in phenotypic stability over the course of
development? Rather straightforward predictions about these is-
sues can be derived from many of the theories reviewed above. We
focus these predictions on the stabilities of three factors: genes,
shared (family level) environmental influences that serve to make
children from the same family more similar to one another, and
nonshared (individual level) environmental influences that differ-
entiate children from the same family. (Note that we provide a
more detailed primer on how these factors are estimated using
behavioral genetic methodology in a later section.)

Predictions

Because the genetic set-point/genetic canalization hypothesis
holds that environmental effects are highly ephemeral, it would
predict near zero stability of shared and nonshared environmental
influences over the entirety of development. Moreover, in its most
basic form, this hypothesis would predict very high stability of
genetic influences over the course of development. In a somewhat
elaborated form, the genetic set-point hypothesis might predict that
normative biological development results in epigenetic patterns of
gene activation and de-activation over development, such as over
the pubertal transition. One might refer to this as a moving set-
point hypothesis, in that the genes relevant for adult cognition are
somewhat different from those relevant for child cognition and that
individuals deviating from their age-specific genetic set-points will
regress to that set-point. According to this moving set-point hy-
pothesis, genetic stability would increase with child development
as more of the genes associated with adult cognition become
activated.

In contrast, the experiential canalization hypothesis holds that
environmental influences, particularly those experiences that occur
very early in development, have lasting effects. It would therefore
predict small-to-moderate levels of stability for shared and non-
shared environmental influences on cognition in early childhood,
as young children are thought to be particularly sensitive to vari-
ability in environments. As cognitive phenotypes become cana-
lized with increasing age, and hence resistant to de novo environ-
mental experiences, shared and nonshared environmental
influences should be expected to increase in their stability.

The stability of experience hypothesis would make opposite
predictions to the experiential canalization hypothesis. This hy-
pothesis views experiences relevant to cognition as highly deter-
mined from the family and social class circumstances into which a
child is born. This hypothesis would therefore predict very high
stability of shared and nonshared environmental influences on
cognition at a very early age. Stability of environmental experience
would remain relatively high throughout childhood and adoles-
cence, as the quality of educational and social experiences to
which children have access are thought to be strongly determined
by the financial and social resources of the family. Nevertheless,
some reordering of environments would be likely to occur as
children develop and have access to a broader variety of extrafa-
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milial experiences, with marked discontinuities in stability likely
to occur at school transitions (e.g., transitions into grade school,
middle school, and high school) and life transitions (e.g., marriage
and retirement). Therefore, the stability of experiences hypothesis
would predict that the stability of shared and nonshared environ-
mental influences is likely to decrease to some extent during
childhood, but remain rather high due to buffering mechanisms.
For example, the process of forming a personal identity over
development may buffer decreasing environmental stability over
age and school/life transitions because a solidified identity limits
the realm of possible experiences from which a person will con-
sider choosing (Roberts & DelVecchio, 2000). Similarly, the track-
ing of students into different educational programs on the basis of
their past performance limits the available range of cognitively
stimulating environments.

Like the experiential canalization hypothesis, a developmentally
oriented Gene � Environment interaction perspective would pre-
dict that early experiences have pronounced and long lasting
effects on cognition, whereas later experiences have weaker and
shorter lasting effects. However, this perspective adds the elabo-
ration that early and lasting experiential effects are likely to
operate differentially by genotype and/or via gene expression.
Young children’s cognitive abilities are predicted to be particularly
sensitive to environmentally provoked gene-activation, whereas
older children’s and adults’ cognitive abilities are predicted to be
more resilient to new environmental inputs and influenced to a
greater extent by lasting patterns of gene activation that have
existed since very early childhood. Therefore, this perspective
would predict lower stability of genetic influences on cognition in
early childhood as variation in environmental experiences over
time serves to activate different sets of genes, but increasing
stability of genetic influences over development as later experi-
ences become less effective in activating or deactivating genetic
variation.

Transactional models of gene–environment correlation would
predict that the stability of genetic factors will increase over time
as environments are consistently and recurrently selected and
evoked on the basis of genetically influenced early behaviors and
dispositions. This process is catalyzed because the diversity of
environments that can be chosen from the “cafeteria of experi-
ences” (Lykken, Bouchard, McGue, & Tellegen, 1993, p. 657) and
the autonomy to select these environments (Scarr & McCartney,
1983) increases with development. In the Dickens and Flynn
(2001) version of the transactional model, predictions are also
made with respect to the shared and nonshared environments. The
shared environment is predicted to represent the effects of socially
entrenched and institutionalized processes and is therefore pre-
dicted to exhibit very high stability throughout development. The
nonshared environment is predicted to represent idiosyncratic,
nonrecurring, and therefore nonlasting effects and is therefore
predicted to be unstable across development (although a recent
empirical study by Dickens et al., 2011, has motivated reconsid-
eration of this prediction).

Finally, although the embedded dynamism perspective does not
make strong predictions about the specific direction or magnitude
of changes in genetic and environmental stability with age, it does
make very clear that changes in rank-order stability over develop-
ment should be expected. The core principle of this perspective is

that descriptive empirical research is necessary to delineate the
specific patterns of such changes.

Considering Time-Lag

It is important to note here that, unlike most statistics, continuity
of individual differences cannot be measured at a single age or
point in time; inherent in the definition of continuity is the repeated
measurement of a phenotype over time. In considering age differ-
ences in continuity, it is important to consider the time interval
between measurements (time-lag). For instance, it does not make
much sense to talk about continuity at a specific baseline age
without knowing either (a) the specific follow-up age or (b) the
time-lag. The rank-orderings of cognitive test scores among a
group of 2-year-olds might be fairly stable after 1 month’s time but
might deteriorate to near zero after a decade. In contrast, the
rank-orderings of cognitive test scores of a group of 10-year-olds
might be fairly stable after 1 month’s time and persist at close to
full strength for many decades. This example, which bears close
resemblance to the empirical trends documented by Bayley (1949)
and depicted in Figure 1, illustrates a number of important con-
siderations. First, comparing age differences in continuity, without
specific attention to time-lag, is only meaningful if the average
time lag is relatively constant across age groups. Second, a com-
plete understanding of age differences in continuity should not
simply hold time-lag constant but should instead examine variabil-
ity associated with both age and time-lag. Third, time-based decay
of stability coefficients may differ with age. Therefore both the
main effects of age and time-lag and their interactive effects are
important to examine.

Other Possible Moderators of Genetic and
Environmental Continuity

In addition to the possibility that the longitudinal stabilities of
genetic and environmental influences on cognition are dependent
on age and time-lag, it is also possible that stabilities depend on
other person characteristics, study characteristics, or the specific
form of cognition under study.

General Intelligence and Specific Abilities

One possible moderator of the stabilities of genetic and envi-
ronmental influences on cognition is whether the form of cognition
measured represents a highly general ability or a more domain-
specific ability. Reeve and Bonaccio (2011, p. 267) for instance,
have reasoned:

Basic abilities such as g appear to be relatively stable. In contrast,
skills and knowledge can, by definition, be developed (see Carroll,
1993, or Lubinski & Dawis, 1992). Thus, to the extent the focal test
assesses specific skills an individual’s score could change over time
due to a true change in their standing on the construct. In fact,
Carroll’s (1993) three-stratum model of abilities is an effective way to
conceptualize the “ability vs. skill” distinction. Constructs residing at
the lowest levels tend to reflect specific skills and are assessed by
specific types of items (Carroll, 1993, p. 634). Constructs at higher
levels generally reflect abilities and are assessed by a wider range of
tests and item types (Carroll, 1993, p. 633). Given that g resides at the
highest stratum, it should demonstrate relative stability.
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Elaborating on this hypothesis, one might expect that the experi-
ences relevant to specific lower order abilities are themselves more
specific (e.g., enrollment in a math course, or taking up a hobby)
and amenable to short-term change, whereas the experiences rel-
evant to general intelligence are quite broad (e.g., social class) and
prone to slower change. Hence, environmental influences on lower
order abilities might be expected to be less stable than those on
higher order abilities.

A similar set of predictions can be made for the stability of
genetic influences on general intelligence versus specific abilities.
It is well agreed upon that most complex behavioral traits, includ-
ing intelligence, are highly polygenic (i.e., affected by very many
genes; Davies et al., 2011). However, the number of genes affect-
ing different traits can still differ by several orders of magnitude.
Empirical and theoretical work in molecular and evolutionary
genetics (Kovas & Plomin, 2006; Penke, Denissen, & Miller,
2007) has posited that circumscribed sets of function-specific
genes are likely to contribute to specific cognitive abilities but that
general intelligence is likely be affected by nearly any gene,
anywhere on the genome, that codes for proteins relevant for
physiologic function of virtually any sort. According to this mu-
tation load hypothesis, the specific locus of a detrimental gene
variant is irrelevant. Rather, the sheer number of detrimental
mutations determines level of cognitive ability (or more accu-
rately, level of cognitive impairment). Based on this hypothesis,
genetic variants relevant to general intelligence should each con-
tribute a smaller proportion to its total genetic variation than
should genetic variants relevant to specific abilities. Elaborating on
this reasoning, if the epigenetic changes that occur over develop-
ment are localized to small portions of the genome, then one might
expect genetic influences on specific cognitive abilities to be more
prone to change (i.e., less stable) than genetic influences on gen-
eral intelligence. One would expect that only broad epigenetic
effects distributed across the genome would be able to appreciably
reorder genetic effects on general intelligence.

Fluid and Crystallized Abilities

Building on a similar rationale, one might expect differential
stabilities of genetic and environmental influences on different
classes of specific abilities. Fluid abilities are generally conceptu-
alized as resulting from highly generalized biologically based
cognitive capacities (Baltes et al., 1999; Cattell, 1971), although
there is also strong evidence for cultural and experiential effects on
tests of fluid abilities (Flynn, 2007). In contrast, crystallized abil-
ities are generally conceptualized as knowledge acquired from
cultural and educational experiences (Baltes et al., 1999; Cattell,
1971). Environmental experiences relevant for crystallized abili-
ties confer declarative knowledge that is likely to be retained over
long periods of time. Environmental experiences relevant for fluid
abilities may confer shorter term “boosts” that are not as easily
retained, and instead fade more quickly over time. Moreover,
compared to genetic influences on fluid abilities, genetic influ-
ences on crystallized abilities may be more substantially mediated
by a host of personality, interest, and motivational factors relevant
for knowledge acquisition (Tucker-Drob & Harden, 2012b,2012c).
Because the psychological factors mediating genetic effects on
knowledge acquisition may differ over time, one might expect
genetic influences on crystallized abilities to be less stable than
genetic influences on fluid abilities.

Social Class and Other Forms of
Macroenvironmental Opportunity

A further possible class of moderators of stability of genetic and
environmental influences on cognition is social class and other
forms of macroenvironmental opportunity. Building on the work
of Bronfenbrenner and Ceci (1994); Dickens and Flynn (2001);
Rowe, Almeida, and Jacobson (1999); and Scarr and McCartney
(1983), Tucker-Drob and Harden (2012a, 2012b, 2012c) have
suggested that the efficiency of reciprocal transactions between
children and their proximal environments depends on the macro-
environmental context in which the children and their microenvi-
ronments are embedded. Not only does this hypothesis predict that
genetic variance will be larger in higher opportunity macro-
environments, it also predicts that genetic influences on cognition
will be more stable over time in higher opportunity macro-
environments, which allow children to develop and pursue expe-
riences that match their dispositions over prolonged periods of
time. In lower quality macro-environments, consistent self-guided
exposure to experiences is more difficult, and the learning expe-
riences to which a child is recurrently exposed are predominantly
exogenous. Unfortunately, the data sets identified in the current
meta-analysis did not vary much in social class, and this hypoth-
esis could not be tested.

A Primer on Behavioral Genetic Models of
Stability and Instability

The longitudinal behavioral genetic methods applied in the
current meta-analysis build upon the classical concept of or rank-
order stability, i.e., stability of individual differences. Rank-order
stability1 refers to the correlation between individual differences in
a variable measured at one point in time and individual differences
in the same variable measured at a later point in time (see Roberts
& DelVecchio, 2000, for a discussion of other forms of trait
stability). In other words, stability of individual differences refers
to the extent to which the relative orderings of a sample of
individuals to one another remains stable over time. When genet-
ically informative longitudinal data are available, for instance, data
from intact monozygotic and dizygotic twin pairs, one can math-
ematically identify quantitative behavioral genetic models that
allow for the estimation of the stability of genetic and environ-
mental influences on a given trait, and, similarly, the extent to
which the stability of a trait over time stems from the continuous
action of the same genes, the consistent effects of the same
environmental experiences, or some mixture of the two. In this
section we provide an overview of such behavioral genetic models.

Univariate Models

Before describing specific behavioral genetic models of stability
and instability, it is instructive to begin by discussing behavioral
genetic models of a single variable measured at a single point in

1 Despite its name, the term rank order stability is generally indexed by
the Pearson product moment correlation coefficient and not the Spearman
rank order correlation coefficient. In other words, it reflects information
not only about the rank-orderings of individuals but also the relative
magnitudes of differences between them.
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time. Modern behavioral genetic models commonly make use of
sibling correlations to partition variance in a phenotype, or trait,
into genetic and environmental components. Typically, three vari-
ance components are estimated: an additive genetic factor (A) that
accounts for variation in the phenotype associated with allelic
differences between individuals, a shared (or common) environ-
mental factor (C) that accounts for variation in the phenotype
associated with influences acting at the family-level serving to
make siblings from the same family more similar to one another,
and a nonshared environmental factor (E) that accounts for varia-
tion in the phenotype associated with influences acting at the
individual-level and serving to differentiate individuals within the
same family, along with measurement error. Conceptually, these
variance components are estimated by comparing the magnitudes
of intraclass correlations across sibling types. For instance, if
monozygotic twins (who share nearly 100% of their genes) are
systematically more similar in their test scores to their cotwins
than dizygotic twins (who, on average, share approximately 50%
of their genes) are to their cotwins, genetic factors are inferred to
contribute to test scores. If monozygotic twins are more similar to
the cotwins with whom they were raised than would be expected
from the estimate of genetic similarity, shared environmental fac-
tors are inferred to contribute to test scores. Finally, if monozy-
gotic twins raised together are not perfectly identical in their test
scores, nonshared environmental factors are inferred to contribute
to test scores.

A path diagram representing a univariate, single time point,
quantitative genetic model for intact monozygotic and dizygotic
twin pairs is represented in Figure 2 (cf. Neale & Cardon, 1992).
It can be seen that this is a two-group model in which the pheno-
type, Y, is represented twice: once for the member of the pair who
has been randomly assigned to be “Twin 1” and again for the
member of the pair who has been randomly assigned to be “Twin
2.” The phenotype is regressed onto latent factors representing A,
C, and E. A factors are correlated at 1.0 across monozygotic twins,
to reflect the fact that monozygotic twins share all of the same
genes. A factors are correlated at .5 across dizygotic twins, to
reflect the fact that dizygotic twins share, on average, 50% of their
genes. Parameters labeled a, c, and e (which represent the regres-
sions of Y on A, C, and E, respectively) are freely estimated, and
parameters with the same label are constrained to be equivalent to
one another. When Y has been standardized prior to analyses, the
squares of a, c, and e, represent the proportions of variance
accounted for by A, C, and E (termed heritability, shared environ-
mentality, and nonshared environmentality), respectively. As the
representation of ytw2 and Group 2 is largely redundant, it is
typical for path diagrams for behavioral genetic models to only
represent the portion of the diagram for a single twin. The extra-
neous portions of Figure 2 that do not typically appear in behav-
ioral genetic path diagrams are depicted in gray with dashed lines.
For the remaining path diagrams depicted in this article, only one
twin per pair (from only one group) is represented, and the sub-
scripts indicate wave, rather than twin number.

Longitudinal Models

Longitudinal behavioral genetic models derive their information
regarding the stability of genetic and environmental influences
from cross-twin cross-time correlations (the correlation between

one twin’s score at Time Point 1 and the other twin’s score at Time
Point 2). A similar rationale for estimating genetic and environ-
mental effects under the univariate model is used to estimate the
longitudinal consistency of genetic and environmental effects. For
instance, in using data from monozygotic twins raised together and
dizygotic twins raised together, if the cross-twin cross-time corre-
lations are larger for monozygotic than for dizygotic twins, this
would be evidence for an effect of the same set of genes on the trait
at the two time points. This is the same method used to estimate
genetic and environmental pleiotropy (the same set of genes, or the
same set of environments, affecting multiple phenotypes), except
that instead of estimating commonality of genetic and environ-
mental effects on two traits, commonalities are estimated for
genetic and environmental effects on the same trait measured at
two points in time (Plomin, 1986).

Group 1: Monozygotic Twins
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Figure 2. A path diagram for a univariate behavioral genetic model for
monozygotic twins reared together and dizygotic twins reared together.
Portions of the figure in gray are redundant with the portion in black and
are therefore often omitted from the path diagram.
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Three popular longitudinal behavioral genetic models are the
Cholesky model, the correlated factors model, and the autoregres-
sive simplex model (Figure 3). All three models are equivalent
when fit to two-wave longitudinal data, in the sense that they will
fit the data equally well, and parameters from one model can be

used to derive the parameters for the other models (see the Ap-
pendix). However, the three different models represent the infor-
mation differently, and each therefore has unique strengths for
addressing different theoretical questions (Loehlin, 1996; Loehlin,
Horn, & Willerman, 1989). The Cholesky model partitions varia-
tion at the second wave into variation that is accounted for by
genetic and environmental factors that contribute to variation at the
first wave and genetic and environmental factors that contribute
uniquely to variation at the second wave. The cross-paths ab, cb,
and eb provide information about the magnitudes of genetic and
environmental influences carried over from the first wave, and the
Wave 2 paths au, cu, and eu provide information about the mag-
nitudes of genetic and environmental influences unique to the
second wave. The question of consistency of genetic and environ-
mental influences is not directly indexed; the cross-paths and the
Wave 2 paths both need to be taken into account to address this
question.

In contrast to the Cholesky model, the correlated factors model
estimates separate parameters representing the magnitudes of ge-
netic and environmental influences at Wave 1 (a1, c1, and e1) and
Wave 2 (a2, c2, and e2), and the rank-order stabilities of genetic
and environmental influences across waves (ra, rc, and re). When
the phenotype (Y) has been standardized relative to its wave-
specific standard deviation prior to analyses, the squares of the a,
c, and e parameters represent the proportions of variances ac-
counted for by genetic, shared environmental, and nonshared en-
vironmental variance components at the respective waves. This
correlated factors model can also be used to calculate the contri-
butions of genetic, shared environmental, and nonshared environ-
mental factors to the overall phenotypic stability (a1 � ra � a2,
c1 � rc � c2, and e1 � re � e2, respectively). It is important to note
that these are raw contributions, rather than proportional contribu-
tions. For instance, if the phenotypic stability of cognition is .4,
and genes contribute 50% to phenotypic stability, then the genetic
contribution to phenotypic stability is .2. Finally, it is of note that
a factor’s contribution to phenotypic stability is not a direct func-
tion of how stable that factor is. For example, ascribed character-
istics of the individual (e.g., gender) are likely to be highly stable
across time, but if these characteristics are relatively unimportant
for cognitive development, then they will not contribute to overall
stability. In terms of the correlated factors model, if the shared
environment is highly stable over time (e.g., rc � .80), but the
shared environment contributes very little to the phenotype at both
points in time (e.g., c2 � .20), then the shared environment’s
contribution to phenotypic stability will be rather small (c1 � rc �
c2 � .16). Therefore, it is important to examine A, C, and E
contributions to phenotypic stability in addition to examining the
stability of A, C, and E factors.

The autoregressive simplex model has properties similar to
both the correlated factors and the Cholesky models. Like the
correlated factors model, it separates information about stability
from information about the magnitudes of genetic and environ-
mental effects. However, like the Cholesky model, because the
arrows from the genetic and environmental factors at Wave 1 to
the corresponding genetic and environmental factors at Wave 2
are directional, it is specifically concerned with accounting for
genetic and environmental variance at Wave 2 with genetic and
environmental factors from Wave 1.
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Figure 3. Path diagrams for three alternative two-wave longitudinal
behavioral genetic models. For ease of presentation only one sibling per
pair is depicted.
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Because the current project was specifically concerned with the
consistency of genetic and environmental influence as separate from
the magnitude of genetic and environmental influence, we used the
correlated factors model as our guiding model. We focused specifi-
cally on the rank-order stabilities of genetic and environmental
effects on cognition over time (ra, rc, and re), and on the extents to
which genetic and environmental factors contribute to the pheno-
typic rank-order stability of cognition over time.

Goals of the Current Project

By meta-analyzing longitudinal behavioral genetic studies of
samples spanning nearly the entire life span, we were able to
examine the following questions: (a) to what extent are genetic and
environmental factors stable over time? (b) To what extent does
the stability of genetic and environmental factors change across the
life span? (c) To what extent do genetic and environmental factors
underlie changes in the stability of cognitive abilities? (d) What are
the other moderators of phenotypic, genetic, and environmental
stability?

Method

Literature Search

We used PsycINFO to search abstracts for at least one keyword
from each of three sets of keywords: genetics (twin, genetic,
adoption, adopted, adoptee), longitudinal (longitudinal, aging, sta-
bility), and cognition (intelligence, cognition, cognitive, ability).
Of the resulting 890 articles and chapters, we excluded those
primarily focusing on clinical populations, publications in a lan-
guage other than English, and publications that did not include
analyses of a specific data set (e.g., review articles). Of the 104
remaining articles and chapters, we included those that met all of
the following criteria: (a) Results were based on samples of sib-
lings with varying degrees of genetic relatedness; (b) data came
from at least two waves of measurement of the same cognitive
ability separated in time (i.e., data were longitudinal); (c) cogni-
tion/intelligence was measured using an objective test; and (d)
complete cross-time and within-time sibling correlations were
supplied for each sibling type, or complete parameter estimates
were supplied from a behavioral genetic model that produced
expectations for cross-time and within-time sibling correlations
(articles and chapters that only reported parameter estimates from
latent growth curve models were not included, as such models
estimate genetic and environmental influences on changes occur-
ring systematically across three or more waves of data and may
therefore fail to capture dependencies between specific pairs of
waves). When multiple articles made use of the same data (as is
common with longitudinal studies), we retained the study that
reported on the most time points, measures, or sample size. We
retained studies that made use of the same sample if the article
reported information that differed on one of our moderators. For
example Bartels, Rietveld, Van Baal, and Boomsma (2002) and
Hoekstra, Bartels, and Boomsma (2007) both reported on a sample
drawn from the Netherlands Twin Registry but operationalized
cognition at different levels of specificity. We included both of
these studies in the meta-analysis as well as all of the measures of
cognition as separate outcomes. (Implications of including multi-

ple effects sizes from a single study and multiple studies that use
the same sample are described in the Analytic Approach section.)
Finally, we asked knowledgeable colleagues if they were aware of
relevant published articles that we had missed. In total, 21 articles
and chapters from 15 unique samples met inclusion criteria for our
meta-analysis.

Table 1 lists these articles and provides relevant characteristics.
Age at Wave 1 ranged from 0.50 to 64.10 years (M � 15.20, SD �
22.41). The time-lag between waves of assessment ranged from
0.42 to 35.60 years (M � 4.42, SD � 7.46). Age was neither
linearly nor quadratically related to time-lag (R2 linear term � .03,
p � .44; R2 quadratic term � .01, p � .76). The modal number of
waves was 2 (K � 12), but number of waves ranged from 2 to 8
(M � 3.19, SD � 1.86).

It is of particular mention that there was very little data
coverage in young and middle adulthood. Very few longitudinal
behavioral genetic studies have been conducted with cognitive
assessments during this period. We dealt with this issue in two
ways. First, we fit a series of age-based parametric models to
the entire meta-analytic data set that essentially interpolate
between data points. Second, we focused our more complex
analyses specifically on childhood, where data coverage was
high. We discuss the implications of sparseness of information
from this age period in the Discussion section.

Classification of Cognitive Measures

Measures included general intelligence, reasoning, memory, and
verbal ability, amongst others. Studies ranged from having one
cognitive measure to 12 cognitive measures (M � 2.19, SD �
2.66).2 Based on their descriptions, we classified each measure as
either a measure of general intelligence or a measure of a specific
ability by consensus method. Among the specific abilities, any
measure of effortful processing (e.g., reasoning, memory, speed)
was classified as fluid, and any measure of learned knowledge
(e.g., verbal ability, vocabulary knowledge) was classified as crys-
tallized. In total, 62.3% of measures were classified as general
intelligence, 37.7% were classified as fluid, and 16.2% were
classified as crystallized.

Estimating Parameters for Each Study Variable

Our goal was to produce a meta-analytic database containing
complete sets of parameter estimates and associated standard er-
rors from a bivariate longitudinal correlated factors model (see
Figure 3) applied to each cognitive variable for each possible pair
of time points for each study. These parameters were heritability,
shared environmentality, and nonshared environmentality at base-
line (a1

2, c1
2, and e1

2) and follow-up waves (a2
2, c2

2, and e2
2), cross-time

genetic, shared environmental, and nonshared environmental cor-
relations (ra, rc, and re), the contributions of genes, the shared
environment, and the nonshared environment to phenotypic stabil-
ity (a1 � ra � a2, c1 � rc � c2, and e1 � re � e2), and the overall
phenotypic stability (a1 � ra � a2 � c1 � rc � c2 � e1 � re � e2).

2 These statistics are based on the number of measures that were ex-
tracted from the articles, rather than total measures reported in the article
as some measures were dropped due to redundancy with other articles or
when other articles reported additional time points.
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We therefore began by compiling 4 � 4 correlation matrices for
pairs of time points for each cognitive variable from each study (2
siblings � 2 time points � 4 variables per correlation matrix),
separated by sibling type (e.g., when a study was based on both
monozygotic and dizygotic twins, we had separate monozygotic
and dizygotic correlation matrices). When studies reported corre-
lations or covariances, we used them (covariance matrices, which
were rare, were transformed into correlation matrices). When
studies only reported parameter estimates from behavioral genetic
models, we produced expected correlation matrices. To determine
the sample sizes to associate with each matrix, we only included
the number of twin or sibling pairs that provided data for at least
two time points (note that behavioral-genetic models are fit to data
organized at the pair level, and the correct sample size is therefore
in terms of pairs, not individuals). When publications only pro-
vided sample sizes in terms of individuals, rather than pairs, we
divided the provided N in half. These decisions concerning
sample size were likely to produce conservative standard errors,
as the availability of individual-level data would have enabled
us to use advanced missing data methods (e.g., full information
maximum likelihood) to draw power from partial data patterns
(e.g., incomplete twin pairs, and individuals participating only
at one time point).

All correlation matrices were analyzed with a longitudinal cor-
related factors model using Mplus software (Muthén & Muthén,
1998–2012). For four cases, our model presented convergence
difficulties that we could not resolve by varying starting values.
When we examined the problematic matrices, we found that either
the monozygotic twin correlations were more than twice the dizy-
gotic twin correlations (which would be consistent with a nonad-
ditive effect of genes) or that the monozygotic twin correlations
were less than the dizygotic twin correlations (which is not easily
explained by genetic theory). Because these problems constituted
a relatively small proportion of the total number of effect sizes, and
because it would be difficult to integrate estimates from more
specialized models (for instance, those that allow for genetic
dominance) with those from ACE models, we chose not to attempt
to model these matrices using different techniques.

After eliminating the four cases described above, we at-
tempted to compute a total of 150 � 3 individual estimates of
ra, rc, and re, with an average of 7.14 � 3 estimates per study.3

For 15 estimates of ra and seven estimates of rc, an absolute
value of 1.1 was exceeded. No values of re exceeded this value.
Estimates above an absolute value of 1.1 are problematic be-
cause correlations can only realistically fall between �1.0 and
1.0 (estimates slightly lower than �1.0 and slightly higher than
1.0 were treated as within generally acceptable bounds of
parameter imprecision). These problematic estimates most of-
ten occurred when one or both of the biometric components
being correlated accounted for very little variance (e.g., when c2

was close to 0 at both time points, the rc estimate was often
severely out of bounds). In such cases, the associated standard
errors were very large. To illustrate, the average SE of out-of-
bounds ra estimates (absolute values greater than 1.1) was 1.66,
which means that the 95% CI is larger than the entire possible
range of correlation values (–1 to �1). In comparison, the
average SE of the in-bounds estimates (–1.1 to 1.1) was 0.19.
To reduce the potential for these severely out-of-bounds esti-

mates to exert extreme influences, we winsorized them by
substituting the closest acceptable values (either –1.1 or 1.1).

Analytical Approach: Application of
Metaregression Models

We implemented metaregression models that predicted our pa-
rameters of interest from various study variables using the ap-
proach described by Cheung (2008), in which outputted standard
errors and p values of the metaregression parameter estimates are
unbiased and do not need to be transformed by postprocessing.
Separate metaregression models were fit for each parameter of
interest. Because we included multiple effect sizes per sample (i.e.,
multiple cognitive outcomes and multiple pairs of waves for sam-
ples with three or more waves), this approach required two elab-
orations. First, we weighted by the reciprocal number of effect
sizes included for the corresponding sample, in addition to weight-
ing by the inverse sampling variance. Second, we used the cluster
option of Mplus to correct standard errors of the metaregression
parameter estimates for nonindependence of data points derived
from the same sample. Our approach has a similar effect as the
more conventional approach of averaging multiple effects sizes per
study and not weighting by the reciprocal number of effect sizes
per sample but has the added advantage of being able to include
predictors in the metaregressions that vary across effect sizes
within the same study.

Competing metaregression models were selected by taking into
account absolute fit (log likelihood), Akaike’s information crite-
rion (AIC), and Bayesian information criterion (BIC). For all three
fit indices, lower absolute values indicate better fit. Both AIC and
BIC are indices that take into account both absolute fit and model
parsimony (a model with fewer parameters is more parsimonious).
BIC penalizes for additional model parameters more strongly than
does AIC. Better fitting models were selected for further exami-
nation by plotting their expectations against scatter plots.

Results

Table 2 presents descriptive statistics for the key meta-analytic
variables. The earliest assessment was at half a year old, and the
latest assessment was at 77 years old. However, the age distribu-
tion was concentrated in childhood and adolescence with a mean
initial assessment at 6.34 years. The time interval between mea-
surements varied from relatively short (a third of a year) to
relatively long (a third of the life span, 35 years). The average time
interval was 5.92 years (SD � 5.53). Information about demo-
graphic composition of some studies was not well-reported. For
studies that did report information about gender, females tended to
be in the minority (29.08%). This underrepresentation of females
could be attributed to the inclusion of two studies (Lessov-
Schlaggar, Swan, Reed, Wolf, & Carmelli, 2007; Lyons et al.,
2009) that exclusively sampled male veterans. When these two
studies were excluded, females represented the slight majority
(53.02%) of participants. This is likely to be closer to the female
representation in the other studies that did not report on gender as

3 In 18 cases, information about the shared environment was not re-
ported in the article (e.g., only a model where this variance component was
trimmed was reported). For these cases, we coded rc as missing.
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they were based on general community sampling rather than
military members. Very few participants were from minority racial
or ethnic groups (3.36%).

Population Average Stabilities

We began by computing random effects meta-analytic averages
for our effect sizes of interest. The estimated population-average
effect sizes (and standard deviations of the associated random
effects) for phenotypic stability, ra, rc, and re, were .489 (.117),
.779 (.231), .655 (.078), and .165 (.112), respectively. The effect
sizes were statistically significant at p � .001 for phenotypic
stability, ra, and rc, and at p � .05 for re. The random effects were
statistically significant at p � .001 for phenotypic stability and ra
but not statistically significant for rc and re. It is important to
appreciate that the standard deviations of the random effects are
not the standard deviations of the effect sizes directly observed in
the meta-analytic data set but are instead estimates of the standard
deviations of the true effect sizes after removing variation attrib-
utable to sampling error. Given the high levels of significance for
the random effects of the phenotypic stability and ra effect sizes,
the nontrivial magnitudes of all random effects (including those for
rc and re), and given that authoritative texts on meta-analysis
(Borenstein, Hedges, Higgins, & Rothstein, 2009, p. 84; Cooper,
Hedges, & Valentine, 2009, p. 554) have indicated that tests of
heterogeneity may be underpowered to detect subgroup differ-
ences in effect sizes, we went on to examine measured character-
istics as predictors of effect sizes for phenotypic stability, ra, rc,
and re.

Age Trends in Genetic and Environmental Stability

Life span age trends. We fit linear, quadratic, connected-
linear-spline, and exponential age-based models to the effect sizes
for phenotypic stability, ra, rc, and re. Specifications for these
models can be found in the top panel of Table 3. We also fit spline
models that allowed for discontinuities at age 18 years (the con-
ventional marker of transition from childhood to adulthood) by
using a dummy-coded variable (age � 18 � 0, age � 18 � 1).
However, because none of the discontinuity parameters was sig-
nificant, results for the disconnected spline models are not re-
ported. Note that we did not model time-lag in this initial set of
analyses (we return to the question of time lag later on), but

because time-lag was unrelated to age, time-lag should not con-
found these analyses. These analyses should therefore be taken to
represent age differences holding time-lag constant at its weighted
mean of approximately 6 years.

Parameter estimates and fit statistics for each of the above
described models are presented in Table 4.

For phenotypic stability, the two best fitting models were the
spline model and exponential model. Both had very similar fits,
with the spline model having a slightly lower AIC, and the expo-
nential model having a slightly lower BIC. The age-based curves
implied by these two models are superimposed on the scatterplot
displayed in the top left panel of Figure 4. Note that the size of
each point on the scatterplot has been scaled relative to the weight
that the data point received in the analysis (with an upper limit
imposed on the size of the points to preserve their visibility). The
larger the circle, the more heavily the data point was weighed in
the analysis. It can be seen that the curves are highly overlapping.
Both indicate that individual differences in cognition have very
low stability (approximately .30) in very early life, with stability of
individual differences increasing dramatically over child develop-
ment. Both curves indicate stability of over .6 by 10 years of age,
and stability of over .7 by 16 years of age. The exponential model
has an asymptote of .78, and the spline model levels out at a
similar value.

The spline and the exponential models were also the best fitting
models for genetic stability. Both models had very similar fits,
with the spline model having slightly lower AIC and BIC values.
The age-based curves implied by these models are superimposed
on the scatterplot displayed in the top right panel of Figure 4. It can
be seen that both curves indicate very low stability (less than .20)
in very early life, with dramatic increases in stability through child
development. Both curves indicate stability of over .90 by 12 years
of age. The exponential model has an asymptote of .99, indicating
that genetic influences eventually have nearly perfect longitudinal
stability over time.

The spline and exponential models were also the best fitting
models for shared environmental stability, although the exponen-
tial model may be a better account of the data as it had both lower
AIC and BIC values. The age-based curves implied by these
models are superimposed on the scatterplot displayed in the bot-
tom left panel of Figure 4. Focusing on the exponential curve, it

Table 2
Characteristics of Samples and Variables Meta-Analyzed

Variable
No. of contributing

samples (K)

No. of contributing
data points

(k)/Sample Size (pairs) Range M SD

Age at baseline (years) 15 150/12,721 0.50–72.70 6.34 13.01
Interval (years) 15 150/12,721 0.33–35.60 5.92 5.53
Age at follow-up (years) 15 150/12,721 1.00–77.10 12.26 15.10
% female 7 42/1,229 0.00–57.00 29.08 26.48
% non-White 5 56/10,547 0.00–39.00 3.36 9.85
Measures of general intelligence 13 96/11,984
Measures of fluid abilities 6 33/1,189
Measures of crystallized abilities 5 21/829

Note. Sample size is given as number of sibling pairs. Mean and standard deviation weighted by sample size
and reciprocal number of contributing data points.
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can be seen that stability in early life is moderate in magnitude,
exceeding .40, and increases quickly in early childhood to greater
than .80 by age 7, and reaching an asymptote of .85. The spline
curve also indicates moderate stability in early life that increases in
childhood, but the trend is somewhat jagged, perhaps attributable
to model overfitting in early and middle adulthood, where data
coverage is sparse.

For nonshared environmental stability, the linear model fit best
by both AIC and BIC standards. The exponential model also had
good fit. We plot these curves along with that implied by the spline
model in the bottom right panel of Figure 4. All three curves
overlap considerably. They all agree in indicating continuous
steady increases in nonshared environmental stability over the
entire life span. Although data are sparse in early and middle
adulthood, the data points in that age range fall along the curves
nearly perfectly, indicating that linear increases in re from child-
hood through young, early, and middle adulthood may indeed be
occurring.

Age Trends in Contributions of Genetic and
Environmental Factors to Phenotypic Stability

To what extents do genetic and environmental factors under-
lie age-based increases in the phenotypic stability of individual
differences in cognition? It may be tempting to infer from the

above results that genetic and environmental factors each con-
tribute to increases in phenotypic stability with age. However,
as mentioned earlier, the contribution of a genetic or environ-
mental factor to the stability of a phenotype not only depends on
the stability of that genetic or environmental factor but also on
the extent to which that factor accounts for variance in the
phenotype. For instance, the shared environment may be highly
stable, but if it only accounts for a small amount of variance in
cognition, cognition may still have very low stability. To ad-
dress this question we fit a similar set of age-based curves to
terms representing the contributions of A, C, and E to pheno-
typic stability. Recall that these terms (genetic contribution �
a1 � ra � a2, shared environmental contribution � c1 � rc � c2,
and nonshared environmental contribution � e1 � re � e2) take
into account both the stability of the genetic or environmental
factor and the influence of that factor on the phenotype at the
two waves. It is also important to note that these terms represent
the raw contributions to stability, as opposed to proportional
contributions. In other words, genetic, shared environmental,
and nonshared environmental contributions sum to form the
total phenotypic stability, not necessarily 1.0.

Parameter estimates and fit statistics for each of the models fit
to genetic, shared environmental, and nonshared environmental
contributions to phenotypic stability are presented in Table 5.

Table 3
Equations for the Meta-Regression Models Fit

Meta-regression model Equation Description of parameters

Age-based models

Linear (1) Ŷi � b0 � b1�agei� b0 � intercept
b1 � linear slope

Quadratic (2) Ŷi � b0 � b1�agei� � b2�agei
2� b0 � intercept

b1 � linear slope
b2 � quadratic slope

Connected linear spline (3) Ŷi � b0 � b1�agea,i� � b2�ageb,i� � b3�agec,i�
If agei � 8, then agea,i � agei.
If agei � 8, then agea,i � 8.
If (agei � 8 AND agei � 18), then ageb,i � agei-8.
If agei � 8, then ageb,i � 0.
If agei � 18, then ageb,i � 18–8.
If agei � 18, then agec,i � agei-18.
If agei � 18, then agec,i � 0.

b0 � intercept
b1 � linear slope through age 8
b2 � linear slope between ages 8 and 18
b3 � linear slope after age 18

Exponential (4) Ŷi � b0 � b1 eb2�agei� b0 � horizontal asymptote
b1 � age scaling factor
b2 � growth rate

Age- and time-based models

Linear-exponential (5) Ŷi � b0 � b1 �agei� � b3 e�b4�timei��b3�agei�timei�� b0 � intercept of age function
b1 � age growth rate
b3 � time scaling factor
b4 � time decay rate
b5 � Age � Time interaction

Exponential-exponential (6) Ŷi � b0 � b1 eb2�agei� � b3 e�b4�timei��b3�agei�timei�� b0 � horizontal age asymptote
b1 � age scaling factor
b2 � age growth rate
b3 � time scaling factor
b4 � time decay rate
b5 � Age � Time interaction
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For the genetic contribution to stability, the best fitting models
were the spline model and the exponential model, with the expo-
nential model having a trivially lower AIC value, and a somewhat
lower BIC value. The age-based curves implied by these two
models are superimposed on the scatterplot displayed in the top
panel of Figure 5. It can be seen that both curves indicate near zero
contributions of genes to stability in very early life, with dramatic
increases in the genetic contribution to stability through child
development. According to the exponential model, genetic contri-
butions to stability in adulthood stabilize at an asymptote of .65.

For the shared environmental contribution to stability, the best
fitting models were the linear and exponential models, with the linear
model having both the lowest AIC and BIC values. These curves,
along with the curve implied by the spline model, are plotted in the
middle panel of Figure 5. It can be seen that the shared environment
contributes moderately to stability in childhood, with an intercept of
.24, but that the contribution fades slowly over development, such that
by middle adulthood, the shared environment contributes little, if at
all, to stability.

For the nonshared environmental contribution to stability, the
best fitting models were the linear and quadratic models, with
the linear model having slightly lower AIC and BIC values.
These curves, along with the curve implied by the spline model,
are plotted in the bottom panel of Figure 5. It can be seen that
the nonshared environment contributes very little to stability
throughout development, although the contribution to stability
is significantly greater with advancing age.

To further visualize these results, we chose the best fitting
continuous age-based models (i.e., excluding the spline model) of
raw contributions of A, C, and E to phenotypic stability to produce
a plot of the expected proportional contributions of A, C, and E to
phenotypic stability by age. This plot is provided in Figure 6. It can

be seen that the shared environment contributes the greatest pro-
portion to stability in very early childhood but that with child age,
the shared environment contributes proportionally less, and genes
contribute proportionally more. Throughout adulthood, the propor-
tional contribution of genes to stability is by far the largest, at
approximately 75%. The nonshared environment’s proportional
contribution to stability increases fairly continuously across the
entire life span, from a near-zero contribution in early childhood to
a near 20% contribution in late adulthood.

Temporal Decay of Stability Over
Child Development

Our next goal was to examine the extent to which phenotypic,
genetic, and environmental stabilities decay over time, and the
extent to which temporal decay differs with childhood age. We
focused specifically on childhood (i.e., younger than 18 years) for
two reasons. First, simultaneous models of the effects of both age
and time are considerably more complex than simple models of
age and require greater data density, and importantly, relatively
uncorrelated heterogeneity in both age and time. Although our
meta-analytic data set had substantial density, age-based hetero-
geneity, and time-based heterogeneity across infancy, childhood,
and adolescence, data were much sparser in adulthood. Second,
because the analyses reported earlier indicated high asymptotic
levels of phenotypic, genetic, and shared environmental stability
occurring by early adulthood, we were interested in deeply exam-
ining the developmental patterns in childhood that give rise to the
relatively static adult end-states.

Our approach to simultaneously modeling influences of both
age and time on temporal stability involved forming metaregres-
sion models that included one function representing age-based

Table 4
Parameter Estimates and Fit Statistics for Meta-Regression Models of Age Trends in Phenotypic, Genetic, and
Environmental Stabilities

Meta-regression model b0 (SE) b1 (SE) b2 (SE) b3 (SE) LL (SCF) AIC BIC

Phenotypic stability
Linear .375 (.007)�� .007 (.001)�� �1,939.178 (10.430) 3,910.356 3,958.527
Quadratic .313 (.013)�� .0277 (.0044)�� �.00031 (.00006)�� �1,920.486 (9.775) 3,874.973 3,926.153
Connected linear spline .251 (.020)�� .048 (.007)�� .011 (.004)�� .001 (�.001)�� �1,912.411 (9.165) 3,860.821 3,915.013
Exponential .783 (.011)�� .559 (.028)�� �.123 (.019)�� �1,913.691 (9.723) 3,861.382 3,912.563

Genetic stability
Linear .421 (.081)�� .009 (.001)�� �1,909.019 (9.675) 3,850.039 3,898.209
Quadratic .361 (.068)�� .0220 (.0063)�� �.00019 (.00009)� �1,900.755 (9.038) 3,835.509 3,886.690
Connected linear spline .021 (.051) .121 (.011)�� �.003 (.008) .001 (.001) �1,880.977 (8.103) 3,797.955 3,852.146
Exponential .993 (.003)�� 1.166 (.159)�� �.222 (.040)�� �1,883.950 (8.627) 3,801.900 3,853.081

Shared environmental stability
Linear .582 (.061)�� .012 (.006)� �1,639.475 (8.243) 3,310.949 3,359.120
Quadratic .518 (.082)�� .0358 (.0211) �.00047 (.00032) �1,637.437 (7.801) 3,308.874 3,360.054
Connected linear spline .420 (.064)�� .072 (.017)�� �.024 (.007)�� .005 (�.001)�� �1,634.114 (7.175) 3,304.229 3,358.420
Exponential .854 (.061)�� .546 (.096)�� �.346 (.094)�� �1,633.860 (7.580) 3,301.720 3,352.901

Nonshared environmental stability
Linear .053 (.008)�� .007 (.001)�� �1,765.121 (9.485) 3,562.242 3,610.412
Quadratic .049 (.010)�� .0081 (.0001)�� �.00002 (.00004) �1,765.090 (8.952) 3,564.180 3,615.361
Connected linear spline .071 (.034)� .001 (.012) .011 (.006) .007 (.001)�� �1,764.968 (8.495) 3,565.936 3,620.128
Exponential 2.240 (5.361) 2.190 (5.355) �.004 (.010) �1,765.095 (8.946) 3,564.191 3,615.372

Note. SCF � scaling correction factor for nested model comparisons; LL � log likelihood; AIC � Akaike information criterion; BIC � Bayesian
information criterion.
� p � .05. �� p � .01.
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growth (specifically, exponential growth for phenotypic stability,
ra, and rc, and linear growth for re), a second function for time-
based decay (specifically, exponential decay), along with an inter-
action term representing the moderation of time-based decay by
age. We chose an exponential function for time-based decay spe-
cifically because this function allows for a lower bound asymptote.
We did not expect stability coefficients to decay past zero, which
would be implied by a linear model. Moreover, test–retest stability
can be formalized with autoregressive simplex models, which
have, in turn, been shown to imply exponential decay of stability
over time (Levin, 1993). Equations for these combined age- and

time-based models, along with parameter descriptions, can be
found in the bottom panel of Table 3.

Parameter estimates from the combined age- and time- based
models are presented in Table 6, and the curves implied by these
models are presented in Figure 7. Each panel depicts a series of
curves charting expected stability over time, with each curve
representing stability relative to a different initial age of measure-
ment. The curves begin 1 year after the initial age. Taking the
2-year curve as an example, the curve represents the expected
stability relative to age 2 beginning at a 1-year lag (age 3), and
then along continuous increases in lag (e.g., with a baseline
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measurement at age 2, a 4-year lag would occur at age 6), up
until age 18.

The top left panel of Figure 7 represents the model-implied age-
and time-based trends in phenotypic stability. Two trends are of
note. First, as was also indicated by the age-based trends reported
earlier, which did not include time, phenotypic stability increases
as a function of baseline age. Second, as expected, phenotypic
stability is higher over shorter time intervals and decays over
longer periods of time. This time decay effect appears to be
considerably more pronounced for earlier baseline ages. However,
the Age � Time interaction is not statistically significant. There-
fore, the question of age-differences in time-based decay of phe-
notypic stability cannot be answered definitively from these data
alone. It is worth noting, however, that the same overall pattern,
including the more pronounced time-based decay of stability at
younger ages, is apparent in Bayley’s (1949) data, reproduced in
Figure 1.

The top right panel of Figure 7 represents the model-implied
age- and time- based trends in genetic stability. Like the trends in
phenotypic stability, it can be seen that stability increases with age
and decays with time. It can also be seen that the time-based decay
is less pronounced at increasing ages. This Age � Time interaction
is statistically significant. Also of note from this figure is the
tremendous range of stability coefficients across ages. Genes for
cognition at 2 years are practically uncorrelated with genes for cog-
nition at 18 years (or with genes for cognition at 10 years for that
matter), whereas genes for cognition at 10 years are nearly identical to
genes for cognition at 18 years.

The bottom left panel of Figure 7 represents the model-implied
age- and time-based trends in shared environmental stability.
Again, stability increases with age, decays with time, and time-
based decay decreases with age. The Age � Time interaction is
statistically significant. The range of stability coefficients is more
restricted across ages. Shared environmental stability starts off at

moderate levels in very early childhood, with some time-based
decay, and quickly increases to high levels with very little time-
based decay.

The bottom right panel of Figure 7 represents the model-implied
age- and time-based trends in nonshared environmental stability. It
can be seen that stability is nearly uniformly low throughout the
childhood age range. The intercept of the function is not signifi-
cantly different from zero. Moreover, although there is some
indication of a linear increase in stability with age, the age-based
growth rate is not statistically significant. The time scaling factor
is statistically significant, but the time decay rate and the Age �
Time interaction are not. In sum, there is very little evidence for
nonzero stability of nonshared environmental influences on cog-
nition in childhood.

Different Stabilities for Different Abilities?

Next, we sought to examine the extents to which phenotypic,
genetic, and environmental stabilities differ for different abilities.
We were particularly interested in contrasting the stabilities of
general intelligence and specific abilities (both fluid and crystal-
lized abilities) and in contrasting the stabilities of fluid and crys-
tallized abilities with one another. We performed our analyses
exclusively for childhood (younger than 18 years). This was pri-
marily for two reasons: (a) The majority of the identified change in
stability occurred during childhood making this age period partic-
ularly relevant, and (b) data density was low for measures of
general intelligence in adulthood.

We controlled for age trends in the data using the best fitting
continuous functions from the analyses reported earlier (specifi-
cally, exponential growth for phenotypic stability, ra, and rc, and
linear growth for re) and controlled for time-based decay of sta-
bility with an exponential model (with interaction terms for age for
the models applied to genetic stability and shared environmental

Table 5
Parameter Estimates and Fit Statistics for Meta-Regression Models of Age Trends in Genetic and Environmental Contributions
to Stability

Meta-regression model b0 (SE) b1 (SE) b2 (SE) b3 (SE) LL (SCF) AIC BIC

Genetic contribution
Linear .127 (.017)�� .009 (.001)�� �1,843.278 (9.640) 3,718.556 3,766.726
Quadratic .049 (.027) .0364 (.0075)�� �.00041 (.00011)�� �1,830.761 (9.070) 3,695.522 3,746.703
Connected linear spline �.043 (.024) .068 (.007)�� .000 (.004) .003 (.001)�� �1,822.417 (8.473) 3,680.834 3,735.026
Exponential .652 (.028)�� .722 (.040)�� �.132 (.017)�� �1,823.210 (8.990) 3,680.420 3,731.601

Shared environmental
contribution

Linear .239 (.011)�� �.004 (.001)�� �1,734.191 (9.351) 3,500.382 3,548.552
Quadratic .249 (.015)�� �.0070 (.0031)� .00006 (.00005) �1,734.008 (8.808) 3,502.017 3,553.197
Connected linear spline .264 (.025)�� �.012 (.007) .001 (.004) �.003 (.001)�� �1,733.873 (8.333) 3,503.746 3,557.937
Exponential .047 (.079) �.207 (.063)�� �.043 (.047) �1,734.001 (8.820) 3,502.001 3,553.182

Nonshared environmental
contribution

Linear .009 (.001)�� .002 (�.001)�� �2,023.315 (9.842) 4,078.631 4,126.801
Quadratic .006 (.002)�� .0025 (.0006)�� �.00002 (.00001) �2,022.976 (9.270) 4,079.951 4,131.132
Connected linear spline .013 (.007) .000 (.002) .004 (.001)�� .001 (.000)�� �2,022.836 (8.786) 4,081.671 4,135.863
Exponential .164 (.067)� .157 (.065)� �.015 (.010) �2,023.046 (9.269) 4,080.092 4,131.273

Note. SCF � scaling correction factor for nested model comparisons; LL � log likelihood; AIC � Akaike information criterion; BIC � Bayesian
information criterion.
� p � .05. �� p � .01.
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stability, as these terms were significant in the analyses reported
earlier). Results are presented in Table 7.

General intelligence and specific abilities. Compared with
measures of general intelligence, fluid abilities tend to display

less stability at the phenotypic, shared environmental, and non-
shared environmental, but not genetic levels. For example, the
phenotypic stability of general intelligence is nearly .19 corre-
lation units higher than the phenotypic stability for specific
abilities.

Compared with measures of general intelligence, crystallized
abilities evidence lower phenotypic stability and genetic stabil-
ity but higher shared environmental stability and nonshared
environmental stability. The effect for the shared environmental
stability was especially pronounced, representing a .21 larger
cross-time correlation in comparison to that for general intelli-
gence.

In sum, general intelligence tends to be more stable at the
phenotypic and genetic levels than either fluid or crystallized
abilities. However, fluid abilities tend to display less environmen-
tal stability compared to general intelligence, and crystallized
abilities tend to display more environmental stability and less
genetic stability.

Fluid and crystallized abilities. The phenotypic stabilities of
fluid and crystallized abilities did not differ significantly from one
another. Crystallized abilities displayed less genetic stability than
fluid abilities, and appreciably greater shared and nonshared en-
vironmental stabilities (.287 and .242 correlation units higher,
respectively).

Possible Publication Bias?

To examine whether publication bias might have affected our
key estimates, we examined funnel plots of ra, rc, and re. Funnel
plots are used to examine the distribution of effect sizes as a
function of each estimate’s imprecision. As expected by sampling
theory, there should be greater scatter around lower precision
estimates and less scatter around higher precision estimates. Im-
portantly, scatter should be symmetrical around the estimated
population mean, representing a “funnel” shape. Because the
above analyses indicated that effect sizes vary substantially with
age, we first conditionalized the ra, rc, and re effect sizes on the
best fitting continuous age-based models (i.e., excluding the spline
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model). These were the exponential model for ra and rc, and the
linear model for re. We then plotted these conditionalized effect
sizes against the natural logarithm of their standard errors (the
distributions of standard errors were strongly positively skewed,
making funnel plots of untransformed standard errors difficult to
visualize). The plot for ra was funnel shaped and appeared sym-
metrical. The plot for rc was also funnel shaped and appeared
symmetrical with the exception of there being a few highly neg-
ative effects with very large standard errors (i.e., standard errors
greater than 1.0) that were not balanced out by highly positive
effects. To examine whether the age trend for rc was affected by
this asymmetry, we reran the age-based exponential model for rc
with all effect sizes with standard errors greater than 1.0 removed.
Parameter estimates and associated standard errors were nearly
unchanged. Finally, the plot for re appeared haphazardly scattered.
We were unable to correct re estimates for unreliability (articles
tended not to report reliability estimates). It is therefore possible,
if not likely, that the lack of a clear funnel shape for re was caused
by idiosyncratic differences in measurement error.

Sensitivity Analyses

Finally, we conducted two sets of sensitivity analyses. In the
first set of sensitivity analyses, we tested whether the age trends
reported above were affected by two potential confounds: chang-
ing cognitive tests across measurement occasions and model trim-
ming performed in the primary studies included in the meta-
analytic data set. Because of the dramatic developmental gains in
cognitive performance that occur in infancy and childhood, longi-
tudinal studies of infants and children may be more likely to
upgrade to different (more difficult and, hence, age appropriate)
cognitive tests across waves than are longitudinal studies of ado-
lescents and adults. It is therefore possible that low cross-time
correlations in early childhood derive not from low stabilities of
individual differences in abilities but, instead, from the possibility
that the different cognitive tests used at different waves tap slightly
different abilities that are themselves influenced by somewhat
different genetic and environmental factors. Moreover, because
some of the effect sizes that we extracted were derived from
models (fit by the original study authors) that had been trimmed
(e.g., had some parameters fixed or removed), it is possible that the
patterns of results obtained were biased by systematic approaches
to model trimming used in the original studies. In the second set of
sensitivity analyses, we were interested in the possible influence of

including data not only from tests of cognitive abilities but also
from tests of academic achievement (e.g., reading and math).

Complete methods and results for both sets of sensitivity anal-
yses are provided in the online supplemental materials. Although
both sets of sensitivity analyses indicated statistically significant
effects of the covariates introduced into the models, the patterns of
age- and time-based trends reported above (and depicted in Figures
4–7) remained. This indicates that the age- and time-based trends
were unlikely to be artifacts of changing measures, model trim-
ming, or a specific focus on cognitive (rather than achievement)
variables.

Discussion

This meta-analysis represents the first quantitative synthesis of
the effects of age and time on the stability of genetic and environ-
mental influences on cognition across the life span. Although
previous primary studies have reported magnitudes of genetic and
environmental stabilities over circumscribed periods of develop-
ment, our meta-analytic approach enabled us to synthesize effect
sizes from longitudinal behavioral genetic studies spanning a wide
range of ages and time-lags to estimate age- and time-based trends
in the stabilities of genetic and environmental influences on cog-
nition from infancy through old age. Our meta-analytic results
confirm established findings that genetic influences on cognition
are largely constant in adolescence and adulthood (Trzaskowski,
Yang, Visscher, & Plomin, 2013) but more importantly highlight
considerable changes in genetic and environmental stabilities over
age and time in the first decade of life. We highlight four partic-
ularly novel aspects of our results below.

First, although phenotypic stability is moderate (r12 � .49),
genetic and shared environmental stabilities are high (ra � .78 and
rc � .67), and nonshared environmental stabilities are low (re �
.17), on average, all forms of stability were found to increase
substantially from infancy to adulthood. For genetic and shared
environmental effects, the increase is steep in early and middle
childhood, beginning, respectively, at low and moderate levels in
infancy and leveling out at close to unity by early adolescence.
Early in development, the genetic factors that influence cognition
at one point in time are largely different from those that influence
cognition at later points in time. The well-known finding that
genetic effects on cognition are largely the same over time (Plo-
min, DeFries, Knopik, & Neiderhiser, 2013) pertains specifically
to early adolescence forward; in the first decade of life, genetic

Table 6
Parameter Estimates and Fit Statistics for Simultaneous Models of Age and Time in Childhood

Dependent variable

Constant Age growth (linear or exponential) Time decay (exponential) Age � Time

b0 SE b1 SE b2 SE b3 SE b4 SE b5 SE

Phenotypic stability (exponential
age function) 0.509 0.160�� 0.449 0.129�� �0.323 0.304 �0.195 0.051�� �0.298 0.306 0.024 0.041

Genetic stability (exponential age
function) 1.032 0.086�� 1.770 0.278�� �0.321 0.093�� �0.793 0.140�� 0.263 0.093�� �0.331 0.094��

Shared environmental stability
(exponential age function) 0.861 0.045�� 1.127 0.223�� �0.565 0.106�� �1.739 0.171�� �0.470 0.376 �1.383 0.198��

Nonshared environmental stability
(linear age function) 0.057 0.031 0.004 0.011 �0.493 0.112�� 1.975 1.935 �6.205 4.496

�� p � .01.
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stability undergoes tremendous changes. The stability of the non-
shared environment did not display such a rapid rise but, instead,
slowly and linearly increased from very low levels in childhood to
moderate levels by old age. Although the stability of the nonshared
environment is typically thought to be quite low, we find that it
becomes progressively more stable with age. The stability of
cognition at the phenotypic level also displays a marked increase
from fairly low levels in infancy, approaching an asymptote of
approximately .80 by late adolescence.

Second, we uncovered large differences in the extents to which
genetic and environmental factors underlie developmental in-
creases in phenotypic stability. Our results indicate that genetic
factors are the primary mediators of increasing phenotypic stability
over development. However, genetic influences do not contribute
much to phenotypic stability in early childhood. Rather, shared
environmental factors contribute predominantly to stability during
this period, with these contributions declining with age. Nonshared

environmental influences come to contribute a nontrivial amount
to stability with age. In fact, the nonshared environmental contri-
bution to stability is greater than the shared environmental contri-
bution by midlife, and especially so in old age. However, the
nonshared environmental contribution is much less than the ge-
netic contribution at every age. By late adulthood, when the
estimate for the nonshared environmental contribution is largest,
this contribution is only a quarter of the genetic contribution.
Taken as a percentage of total stability, genes account for approx-
imately 75% of stability and the nonshared environment accounts
for 20% of stability in late adulthood.

Third, stability decays with increasing time intervals between
measurement occasions. For the genetic and shared environmental
effects, the time-based decay in stability is more pronounced
earlier in childhood. With increasing childhood age, stability per-
sists to a greater extent over time. This Age � Time interaction is
particularly pronounced for genetic stability. Our results indicate
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Figure 7. Temporal decay of phenotypic stability, genetic stability, shared environmental stability, and
nonshared environmental stability in childhood. Each line represents a different starting age that is followed with
increasing time lags. The differential temporal decay of stability at different starting ages represents the Age �
Time interaction.
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that for 2-year-olds, genetic stability decays from approximately
.60 over a 1-year interval to approximately .20 over a 6-year
interval, whereas for 10-year-olds genetic stability remains above
approximately .90, regardless of time interval.

Fourth, the type of cognition being measured matters for stabil-
ity. Measures of general intelligence tend to display greater phe-
notypic stability compared to measures of both fluid and crystal-
lized abilities. Fluid abilities display less shared and nonshared
environmental stability than do general intelligence. Crystallized
abilities display greater shared and nonshared environmental sta-
bility than both general intelligence and fluid abilities. Finally,
genetic influences on crystallized abilities are less stable than those
on both fluid abilities and general intelligence. These differences
between the stabilities of different abilities represent a particularly
innovative set of results, as we are aware of no previous studies
that have directly compared the stabilities of different cognitive
abilities.

Assumptions and Limitations

Convergence of age-related differences and age-related
changes. One major assumption of the age- and time-based
analyses presented here is what Bell (1953) termed the conver-
gence assumption, which holds that between-sample age differ-
ences are informative about within-population changes. In order to
make inferences about age trends in stability across the human life
span, we combined information derived from across-sample age
differences with information derived from within-sample across-
occasion stability. Thus, the age trends detected might not only
reflect developmental changes in stability over time but also reflect
cohort or period differences in stability, as well as cross-study
differences in the measures, methods, and populations sampled.
Importantly, these potential confounds would have to be system-
atically associated with age in order for the developmental trends
to be biased, rather than merely obscured. There is a large litera-
ture (e.g., Baltes, Reese, & Nesselroade, 1977; Glenn, 1976;
Tucker-Drob & Salthouse, 2011; Yang & Land, 2013) on theoret-
ical and methodological issues surrounding the separation of age-,
period-, and cohort-effects from one another that we encourage the
interested reader to attend to.

We relied on the convergence assumption to aggregate lon-
gitudinal studies spanning different finite periods of develop-
ment because we were unable to identify a single longitudinal
twin or adoption study of cognition that spanned both childhood
and old age. The only study that we are aware of that documents

the stability of genetic effects on cognition from childhood
through old age in a single sample followed over time is a
highly innovative molecular-genetic study by Deary et al.
(2012). This study was not included in our meta-analysis be-
cause our inclusion criteria required that studies included data
from siblings of varying degrees of genetic relatedness, which
this study did not. Deary et al. (2012) instead used genome-
wide information from a population-representative sample of
unrelated individuals measured on general intelligence at age 11
years (childhood) and between ages 65–79 years (old age). The
researchers were able to estimate the total R2 contributions of
measured molecular genetic variants in linkage disequilibrium
with true causal variants to cognition during these two age
periods, along with the correlation among genetic factors at
both ages. The authors estimated this correlation to be .62;
however, the standard errors of the estimate were very large,
such that the 95% confidence interval included both 0 and 1.

Early and middle adulthood. It is apparent from the scat-
terplots presented in this article that there was very little data
covering the periods of early and middle adulthood. We suspect
that this may reflect a more general trend in the study of
cognition, even outside of behavioral genetics. Researchers
interested in cognitive development routinely study infants,
children, and adolescents. Researchers interested in cognitive
aging traditionally study older adults. A commonplace assump-
tion in the cognitive aging literature is that cognition does not
change in young and middle adulthood. In spite of a long
history of challenges to this assumption (e.g., Horn & Donald-
son, 1976; Jones & Conrad, 1933), including a series of pub-
lications by Salthouse (e.g., Salthouse, 2004, 2009) demonstrat-
ing population-average cognitive declines detectable as early as
age the third decade of life, and recent work by Tucker-Drob
(2011) indicating reliable individual differences in cognitive
change during early adulthood, there continues to be little
empirical attention placed on cognitive changes in young and
middle adulthood. The ramification of this lack of attention to
early and middle adulthood for the current study is that there is
good data coverage in childhood and old age, but very sparse
data coverage in between these age ranges. Although the func-
tions fit in the current study can be used to interpolate patterns
that might be expected for this age period, we were limited in
our ability to delineate specific patterns of change that occurred
between adolescence and late adulthood. We did not detect any
systematic discontinuities between adolescence and adulthood,

Table 7
Parameter Estimates for Moderators of Stability in Childhood

Effect size

General
intelligence (0)

vs. fluid
abilities (1)

General
intelligence (0)
vs. crystallized

abilities (1)

Fluid abilities
(0) vs.

crystallized
abilities (1)

Phenotypic stability �.194 (.062)�� �.102 (.039)� .092 (.053)
Genetic stability .015 (.045) �.127 (.037)�� �.142 (.050)��

Shared environmental stability �.075 (.025)�� .212 (.014)�� .287 (.034)��

Nonshared environmental stability �.087 (.033)�� .155 (.045)�� .242 (.040)��

Note. Standard errors are in parentheses.
� p � .05. �� p � .01.
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but our power to detect such discontinuities was limited by poor
data coverage. As more longitudinal behavioral genetic re-
search is conducted in young adult and middle aged popula-
tions, the patterns of genetic and environmental continuity over
these age ranges will be able to be more directly examined.

Rarity of longitudinal genetically informative studies of
cognition. Our analyses were successful in detecting statistically
significant age trends in our meta-analytic data set. However, just
15 independent samples contributed to the data set, a small amount
relative to most meta-analyses. Importantly, many studies contrib-
uted multiple waves and cognitive variables, which we were able
to leverage to our advantage to examine moderators, while imple-
menting methods that corrected for nonindependence associated
with multiple effect sizes per study. As more longitudinal genet-
ically informative studies on cognition accumulate, we will be able
to test for even more complex age and time functions and inter-
actions.

Unavailability of raw data. Unfortunately, we did not have
access to raw data from the original studies, and not all studies
reported comprehensive within- and cross-time sibling correla-
tions. For the studies that reported results of unconstrained longi-
tudinal models, such as the complete two-wave correlated factors,
autoregressive, and Cholesky models, we were able to derive
relatively unbiased model-implied correlations to include in our
meta-analysis. However, some studies only reported results from
models that had been trimmed. This trimming might have either
biased our results, or introduced a degree of smoothing to the age
trends relative to what would have been obtained from raw data.
Importantly, sensitivity analyses indicated that controlling for
whether effects sizes were derived from trimmed models did not
appreciably alter the patterns of results obtained.

Separating the nonshared environment from measurement
error. The general lack of availability of information on the
reliability of the measures implemented prevented us from using
this information to separate systematic variance from random
measurement error in our estimate of the nonshared environment.
Had unreliability been isolated into separate error terms, we would
have been able to statistically disattenuate our estimates of non-
shared environmental stability. Our results indicated that non-
shared environmental stability increases linearly from approxi-
mately .05 in childhood to approximately .50 by age 70. Had, for
example, reliability been uniformly estimated at .85, the age trend
for the corrected nonshared environmental stability would have
been one that increased from approximately .20 in childhood to
approximately 1.0 by age 70. However, because reliability esti-
mates were not generally available, it is unknown what the appro-
priate correction should be. If random measurement error is sys-
tematically related to age, our uncorrected estimates may be
unevenly biased, leading to potentially gross distortions in the age
trends obtained. However, we suspect that this was not the case, as
a review of the manuals for a number of popular standardized
measures of cognition (e.g., McGrew & Woodcock, 2001;
Wechsler, 2003, 2008) reveals very little evidence for systematic
age differences in test reliability (see, e.g., Tucker-Drob, 2009).
Finally, it is important to note that, although the stability of the
nonshared environment is affected by random measurement error,
the contribution of the nonshared environment to phenotypic sta-
bility is not affected by such error. It would be prudent for future
longitudinal behavioral genetic investigations to take test reliabili-

ties into account, particularly when investigating patterns related to
the magnitude and stability of the nonshared environment.

Relating the Results to Extant Theories of
Developmental Continuity and Change

Taken together, these findings appear to be most consistent with
transactional models of cognitive development that emphasize
gene–environment correlation and interaction. Before highlighting
the consistency of our results with such models, we first evaluate
the current results relative to less complex accounts. The genetic
set-point/genetic canalization hypothesis (Conley, 1984; Wadding-
ton, 1942) predicts either near perfect stability of genetic factors
across time or, in the case of the more elaborate moving genetic
set-point hypothesis, stability that is dependent on important bio-
logical transitions, such as puberty, that may activate new genes.
Neither of these predictions was supported by our results. In early
childhood, the stability of genetic effects was low. Further, exam-
ination of the linear-spline and exponential models of genetic
stability highlights a fairly constant increase in genetic stability
rather than an increase associated with a certain developmental
transition. This trend is also borne out when the scatterplot of the
data is examined. The genetic set-point/genetic canalization hy-
potheses also predict that environmental influences will be fleeting
with time. However, the shared environment displayed only
slightly less stability than genetic effects, and in old age even
nonshared environmental effects, which are often dismissed as
idiosyncratic time-specific effects, evidenced substantial stability.

The experiential canalization hypothesis (Knudsen et al., 2006)
posits that very early in development environmental inputs can
shift levels of cognitive ability to a large extent, but later in
development, cognition becomes more insulated from varying
environmental inputs. This would imply that the stability of envi-
ronmental effects would remain relatively low in early childhood
and increase substantially with age. Some evidence for this hy-
pothesis was found in that environmental stability was low in early
childhood and increased with age. However, shared environmental
factors actually accounted for decreasing amounts of phenotypic
stability with increasing age. Genetic factors, alternatively, ac-
counted for large portions of stability from early adolescence
onward, a finding that the experiential canalization hypothesis is
by itself ill-equipped to explain.

Under the stability of experience hypothesis (Sameroff et al.,
1993), recurring environmental experiences, particularly those as-
sociated with one’s racial/ethnic background and social class, are
thought to shape cognitive development. This is because these
factors exert pervasive influences on almost all facets of an indi-
vidual’s life. Inconsistent with this hypothesis, shared environmen-
tal effects displayed only moderate stability in childhood. Addi-
tionally, this hypothesis predicts that family-level effects decrease
in stability as children develop and gain increasing autonomy over
their learning experiences. It is possible to observe this trend in the
data as the linear model for the stability of the shared environ-
ment decreases from age 8 to age 18, and an inspection of the
scatterplot does show at least one influential effect size with lower
stability during this time span that may represent a discontinuity.
However, the better fitting exponential model does not display a
similar decrease, and none of the estimated discontinuity param-
eters for the linear-spline model were significant. More data,
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particularly covering educational, vocational, and family transi-
tions, would be needed to convincingly address the possibility of
discontinuities in stability. Most problematic for the stability of
experience hypothesis is that it is by itself unable to explain either
the substantial developmental increases in genetic stability or the
substantial contribution of genetic factors to developmental in-
creases in phenotypic stability.

The primary premises of the embedded dynamism model were
largely supported (Baltes et al., 1999). That is, we found evidence
that the stability of cognitive ability, as well as the genetic and
environmental influences on cognitive ability, changed substan-
tially over development. Further, these changes were dependent on
the specificity of the measured outcome, whether fluid or crystal-
lized abilities were assessed, and the amount of time that passed
between waves of data collection. This last finding is particularly
relevant because it means that as greater time passes between
observations there are increasing opportunities for different dy-
namic processes to influence development. Somewhat astound-
ingly, however, intervening processes on genetic stability seem to
be absent by age 10, at which point genetic stability approaches
unity and does not appreciably decrease with increasing time lag.

Despite the advantages of the embedded dynamism model for
including multiple developmental theories for different develop-
mental periods, an explicit allowance for Gene � Environment
interaction and correlation may provide an even richer account of
the current results. A developmentally oriented Gene � Environ-
ment interaction perspective would predict that the activation or
expression of genes relevant for cognition is dependent on the
environment in which the child is situated but that, as the child
grows older, cognition becomes increasingly shielded from this
action. Thus, the stability of genetic effects would be low at early
ages when new gene expression is occurring due to novel envi-
ronmental experiences, and genetic stability would increase with
age as the influence of novel environmental inputs decreases.
Gene–environment correlation occurs when environments are se-
lected and evoked on the basis of genetically influenced traits,
preferences, and dispositions. Thus, siblings who share greater
genetic similarity will find themselves in increasingly more similar
learning environments than less genetically similar siblings. As
transactional processes progressively accumulate over develop-
ment, genetic effects should become more highly stable. Indeed,
we found that genetic effects on cognition become increasingly
stable with age, and these effects increasingly account for the
stability of cognition.

Although theories of gene–environment correlation and inter-
action are largely consistent with the current findings, several
unexpected findings concerning the environment do not fit neatly
within this framework. For example, Dickens and Flynn’s (2001)
transactional model of gene–environment correlation predicted
that shared environmental effects would be stable across the life
span and nonshared environmental effects would be unstable.
However, we found that shared environmental effects were some-
what unstable in early childhood, and nonshared environmental
effects increased to moderate levels of stability by old age. Of
course, nonshared environmental stability would have been even
higher had we been able to correct the nonshared environment for
measurement error. Nevertheless, in later life, even with measure-
ment error unaccounted for, within-monozygotic twin pair differ-
ences in cognition are largely maintained over time. Establishing

what the mechanisms are that stabilize one’s cognitive ability in
adulthood, even after controlling for genetic and shared environ-
mental influences, may be particularly valuable for future research.

If theories of Gene � Environment interaction and gene–
environment correlation are correct, how might they shape the
interpretation of the current results or the results of twin studies
more generally? When Gene � Environment interactions or gene–
environment correlations are not explicitly modeled in behavioral
genetic analyses, there are predictable and important conse-
quences, two of which we focus on here. First, if objectively
shared environments (e.g., school quality, social class) exert cu-
mulative causal influences on cognition over development that
vary depending on the genotype of the child (i.e., Gene � Shared
Environment interaction; e.g., Tucker-Drob et al., 2011;
Turkheimer et al., 2003), then effective estimates of shared envi-
ronmental contributions to stability will decrease with age, as was
documented here. In other words, as Gene � Shared Environment
environment interactions compound with age, the effects of objec-
tively shared environments become ever more tied to genotypic
differences. This may also help to explain why the stability of the
shared environment increases to such a high level. As recurrent
objectively shared experiences increasingly differentiate individu-
als on the basis of their genes, it is possible that the only remaining
shared environmental main effects are those that have resulted
from particularly severe and lasting early environmental experi-
ences that all humans respond similarly to. Second, the accumu-
lations of gene–nonshared environment correlations over develop-
ment, commonly referred to as active or evocative gene–
environment correlation, can lead to age-related increases in
effective estimates of genetic contributions to stability, as was
documented here. For example, genetically influenced individual
differences in noncognitive traits, such as intellectual curiosity and
motivation, may lead individuals to receive more intellectual stim-
ulation from parents, teachers, and even peers. This stimulation is
objectively an environmental influence, but because it was selected
and evoked on the basis of genotypic differences, it acts to make
genetically similar individuals more phenotypically similar
(Tucker-Drob & Harden, 2012a; Turkheimer & Waldron, 2000).
As children consistently, and perhaps even increasingly, select and
evoke differential levels of stimulation on the basis of their geno-
types over time, genetic stability will increase. These consider-
ations together indicate that estimates of genetic influence are
likely to reflect environmentally mediated mechanisms. As we
discuss below, ongoing research will do well to explicitly examine
specific mechanisms of Gene � Environment interaction and
gene–environment correlation.

Additional Implications: Explaining Increasing
Heritability Across Development

In addition to their implications for evaluating and distinguish-
ing between different theories of developmental continuity and
change, the findings reported in this article may have important
implications for explaining a finding that Jensen (1998, p. 179) has
described as “among the most striking and strongly substantiated
findings of behavioral genetics in recent years,” which is that
genetic influences on cognition increase throughout infant, child,
and adolescent development (see Tucker-Drob et al., 2013, for a
review of this literature). For instance, an early meta-analysis by
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McGue, Bouchard, Iacono, and Lykken (1993) indicated increases
in heritability from approximately 40% at age 5 to close to 60% in
adolescence, to over 80% in adulthood. Haworth et al. (2010),
more recently, synthesized cognitive ability data from six twin
studies from four different countries and found that heritability
increased rather linearly from 41% at 9 years to 55% at 12 years
to 66% at 17 years. Studies of very young children (e.g., Fulker,
DeFries, & Plomin, 1988; Tucker-Drob et al., 2011) have also
reported this pattern, with heritability increasing from virtually 0%
in the first year of life to approximately 20% by toddlerhood. One
possible mechanism for these increases in heritability is that
“new,” previously inactive genes come to be expressed over de-
velopment. A second possible mechanism is that the effects of
genes that are active early in life become amplified with age, e.g.,
via transactional processes of gene–environment correlation. Our
finding that genetic influences are unstable in infancy and early
childhood, and highly stable after the first decade of life, indicate
that “new” gene activation may be the predominant mechanism of
increasing heritability in early development, whereas amplification
of previously active genes may be the predominant mechanism of
increasing heritability in middle childhood and adolescence. In-
deed, longitudinal behavioral genetic models that formally distin-
guish between these different mechanisms of increasing heritabil-
ity have produced results consistent with this interpretation (Briley
& Tucker-Drob, 2013).

Prospects for Future Research

The results of our meta-analysis provide some leverage on
distinguishing between various theories of continuity and change,
and many of the theories reviewed, in turn, provide rich frame-
works by which to interpret our meta-analytic results. Neverthe-
less, our results might be best described as richly characterizing,
for the very first time, the complex and interactive patterns by
which age and time relate to the continuities of genetic and
environmental influences on cognition. Here we discuss what
methods and data future research would do well to employ in order
to add further explanatory clarity to these patterns.

Documentation and explicit modeling of gene–environment
correlation. Transactional models of gene–environment corre-
lations provide a conceptually appealing perspective not only by
which to account for developmental trends in longitudinal stability
but also by which to more generally conceptualize how genetic and
experiential forces combine to affect cognitive development. Ini-
tial support for transactional models derives from findings that
environments are themselves heritable on the part of child geno-
types (Kendler & Baker, 2007) and findings that psychological
factors and environmental factors have bidirectional cross-lagged
associations over time (Tucker-Drob & Harden, 2012a). However,
specific tests of transactional models are rare, as are principled and
concerted efforts to identify the constellations of environments and
experiences that are relevant to learning and come to be selected
and evoked on the basis of genetically influenced traits and pref-
erences. Moreover, it is not fully clear which genetically influ-
enced psychological characteristics drive selection, evocation, and
attention to cognitively stimulating environments (although see
von Stumm & Ackerman, 2013, for a promising step in this
direction), and what the specific time-ordered dynamics are
through which gene–environment-cognition feedback processes

operate. Indeed, identification of specific measured environments
on which siblings differ that can account for meaningful variance
in psychological phenotypes has been a longstanding goal that has
vexed behavioral genetic researchers for some time (see
Turkheimer & Waldron, 2000). If the environments relevant for
cognition are those that result from stable and enduring gene–
environment correlation processes (Dickens & Flynn, 2001), it
may be the case that efforts to measure genetically influenced
psychological tendencies to engage with a host of stimulating
experiences will prove to be more fruitful—albeit less direct—for
indexing cumulative environmental effects than efforts to measure
the experiences themselves. In sum, future research efforts to
collect multivariate longitudinal genetically informative data on
cognition, personality, and environments, combined with sophis-
ticated genetic and longitudinal statistical approaches will be valu-
able for testing and delineating specific transactional processes of
gene–environment correlation and their implications for the sta-
bility of individual differences in cognition over time and for
cognitive development more generally.

Longitudinal examination of Gene � Environment
interaction. Theories of Gene � Environment interaction pro-
vide particular appeal to scientists attempting to fully realize a
rapprochement to the classic nature-nurture debate. Indeed, a num-
ber of different developmentally oriented theories have been used
to make predictions regarding the specific patterns of interactions
between genes and the environment (e.g., Belsky & Pluess, 2009;
Bronfenbrenner & Ceci, 1994; Pluess & Belsky, 2013; Raine &
Venables, 1981). Moreover, in contrast to work on gene–
environment correlation, work on Gene � Environment interaction
has received broad attention, with many individual studies identi-
fying interactions between genes and single measures of the envi-
ronment in predicting a host of individual phenotypes. One future
direction for research on Gene � Environment interaction will be
to synthesize the results of individual studies into a coherent
theoretical and empirical account of what environments interact
with genes for cognitive development in what ways and whether
the directions and magnitudes of the interactions depend on the
specific cognitive phenotype examined. A second important direc-
tion for future research in this area will be to move from a static
methodology, in which Gene � Environment interaction is exam-
ined in a single cohort at a single point in time, to longitudinal
approaches in which environments and phenotypes are measured
repeatedly over development. Very few studies have actually ex-
amined Gene � Environment interactions at multiple time points
(see Hanscombe et al., 2012, and Tucker-Drob et al., 2011, for two
notable exceptions), and even fewer have examined whether
Gene � Environment interactions observed at a given point in time
represent previous interaction effects or new interaction effects.
Rhemtulla and Tucker-Drob (2012) have demonstrated how lon-
gitudinal behavioral genetic models can be used to distinguish
between persisting disadvantage and recurring disadvantage pat-
terns with respect to the interactive effects of socioeconomic status
and genetic influences on cognition. A persisting disadvantage
pattern is one in which early Gene � Environment interactions are
lasting and potentially increase in importance with development. A
recurring disadvantage pattern is one in which similar Gene �
Environment interactions occur repeatedly throughout childhood.
This latter pattern is one in which children experience relatively
consistent levels of (dis)advantage over time that have novel, yet
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qualitatively similar, effects on development. Importantly, persist-
ing disadvantage and recurring disadvantage processes have dif-
fering implications for the stability of cognition, with the former
contributing to stability and the latter contributing to instability
over time. Note, however, that these two patterns are not mutually
exclusive. As, Rhemtulla and Tucker-Drob (2012) emphasized, a
Gene � Environment interaction “at a specific point in time can
potentially result from a combination of the maintenance or mag-
nification of differences in gene expression that occurred earlier in
development and the emergence of differences in the expression of
genes that that are unique to that age” (p. 550). Future work should
continue to make use of such frameworks for conceptualizing and
testing the longitudinal time course and persistence of Gene �
Environment interactions.

Toward a developmental molecular genetics of cognition.
As Reik (2007) commented, “Development is, by definition, epi-
genetic” (p. 425). However, conventional molecular genetic re-
search on human psychological development has generally not
paid much theoretical or empirical attention to issues surrounding
developmental stability and change. Observing that “quantitative
genetic studies have a long history of assessing genetic continuity
and change across development,” Ronald (2011) recently argued
that “it is now time for the newer, more technology-enabled fields
such as GWAS and DNA resequencing also to take on board the
dynamic nature of human behavior” (p. 1471). Indeed, there have
been recent movements in this direction (e.g., Deary et al., 2012;
Trzaskowski et al., 2013). One intriguing prospect for future work
in molecular genetics will be to identify epigenetic patterns (e.g.,
methylation patterns) that modulate genetic effects on cognition
and examine how such patterns change over development. Age-
associated changes in genome-wide epigenetic patterns are wide-
spread in mammals (Reik, 2007), but such patterns have not yet
been specifically linked with genetic effects on cognition. Impor-
tantly, epigenetic processes occurring proximal to the genome are
only one mechanism by which genetic influences can become
activated and deactivated. Another potentially important mecha-
nism of activation and deactivation of genetic influences may be
developmental or sociocontextual processes that are more proxi-
mal to the phenotype than to the genome. For instance, even if
genetic code is translated into gene products there may be devel-
opmental or contextual differences in the efficiency or success at
which the gene products (and further downstream intermediary
structures and functions) are translated into the ultimate phenotype
of interest (Tucker-Drob et al., 2013). Careful longitudinal mea-
surement of biological, psychological, and environmental vari-
ables at multiple levels of analysis is therefore likely to continue to
prove invaluable as research in molecular genetics progresses.

Neurobiological substrates as developmental endophenotypes.
Neurobiology represents an important intermediary pathway in
the complex causal chain whereby genotypes and environments
combine and interact to influence individual differences in
cognition over development. Neurobiological markers that have
been linked to individual differences in cognitive performance
include total brain volume (McDaniel, 2005), cortical thickness
(Narr et al., 2007), white matter tract integrity (Penke et al.,
2012), and more efficient brain activity both during task per-
formance (Haier et al., 1988; although see qualifications by
Neubauer & Fink, 2009) and at rest (van den Heuvel, Stam,
Kahn, & Pol, 2009). Although early work specifically impli-

cated frontal brain structures in cognitive ability (Gray &
Thompson, 2004) more recent work implicates distributed
structures across the brain. Summarizing the literature, Deary,
Penke, and Johnson (2010) concluded that “intelligence does
not reside in a single, narrowly circumscribed brain region such
as the frontal lobe. Rather, intelligence seems to be best de-
scribed as a small-world network” (p. 207). For instance, ac-
cording to Jung and Haier’s (2007) P-FIT model, “cortices
within parietal and frontal brain regions, which, when effec-
tively linked by white matter structures (i.e., arcuate fasciculus,
superior longitudinal fasciculus), underpins individual differ-
ences in reasoning competence in humans, and perhaps in other
mammalian species as well” (p. 138).

Despite the clear progress that has been made in understand-
ing the neurobiological correlates of individual differences in
cognition, the vast majority of such research has been pheno-
typic in nature. Researchers have only infrequently examined
whether genetic influences on neurobiology are shared with
genetic influences on cognition, or alternatively put, whether
neurobiology mediates genetic influences on cognition. Some
notable exceptions include Thompson et al. (2001), who re-
ported high heritability of frontal brain regions that were in turn
linked to general intelligence, Posthuma et al. (2002), who
reported genetic mediation of the association between whole
brain volume and intelligence, and Chiang et al. (2009), who
reported genetic mediation of the association between white
matter integrity and intelligence. We are aware of no research-
ers, however, who have explicitly decomposed the pathways
between neurobiology and cognition specified under Jung and
Haier’s (2007) P-FIT model into genetic and environmental
components. Moreover, very few studies have made use of
repeated measures of neurobiology and cognition across devel-
opment. One notable exception includes a longitudinal study of
adolescents by Ramsden et al. (2011), which reported couplings
between changes in verbal and nonverbal intelligence and
changes in gray matter volumes in verbal (speech) and digital
(finger movement) sensorimotor areas of the brain, respec-
tively, indicating a role for sensorimotor structures in adoles-
cent cognitive development. Below we discuss the promises and
complexities of future work to incorporate neurobiological
methods with longitudinal behavioral genetic methods in the
study of the genetics of cognitive development.

The most straightforward role that neurobiological substrates
might play in the genetics of cognitive development is as
candidate endophenotypes. Endophenotypes are measurable bi-
ological or psychological intermediaries along the pathway
from genotype to the ultimate phenotype of interest (Gottesman
& Gould, 2003). The endophenotype concept has received
widespread attention because of the hope that it can boost
power of genomic association studies, and hence aid in gene
discovery for complex psychological phenotypes. Moreover,
identifying endophenotypes can potentially enrich mechanistic
accounts of how genotypes develop into phenotypes. As Got-
tesman and Gould (2003, p. 636) put it, endophenotypes can
provide “simpler clues to genetic underpinnings.” As described
above, a handful of studies have employed behavioral genetic
approaches to test for neurobiological endophonetypes of cog-
nition, i.e., neurobioglocial mediators of genetic influences on
cognition. Future research, however, may benefit from employ-
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ing longitudinal endophenotype approaches to aid in under-
standing the mechanisms of cognitive development. Harden,
Quinn, and Tucker-Drob (2012) suggested that longitudinal
changes in neurobiology be investigated as endophenotypes for
developmental changes in behavior. That is, rather than opera-
tionalizing the endophenotype and phenotype as static entities,
both are conceptualized and analyzed as longitudinal changes.
This concept may at face seem dissonant with the fact that the
very definition of endophenotype is as a mediator of genetic
effects and that (barring the emergence of the occasional mu-
tation) genetic code does not change over development. How-
ever, there are at least two ways in which static genotypes might
be associated with changing endophenotypes and phenotypes.
First is that, rather than coding for probabilistic determinants of
end states, genes may code for probabilistic developmental
norms of reaction (i.e., rates of change). Second, is that, al-
though genetic code may not change appreciably over time,
different genes may be associated with the phenotype at differ-
ent points in time. As discussed in the section above, this can
occur either because the same phenotype relies on different
neurobiological and psychological mechanisms (that are them-
selves influenced by different genes) with age, or because of
age- or experience-related epigenetic events that modulate gene
expression at the molecular level. Indeed, a key finding re-
ported in the current meta-analysis is that the genes that con-
tribute to cognition in infancy overlap very little with those that
contribute to cognition later in development. A longitudinal
endophenotype approach may be especially relevant to the
questions of genetic and environmental stability that were the
focus of the current meta-analysis. Using longitudinal geneti-
cally informative measurement of neurobiology and cognition
one might test, for example, whether the stability of genetic
influences on cognition are mediated by genetic influences on
brain structure. In order to answer this question in the affirma-
tive, there must be a high degree of genetic overlap between
indices of brain structure and cognition across multiple waves
of data collection, and the genetic influences on brain structure
should themselves be relatively stable over time.

Integrating neurobiological approaches with developmental
behavioral genetic approaches to studying cognition may not be
a straightforward matter of summing methodologies. Compli-
cating matters, for example, is that the nature of the association
between neurobiology and cognition may differ with age. For
instance, a large scale study by Shaw et al. (2006) found
negative relations between cortical thickness and intelligence in
early childhood that switched to positive relations in middle
childhood. In scenarios such as this, in which brain-cognition
associations change with age, it is not directly apparent how one
might go about testing whether neurobiology mediates stability
of cognition. It is possible that different biological processes
(e.g., neuronal pruning, neurogenesis, and neural atrophy) af-
fect the same neurobiological measurement (e.g., cortical thick-
ness) to different extents at different points in development.
Future research will need to pay careful consideration to the
fact that biological measures need not reflect unitary, homog-
enous, or developmentally invariant processes.

Last, any investigation of genetic influence at multiple levels
of analysis (e.g., neurobiology and cognitive) should be careful
not to rely on an exclusive unidirectional assumption of cau-

sality from genes to neurobiology to cognition. Although it is
certainly a reality that neurobiology must undergird cognition
in the most basic sense, neurobiological substrates of cognition
may themselves be amenable to reciprocal and interactive pro-
cesses with environmental experiences, or with cognition itself
for that matter (Chiang et al., 2011). Indeed, neurobiological
indices need not function as “genetic endophenotypes” per se.
They may instead function as what might be termed “environ-
mental endophenotypes”—processes, structures, or functions
that are internal to the individual, are relatively low in herita-
bility, and mediate the effects of environmental experience on
the ultimate phenotype of interest (see Panel 5 of Figure 1 in
Walters & Owen, 2007). Cortisol, a steroid hormone that is
regulated by the hypothalamic-pituitary-adrenal (HPA) axis, is
one illustrative example of a potential candidate “environmen-
tal endophenotype” of the deleterious effects of environmental
stress and privation on cognition and other forms of psycho-
logical well-being (Lupien, McEwen, Gunnar, & Heim, 2009).
For instance, in a longitudinal study of young children, Blair et
al. (2011) reported that multiple indices of socioeconomic dis-
advantage predicted higher chronic levels of cortisol that were
in turn associated with lower scores on measures of cognition.
The direct paths from disadvantage to cognition were attenuated
by including cortisol as a mediator. Importantly, however, it is
unclear whether the effects were environmentally mediated, a
crucial requisite for cortisol to be an environmental endophe-
notype. Determining environmental mediation would have been
possible had the authors used a genetically informative research
design (Turkheimer & Harden, in press).

Conclusion

We documented dramatic age-related changes in the stability
of cognition at the phenotypic, genetic, and environmental
levels. Genetic and shared environmental stability quickly rose
from low and moderate levels in early childhood to near unity
by early adolescence, and remained at very high levels through-
out adulthood. Nonshared environmental stability increased
gradually from near zero in early childhood to moderate levels
by late adulthood. Whereas shared environmental factors were
the primary determinants of phenotypic stability in infancy and
very early childhood, genetic factors primarily accounted for
increasing phenotypic stability over development. We recom-
mend that future work clarify the specific developmental pro-
cesses of gene– environment correlation and interaction and the
roles that they play in increasing stability with age, via careful,
multivariate, longitudinal measurement and modeling of cogni-
tion, personality, neurobiology, and experience in genetically
informative samples.
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Appendix

Deriving Correlated Factors Model Parameters From Cholesky and Simplex Model Parameters

The formulas that follow use the notation from the path dia-
grams depicted in Figure 3.

Cholesky ¡ Correlated Factors

The a1, c1, and e1 parameters from the correlated factors model
are equivalent to the a1, c1, and e1 parameters from the Cholesky
model. The a2, c2, and e2 parameters from the correlated factors
model can be derived from the ab, cb, eb, au, cu, and eu parameters
from the Cholesky model as follows:

a2 � �ab
2 � au

2, c2 � �cb
2 � cu

2, e2 � �eb
2 � eu

2,

and the ra, rc, and re parameters from the correlated factors model
can be similarly derived from the Cholesky parameters as

ra �� ab
2

ab
2 � au

2, rc �� cb
2

cb
2 � cu

2, re �� eb
2

eb
2 � eu

2 .

Simplex ¡ Correlated Factors

The a1, c1, e1, ab, cb, eb, a2, c2, and e2 from the simplex model
are equivalent to the a1, c1, e1, ra, rc, re, a2, c2, and e2 parameters
from the correlated factors model, respectively.

See Loehlin (1996) for further explication of these formulas and
their substantive implications.
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