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Existing representations of cognitive ability structure are exclusively based on linear patterns of
interrelations. However, a number of developmental and cognitive theories predict that abilities are
differentially related across ages (age differentiation–dedifferentiation) and across levels of functioning
(ability differentiation). Nonlinear factor analytic models were applied to multivariate cognitive ability
data from 6,273 individuals, ages 4 to 101 years, who were selected to be nationally representative of the
U.S. population. Results consistently supported ability differentiation but were less clear with respect to
age differentiation–dedifferentiation. Little evidence for age modification of ability differentiation was
found. These findings are particularly informative about the nature of individual differences in cognition
and about the developmental course of cognitive ability level and structure.
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In the first of a series of empirical and methodological under-
takings to evaluate whether “the abilities commonly taken to be
‘intellectual’ had any correlation with each other” (Spearman,
1930, p. 322), Charles Spearman (1904) made the observation that
many diverse measures of cognitive performance were indeed
positively interrelated. This lead him to develop a two-factor
theory of intelligence, in which he proposed that a given individ-
ual’s level of performance on a given cognitive task was deter-
mined by a general ability (g) that could be diversely applied to
many sorts of cognitive tasks, and one of many specific abilities (s)
that could be applied only to the task in question. This theory was
supported by Spearman’s demonstration that the correlations ob-
served among a number of cognitive tests could be closely ap-
proximated from a model in which every test was assumed to be
related to an unobserved common g factor. Elaborations of this
method have come to be termed common factor analysis.

Over the 100 years since Spearman’s (1904) original work,
factor analyses have continued to be applied to correlation and
covariance matrices from cognitive test batteries. On the basis of
such works, it is now clear that sets of cognitive tests tend to
cluster into several broad ability factors, including what might be
described as processing speed, episodic memory, visual–spatial
thinking, fluid reasoning, and comprehension knowledge (i.e.,
crystallized intelligence). The interrelations among these broad

abilities can, in turn, be accounted for by a higher order common
factor that is statistically analogous to Spearman’s original con-
ception of general intelligence. Such a contemporary representa-
tion of cognitive ability structure was termed the three stratum
theory by Carroll (1993), referring to fairly specific factors at the
first stratum, broad abilities at the second stratum, and a general
factor at the third stratum. This theory is largely based on, and very
similar to, the Horn–Cattell theory of fluid and crystallized intel-
ligence (Cattell, 1941, 1971/1987; Horn, 1965) which, in addition
to fluid intelligence and crystallized intelligence, includes factors
such as visualization, retrieval, and cognitive speed. Because such
theories presume more specific factors nested within more general
factors, they are generally termed hierarchical.

Contemporary hierarchical representations of cognitive abilities
are supported by a number of basic findings: (a) patterns of
convergent validity (high covariation among measures of the same
factor), discriminant validity (more moderate covariation among
measures of different factors), and face validity (measures de-
signed to indicate a particular factor often do so); (b) differential
patterns of relations of the various abilities with various external
variables, including school and job performance, educational at-
tainment, personality, and demographic indicators (e.g., Gottfred-
son, 2003; McGrew, 2009); (c) quantitative genetic estimates of
heritability and environmentality specific to the various abilities
(e.g., Petrill, 1997); (d) differential patterns of relations between
the various abilities and neuroanatomical/neurobiological indices
(e.g., Colom et al., in press); and (e) ability-specific developmental
trajectories across both childhood and adulthood (presumably bi-
ologically based abilities tend to grow in childhood, peak at late
adolescence or early adulthood, and decline into later adulthood;
knowledge-based abilities tend to grow until mid-to-late adulthood
and either stabilize or decline thereafter; Li et al., 2004; McArdle,
Ferrer-Caja, Hamagami, & Woodcock, 2002; McGrew & Wood-
cock, 2001).
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This final line of evidence is of particular relevance to the
current investigation. The enterprise of cognitive developmental
research is concerned with the striking changes in the quality and
extent of cognitive performance as children grow and adults ma-
ture. For example, the effect size of increasing age on declining
speed of information processing in adults has been listed among
the largest effects in all of behavioral research (uncorrected meta-
analytic estimated bivariate correlation � �.52; Meyer et al.,
2001). Given that levels of cognitive performance differ so dra-
matically as functions of chronological age, it is very possible that
the structural organization of cognitive abilities differs with age as
well. A related possibility is that the structural organization of
cognitive abilities differs with ability level. These two hypotheses
have been the topic of much theoretical speculation for quite some
time.

In fact, it was Spearman (1927; see Deary & Pagliari, 1991) who
was the first researcher to propose that the relations among cog-
nitive abilities may not be constant, but rather a diminishing
function of ability level (what he called the law of diminishing
returns). He reasoned that at low ability levels, a scarcity of
domain general resources constrains multiple modes of cognitive
functioning but that at high ability levels, cognitive functioning is
instead constrained by the levels of domain-specific resources. He
supported this hypothesis by demonstrating that the mean corre-
lation among 12 ability tests in 78 normal children was .466, but
in 22 children he labeled “defective” this correlation was .782.
Here, this hypothesis is referred to as the ability differentiation
hypothesis.

Referring to others’ works, Spearman (1904, 1927) also specu-
lated that the magnitudes of ability relations may differ according
to age. It was Garrett (1938, 1946) who introduced the age differ-
entiation hypothesis, which states that with child development, “an
amorphous general ability” gradually breaks down “into a group of
fairly distinct aptitudes” (Garrett, 1946, p. 375). Elaborating on
this hypothesis to include both child development and adult aging,
Balinsky (1941) argued for a “greater specialization up to a certain
point, followed by a later reintegration of the various abilities into
a flexible whole” (p. 227). This hypothesis, which has come to be
termed the age differentiation–dedifferentiation hypothesis, was
supported by Balinsky’s finding that a single common factor
accounted for a decreasing amount of variance in the Wechsler–
Bellevue test battery with older childhood age groups and an
increasing amount variance with older adult age groups.

Lienert and Crott (1964) noted that age- and ability-based
differentiation–dedifferentiation may not be independent phenom-
ena. Because cognitive abilities are known to increase with child-
hood age and decrease with adult age, they explained that age
differentiation–dedifferentiation could potentially be explained by
ability differentiation. Nevertheless, the two hypotheses have often
been examined independently of one another.

As I discuss subsequently, the two somewhat separate bodies of
literature on the topics tend to support ability differentiation but
are much more mixed with respect to age differentiation–
dedifferentiation. Extant studies, however, have been typified by a
number of shortcomings, briefly outlined here:

1. Past studies of age differentiation have primarily been
isolated to segments of childhood or adulthood, and past
studies of ability differentiation have primarily been iso-

lated to samples containing even narrower age ranges.
Given that the age differentiation–dedifferentiation hy-
pothesis posits a specific pattern of shifts in ability inter-
relations across the life span, it is advantageous to exam-
ine it in life span samples. Moreover, the investigation of
ability differentiation in age-heterogeneous samples
would allow for inquiry into whether it is a developmen-
tally emergent phenomenon.

2. No study has estimated models that simultaneously allow
for both age and ability differentiation. This is particu-
larly important given that a single mechanism might be
responsible for both phenomena.

3. Although it is well recognized that the hypotheses are
inherently nonlinear, previous studies have been based on
comparisons of linear relations across subgroups. More-
over, the arbitrary division of continuous variables (i.e.,
age and ability level) for the purpose of subgroup clas-
sification is marked by selection effects that threaten the
validity of cross-group comparisons.

4. Although the assumption of interval measurement is a
requisite for the comparisons of relational magnitudes,
previous studies have not paid sufficient attention to the
measurement properties of the tests used.

In this article, the shortcomings listed here are discussed, and
nonlinear factor analysis of carefully scaled data is offered as a
preferable alternative to other recently applied methodologies.
Results of such an application to a large nationally representative
life span sample of individuals, measured on a broad array of
well-established cognitive abilities, are reported. First, recent the-
ories and examinations of ability differentiation and age
differentiation–dedifferentiation are reviewed. For more compre-
hensive reviews of older studies, see Deary et al. (1996) and
Reinert (1970).

Ability Differentiation: Recent Theory and Research

Several cognitive theories have been invoked to explain ability
differentiation. Anderson’s (1992; cf. Anderson, 2001) theory of
minimal cognitive architecture is perhaps the theory that is most
explicit in postulating a mechanism that would lead to such a
pattern. It suggests that independent cognitive algorithms differ-
entially contribute to various domains of intellectual performance
but that, because the complexity of each of these algorithms is
constrained by a single basic processing mechanism, performance
across different domains is correlated. Among people for whom
the basic processing mechanism is more efficient (i.e., faster), the
independent algorithms are less constrained, and performance lev-
els across disparate domains become less correlated. This view
bears a resemblance to that of Spearman (1927), who argued that
general intelligence can be conceptualized as fuel for engines that
perform task-specific functions, reasoning that constant increments
in fuel only result in diminishing increments in engine efficiency.
Detterman and Daniel (1989) have similarly reasoned that if

central processes are deficient, they limit the efficiency of all other
processes in the system. So all processes in subjects with deficits tend
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to operate at the same uniform level. However, subjects without
deficits show much more variability across processes because they do
not have deficits in important central processes. (p. 358)

Ability differentiation has conventionally been examined by
dividing samples into high- and low-ability groups and by com-
paring the magnitudes of correlations, or the proportion of variance
accounted for by a common factor, across the groups. Detterman
and Daniel (1989), for example, compared the average cognitive
ability test intercorrelations in mentally retarded participants ver-
sus college students and in low- versus high-IQ high school
students and found substantially lower intercorrelations in the
mentally retarded/low-IQ groups than in the college/high-IQ
groups. They similarly divided the standardization samples from
the Wechsler Adult Intelligence Scale–Revised and the Wechsler
Intelligence Scale for Children–Revised into five ability groups
and found that the average subtest intercorrelations decreased from
about .7 in the lowest ability groups (IQ equivalent less than 78) to
about .4 in the highest ability groups (IQ equivalent greater than
122).

Using a novel method to create similarly distributed subsamples
of younger and older and low- and high-ability individuals from a
parent sample of 10,500 school children (ages 14–17), Deary et al.
(1996) found that the first principle component accounted for a
greater percentage of variance (about 2% more) in low-ability
groups than in high-ability groups but accounted for a similar
percentage of variance in younger and older adolescent age groups.
Abad, Colom, Juan-Espinosa, and Garcı́a (2003) applied this
method to 3,430 university applicants and to 823 adults (ages
20–54) composing the Spanish standardization sample of the
Wechsler Adult Intelligence Scale–Third Edition. They found that
a single common factor accounted for greater percentages of
variance in low-ability groups than in high-ability groups (a dif-
ference of about 2% in the university applicants and about 12% in
the standardization sample). Kane, Oakland, and Brand (2006)
applied this method to the standardization sample of the
Woodcock–Johnson Psycho-Educational Battery–Revised (N �
6,359, ages 2–95 years) and found that a single common factor
accounted for 52% of the variance in test scores in the low-ability
group and 29% of the variance in test scores in the high-ability
group. In an examination of the Kaufman Assessment Battery for
Children–Second Edition (N � 2,375, ages 6–18 years), Reynolds
and Keith (2007) fit a number of hierarchical ability models with
confirmatory factor analysis and found that a higher order common
factor accounted for about 10% more variance per variable in the
low-ability group than in the high-ability group. One notable study
not supportive of ability differentiation was a sophisticated set of
analyses by Nesselroade and Thompson (1995). A series of nested
linear factor models were compared across high- and low-ability
groups of adult twins (ages 49 to 92 years), with only one twin
from each pair per analysis and with the cotwin in a second set of
cross-validation analyses. Results indicated that both the number
of factors and the magnitudes of their loadings were invariant
across ability groups.

Only one study seems to have implemented nonlinear models to
examine either of the differentiation hypotheses. Der and Deary
(2003) used polynomial regressions to predict scores on a test of
reasoning from simple and complex reaction times. Whereas a
linear model adequately described the relation between reasoning

and complex reaction time, a quadratic model was incrementally
descriptive of the relation between reasoning and simple reaction
time in the direction predicted by the ability differentiation hy-
pothesis.

Age Differentiation–Dedifferentiation:
Recent Theory and Research

A number of recent cognitive developmental and aging theories
have made specific predictions supportive of age differentiation–
dedifferentiation. Cattell’s (1971/1987) investment theory pro-
poses that individuals begin life with a single general (fluid) ability
that, through experience and development, is invested in the for-
mation and elaboration of knowledge-based (crystallized) abilities.
As environmental and noncognitive (e.g., interest, motivation)
influences on knowledge acquisition accumulate with age and as
cognitive functions become automatized, fluid and crystallized
abilities increase in their relational independence. A number of
researchers (Baltes & Lindenberger, 1997; Li et al., 2004; Lövdén,
Ghisletta, & Lindenberger, 2004) have expanded on this hypoth-
esis. They have proposed that during childhood, heterogeneous
contributions to development and learning result in increases in
ability levels and associated increases in ability independence,
whereas during adulthood, more global biological constraints re-
sult in broad declines in ability levels and associated increases in
ability interrelations. Li and colleagues (Li & Lindenberger, 1999;
Li, Lindenberger, & Sikstrom, 2001) have proposed that such
aging-related biological constraints may be attributable to de-
creases in the efficiency of neurotransmission that result in in-
creased noise in information processing. When such constraints are
simulated with computational models, the results are decreases in
cognitive performance, increases in cognitive performance vari-
ability, and increases in the relations among cognitive abilities.
These emphases on the age-based operation of broad constraints
bear theoretical similarity to the cognitive theories described ear-
lier (see Tucker-Drob & Salthouse, 2008, for a discussion and
review).

A separate area of empirically based developmental theory
predicts patterns inconsistent with the age differentiation–
dedifferentiation hypothesis. A number of behavioral genetic in-
vestigations have established that the proportion of individual
differences in cognitive performance that can be attributed to
genetic sources increases monotonically across the childhood and
adult life span. These findings have been described as “among the
most striking and strongly substantiated findings of behavioral
genetics in recent years” (Jensen, 1998, p. 179). It has been
proposed (e.g., Dickens, 2007; Dickens & Flynn, 2001; Scarr &
McCartney, 1983) that these findings result from individuals self-
selecting into environments that are compatible with their ability
levels and which proportionally amplify their many abilities. The
notion that multiple sources of individual variation dynamically
interact to produce increasing intercorrelations with childhood age
has also been proposed by van der Maas et al. (2006) in their
theoretical model of the “positive manifold of intelligence by
mutualism” (p. 842). Therefore, to the extent that broad and
dynamic determinants of cognitive abilities (including the self-
selection into environments that proportionally amplify cognitive
abilities) operate across the life span, one would expect that the
relations among cognitive abilities might increase concomitantly.
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Similar to examinations of ability differentiation, age
differentiation– dedifferentiation has conventionally been ex-
amined by contrasting correlations, or the proportion of vari-
ance accounted for by a common factor, across age groups.
Some of the most recent support of age differentiation–
dedifferentiation comes from Li et al. (2004), who divided a
population-based sample of 291 individuals into six age groups
ranging from 6 to 89 years and found that the correlations
between fluid and crystallized intelligence in the adolescent,
young adult, and middle adult groups were smaller in magni-
tude than the correlations in the young children and two older
adult groups. They also found that a similar trend was present
in the percentage of variance in cognitive and intellectual
measures explained by the first principal component. De Frias,
Lövdén, Lindenberger, and Nilsson (2007) compared covari-
ances among levels of cognitive ability measures across five
cohorts of individuals (ages 35– 80) and found evidence for
age-related increases in ability interrelations beginning after
about 65 years of age, reasoning that this is the age range in
which broad and severe determinants of cognitive decline begin
to dominate.

Others have been unable to support age differentiation–
dedifferentiation. In a sample of 2,087 adults (ages 65 and older),
Anstey, Hofer, and Luszcz (2003) examined differences in intercor-
relations among Verbal, Memory, Vision, and Hearing factors across
low-, middle-, and high-ability groups; across young-old, mid-old,
and old-old age groups; and across 8 years of longitudinal change
(791 participants retained). They found some evidence for ability
differentiation but little evidence for age dedifferentiation. Analyzing
data from the Woodcock–Johnson Psycho-Educational Battery–
Revised (N � 2,201), Bickley, Keith, and Wolfle (1995) found that
neither the intercorrelations among subtests nor the hierarchical factor
structure differed significantly across 8 age groups ranging from 6 to
79 years of age. Juan-Espinosa, Garcı́a, Colom, and Abad (2000)
examined the Italian, Spanish, and American standardization samples
of the Wechsler Preschool and Primary Scale of Intelligence and the
Wechsler Intelligence Scale for Children–Revised in 17 age groups
ranging from 4 to 16 years of age and found no evidence for system-
atic age-related differences in the percentage of variance accounted
for by a single factor or in the average intertest correlation. In a similar
investigation of adults, Juan-Espinosa et al. (2002) divided the Span-
ish standardization sample of the Wechsler Adult Intelligence Scale–
Third Edition (N � 1,369) into 6 age groups ranging from 16 to 94
and, after correcting for group differences in ability range, found no
evidence for systematic age-related differences in the percentage of
variance accounted for by a common factor. Using Deary et al.’s
(1996) method to sample similarly distributed young and old sub-
samples from two parent populations of N � 6,980 (ages 12–16) and
N � 11,448 (ages 15–24), Hartmann (2006) found no evidence for
differences across age groups in the average magnitude of test inter-
correlations or the percentage of variance accounted for by the first
principal component or single common factor. These patterns of
results unsupportive of age differentiation–dedifferentiation led Juan-
Espinosa et al. (2002) to provide an anatomical metaphor in conclud-
ing that “basic structure does not change at all, although, like the
human bones, the cognitive abilities grow up and decline at different
periods of life” (p. 407).

Age Modification of Ability Differentiation

Facon (2006) investigated the unique hypothesis that ability
differentiation may not be an age-invariant phenomenon but rather
that it may emerge with childhood development. Facon split the
French standardization sample of the Wechsler Intelligence Scale
for Children–Third Edition into three age groups ranging from 7 to
15 years, and he split the age groups into low- and high-ability
groups. He found that the strength of the relations among subtests,
as indexed by the median intercorrelation, differed more greatly
between low- and high-ability groups for older ability group pairs.
Facon (2004) examined the same hypothesis in 4- to 9-year-olds
(N � 574) by comparing subtest intercorrelation matrices across
low- and high-ability groups. Because he did not find evidence for
ability differentiation, he concluded that the phenomenon must
emerge later in development. Arden and Plomin (2007) have made
similar speculations.

Goals of the Current Investigation

Three major questions were addressed for the current project.
First, to what extent do the relations among cognitive abilities
differ across the life span? Second, to what extent do the relations
among cognitive abilities differ according to ability level? Third,
given the substantial age-related trends in cognitive ability levels,
to what extent are the first and second questions independent of
one another? Moreover, to what extent does the second question
differ according to age? In the following sections, key method-
ological and conceptual issues are surveyed, and the analytic
approach for addressing these questions is described.

Methodological Considerations

Linear Factor Analysis and Nonlinear Factor Analysis

A three-outcome version of the conventional common factor
model is depicted as a path diagram in Figure 1.1 In this diagram,
measured outcomes are represented as squares, unobserved (theo-
retical) variables are represented as circles, and linear regression
relationships (e.g., factor loadings) are represented as single
headed arrows. This basic model, on which most existing struc-
tural representations of cognitive abilities are based, relies on the
assumptions that the pattern of observed interrelations among the
outcomes can be fully accounted for by their relations to an
unobserved (theoretical) common factor and that patterns of rela-
tions that the outcomes have with external variables are fully
attributable to the mediation of the common factor (although these
assumptions can be relaxed in some more advanced models). To
the extent that more than three outcomes per factor are included or
that relations with external variables are included, such models are
empirically falsifiable. A further assumption of this basic model
that is also amenable to empirical falsification (but that is rarely
actually scrutinized) is that all relations are linear in nature. This is
represented by the three plots at the bottom of Figure 1, in which
it can be seen that each outcome is assumed to have a linear

1 A common (higher order) factor analysis of factors takes on the same
form as that described here, with the square measures in Figure 1 replaced
by circular lower order factors.
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relation to the common factor. Put in other words, this basic model
assumes that individuals’ abilities are related to their performance
on a given outcome to the same extent regardless of ability level or
the level of some other variable (e.g., age). It is precisely these
latter assumptions that the ability differentiation and age
differentiation–dedifferentiation hypotheses call into question.

The typical approach that has arisen for scrutinizing the assump-
tion of constancy of relations, particularly with respect to age and
ability level, is one in which the basic factor model depicted in
Figure 1 is fit to two or more groups that have been formed on the
basis of fairly arbitrary criteria (i.e., above and below a certain test
score or age), and the linear structural interrelations are allowed to
differ across the two groups. Such an approach has been criticized
on a number of grounds, including the application of a linear
model to examine an inherently nonlinear hypothesis, the arbitrary

nature of dividing a continuous variable into groups and the
associated artifacts of such division (e.g., unequal ranges of
scores), and the use of observable indices of ability level to form
ability groups, when the unobservable true ability is the variable of
theoretical interest. See Deary et al. (1996) for a more detailed
discussion of these methodological issues.

An alternative to the multiple-group approach is one that rep-
resents structural interrelations as occurring within a single group
and along continuous dimensions but in nonlinear and interactive
ways (see, e.g., Bauer, 2005). Such an approach can help to
diminish the threats described earlier that are associated with
multiple-group approaches. Moreover, whereas the division of
samples into discrete age groups almost inevitably results in
groups that also differ in ability level (and vice versa), a continu-
ous approach can allow for a great deal of flexibility in simulta-
neously modeling the effects of age and ability level.

Figure 2 depicts the results of an analysis of simulated data that
illustrates how nonlinear factor analytic methods can be used in
examining the differentiation hypotheses. In the left plot, a single
nonlinear function describes the relationship between the common
factor and the outcome. It can be seen that by fitting separate linear
regressions to data from participants scoring below and above the
mean on the outcome, the nonlinear relationship is approximated
but suggests a lack of measurement invariance (i.e., a single model
cannot adequately account for the relation in both groups). Alter-
natively, a single measurement invariant nonlinear model is a
preferable depiction of the relationship. In the center plot, a single
nonlinear function again best describes the relation between the
common factor and the outcome. In this case, when separate linear
models are fit separately to data from young and old adult groups
(assuming that old adults perform more poorly on average than
young adults), the results again approximate the nonlinear rela-
tionship and suggest lack of measurement invariance. In the plot
on the right, the nonlinear loading is modeled separately for young
and old adults, allowing for inferences to be made regarding both
ability differentiation and age differentiation–dedifferentiation.
The approach taken in the current study is most analogous to that
depicted in the right plot, in which nonlinear loadings and age
modification of loadings are simultaneously modeled. In the cur-

Figure 1. The conventional common factor model assumes that perfor-
mance on a given outcome is a linear function of the score on the common
factor. In this hypothetical factor analysis, �A, �B, and �C are factor
loadings, which correspond to the slopes of the regressions of the outcomes
on the common factor.

Figure 2. Left panel: Linear regressions are fit to high- and low-scoring individuals. Although a single
(nonlinear) population function applies, a two-group linear approach indicates measurement noninvariance
across ability groups. Center panel: Linear regressions are fit to old and young adult groups. Although a single
(nonlinear) population function applies, a two-group linear approach indicates measurement noninvariance
across age groups. Right panel: Quadratic regressions are fit to old and young adult groups. Here, the
observed-score/true-score relations differ according to both age and ability level.
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rent study, however, both ability level and age are considered as
continuous variables.

Importance of a Proper Measurement Model

To examine influences that may potentially modify the rela-
tional magnitudes among variables, it is important for each
variable to be measured on a scale for which the distance
between any two values has the same meaning as a distance of
the same magnitude between any two other values. Put another
way, for differences in relational magnitudes to be meaning-
fully examined, the variables should be measured on interval
scales. This is because the magnitude of a relation can be
conceptualized as a magnitude of change in the expected value
of one variable, given a unit of change in the value of another
variable. Therefore, only if it is meaningful to compare mag-
nitudes of differences at different areas along the scales is it
meaningful to compare the magnitudes of relations at different
areas along the scales.

Whereas most extant examinations of the ability differentia-
tion and age differentiation– dedifferentiation hypotheses have
failed to consider the measurement properties of the instru-
ments, the current analyses are of Rasch-scaled ability esti-
mates, which are based on the logistic item response model
and which can be considered to have interval measurement
properties. The advantage of the Rasch model is illustrated by
analyses of simulated data, results of which are presented in
Figure 3. The top row contains plots of sum scores (total

number of items correct) as functions of the true ability scores
that were generated in the simulation. The bottom row contains
ability estimates obtained with an item response theory, Rasch
(1 parameter logistic), measurement model as functions of the
true scores. The columns represent conditions in which the
distribution of item difficulties is either balanced, dispropor-
tionately easy, or disproportionally difficult. It can be seen that
only when the distribution of item difficulties is balanced
relative to the population measured is interval measurement
maintained such that a sum score is an appropriate indication of
the true score. Moreover, by simply adding easy or difficult
items to a test, the sum score loses its interval properties and
can instead artifactually create an impression of ability differ-
entiation or even what might be described as ability dediffer-
entiation (i.e., the relation between the true score and the sum
score becomes nonlinear). However, by applying a Rasch mea-
surement model to the data, interval properties are well main-
tained in all cases. For a more detailed discussion of the
advantages of Rasch scaling to achieve interval measurement
properties, see Embretson and Reise (2000).

Method

The current investigation is based on analyses of the stan-
dardization sample of the Woodcock–Johnson III (WJ-III) Tests
of Cognitive Abilities (Woodcock, McGrew, & Mather, 2001).
The WJ-III test battery was constructed on the basis of an
integration of Cattell’s (1941, 1971/1987) and Horn’s (1965)

Figure 3. Simulated data are shown. The item composition of a measure can influence the quality and
magnitude of its interrelations. A sum score is particularly problematic when the distribution of item difficulties
does not match the distribution of person abilities. Rasch (item response theory) scaling can help to reduce such
biases.
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theory of fluid and crystallized intelligence and Carroll’s (1993)
three-stratum theory of cognitive abilities. This integration has
been termed Cattell–Horn–Carroll theory and is represented as
a three-stratum hierarchical structure in Figure 4. The main
focus of the current investigation is on the relations between the
second stratum abilities and the higher order common (g) fac-
tor, as demarcated by the dashed box in the figure. The second
stratum abilities are described next (adapted from McGrew &
Woodcock, 2001).

Comprehension– knowledge (Gc), also termed crystallized
intelligence, refers to knowledge (especially verbal knowledge)
that is autobiographically acquired from a culture through ex-
perience and learning. It includes factual information, compre-
hension, concepts, rules, knowledge of relationships, and pro-
cedural knowledge that has become automatized. Visual–spatial
thinking (Gv) refers to the ability to integrate, perceive, store,
recall, rotate and mentally manipulate, and reason with visual
patterns and representations. Fluid reasoning (Gf) refers to the
ability to inductively and deductively reason in novel ways and
with unfamiliar information by identifying relations, drawing
inferences, forming concepts, and identifying conjunctions and
disjunctions. Processing speed (Gs) refers to the ability to
quickly and efficiently perform cognitive tasks requiring fo-
cused attention. Short-term memory (Gsm) refers to the ability
to apprehend and store information in immediate awareness
before it is retrieved or applied. Long-term retrieval (Glr), also
termed episodic memory, refers to the ability to encode infor-
mation and later retrieve it. Between encoding and retrieval, the

information departs from immediate awareness. Auditory pro-
cessing (Ga) refers to the ability to integrate, synthesize, dis-
criminate, and process auditory stimuli that may or may not be
distorted or obscured.

Whereas the conventional Cattell–Horn–Carroll model of cog-
nitive abilities is based on linear patterns of relations, the current
investigation examines the possibility that these relations are non-
linear, such that they are functions of age and ability level. This is
achieved with nonlinear factor analytic methods, in which poten-
tial age and ability level modification of common factor-broad
ability relations are evaluated as empirical questions (i.e., the three
questions posed earlier).

Participants

The WJ-III sample was recruited from over 100 geographically
diverse communities to be nationally representative of the U.S.
population, as indexed by the 2000 census projections (McGrew &
Woodcock, 2001). Participants were selected with a stratified
sampling design that controlled for census region, community size,
sex, race, Hispanic versus non-Hispanic, type of college/university
(for college and university students), educational attainment (for
adults), employment status (for adults), and occupation (for
adults). Although this design produced samples with distributions
of participants closely approximating the U.S. population, individ-
ual subject weights were applied for all models reported here to
obtain the most precisely representative parameter estimates

Figure 4. A graphical depiction of the theoretical structure on which the Woodcock–Johnson Tests of
Cognitive Abilities III was based. This Horn–Cattell–Carroll model assumes that cognitive abilities are
organized in a hierarchy containing three strata, with variables in contiguous strata related to one another by way
of linear factor loadings. The current investigation focuses on (potentially nonlinear) relations between the
variables thought to represent abilities at Stratum II and a higher order g factor at Stratum III. Gc �
comprehension knowledge; Gv � visual–spatial thinking; Gf � fluid reasoning; Gs � processing speed; Gsm �
short-term memory; Glr � long-term retrieval; Ga � auditory processing.
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possible.2 Note that results from models in which subject weights
were not applied were very similar to those reported here.

Because recruitment was carried out separately for school-age
(kindergarten through 12th grade), college and university, and
adult (nonstudent) subsamples, data from these three subsamples
were analyzed separately in the current project.3 The interested
reader can refer to the online supplement to this article for detailed
results of a single group analysis (of data aggregated across all
three subsamples). Those results were very similar to the ones
reported here.

Table 1 presents key descriptive statistics for the three sub-
samples. Note that to avoid extreme influences and sparse data in
some areas of the multivariate distributions (e.g., older adults who
were still in college), age and grade inclusion criteria were set for
each subsample (see cells with a superscript a in Table 1). More-
over, participants were included only if they had data available for
at least one broad ability cluster score (described later).

Measures

Analyses are based on seven cluster scores corresponding to the
seven second-stratum broad abilities depicted in Figure 4. Each
cluster score is based on the average of two W-scaled tests repre-
sentative of the respective ability. The W scale is a transformation
of the Rasch (1 parameter logistic) item response theory model,
which has been centered such that 500 corresponds to the approx-
imate level of performance of 10-year-olds and has been scaled to
have interval properties such that at any level of functioning (a) a
difference between person ability and item difficulty (ability minus
difficulty) of 0 corresponds to 50% probability of success, (b) a
difference between person ability and item difficulty of 10 corre-
sponds to a 75% probability of success, and (c) a difference
between person ability and item difficulty of �10 corresponds to
a 25% chance of success (McGrew, Werder, & Woodcock, 1991).

The tests used to measure each ability are described in Table 2.
Reliabilities of the cluster scores by age groups are provided in
Table 3. The reliabilities of the cluster scores were very high for all
age groups, and there was very little evidence that the reliabilities
systematically differed according to age. This is important, be-
cause systematic differences in variable interrelations could have
been due to systematic differences in variable reliabilities if they
existed. This possibility was also considered with respect to dif-
ferences in reliability by ability level. It is well known in modern
test theory that ability estimates are less accurate for ability regions
that are measured by fewer items. Because the WJ-III tests contain
greater item representation at the middle of the scales than at the
extremes, ability estimates are likely to be less accurate for ex-
tremely high- and low-functioning participants. It can be inferred
that the findings reported in this article were not biased by this
phenomenon, because models that included only individuals scor-
ing within one standard deviation of the sample mean’s general
intellectual ability composite score (approximately the middle
68%, where items are evenly and abundantly distributed) produced
patterns of results very similar to those reported here.

Finally, it is possible that nonlinear trends can be artifactually
produced by ceiling and floor effects of the measures. The WJ-III
tests underwent a rigorous development process to ensure, among
other things, that all ability levels could be sensitively measured.
The success of this procedure was confirmed here, by examining

histograms of each of the cluster scores. For no variable was there
evidence for a disproportionate frequency of scores at the extremes
of the scales or a truncation of the distribution.

Analyses

All models were run in Mplus (Muthén & Muthén, 1998–2007)
with full information maximum likelihood estimation procedures
that used a numerical integration algorithm that permits estimation
of interactive effects (see Appendix A for an example script). Full
information maximum likelihood estimation is also able to accom-
modate missing data under the missing-at-random assumption
(McArdle, 1994; Muthén & Muthén, 1998–2007). Given the large
number of statistical comparisons, alpha values were set to .01.

Sets of stepwise models were separately applied to school-age,
college and university, and adult subsamples. In these equations,
[x] indicates that a term is specific to each broad ability. For
example, G[x] represents the broad abilities Gc, Gv, Gf, Gs, Gsm,
Glr, and Ga. Also note that �[x] represents broad ability inter-
cepts, �1[x] and �2[x] represent the regression coefficients of the
broad abilities on age and age squared, g represents the higher
order common factor, �1[x]–�4[x] represent loadings on g, and u[x]
represents the (unique) component of each broad ability that is not
accounted for by the other terms in the model.4 The subscript n
denotes that a term varies between individuals. In all models, g and
u[x] are allowed to have between-person variances �g

2 and �u[x]
2 ,

respectively. To define the metric of g, �g
2 was set to 1 for all

models. However, as a result of the differential recruitment pro-
cedures for the three subsamples, it is likely that the school-age,
college and university, and adult subsamples differed in the mag-
nitudes of the variation in their latent abilities.5 Therefore, the
parameters for the subsamples were likely not on comparable
scales, and across-subsample comparisons of parameter values
should not be made. However, within-subsample age comparisons
are, of course, a main topic of inquiry.

Age was centered for each subsample by subtracting its mean,
and the mean of common factor (g) was fixed to 0 for each
subsample. This helped to reduce nonessential multicollinearity

2 Weight � (percentage in U.S. population)/(percentage in sample).
3 The possible lack of comparability of the three subsamples is not

inconsistent with the representativeness of the samples—the school-age
and college/university subsamples were selected to be nationally represen-
tative of school children and college/university students, respectively,
whereas the adult subsample was selected to be nationally representative of
community-dwelling adults (see Chapter 2 of McGrew & Woodcock,
2001).

4 To avoid bias in polynomial and interactive regression (of which
nonlinear and interactive factor analysis is a general case), it is necessary
to include the main effects of all variables that were multiplied to create
higher order terms (Cohen, Cohen, West, & Aiken, 2003; Purcell, 2002).
Age-mean induced covariation (e.g., Hofer & Sliwinksi, 2001) is a special
case of this bias that occurs when similar age trends are not controlled for.
This may result in abilities that appear to be more interrelated during some
developmental periods than others simply as the result of their mean age
trajectories being more similar during those periods (Kalveram, 1965;
Reinert, Baltes, & Schmidt, 1966).

5 It is likely that the adult subsample was more heterogeneous than the
student subsamples as the result of being sampled from communities,
rather than schools, colleges, and universities.
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among the main effects, quadratic effects, and interactive effects of
age and g, thus facilitating model estimation and interpretability.

Step 1. In the first step of model fitting, each ability was
simultaneously predicted by linear and quadratic age trends and by
linear loadings on the common factor (g). This model is equivalent
to conventional (linear) common factor models. It is written as

G�x�n � ��x� � �1�x� � agen � �2�x� � agen
2

� �1�x� � gn � u�x�n. (1)

Step 2. In the second step, two parallel models were constructed:
one with the addition of terms for quadratic common factor loadings
and a second with the addition of terms for age modification of the
linear common factor loadings. The former model examines the
ability differentiation hypothesis and is written as

G�x�n � ��x� � �1�x� � agen � �2�x� � agen
2 � �1�x� � gn

� �2�x� � gn
2 � u�x�n. (2)

The latter model examines the age differentiation–dedifferentiation
hypothesis and is written as

G�x�n � ��x� � �1�x� � agen � �2�x� � agen
2 � �1�x� � gn

� �3�x� � agen � gn � u�x�n. (3)

Step 3. In the third step, quadratic common factor loadings and
age modification of the linear common factor loadings were si-
multaneously estimated. This model simultaneously examines both
the ability differentiation and age differentiation–dedifferentiation
hypotheses. It is written as

G�x�n � ��x� � �1�x� � agen � �2�x� � agen
2 � �1�x� � gn

� �2�x� � gn
2 � �3�x� � agen � gn � u�x�n. (4)

Step 4. In a final step, terms for age modification of the
quadratic factor loadings were added. In addition to examining the
ability differentiation and age differentiation–dedifferentiation hy-
potheses, this model examines the possibility that ability differen-
tiation may be modified by age (e.g., that differentiation may
emerge with development). The full model is written as

G�x�n � ��x� � �1�x� � agen � �2�x� � agen
2

� �1�x� � gn � �2�x� � gn
2 � �3�x� � agen � gn

� �4�x� � agen � gn
2 � u�x�n, (5)

Table 1
Composition of Subsamples

Subsample
Grade at testing

(lowest)
Grade at testing

(highest)
Age range
(lowest)

Age range
(highest) N Mean age

School age 0a 12a 4 18a 4,057 11.4
College and university 13a 18 18a 27a 779 21.0
Adult not studentsa not studentsa 21a 101 1,437 49.2

Note. Grade 0 corresponds to kindergarten.
a Indicates that a value was one of the criteria used to define the subsample for this project.

Table 2
Descriptions of Measures of Broad Abilities

Broad ability Measure Description

Comprehension knowledge (Gc) Verbal Comprehension Name pictured objects, select synonyms and antonyms, and complete
verbal analogies

General Information Identify where specified objects can be found and what specified objects
are typically used for

Visual–spatial thinking (Gv) Spatial Relations Identify the pieces needed to construct a specified shape
Picture Recognition Identify previously presented pictures within a field of distracting pictures

Fluid reasoning (Gf) Concept Formation Identify, categorize, and determine rules from a complete stimulus set
Analysis–Synthesis Learn and apply novel symbolic formulations to determine the missing

components of puzzles
Processing speed (Gs) Visual Matching Quickly locate and circle two identical numbers in a row of numbers

Decision Speed Quickly locate and circle two conceptually related pictures in a row of
pictures

Short-term memory (Gsm) Numbers Reversed Recall a series of numbers from immediate awareness in reverse sequence
Memory for Words Repeat a list of unrelated words in the sequence presented

Long-term retrieval (Glr) Visual–Auditory Learning Learn and recall pictorial representations of words
Retrieval Fluency Name as many examples as possible from a specified category

Auditory processing (Ga) Sound Blending Synthesize phonetic units
Auditory Attention Identify auditorily presented words in the presence of increasing intensities

of background noise

Note. Adapted from Table 4-2 of Technical Manual. Woodcock–Johnson III, by K. S. McGrew and R. W. Woodcock, 2001, Itasca, IL: Riverside.
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or in expanded form as

�
Gcn

Gvn

Gfn

Gsn

Gsmn

Glrn

Gan

� � �
�c
�v
�f
�s

�sm
�lr
�a

� � �
�1c
�1v
�1f
�1s

�1sm
�1lr
�1a

� � agen �

�
�2c
�2v
�2f
�2s

�2sm
�2lr
�2a

� � agen
2 � �

�1c
�1v
�1f
�1s

�1sm
�1lr
�1a

� � gn � �
�2c
�2v
�2f
�2s

�2sm
�2lr
�2a

� � gn
2 �

�
�3c
�3v
�3f
�3s

�3sm
�3lr
�3a

� � agen � gn � �
�4c
�4v
�4f
�4s

�4sm
�4lr
�4a

� � agen � gn
2 � �

ucn

uvn

ufn

usn

usmn

ulrn

uan

� ,

where G[x] represents the broad abilities, �[x] represents ability-
specific intercepts, �1[x] represents the linear components of the
age trends in each ability, �2[x] represents the quadratic compo-

nents of the age trends in each ability, �1[x] represents the linear
influences of g on each ability, �2[x] represents the quadratic
(nonlinear) influences of g on each ability (ability differentiation),
�3[x] represents age modification of the linear influence of g on
each ability (age differentiation), �4[x] represents age modification
of the quadratic influence of age on each ability (age modification
of ability differentiation), and u[x] represents unique ability-
specific factors.

Results

Model-implied age trends in the broad abilities are depicted in
Figure 5. These were produced with the estimates of �1[x] and
�2[x] from the full models for each group, but the estimates were
very similar for each step of the model fitting. Note that because
linear and quadratic trends were fit separately for the school-age,
college and university, and adult subsamples, elaborate life span
age trends were able to be captured with these fairly simple
functions.6 Such trends would ordinarily require much more com-
plex functions (e.g., high-degree polynomials, or the dual expo-
nential model that was fit by McArdle et al., 2002) had the life
span age trends not been modeled in three segments. The trends are
consistent with those found in many cross-sectional (e.g., Li et al.,
2004) and longitudinal (e.g., McArdle et al., 2002) examinations of
similar variables. In particular, all abilities except for Gc increase
in level during childhood development, peak during late adoles-
cence/early adulthood, and decrease in level across adulthood,
whereas Gc increases in level through childhood and until middle
adulthood, where it peaks and decreases thereafter. Also of prom-
inence in Figure 5 is the positive selection of college and univer-
sity participants that is often of concern in psychological research.
This thorough modeling of life span age trends is of particular
importance for the current project, because covariational patterns
can often be influenced by common (or discrepant) mean age
trends in the data if they are not modeled and controlled for (see,
e.g., Hofer & Sliwinksi, 2001; Kalveram, 1965; Salthouse &
Nesselroade, 2002).

Comparisons of, and fit indices for, the stepwise models are
reported in Table 4. For all three subgroups, stepwise model
comparisons indicated that the full model fit the data best. A
number of observations are particularly relevant. First, larger in-
crements in model fits were associated with the addition of the
terms corresponding to ability differentiation (�2[x]), whereas
fairly modest increments in model fits were associated with the
terms corresponding to age differentiation– dedifferentiation
(�3[x]). In the case of the college and university subsample,
increments in model fits associated with the age differentiation–
dedifferentiation step were not significant, which is not surprising
given that this sample did not include a very wide age range.

Although the stepwise model comparisons indicated that the
addition of terms corresponding to both ability level and age
modification of factor loading magnitudes significantly improved

6 The functions were found to fit the cross-sectional trends very well as
evidenced by two observations: (a) visual inspection indicated that the
quadratic regression lines and locally smoothed regression lines were
highly overlapping, and (b) for each of the seven abilities and in each of the
three groups, the increment in R2 resulting from the addition of an
age cubed term was less than .01.

Table 3
Estimated Reliabilities of Cluster Scores by Age Group

Age Gc Gv Gf Gs Gsm Glr Ga

4 .92 .89 .95 .93 .93 .88 .94
5 .93 .87 .96 .94 .91 .87 .93
6 .92 .76 .96 .95 .88 .87 .88
7 .92 .70 .96 .94 .86 .89 .87
8 .93 .77 .95 .92 .87 .87 .86
9 .93 .78 .95 .92 .83 .86 .88

10 .94 .80 .94 .92 .88 .87 .88
11 .94 .74 .95 .90 .85 .86 .88
12 .94 .80 .95 .91 .87 .88 .89
13 .95 .81 .95 .92 .88 .87 .89
14 .96 .84 .96 .92 .91 .90 .91
15 .96 .81 .95 .92 .86 .90 .91
16 .95 .79 .95 .91 .87 .88 .89
17 .95 .76 .94 .91 .87 .88 .89
18 .95 .82 .94 .93 .87 .87 .91
19 .95 .81 .93 .92 .89 .91 .90
20–29 .96 .84 .95 .93 .88 .92 .93
30–39 .97 .83 .97 .94 .92 .94 .94
40–49 .98 .87 .97 .95 .92 .93 .94
50–59 .97 .86 .97 .95 .90 .93 .94
60–69 .98 .87 .97 .94 .93 .93 .95
70–79 .97 .79 .97 .96 .91 .89 .93
80	 .97 .88 .97 .97 .92 .91 .94

Note. Estimates are from Appendix B of the Technical Manual.
Woodcock–Johnsnon III (McGrew & Woodcock, 2001). Cluster reliability
estimates are based on split-half internal consistencies for all tests except
for the speeded tests, which were calculated from Rasch-based error scores.
Gc � comprehension knowledge; Gv � visual–spatial thinking; Gf � fluid
reasoning; Gs � processing speed; Gsm � short-term memory; Glr �
long-term retrieval; Ga � auditory processing.
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model fits, it is important to inspect the direction and statistical
significance of each of the terms to evaluate whether the ability
differentiation and age differentiation–dedifferentiation hypothe-
ses were supported. To accept such support, the parameters should

be in directions indicative of lower loadings at high ability levels,
lower loadings with increasing childhood age, and higher loadings
with increasing adult age. Moreover, the effects should not be
isolated to a single broad ability but should instead be statistically
significant and consistent in direction for multiple abilities.

Parameter estimates from the baseline and intermediate stepwise
models are reported in Table 5. It is useful to examine the param-
eter estimates from each of these models in turn. Because it served
as the baseline model of which all other models were elaborations,
the linear (Step 1) model merits particular scrutiny. It can be seen
that all linear loadings (�1) were highly significant, because none
of their 99% confidence intervals included zero. The magnitudes
of these linear loadings were moderate to large, all having stan-
dardized values greater than 0.50, indicating convergent validity of
the common g factor. Moreover, the linear model fit the data from
each subgroup well in absolute terms (for the school age sub-
sample, the root mean error of approximation [RMSEA] � .044,
the comparative fit index [CFI] � .994, and the Tucker–Lewis
index [TLI] � .986; for the college and university subsample,
RMSEA � .063, CFI � .925, and TLI � .812; for the adult
subsample, RMSEA � .039, CFI � .992, TLI � .980). Note that
because all subsequent (nonlinear and interactive) models do not
produce sample-level covariance expectations, these absolute fit
indices are not available for them.

Results from the nonlinear model include terms corresponding
to ability level modification of the factor loadings (�2) that were
negative for all abilities and statistically significant for four of
seven abilities in the school-age subsample, two of seven abilities
in the college and university subsample, and five of seven abilities

Figure 5. Model implied life span age trends in the broad abilities. These
cross-sectional trends are based on three models, fit to school-age, college
and university, and adult (nonstudent) subsamples separately. The discon-
tinuity in the trends apparent surrounding approximately 20 years of age is
likely due to the positive selection of the college and university subsample.
Gc � comprehension knowledge; Gv � visual–spatial thinking; Gf � fluid
reasoning; Gs � processing speed; Gsm � short-term memory; Glr �
long-term retrieval; Ga � auditory processing.

Table 4
Fit Indices and Comparisons of Stepwise Models

Fit index
Step 1:

Linear model
Step 2:

Nonlinear model
Step 2: Age

modification model
Step 3: Nonlinear 	 age

modification model
Step 4:

Full model

School age subsample
Log likelihood �86,596.069 �86,548.230 �86,562.504 �86,513.705 �86,490.469
Free parameters 35 42 42 49 56

2 of difference 76.893� 53.948� 49.964� 29.191�

Degrees of freedom of difference 7� 7� 7� 7�

AIC 173,262.138 173,180.459 173,209.009 173,125.410 173,092.937
BIC 173,482.925 173,445.404 173,473.953 173,434.511 173,446.197

College and university subsample
Log likelihood �15,684.270 �15,657.859 �15,673.480 �15,650.531 �15,623.881
Free parameters 35 42 42 49 56

2 of difference 43.655� 19.477� 12.505 128.125�

Degrees of freedom of difference 7� 7� 7 7�

AIC 31,438.539 31,399.719 31,430.960 31,399.062 31,359.762
BIC 31,601.570 31,595.355 31,626.596 31,627.305 31,620.611

Adult subsample
Log likelihood �32,692.657 �32,475.035 �32,648.890 �32,454.102 �32,433.470
Free parameters 35 42 42 49 56

2 of difference 309.570� 45.261� 24.369� 26.150�

Degrees of freedom of difference 7� 7� 7� 7�

AIC 65,455.313 65,034.070 65,381.780 65,006.205 64,978.940
BIC 65,639.774 65,255.423 65,603.133 65,264.450 65,274.077

Note. The nonlinear model and the age modification model were alternative models considered separately for the second step. Chi-square of difference
and degrees of freedom of difference refer to comparisons relative to model in previous step (because the nonlinear model always fit better than the age
modification model, the Step 3–Step 2 comparison was always with respect to the nonlinear model). Each chi-square of difference was computed with
model-specific scaling factors. AIC � Akaike’s information criterion; BIC � Bayesian information criterion.
� p � .01.
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in the adult subsample, a finding consistent with ability differen-
tiation. Results from the age-modification model include terms
corresponding to age modification of factor loadings (�3) that were
statistically significant for two of seven abilities in the school-age
subsample, one of seven abilities in the college and university
subsample, and three of seven abilities in the adult subsample.
Interestingly, these significant �3 terms were in the directions
opposite to those predicted by the age differentiation–
dedifferentiation hypothesis and, instead, indicate a pattern of
larger factor loadings with childhood development and smaller
factor loadings with adult aging. The ability differentiation hy-
pothesis is therefore supported by these data, but the age
differentiation–dedifferentiation hypothesis is not supported (in-
stead, an age dedifferentiation–differentiation pattern seems to be
evident). Similar patterns persisted when the nonlinear (�2) and
age-modification (�3) terms were estimated in a single model.

Parameters from the full model for the three subsamples are
reported in Table 6. It can be seen that there was very little
evidence that ability differentiation was modified by age, because
the corresponding terms were significant only for two of seven
abilities in the school-age subsample (and in opposite directions
from one another), one of seven abilities in the college and
university subsample, and one of seven abilities in the adult
subsample. Note that because the main effects of age were con-
trolled for and because age and g were centered at their means,

multicollinearity was greatly reduced and the estimates for the �1,
�2, and �3 parameters were very similar to those from the models
fit in the intermediate steps (reported in Table 5).7 That is, the
patterns of results in the full model were again consistent with
ability differentiation and inconsistent with age differentiation–
dedifferentiation, with some indication of an age dedifferentiation–
differentiation pattern.

Figure 6 illustrates the findings with respect to ability differen-
tiation in the three subsamples (based on parameter estimates from
the full model). The left column of plots displays the model
implied quadratic relations between the broad abilities and the
common (g) factor. It can be seen that because the trends are
concave downward, the slopes of the functions diminish with
increasing ability level (note that because g is on the Z metric, the
ability levels in these plots range from the 7th percentile to the
93rd percentile). These trends can also be expressed as commu-
nalities for the broad abilities, where communality is defined as the
percentage of age-independent variance in the ability that is ac-

7 In Mplus, the covariances/correlations among terms for latent variable
interactions and nonlinear effects are not directly estimated but are none-
theless implied and controlled for. These covariances are therefore not
reported here and do not enter into the degrees of freedom for the model
comparisons. This does not bias results.

Table 5
Key Parameter Estimates (and 99% Confidence Intervals) From Baseline and Intermediate Models

Ability

Linear model parameters Nonlinear model parameters

�1 �1(std) �1 �2

School age subsample
Gc 11.006 (10.290, 11.722) 0.793 10.893 (10.197, 11.588) �1.141 (�1.61, �0.673)
Gv 4.007 (3.540, 4.475) 0.517 4.018 (3.553, 4.483) �0.063 (�0.433, 0.306)
Gf 11.278 (10.624, 11.932) 0.783 11.216 (10.575, 11.856) �0.778 (�1.208, �0.348)
Gs 8.808 (7.990, 9.626) 0.557 8.713 (7.898, 9.528) �0.818 (�1.456, �0.181)
Gsm 12.241 (11.353, 13.128) 0.678 12.086 (11.205, 12.968) �1.075 (�1.75, �0.399)
Glr 3.778 (3.529, 4.027) 0.760 3.792 (3.538, 4.045) �0.115 (�0.285, 0.054)
Ga 5.653 (5.199, 6.107) 0.644 5.636 (5.181, 6.091) �0.269 (�0.626, 0.088)

College and university subsample
Gc 9.103 (6.609, 11.596) 0.720 8.538 (6.210, 10.866) �2.159 (�3.98, �0.337)
Gv 5.478 (4.419, 6.537) 0.679 5.395 (4.301, 6.490) �0.700 (�1.492, 0.092)
Gf 8.134 (6.672, 9.597) 0.793 7.841 (6.376, 9.305) �1.715 (�2.939, �0.49)
Gs 9.460 (7.254, 11.666) 0.566 9.663 (7.124, 12.202) �0.201 (�2.021, 1.620)
Gsm 9.662 (7.564, 11.759) 0.613 9.572 (7.241, 11.903) �0.500 (�1.899, 0.900)
Glr 4.065 (3.223, 4.907) 0.734 4.040 (3.165, 4.914) �0.435 (�1.110, 0.240)
Ga 5.912 (4.666, 7.159) 0.667 5.812 (4.562, 7.063) �0.720 (�1.667, 0.226)

Adult subsample
Gc 27.148 (23.325, 30.970) 0.927 25.388 (21.804, 28.973) �7.770 (�9.529, �6.011)
Gv 6.685 (5.502, 7.868) 0.705 6.518 (5.477, 7.559) �0.721 (�1.552, 0.110)
Gf 18.592 (16.483, 20.702) 0.892 17.784 (15.797, 19.772) �3.208 (�4.421, �1.996)
Gs 19.457 (16.262, 22.653) 0.799 17.838 (15.092, 20.584) �4.576 (�6.665, �2.487)
Gsm 18.562 (16.280, 20.844) 0.789 18.174 (16.078, 20.270) �1.717 (�3.269, �0.165)
Glr 6.862 (5.943, 7.781) 0.903 6.300 (5.561, 7.038) �0.335 (�0.834, 0.164)
Ga 11.950 (10.192, 13.707) 0.840 11.662 (10.218, 13.105) �1.386 (�2.729, �0.044)

Note. Values in bold indicate p � .01. The �1(std) column contains loadings that have been standardized with respect to age partialed and age squared
partialed variances. The linear factor solutions (both unstandardized and standardized) for the three subsamples have congruence coefficients with one
another that are all greater than .97, suggesting that the solutions are very similar (Jensen, 1998). Although the parameters are not reported here, all models
included the terms �1[x] � age and �2[x] � age2 to account for the age trends in the broad abilities depicted in Figure 5. Gc � comprehension knowledge;
Gv � visual–spatial thinking; Gf � fluid reasoning; Gs � processing speed; Gsm � short-term memory; Glr � long-term retrieval; Ga � auditory
processing.
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counted for by the common factor (see Appendix B for formulas).
In the right column of Figure 6, it can be seen that, consistent with
the ability differentiation hypothesis, the communalities decrease
with ability level in all cases. This is also apparent in the total
proportion of standardized age-independent variance in the broad
abilities that is accounted for by the common factor. Consistent
with ability differentiation, this proportion differs by between
approximately 20 and 45 percentage points, in the range from the
7th percentile to the 93rd percentile of functioning.

Figure 7 illustrates the findings with respect to age trends in
broad ability communalities in the child and adult subsamples
(based on parameter estimates from the full model). Although the
trends are less apparent than those that are displayed in Figure 6,
the general pattern is one of increasing communalities in childhood
(significant age trends in the loadings of Gc and Gv on g) and
decreasing communalities in adulthood (significant age trends in
the loadings of Gc, Gv, and Glr on g).

Finally, it is of note that in addition to the models reported here,
a number of higher order mediation models (examples of linear
forms of which can be found in Salthouse & Ferrer-Caja, 2003,
and Salthouse, 1998) were considered. Such models consider the
common higher order (g) factor as a mediator of the age-related
influences on each ability (ability differentiation can therefore be
conceptualized with respect to absolute ability level instead of
age-controlled ability level), with direct effects from age to the

individual abilities allowed as needed. These models produced
patterns of results very similar to those reported here (weaker
factor loadings at higher ability levels, stronger factor loadings
with childhood age, and weaker factor loadings with adult age).
Such models are suspect, however, because they may potentially
produce nonlinear factor loading estimates as artifacts of the
nonlinear age trends that are apparent in Figure 5. These results are
therefore not reported.

Discussion

Summary of Findings

The results reported here provide consistent support for the
hypothesis that cognitive abilities are less related to each other at
higher ability levels and provide less clear support for hypotheses
that cognitive abilities systematically change in their degrees of
independence across the human life span. In fact, contrary to the
conventional age differentiation–dedifferentiation hypothesis that
abilities become less related with childhood development and
more related with adult aging, there was partial evidence of the
reverse—some factor loadings showed increases in their magni-
tudes with childhood age and decreases in their magnitudes with
adult age.

In contrast to most previous investigations of the differentiation
hypotheses, the current study examined age modification and

Table 5 (Continued)

Age modification model parameters Nonlinear 	 age modification model parameters

�1 �3 �1 �2 �3

11.026 (10.316, 11.735) 0.419 (0.223, 0.615) 10.904 (10.219, 11.590) �1.127 (�1.573, �0.682) 0.422 (0.238, 0.605)
3.975 (3.508, 4.443) 0.186 (0.042, 0.330) 3.987 (3.524, 4.451) �0.044 (�0.428, 0.340) 0.187 (0.045, 0.329)

11.336 (10.677, 11.996) 0.017 (�0.168, 0.201) 11.280 (10.632, 11.927) �0.727 (�1.170, �0.284) 0.004 (�0.172, 0.180)
8.788 (7.971, 9.605) 0.005 (�0.235, 0.244) 8.690 (7.878, 9.502) �0.869 (�1.505, �0.232) 0.001 (�0.232, 0.234)

12.213 (11.323, 13.103) 0.140 (�0.093, 0.373) 12.050 (11.170, 12.930) �1.112 (�1.797, �0.426) 0.149 (�0.075, 0.373)
3.769 (3.519, 4.019) 0.038 (�0.029, 0.105) 3.775 (3.522, 4.027) �0.132 (�0.300, 0.037) 0.041 (�0.023, 0.105)
5.635 (5.178, 6.091) 0.097 (�0.042, 0.236) 5.613 (5.160, 6.067) �0.312 (�0.674, 0.050) 0.102 (�0.035, 0.239)

9.379 (6.879, 11.879) 1.075 (�0.213, 2.363) 8.715 (6.349, 11.081) �1.964 (�3.622, �0.307) 0.666 (�0.562, 1.894)
5.430 (4.377, 6.484) 0.013 (�0.406, 0.432) 5.36 (4.254, 6.466) �0.693 (�1.527, 0.140) �0.068 (�0.507, 0.372)
8.034 (6.547, 9.521) �0.170 (�0.892, 0.552) 7.793 (6.354, 9.231) �1.661 (�2.819, �0.503) �0.287 (�1.047, 0.473)
9.334 (7.128, 11.540) 0.051 (�0.805, 0.907) 9.546 (7.017, 12.076) �0.224 (�2.100, 1.653) 0.045 (�0.828, 0.918)
9.633 (7.525, 11.741) 0.320 (�0.502, 1.143) 9.575 (7.207, 11.944) �0.412 (�1.856, 1.032) 0.265 (�0.545, 1.075)
4.036 (3.181, 4.891) 0.116 (�0.227, 0.459) 3.997 (3.116, 4.878) �0.446 (�1.134, 0.242) 0.038 (�0.327, 0.402)
5.884 (4.682, 7.086) 0.534 (0.028, 1.040) 5.796 (4.586, 7.006) �0.620 (�1.533, 0.293) 0.452 (�0.051, 0.955)

25.735 (22.339, 29.132) �0.262 (�0.418, �0.106) 24.984 (21.497, 28.471) �7.621 (�9.318, �5.925) �0.038 (�0.167, 0.091)
6.308 (5.052, 7.564) �0.065 (�0.119, �0.011) 6.204 (5.065, 7.342) �0.665 (�1.534, 0.204) �0.043 (�0.100, 0.014)

18.164 (16.141, 20.187) �0.096 (�0.194, 0.003) 17.723 (15.708, 19.737) �3.178 (�4.396, �1.959) �0.001 (�0.091, 0.090)
18.996 (16.005, 21.987) �0.103 (�0.274, 0.069) 17.708 (15.095, 20.321) �4.611 (�6.646, �2.576) �0.005 (�0.143, 0.134)
18.824 (16.589, 21.060) 0.021 (�0.093, 0.134) 18.444 (16.323, 20.564) �1.814 (�3.319, �0.309) 0.072 (�0.035, 0.178)

6.770 (5.879, 7.661) �0.099 (�0.139, �0.060) 6.216 (5.510, 6.923) �0.369 (�0.826, 0.089) �0.058 (�0.091, �0.026)
11.811 (10.315, 13.306) �0.051 (�0.152, 0.049) 11.714 (10.323, 13.105) �1.349 (�2.614, �0.083) 0.004 (�0.077, 0.086)
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ability level modification of ability relations on continuous bases
and across close to the entirety of the life span. This was achieved
with nonlinear factor analytic methods that enabled more flexible
examinations of hypotheses that are by their very nature nonlinear.
Although it has been frequently acknowledged that such hypoth-
eses are nonlinear in nature, it seems that only one previous
examination has used nonlinear functions to test them. Der and
Deary (2003) fit polynomial regressions predicting scores on a test
of reasoning from simple and complex reaction times, and found
some support for a quadratic relationship between reasoning and
simple reaction time in the direction predicted by the ability
differentiation hypothesis.

Explanations for Ability Differentiation

Why would abilities be more independent at higher ability
levels? One possible explanation might be that the components of
higher order cognition and knowledge are hierarchically structured
(hierarchical in this context is used somewhat differently from
hierarchical factor analytic models, although a parallel likely ex-
ists), such that diverse sets of potential complex behaviors are
produced from combinations of smaller numbers of simpler be-
haviors. Given that more complex behaviors can be expressed only
by those with capacities for simpler component behaviors, those
operating at higher levels of functioning can specialize from within
wider ranges of possible complex behaviors, and the profiles of
these higher functioning individuals will be more heterogeneous
across individuals. This proposal might be considered a form of
sampling theory (Thurstone, 1938), in which lower ability indi-

viduals have a narrower pool of cognitive resources and processes
on which to base their behaviors, whereas higher ability individ-
uals have a more diverse pool of specialized resources and pro-
cesses on which to base their behaviors.

Such a perspective is compatible with Spearman’s (1927; cf.
Detterman & Daniel, 1989) proposal that at lower ability levels, a
scarcity of cognitive resources constrains a wide range of disparate
behaviors, but that at higher ability levels, cognitive resources are
profuse, and cognitive functioning is instead constrained by
domain-specific resources. Deary et al. (1996,) have made the
similar suggestion that

intelligence is spent and invested like money: at low levels of income,
increments are predictably directed toward housing, food, clothing,
and the care of children. At higher levels of income spending is more
differentiated: disposable income may be directed at a near-infinite
range of targets. At higher levels of intelligence, ability is probably
more directed by interest, motivation, and choice. (p. 124)

Although these related theoretical explanations are intuitively
very plausible and consistent with current conceptualizations of
complex thought, it is unclear why they would not result in
age-related decreases in ability interrelations during childhood
and age-related increases in ability relations during adulthood.
Particularly, because ability differentiation was supported and
because mean ability levels increase with childhood age and
decrease with adult age, one would expect age differentiation–
dedifferentiation to have been supported, albeit as an epiphe-
nomenon. One possible explanation for these paradoxical find-
ings is that the age-related growth and decline of cognitive

Table 6
Parameter Estimates (and 99% Confidence Intervals) From the Full Model

Ability

Full model parameters

� �1 �2

School age subsample
Gc 508.884 (507.870, 509.898) 5.529 (5.310, 5.748) �0.347 (�0.398, �0.295)
Gv 502.444 (501.750, 503.138) 1.972 (1.795, 2.149) �0.133 (�0.168, �0.098)
Gf 506.670 (505.676, 507.665) 4.409 (4.163, 4.655) �0.457 (�0.514, �0.401)
Gs 513.409 (512.298, 514.521) 8.523 (8.226, 8.819) �0.678 (�0.740, �0.616)
Gsm 509.163 (507.954, 510.372) 4.928 (4.620, 5.235) �0.436 (�0.504, �0.369)
Glr 502.686 (502.316, 503.057) 1.499 (1.416, 1.583) �0.169 (�0.188, �0.150)
Ga 504.237 (503.594, 504.881) 2.121 (1.965, 2.276) �0.193 (�0.226, �0.160)

College and university subsample
Gc 545.207 (542.721, 547.693) 1.991 (1.042, 2.941) �0.096 (�0.358, 0.166)
Gv 513.411 (511.700, 515.122) 0.425 (�0.128, 0.977) �0.061 (�0.227, 0.105)
Gf 526.831 (525.081, 528.581) 0.123 (�0.646, 0.893) �0.081 (�0.295, 0.133)
Gs 547.456 (544.195, 550.717) �0.442 (�1.568, 0.684) 0.134 (�0.204, 0.472)
Gsm 532.040 (529.055, 535.025) �0.002 (�1.154, 1.150) 0.207 (�0.121, 0.534)
Glr 510.558 (509.370, 511.747) 0.062 (�0.323, 0.446) �0.033 (�0.153, 0.088)
Ga 518.615 (516.788, 520.443) 0.603 (�0.083, 1.290) �0.067 (�0.234, 0.100)

Adult subsample
Gc 544.984 (541.637, 548.330) 0.100 (�0.025, 0.225) �0.010 (�0.016, �0.005)
Gv 506.554 (505.151, 507.956) �0.177 (�0.239, �0.116) �0.004 (�0.006, �0.001)
Gf 508.823 (506.066, 511.581) �0.458 (�0.575, �0.341) �0.008 (�0.013, �0.004)
Gs 525.738 (522.669, 528.808) �0.823 (�0.952, �0.695) �0.009 (�0.014, �0.004)
Gsm 515.518 (512.334, 518.702) �0.338 (�0.466, �0.209) �0.003 (�0.008, 0.002)
Glr 502.739 (501.826, 503.652) �0.160 (�0.199, �0.121) �0.002 (�0.004, �0.001)
Ga 506.209 (504.166, 508.253) �0.480 (�0.557, �0.403) �0.008 (�0.011, �0.005)

Note. Values in bold indicate p � .01. The full model is given by Equation 5 in the text. Gc � comprehension knowledge; Gv � visual–spatial thinking;
Gf � fluid reasoning; Gs � processing speed; Gsm � short-term memory; Glr � long-term retrieval; Ga � auditory processing.
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abilities is a socioevolutionarily produced property of the hu-
man cognitive system that has resulted from the age-related rise
and decline of cognitive demands within the environment.
Given this assumption, a higher level of cognitive functioning
that is achieved during later childhood does not result in excess
cognitive capital, because of increased environmental demands
for higher cognitive performance during later ages. Although
this hypothesis is purely speculative, it is consistent with the
standard practice of assessing abilities and diagnosing impair-
ments relative to individuals’ same-aged peers.

Explanations for (Lack of) Age Differentiation–
Dedifferentiation

The lack of support for the conventional age differentiation–
dedifferentiation hypothesis is, by itself, of important theoret-
ical significance. A number of contemporary conceptualizations
of child and adult development posit specific age-based mech-
anisms that should result in childhood differentiation followed
by adult dedifferentiation, so much so that the age
differentiation– dedifferentiation hypothesis has been referred
to as “the most comprehensive proposition about lifespan
changes in variability” (Lindenberger & von Oertzen, 2006, p.
303).

The work of Li, Lindenberger, and colleagues (e.g., Li &
Lindenberger, 1999) has suggested that diverse sources of
growth during childhood lead to age-related increases in ability
independence, whereas common constraints on functioning in
adulthood lead to age-related decreases in ability independence.

They have posited that a likely mechanism leading to such
constraints is the age-based pattern of changes in the efficiency
of neurotransmission (e.g., of dopamine) in diverse areas of the
brain, and they have used computational models to demonstrate
how such a mechanism would result in age-based differences in
ability interrelations. Functional brain-imaging work (e.g., Ca-
beza, 2002) has built on such conceptualizations in positing that
age-related decreases in the specialization of functioning in
adult brains may explain both patterns of age-dedifferentiation
of cognitive abilities and age-related hemispheric asymmetry
reductions in brain activation patterns during performance of
cognitive tasks (for an integrated discussion of these two bodies
of literature, see Lindenberger & von Oertzen, 2006). If the age
differentiation– dedifferentiation hypothesis continues to lack
substantiation in future research, such theoretical conceptual-
izations will likely need to be re-examined and potentially
revised.

The finding that some factor loadings increased with childhood
age was somewhat unexpected and is in need of replication. This
finding is inconsistent with the perspectives reviewed earlier and is
instead consistent with the perspectives of Dickens (2007; also see
Dickens & Flynn, 2001) and van der Maas et al. (2006), who posit
developmental strengthening, if not emergence, of the positive
relations among abilities as the result of dynamic feedback pro-
cesses between individuals and environments and among the dif-
ferent abilities within individuals.

The finding that some factor loadings decreased with adult age
was similarly unexpected and is also in need of replication. Al-

Table 6 (Continued)

Full model parameters

�1 �2 �3 �4 �u
2

10.941 (10.241, 11.640) �1.175 (�1.628, �0.722) 0.447 (0.255, 0.639) �0.115 (�0.253, 0.023) 78.640 (70.246, 87.035)
3.972 (3.511, 4.434) �0.098 (�0.489, 0.294) 0.189 (0.052, 0.326) 0.001 (�0.139, 0.141) 54.893 (50.478, 59.307)

11.348 (10.697, 11.998) �0.714 (�1.136, �0.292) 0.021 (�0.157, 0.199) �0.153 (�0.274, �0.033) 87.806 (78.986, 96.625)
8.696 (7.884, 9.508) �0.859 (�1.503, �0.215) 0.035 (�0.197, 0.268) 0.102 (�0.080, 0.284) 206.436 (191.689, 221.183)

12.043 (11.165, 12.920) �1.127 (�1.804, �0.450) 0.193 (�0.032, 0.418) 0.071 (�0.094, 0.235) 203.517 (187.980, 219.055)
3.772 (3.518, 4.026) �0.143 (�0.311, 0.025) 0.051 (�0.015, 0.116) 0.023 (�0.026, 0.072) 11.773 (10.351, 13.194)
5.630 (5.173, 6.087) �0.342 (�0.684, 0.001) 0.124 (�0.011, 0.259) 0.119 (0.008, 0.230) 52.006 (47.671, 56.341)

8.643 (6.663, 10.624) �2.112 (�3.46, �0.764) 0.318 (�0.553, 1.189) �1.188 (�1.807, �0.569) 92.832 (70.688, 114.977)
5.274 (4.248, 6.300) �0.855 (�1.619, �0.091) �0.148 (�0.555, 0.259) �0.069 (�0.343, 0.206) 51.012 (40.346, 61.679)
8.071 (6.715, 9.427) �1.680 (�2.631, �0.728) �0.122 (�0.787, 0.543) 0.322 (�0.086, 0.731) 49.804 (37.141, 62.467)
9.274 (6.911, 11.636) �0.767 (�2.441, 0.906) 0.002 (�0.814, 0.818) 0.217 (�0.334, 0.768) 289.708 (236.368, 343.048)
9.425 (7.133, 11.718) �0.626 (�2.008, 0.757) 0.030 (�0.841, 0.901) �0.367 (�0.926, 0.192) 231.873 (191.473, 272.272)
4.078 (3.222, 4.934) �0.448 (�1.019, 0.122) 0.101 (�0.215, 0.416) �0.079 (�0.221, 0.064) 20.554 (15.768, 25.340)
5.646 (4.423, 6.868) �0.861 (�1.821, 0.099) 0.193 (�0.430, 0.817) �0.479 (�1.017, 0.060) 62.483 (49.917, 75.050)

24.156 (20.746, 27.566) �7.081 (�8.900, �5.262) �0.186 (�0.349, �0.022) 0.150 (0.039, 0.261) 121.872 (98.559, 145.185)
6.251 (5.105, 7.398) �0.801 (�1.741, 0.139) �0.061 (�0.117, �0.004) �0.012 (�0.064, 0.04) 62.185 (52.704, 71.667)

17.338 (15.365, 19.312) �2.982 (�4.393, �1.570) �0.083 (�0.179, 0.013) 0.065 (�0.018, 0.147) 112.324 (93.572, 131.077)
17.525 (14.950, 20.099) �4.574 (�6.683, �2.465) �0.077 (�0.228, 0.073) 0.029 (�0.095, 0.153) 291.726 (246.674, 336.777)
18.308 (16.206, 20.410) �1.915 (�3.505, �0.326) 0.011 (�0.103, 0.125) �0.002 (�0.096, 0.091) 258.337 (223.104, 293.570)

6.184 (5.476, 6.892) �0.361 (�0.857, 0.135) �0.081 (�0.114, �0.049) 0.013 (�0.016, 0.042) 12.133 (9.591, 14.675)
11.487 (10.171, 12.804) �1.161 (�2.300, �0.023) �0.038 (�0.118, 0.043) 0.062 (�0.007, 0.131) 77.088 (62.001, 92.174)
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though not necessarily evidence against common cause hypotheses
(e.g., Baltes & Lindenberger, 1997), this finding is consistent with
the presence of “multiple co-occurring causal mechanisms” (Buck-

ner, 2005, p. 269) that differentially contribute to cognitive decline
in different abilities. Investigations based on longitudinal changes
will likely provide distinct advantages in discriminating between

Figure 6. Model implied relations between the score on the g factor and the score on each broad ability (left column)
and between the score on the g factor and communality in each broad ability (right column) in grade school (top row),
college and university (middle row), and adult (bottom row) subsamples. Communalities are based on age partialed
and age squared partialed variances. It can be seen that in all panels, the g factor accounts for decreasing amounts of
variance in the broad abilities at increasing ability levels. Total refers to the total proportion of standardized variance
in all of the broad abilities accounted for by the higher order g factor. An asterisk indicates that the negative quadratic
coefficient, �2, was significant at p � .01. Gc � comprehension knowledge; Gv � visual–spatial thinking; Gf � fluid
reasoning; Gs � processing speed; Gsm � short-term memory; Glr � long-term retrieval; Ga � auditory processing.
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the specificity versus generality of the cognitive changes that occur
with development and aging (see the Future Directions section).

Limitations

Measurement. One of the major strengths of the current study
is that test scores were scaled with the Rasch measurement model.
When the assumptions of the Rasch model are met, Rasch scaling
places scores on a meaningful metric with interval properties that
are largely unaffected by the distribution of item difficulties com-
posing the measure. One major assumption that cannot be fully
tested, however, is that the items within a test all represent the

same dimension of individual differences. If, alternatively, the
tests actually measure different abilities at different difficulty
levels, what appear to be nonlinear effects might actually be
artifacts of differential representations of these different abilities at
different areas of the scales. This is a limitation of both the Rasch
model and sum-based scoring methods.

Age-based subsamples. The current study was based on sep-
arate analyses of school-age, college and university, and adult
subsamples (although see the online supplement to this article for
the results of an alternative approach). Comparisons related to
differentiation were not made across the subsamples, only within
them. Given that the age differentiation–dedifferentiation hypoth-
esis proposes two distinct phases of ability structure transforma-
tion corresponding to child development and adult aging, this
approach fit the analytical questions quite well. That is, although
no direct comparisons between groups were made, there were no
specific hypotheses requiring such comparisons.

Use of polynomial functions. There is no reason to expect
polynomial (e.g., quadratic) functions to be the most precise func-
tions for characterizing the nonlinear relations of interest.8 Poly-
nomial functions were advantageous for the current examination
because (a) they are each composed of a linear component and
deviations from a linear component (e.g., the quadratic term),
allowing for direct evaluation of evidence for loadings that depart
from linearity, (b) they are easily programmed in currently avail-
able factor analytic software (e.g., Mplus), and (c) they are well
known for being able to closely approximate a wide variety of
functions within a bounded range. Polynomials have distinct dis-
advantages, however, when the goal is to extrapolate beyond the
range of the data. Moreover, although the quadratic (being com-
posed of a linear and a nonlinear component) has interpretational
advantages, higher order polynomials are often substantively
opaque and difficult to interpret. Other functions that could be
considered in future research on differentiation include the expo-
nential, logistic, and Gompertz curves (e.g., Neale & McArdle,
2000).

Use of a hierarchical representation of individual differences in
cognitive ability structure. Any structural representation of indi-
vidual differences in cognition is merely a model that parsimoni-
ously approximates observable patterns. The g factor may not be a
reifiable construct, but it is a parsimonious way of representing the
higher order patterns of relations among cognitive abilities. In the
current article, direct evidence was not provided for the existence
of a g factor, and in fact, there are contemporary representations of
cognitive ability structure (e.g., Snow, Kyllonen, & Marshalek,
1984; van der Maas et al., 2006) that do not assume a higher order
g factor. Moreover, the original Horn–Cattell conceptualization of
fluid and crystallized intelligence did not include a higher order g
factor and has thus sometimes been termed a “truncated hierarchy”
(Jensen, 1998, p. 124). Questions regarding ability and age differ-
entiation can potentially be addressed under such frameworks as
well, and the hierarchical framework used here was chosen mostly
out of convention and for ease of presentation. For a discussion of
evidence for a higher order g factor, see Jensen (1998).

8 Although not detailed here, only 2 of 21 cubic factor loadings were
statistically significant. When these curves were plotted, they were sub-
stantively indistinguishable from the quadratic curves.

Figure 7. Model implied relations between age and communality in each
broad ability) in grade school (top) and adult (bottom) subsamples. Com-
munalities are based on age partialed and age squared partialed variances.
Contrary to the age differentiation–dedifferentiation hypothesis, there is
some evidence that communalities increase in childhood and decrease in
adulthood. Total refers to the total proportion of standardized variance in
all of the broad abilities accounted for by the higher order g factor. An
asterisk indicates that the coefficient �3 was significant at p � .01. Gc �
comprehension knowledge; Gv � visual–spatial thinking; Gf � fluid rea-
soning; Gs � processing speed; Gsm � short-term memory; Glr �
long-term retrieval; Ga � auditory processing.
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Future Directions

Correlated longitudinal changes. The age differentiation–
dedifferentiation hypothesis is primarily based on developmental
theories that posit diverse learning processes operating over child
development and broad psychological constraints operating over
adult aging. The arguments have been that diverse, domain-
specific processes influence cognitive growth, causing abilities to
be less related to one another with childhood age, and that broad,
domain-general processes influence cognitive decline, causing
abilities to be more related to one another with adult age. Cross-
sectional comparisons of different individuals at different ages,
however, are only proxies for the processes that occur within
individuals as they change over time (and possibly poor proxies at
that). More direct evidence for the domain specificity versus
generality of developmental changes would be derived from ex-
aminations of the extents to which actual longitudinal changes in
different cognitive abilities are correlated with one another. Such
questions have been partially addressed in some past work (e.g.,
Blaga et al., 2009; Hertzog, Dixon, Hultsch, & MacDonald, 2003;
Wilson et al., 2002) and are a primary theme of my ongoing
research.

Additional modifiers. After finding that the linear relations
among cognitive measures were smaller in magnitude in higher
ability groups, Detterman and Daniel (1989) questioned whether
“one factor analytic model [can] adequately represent high and low
ability subjects simultaneously” (p. 358). Here I demonstrated that
although the magnitudes of structural relations among cognitive
abilities indeed differ according to ability level, this phenomenon
is well described by a single, albeit nonlinear, factor analytic
model that applies to a broad and nationally representative range of
ability levels. Such a model is also advantageous in its ability to
simultaneously consider multiple modifiers of ability interrela-
tions. A natural extension of the current project might therefore be
to consider additional variables as potential modifiers in multivar-
iate structural models of cognitive abilities.

In fact, contemporary interactive factor analytic models have
recently been applied to investigations of the genetic and environ-
mental sources of individual differences in cognitive abilities.
Turkheimer, Harden, and colleagues (Harden, Turkheimer, &
Loehlin, 2007; Turkheimer, Haley, Waldron, D’Onofrio, &
Gottesman, 2003) have demonstrated that cognitive abilities are
more heritable at higher levels of socioeconomic status, where
environmental constraints are presumably less influential, and
genetic propensities (and genotype-induced self-selection into con-
gruent environments) can become more fully actuated. Interest-
ingly, because higher socioeconomic status is often related to
higher ability levels, it is likely that abilities are also less strongly
related at higher levels of socioeconimic status. If these two
separate mechanisms are in fact simultaneously operating, they
may suppress one another, and it will be useful to consider them
simultaneously in future research.

Applied research. The strong and consistent support for ability
differentiation has significant implications for research on selec-
tion and human capital. One major implication concerns the use of
general ability composite scores. The current findings suggest that
for higher scoring individuals, general composite scores are less
adequate reflections of individuals’ cognitive capabilities across
diverse domains. It is well accepted in the personnel selection

literature that broad ability (domain-specific) scores are compara-
tively poor predictors of job performance beyond the strong pre-
dictive utility of general cognitive ability composite scores (Got-
tfredson, 2003; Hunter & Schmidt, 1996; Ree & Earles, 1992).
However, in light of the current findings, one might expect that
broad ability scores have higher predictive utility and general
ability scores have lower predictive utility at higher ability levels.
Whereas Coward and Sackett (1990) have concluded against non-
linearity of ability–performance relations, future investigations are
likely to benefit from new methods and more diverse predictors
and outcomes. In fact, very recently, Park, Lubinski, and Benbow
(2007) found that the math versus verbal “tilt” of intellectually
talented (top 1%) adolescents’ SAT scores was strongly predictive
of literary achievement and scientific–technical innovation over
approximately 25 years of development, suggesting that domain-
specific capabilities are indeed very important for predicting pro-
fessional performance among high-ability individuals.

Conclusion

In summary, nonlinear factor analytic models were applied to
carefully scaled data on seven well-established cognitive abilities
measured in a large nationally representative life span sample of
individuals. Consistent with the ability differentiation hypothesis,
results indicated that a general factor accounted for a decreasing
amount of (and proportion of) individual differences in the abilities
at higher ability levels, suggesting that at higher ability levels,
more specific cognitive mechanisms may be less constrained and
more prominently expressed. However, results were inconsistent
with the age differentiation–dedifferentiation hypothesis that the
magnitudes of ability relations decrease with childhood age and
increase with adult age. There was rather some evidence to suggest
that abilities become more related with childhood age and less
related with adult age. It is proposed that future examinations of
age differentiation–dedifferentiation focus on the multivariate re-
lations among individual differences in rates of longitudinal
changes.
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Colom, R., Haier, R. J., Head, K., Álvarez-Linera, J., Quiroga, M. A., Shih,
P. C., et al. (in press). Gray matter correlates of fluid, crystallized, and
spatial intelligence: Testing the P-FIT model. Intelligence.

Coward, W. M., & Sackett, P. R. (1990). Linearity of ability performance
relationships—A reconfirmation. Journal of Applied Psychology, 75,
297–300.

Deary, I. J., Egan, V., Gibson, G. J., Brand, C. R., Austin, E., & Kellaghan,
T. (1996). Intelligence and the differentiation hypothesis. Intelligence,
23, 105–132.

Deary, I. J., & Pagliari, C. (1991). The strength of g at different levels of
ability: Have Detterman and Daniel rediscovered Spearman’s “law of
diminishing returns”? Intelligence, 15, 247–250.
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Appendix A

Example Mplus Script

TITLE:
This is an example script for the full model
(Equation 5) applied to the adult subsample.
Scripts for other models, including a multiple-
group version of this model, are available from
Elliot M. Tucker-Drob.

DATA:
FILE IS “wj3.dat”;

VARIABLE:
NAMES ARE
Gc Gv Gf Gs Gsm Glr Ga age agesq group SUBWT;

MISSING ARE ALL (�9999);

WEIGHT IS SUBWT;

USEOBSERVATIONS ARE (group EQ 3); !Limit anal-
!yses to adult group

USEVARIABLES ARE
Gc Gv Gf Gs Gsm Glr Ga age agesq;

ANALYSIS:
TYPE IS RANDOM; ALGORITHM IS INTEGRATION;

MODEL:
!Regress G[x] on age and age^2
Gc ON age agesq; !(alpha1, alpha2)
Gv ON age agesq;
Gf ON age agesq;
Gs ON age agesq;
Gsm ON age agesq;

Glr ON age agesq;
Ga ON age agesq;

!freely estimate linear components of loadings
!of G[x] on g
g BY Gc�; !(lambda1)
g BY Gv�;
g BY Gf�;
g BY Gs�;
g BY Gsm�;
g BY Glr�;
g BY Ga�;

!Assign g unit variance to define its metric
g@1;

!Create Quadratic g component
gxg | g XWITH g;

!Create g by age interaction
gxA | g XWITH age;

!Create g^2 age interaction
gxgxA | gxg XWITH age;

!Regress G[x] on gxg, gxA, and gxgxA
Gc ON gxg gxA gxgxA; !(lambda2, lambda3, lambda4)
Gv ON gxg gxA gxgxA;
Gf ON gxg gxA gxgxA;
Gs ON gxg gxA gxgxA;
Gsm ON gxg gxA gxgxA;
Glr ON gxg gxA gxgxA;
Ga ON gxg gxA gxgxA;

OUTPUT: SAMPSTAT CINTERVAL;

Appendix B

Description of Equations for Calculating Instantaneous Communalities

In common factor analysis, communality (h2) is defined as the
proportion of variance that an indicator shares with all other
indicators of the factors on which it loads or, put another way, as
the proportion of variance in the indicator explained by the com-
mon factors (also generally termed R2). Communality can gener-
ally be written as follows:

h2 �
shared variance

shared variance � unique variance
(B1)

A linear common factor model adhering to simple structure,
such that each indicator G[x] loads on only one common factor,
can be expressed as

G�x�n � ��x� � ��x� � gn � u�x�n, (B2)

where the common factor g and the unique factors u[x] have
variances �g

2 and �u[x]
2 , respectively. �[x] is an indicator-specific,

person invariant intercept that does not affect communality. Shared

(Appendixes continue)
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variance can be computed by squaring the slope of Equation B2
(�[x]) and multiplying it by �g

2, as follows:

shared variance � ��x�2 � �g
2. (B3)

The communality of G[x] can then be written as

hG�x�
2 �

��x�2 � �g
2

��x�2 � �g
2 � �u�x�

2 . (B4)

The linear common factor model specified by Equation B2 can
be expanded to include a quadratic loading, such that

G�x�n � ��x� � �1�x� � gn � �2�x� � gn
2 � u�x�n. (B5)

The slope of this function can be found by taking its derivative,
which is

G�x�n � �1�x� � 2 � �2�x� � gn. (B6)

Shared variance then becomes

shared variance � ��1�x� � 2 � �2�x� � gn)
2 � �g

2, (B7)

and the communality of G[x] becomes

hG�x�,gn

2 �
��1�x� � 2 � �2�x� � gn�

2 � �g
2

��1�x� � 2 � �2�x� � gn�
2 � �g

2 � �u�x�
2 , (B8)

such that the communality is now instantaneous and conditional on
the factor score of the individual on g. Note that the proportion of
standardized variance in all of the indicators accounted for by their
single common factor is the average of each individual indicator’s
communality.

For an age-modification model,

G�x�n � ��x� � �1�x� � gn � �3�x� � agen � gn � u�x�n, (B9)

the instantaneous communality can be derived in a similar fashion,
producing

hG�x�,agen

2 �
��1�x� � �3�x� � agen�

2 � �g
2

��1�x� � �3�x� � agen�
2 � �g

2 � �u�x�
2 .

(B10)
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