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Experiments allow researchers to randomly vary the key manipulation, the instruments of measurement,
and the sequences of the measurements and manipulations across participants. To date, however, the
advantages of randomized experiments to manipulate both the aspects of interest and the aspects that
threaten internal validity have been primarily used to make inferences about the average causal effect of
the experimental manipulation. This article introduces a general framework for analyzing experimental
data to make inferences about individual differences in causal effects. Approaches to analyzing the data
produced by a number of classical designs and 2 more novel designs are discussed. Simulations highlight
the strengths and weaknesses of the data produced by each design with respect to internal validity.
Results indicate that, although the data produced by standard designs can be used to produce accurate
estimates of average causal effects of experimental manipulations, more elaborate designs are often
necessary for accurate inferences with respect to individual differences in causal effects. The methods
described here can be diversely applied by researchers interested in determining the extent to which
individuals respond differentially to an experimental manipulation or treatment and how differential
responsiveness relates to individual participant characteristics.
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How can one begin to investigate whether an experimental
manipulation or treatment affects some people more than it affects
others? In the social and behavioral sciences, questions of how
people differ from one another (individual differences) were his-
torically confined to observational designs. However, the value of
integrating correlational approaches with randomized controlled
experiments is, without a doubt, profound. As was articulated by
Cronbach (1975; also see Cronbach, 1957), the most fundamental
implication of the existence of individual differences in responses
to experimental manipulations or treatments is that “a general
statement about a treatment effect is misleading because the effect
will come or go depending on the kind of person treated” (p. 119).
Of course, understanding the rules that govern how people respond
differentially to treatment or manipulation effects not only can
alleviate the concern expressed by Cronbach, but can actually help
to develop more nuanced and accurate understandings of scientific
constructs and psychological processes. Moreover, investigation of
individual differences in treatment effects and their correlates can
have pragmatic applications, for example, at the individual level

(a) helping to choose the treatment most appropriate for a given
patient; (b) giving a patient, student, or customer a realistic esti-
mate of how much of an effect is expected and how much effects
differ from person to person; and (c) selecting the applicant who is
most likely to best perform a specialized job. These investigations
can also have pragmatic applications at the population level, for
example (a) identifying populations that are most likely to benefit
from psychological interventions and programs; and (b) choosing
which interventions or programs are best suited to the subpopula-
tions of interest. In summary, understanding how different people
respond differently to experimental treatments and manipulations
has profound implications for both basic scientific understanding
and applied real-world problems.

Inferences about individual differences in causal effects, how-
ever, are complicated by the existence of uncontrolled extraneous
variables, what Campbell and Stanley (1963) have referred to as
validity threats. Although it is well understood that validity threats
can bias inferences regarding the average effect of an experimental
manipulation and methods to exclude such bias are well estab-
lished, there is much less appreciation in psychology for how
validity threats can bias inferences regarding individual differ-
ences in the effects of experimental manipulations, and there has
not been much work on how to control for such bias. This article
has two goals. The first goal is to discuss and illustrate how
inferences regarding individual differences in the effects of exper-
imental manipulations can be biased by threats to validity. The
second goal is to introduce some structural equation modeling
methods that exploit the power of randomized designs to control
for many different forms of bias regarding both the mean effects of
and individual differences in the effects of experimental manipu-
lations. In the next section, I define the problem at hand and use the
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prototypical within-subjects design to help to illustrate how extra-
neous variables can complicate inferences about individual differ-
ences in the effects of experimental manipulations. I then discuss
how multiple group structural equation models can be fit to the
data produced by a number of standard, as well as more novel,
randomized designs to make strong inferences about individual
differences in the effects of experimental manipulations. Finally, I
illustrate the strengths and weaknesses of the designs previously
discussed with a Monte Carlo simulation study and provide some
general conclusions.

Individual Causal Effects and Validity Threats to
Causal Inference

Experiments are conducted to infer causal effects. An individual
causal effect for a given participant can be conceptually defined as
the difference between the outcome that would be observed if the
participant were to be assigned to the manipulation (i.e., treatment)
condition and the outcome that would be observed if that same
participant were to be assigned to the comparison (i.e., control)
condition (Holland, 1986; Rubin, 2005). For example, a researcher
might have a hypothesis concerning the effect of a stimulant
medication on cognitive functioning. Using the definition just
given, this researcher could conceptualize the causal effect of the
stimulant medication for a given individual as the difference
between how that person would perform on a given reasoning test
at a given point in time if he or she were to take the medication
minus how that same person would perform on the same reasoning
test at the same point in time if he or she were to instead take a
placebo (e.g., a sugar pill). A positive value of this difference (i.e.,
medication performance minus placebo performance is greater
than 0) would be consistent with a cognitive enhancement effect of
the medication (Greely et al., 2008).

Ideally, researchers would like to be able to directly compute
each individual’s causal effect, such that they can calculate the
average cognitive enhancement effect of the medication relative to
the placebo, calculate the standard deviation of the individual
cognitive enhancement effects in the sample (how much person-

to-person variation there is in the effectiveness of the medication),
and calculate correlations between observed participant character-
istics and the magnitude of the cognitive enhancement effect
(identifying the people for whom the medication is most effective).
However, the logistical constraints of reality dictate that both
potential outcomes (i.e., performance in the medication condition
and performance in the placebo condition) cannot be directly
observed for a given individual at the same point in time and under
equal levels of naı̈veté to measurement or to treatment (Holland,
1986; Rubin, 2005). A given person’s individual causal effect,
therefore, can never be directly computed. Holland (1986) has
termed this the fundamental problem of causal inference. The
conditions could of course be administered to the same participant
sequentially, but this approach has the potential to introduce a
great deal of ambiguity to the situation.

To illustrate how causal inference becomes ambiguous when the
same individuals are measured under both conditions, consider a
prototypical within-subjects design, in which all participants are
first measured in the comparison condition and are then measured
in the manipulation condition. This design is schematized in the
top portion of Table 1. To return to the medication example, a
researcher using a within-subjects design might administer a rea-
soning test to the same group of participants on 2 consecutive days.
One hour before taking the reasoning test on Day 1, each partic-
ipant would take a sugar pill. One hour before taking the reasoning
test on Day 2, each participant would take a pill containing the
medication. To estimate the individual causal effect for each
participant, the experimenter would simply calculate participant-
specific difference scores (medication performance minus sugar
pill performance). Positive values would be consistent with a
cognitive enhancement effect for a given individual. The mean of
these difference scores might be used as an index of the causal
effect of the medication (relative to the placebo) on cognitive
performance for the average or typical individual. Additionally,
the standard deviation, or variance, of these difference scores
might be used as an index of how much person-to-person variation
exists in the magnitude of this causal effect. Finally, person-
specific correlates (e.g., age) of the difference scores might be used

Table 1
Standard Designs

Group First measurement Second measurement

Simple within subjects
1 Comparison Manipulation

Simple between subjects
1 Comparison
2 Manipulation

Between � Within
1 Comparison Comparison
2 Comparison Manipulation

Counterbalanced position
1 Comparison Manipulation
2 Manipulation Comparison

Counterbalanced forms
1 Comparison (A) Manipulation (B)
2 Comparison (B) Manipulation (A)

Note. A and B are test forms.
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to make inferences about whose cognitive performance benefits
more or less than others from the medication (for formal treat-
ments of moderation in within-subject designs of this sort, see
Judd, Kenny, & McClelland, 2001; Judd, McClelland, & Smith,
1996). Although such a within-subjects approach is conceptually
straightforward, it is unfortunately wrought with ambiguity, so
much so that in one of their seminal articles on research design,
Campbell and Stanley (1963) provided it as a “ ‘bad example’ to
illustrate several of the confounded extraneous variables” (p. 7)
that can bias causal inference. Campbell and Stanley, as well as
more recent methodologists (e.g., Shadish, Cook, & Campbell,
2002), have primarily focused on how extraneous variables (i.e.,
internal validity threats) can bias estimates of average causal
effects, and there do not appear to be any comprehensive discus-
sions on how validity threats can bias inferences regarding indi-
vidual differences in causal effects. I therefore provide such a
discussion here.1

The first problematic aspect of the within-subject design is that
the outcomes associated with the comparison and the manipulation
conditions are measured at different points in time. This introduces
the possibility that other influences, apart from the causal effect,
may be manifest in each individual’s difference score. Extraneous
influences on the outcome that occur over time and are external to
the individual are termed history threats. History threats include
specific events (e.g., a natural disaster, the birth of a child, the
weather, an e-mail from a friend) that occur concomitantly with the
experimental manipulation that might affect the measured out-
come. History can bias the estimate of the average causal effect if
the events systematically affect all individuals over the course of
the experiment. For instance, if Day 1 is a clear sunny day, and
Day 2 is a dark rainy day, the average cognitive performance in the
manipulation condition on Day 2 might be attenuated (perhaps
because dreary days reduce participant motivation), leading to
attenuation of the estimate of the average cognitive enhancement
effect. History can also bias the estimated magnitude of individual
differences in (i.e., the variance of) the causal effect if different
events occur for different individuals or if individuals are differ-
entially affected by the same event or events. For instance, indi-
vidual differences in how much sleep the participants get between
Day 1 and Day 2 might result in added variation in Day 2
performance (and, hence, in the Day 2 minus Day 1 difference
score) that is not associated with variation in the individual cog-
nitive enhancement effect of the medication. Finally, history can
bias the estimated correlation between the causal effect and other
variables. For example, if older children get less sleep than
younger children between Day 1 and Day 2 (perhaps because of a
late-night TV show that is popular among adolescents), age might
be associated with lower difference scores, leading the researcher
to incorrectly infer that the medication is less effective for older
children.

Extraneous influences on the outcome that occur over time and
are internal to the individual are referred to as maturation threats.
Maturation includes processes such as hunger, fatigue, and psy-
chological development. To the extent that a systematic matura-
tional influence affects all people, estimates of the average causal
effect will be biased. To the extent that individuals differ from one
another in maturation, the estimated variance of the causal effect
will be biased. Finally, to the extent that individual differences in
maturation correlate with measured variables, the estimated cor-

relations among those measured variables and the individual
causal effects will be biased. In our hypothetical example, if Day
1 is a Tuesday and Day 2 is a Wednesday and if individuals tend
to become fatigued over the course of the week (thereby affecting
their test performance), the estimate of the average cognitive
enhancement effect of the medication might be downwardly bi-
ased. If different people become fatigued to different extents, the
estimated variance of the cognitive enhancement effect could
become inflated. Finally, if older children tend to experience this
fatigue more than younger children, age might be associated with
lower difference scores, leading the researcher to incorrectly infer
that the medication is less effective for older children.

The second problematic aspect of the within-subject design
stems from the fact that participants experience two conditions and
are measured twice. When the participant is measured for the
second time, he or she is not as naı̈ve to the experiment or to being
measured as he or she was when initially measured. Going back to
the example, on Day 1 when participants take the placebo and then
perform the cognitive task, they have never had any experience
with the experiment, but on Day 2, when participants take the
medication and then perform the cognitive task, they have already
performed the task once before and have already had the experi-
ence of taking the placebo. Any effects that the experiences from
Day 1 might have on performance on Day 2 are referred to as
reactivity. Reactivity includes practice effects from having been
exposed to the same measurement instrument previously, transfer
effects to alternate measurement instruments, or any differences in
behavior that may result from the participant figuring out the study
or becoming sensitized to certain aspects of the tasks. For example,
in our hypothetical experiment, participants might improve on the
cognitive task from the first to the second assessment simply
because they are familiar with it, thereby potentially distorting the
value of the mean difference score. If some people benefit more
than others from having been previously tested, then the variance
of the difference scores and the observed pattern of correlates
between the difference scores and other variables may not exclu-
sively reflect individual differences in, and predictors of, medica-
tion-related cognitive enhancement but rather may partially reflect
individual differences in and predictors of the effects of retest-
related learning (e.g., Salthouse & Tucker-Drob, 2008). It is pos-
sible that changing the cognitive measure from the first day to the
second day may help to reduce participant familiarity with the test
and hence may help to reduce reactive effects. However, this can
introduce an instrumentation threat, in that the different measure-
ment instruments may lack comparability (measurement equiva-

1 Validity threats that are not discussed in this article include selection,
measurement, and mortality/attrition. Selection, in which pre-existing dif-
ferences in means, variances, and covariances are associated with the
nonrandom assignment of participants to groups, is not an issue for the
single-group within-subjects design and the multiple-group randomized
designs that are the focus of this article. Measurement, which refers to
differential difficulty or sensitivity of a given measurement instrument
across individuals or testing occasions, is not directly relevant to this
article, in that it is a property of the instrument rather than a specific design.
Finally, nonrandom dropout of participants that is due to selective mortality
or attrition are potential threats to internal validity for all designs in which
participants are measured more than once.
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lence).2 Finally, it is important to note that although reactive
effects include any differences in performance that result from
having been previously measured or from having experienced
aspects of the experiment previously, they differ conceptually from
carryover effects, which refer to genuine causal effects of the
manipulation that persist across measurement occasions. An ex-
ample of a carryover effect is the possibility that taking a medi-
cation on Day 1 has a lasting cognitive enhancement effect that is
still evident (although perhaps not as strong) on Day 2, when the
participant is measured for a second time.

Multiple measurements of each individual also serve to com-
pound imprecision of measurement. Psychometric theory virtually
guarantees that the measured outcome will not be a perfect reflec-
tion of the trait of interest but will also contain transient and
unsystematic influences (e.g., measurement error) that differ from
person to person and vary randomly from measurement to mea-
surement and occasion to occasion. Any difference score that is
calculated between two observed outcomes will inevitably contain
between-person variation in these unsystematic influences (Cron-
bach & Furby, 1970), which, for the simple within-subjects design,
will serve to inflate the estimated variance of the causal effect.
Moreover, because these influences cause some people to score
more extremely and others to score less extremely than their true
(time invariant) scores on the construct of interest, they can pro-
duce a more negative (or less positive) relation between initial
scores and change, which is termed regression to the mean.3 For
example, suppose that a given person has a true score of seven on
the reasoning test when taking the sugar pill and has a true score
of nine on the reasoning test when taking the medication. Further,
suppose that this person makes a lucky guess on the reasoning test
on Day 1 and therefore scores an eight in the sugar pill condition.
This person is not very likely to make another lucky guess on Day
2 and might therefore score a nine in the medication condition.
This person’s difference score would be 1, even though the causal
effect is truly a two. One can further imagine another person who
got unlucky and scored less than his or her true sugar pill condition
score of seven on Day 1 and then scored closer to his or her true
medication condition score of nine on Day 2. This person’s dif-
ference score would be higher than the true causal effect. The net
result would be (a) a downwardly biased estimate of the relation
between comparison performance and the magnitude of the causal
effect and (b) an upwardly biased estimate of the variance of the
causal effect.

Ensuring Internal Validity Through Randomization

The randomized experiment is social science’s most revered
approach to producing accurate estimates of causal effects of
experimental manipulations (Campbell & Stanley, 1963; Fisher,
1925; McCall, 1923; Rubin, 2005; Shadish, Cook, & Campbell,
2002). Randomizing participants to groups that experience differ-
ent conditions ensures that, within the bounds of sampling fluctu-
ation, individual differences (in both traits and exogenous experi-
ences) are evenly distributed across the groups, such that any
observed differences between the groups can be attributable to
differences in the conditions. For the simple between-subjects
design, in which participants are randomly assigned to a single
measurement under either the comparison condition or the manip-
ulation condition (see Table 1), the standard implication is that,

under very few and often highly plausible assumptions (e.g., that
participants do not influence one another; Rubin, 2005), the dif-
ference between the average outcome in the manipulation condi-
tion and the average outcome in the comparison condition will be
an unbiased estimate of the average of the individual causal effects
in the population.

Perhaps because causal inference in randomized experiments is
based on the premise that individual differences and idiosyncrasies
average out across groups, conventional experimental methodol-
ogy predominantly focuses on estimating population-average
causal effects and has largely neglected questions concerning
person-to-person variation in the magnitudes of individual causal
effects and their correlates. However, although not widely recog-
nized, just as randomization ensures that, ceteris paribus, group
means will be equal under the null hypothesis, it also ensures that
within-group variances, covariances, and regression relations will
be equal under the null hypothesis. In this section, I demonstrate
how one can begin to build statistical models that capitalize on
these added properties of randomization, such that variance and
covariance components of the causal effect can be confidently
estimated.

Simple Between-Subjects Design

This design is the most basic randomized experimental design.
As described earlier and schematized in Table 1, this design
involves the random assignment of participants to one of two
groups, with one group experiencing the manipulation condition
and the other group experiencing the comparison condition. For
our medication example, this would entail randomly assigning
participants to either a group that takes a sugar pill and is then
administered the reasoning test or a group that takes the medica-
tion and is then administered the reasoning test. The meticulous
researcher would ensure that all participants took the same rea-
soning test at the same time under the same conditions, perhaps by
administering the test to all participants in the same room after
randomly handing out unmarked pills to them after they were
seated. The first thing to note about this design is that, by not
measuring any given participant more than once, many of the
validity threats described earlier are entirely avoided. That is,
because the different conditions are not separated by time, history
and maturation threats do not factor in, and because participants
are not measured twice, regression to the mean and reactivity are
not issues. However, because participants are not measured under
both conditions, individual causal effects (i.e., manipulation–com-
parison difference scores) cannot be directly computed. As such,
causal inference must be made through across-person compari-
sons.

2 Differences in the difficulties of the measurement instruments (i.e.,
intercepts or response thresholds) can potentially bias mean effects,
whereas differences in the sensitivities of the measurement instruments
(i.e., discrimination, communality, or reliability) can potentially bias indi-
vidual differences.

3 Both systematic and unsystematic sources of time-specific variance can
result in regression to the mean. One such source is systematic within-
person occasion-to-occasion fluctuation, also known as intraindividual
variability (see, e.g., DeShon, 1998; Salthouse, 2007).

301INDIVIDUAL DIFFERENCES METHODS FOR EXPERIMENTS



Typically, researchers using the simple between-subjects design
are primarily concerned with testing for an overall average causal
effect, which they do using the t test (or analysis of variance
[ANOVA] for more complex designs that include multiple manip-
ulations). Cohen (1968) has shown how a t test can be parameter-
ized as a linear regression, written here as follows:

Y � b0 � b1 � g � u, (1)

where Y is the measured outcome, g is a dummy coded variable
representing group membership (comparison and manipulation
conditions are coded as 0 and 1, respectively), the regression
intercept (b0) is equal to the mean level of performance in the
comparison condition, and the regression coefficient (b1) is equal
to the mean difference in performance between manipulation and
comparison conditions. With this approach, individual differences
in the magnitude of the causal effect cannot be directly estimated.
However, although such an approach is not very commonly im-
plemented, it is rather straightforward for researchers using this
design to test whether individual causal effects relate to measured
participant characteristics. This approach, which was pioneered by
Cronbach (see, e.g., Cronbach, 1975), involves testing whether the
regression slope relating the measured outcome (Y) to group mem-
bership (g), differs according to a person’s score on a measured
characteristic, x. This can be achieved by including terms for the
main effects of x and the interaction of x with the grouping
variable, g, in the regression predicting the outcome, Y.

Y � b0 � b1 � g � b2 � x � b3 � x � g � u. (2)

If the interaction term, b3, is statistically significant, this would
be evidence for what Cronbach termed an Aptitude � Treatment
interaction, where aptitude is defined as “any characteristic of the
person that affects his response to the treatment” (Cronbach, 1975,
p. 116). To make this more concrete, if x were age, g represented
medication versus sugar pill, and Y represented reasoning perfor-
mance, the b3 parameter would reflect the extent to which the
cognitive enhancement effect differed linearly with age. This ap-
proach is very similar to including grouping or blocking variables
(e.g., gender or age group) as variables in an ANOVA context (see,
e.g., Kirk, 1995). Both the regression and the ANOVA approaches
to examining measured participant characteristics as correlates of
(i.e., moderators of) causal effects produce estimates of what might
be termed conditional (or marginal) average causal effects, for
example, the average causal effect for women or the average
causal effect for 11-year-old children. That is, they effectively
produce average causal effects for population subgroups (Rubin,
2005; Steyer, Nachtigall, Wüthrich-Martone, & Kraus, 2002).

One outstanding question is whether random individual differ-
ences in the causal effect (i.e., individual differences that may not
be accounted for by measured covariates) can be estimated from
the data produced from the simple between-subjects design and, if
so, under what assumptions. Estimating the variances of random or
latent variables representing causal effects is important for a num-
ber of related reasons. First, if observed variables do not appre-
ciably modify the size of the causal effect, individual differences
in the causal effect may still be large but simply difficult to predict.
For both applied and theoretical reasons, it may be important to
know how much heterogeneity there is, even if this heterogeneity

cannot be accounted for (e.g., How certain can a doctor be about
the magnitude of an effect to expect when prescribing a pill to a
patient? To what extent are a basic scientist’s new findings indic-
ative of a nomothetic principle that governs how all humans
behave?). Second, it may be useful to examine what proportion of
individual differences in the causal effect is accounted for by
observed variables, and to do so requires knowing what the total
variance of the causal effect is. Third, identifying causal effects on
multiple outcomes as random coefficients or latent variables is
necessary to examine whether they correlate with one another.
Finally, there is an accumulating literature demonstrating that the
existence of individual differences in causal effects can serve to
undermine standard approaches to examining causal mediation
(Bauer, Preacher, & Gil, 2006; Glynn, 2010; Kenny, Korchmaros,
& Bolger, 2003). Estimating individual differences in causal ef-
fects can therefore be used to test an important assumption of
causal mediation and perhaps even relax it.

With group equivalence of variances of the outcome as a null
hypothesis, one can examine whether the manipulation and com-
parison groups differ in the magnitudes of their variances (Bryk &
Raudenbush, 1988). Going back to the example, one might find
that concomitant with mean advantages in reasoning performance
for the medication group relative to the sugar pill group, the
medication group is also more heterogenous in reasoning perfor-
mance than the sugar pill group is (i.e., the variance in reasoning
performance is larger for the medication group than it is for the
sugar group). This would be evidence for individual differences in
the causal effect. However, the between-group difference in (re-
sidual) variances will be an unbiased estimate of the variance of
the causal effect only if the causal effect is statistically indepen-
dent of scores in the control condition (see Appendix A for a
proof), conditional on any measured covariates. Because partici-
pants are not exposed to both manipulation and comparison con-
ditions, this covariance cannot be estimated. To make this concept
more concrete, cognitive performance in the sugar pill condition
might be correlated with the cognitive enhancement effect of the
medication. Not only can this correlation not be estimated from
data produced by a simple between-subjects design, but if it is truly
positive, the across-group difference in variance will be an over-
estimate of the true variance of the cognitive enhancement effect
of the medication (the researcher will conclude that the cognitive
enhancement effect of the medication differs from person to per-
son to a larger extent than it truly does). Researchers using the
simple between-subjects design must therefore appraise the tena-
bility of the assumption that the causal effect is statistically inde-
pendent of performance in the control condition on theoretical
grounds when deciding whether the variance subtraction method is
trustworthy.

An integration of these concepts serves as the basis for the
first structural equation model introduced in this article. This
structural equation model is depicted as a path diagram in
Figure 1. This figure has a number of features that are used in
many of the path diagrams presented in this article. Measured
variables are depicted as squares, with Y representing the ex-
perimental outcome (e.g., reasoning performance) and x repre-
senting a measured participant characteristic (e.g., age). Latent
variables are represented as circles, with Fc representing per-
formance in the comparison condition and F� representing the
individual causal effect (the subscript � was intentionally cho-
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sen so that attention is drawn to the fact that the causal effect is
conceptualized as a within-person difference between compar-
ison and manipulation performance). Unidirectional arrows rep-
resent regression relationships, and bidirectional arrows repre-
sent variances or covariance relationships. Numbered paths

(arrows) are fixed to the values shown, and labeled paths are
estimated from the data, with paths having the same label
constrained to be equal to one another. The triangle represents
the unit constant that is used to estimate variable means and
intercepts. Note that inclusion of a covariate is not necessary in
any of the structural equation models discussed in this article.
Therefore, in all figures, the terms involving the covariate are
represented in light grey dotted lines. To aid readers with the
interpretation of the path diagrams displayed in this article, a
glossary of symbols is presented in Table 2. This glossary
provides a psychological description of the meaning of each
symbol.

The key features of the structural equation model in Figure
1are as follows: First, the observed mean and variance of the
outcome for participants assigned to the comparison condition
reflect the mean (�Fc) and variance (�Fc

2 ) of the theoretical
comparison condition performance. Second, the observed mean
of the outcome for participants assigned to the manipulation
condition is equal to the mean of the causal effect (�F�) plus the
mean comparison condition performance (�Fc). Third, the ob-
served variance of the outcome for participants assigned to the
manipulation condition is equal to the variance of comparison
condition performance (�Fc

2 ) plus the variance of the causal
effect (�F�

2 ). Fourth, the magnitude of the regression of the

Figure 1. Structural equation model for the simple between-subjects
design. See Table 1 for a schematization of how data are collected for this
design, Table 2 for a glossary of symbols used, and the in-text description
for further details.

Table 2
Glossary of Symbols Used in Path Diagrams

Symbol Description

Variables
Y Observed outcome (e.g., reasoning test performance)
Fc Inferred true score in the comparison condition (e.g., the score that the participant would receive if he or she took the

reasoning test in the sugar pill condition, naı̈ve to previous measurement or treatment)
F� Inferred causal effect � theoretical true score in manipulation condition � theoretical true score in the comparison

condition (e.g., reasoning performance in medication condition � reasoning performance in sugar pill condition)
FT Inferred net effect of extraneous variables (e.g., history, maturation, reactivity, measurement error). T stands for threat to

internal validity.
x A measured covariate (e.g., age)

Parameters
�Fc Mean of the inferred true score in the comparison condition
�F� Mean of the inferred causal effect
�FT Mean net effect of extraneous variables
�Fc

2 Between-person variance of the inferred true score in the comparison condition
�F�

2 Between-person variance of the inferred causal effect
�FT

2 Between-person variance of the net effect of extraneous variables
�c,� or �c,� Regression or covariance between individual differences in true comparison condition performance and individual

differences in the causal effect
�c,T or �c,T Regression or covariance between individual differences in true comparison condition performance and individual

differences in the net effect of extraneous variables
��,T or ��,T Regression or covariance between individual differences in the causal effect and individual differences in the net effect of

extraneous variables
�x,c or �x,c Regression or covariance between a measured covariate and individual differences in true comparison condition

performance
�x,� or �x,� Regression or covariance between a measured covariate and individual differences in the causal effect
�x,T or �x,T Regression or covariance between a measured covariate and individual differences in the net effect of extraneous variables
�w Factor loading of test form w on true performance
	w Intercept of test form w
�w

2 Residual variance of test form w

 Carryover of the causal effect from having been exposed to the manipulation condition at a previous occasion
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outcome in the manipulation group on participant characteristic
x is equal to the magnitude of the regression of the outcome in
the comparison group on x (�x,c) plus the magnitude of the
regression of the causal effect on x (�x,�; this term is equivalent
to an x � Group interaction term, i.e., �x,� is directly analogous
to the b3 coefficient in Equation 1). Fifth, conditional on the
covariate, x, performance in the comparison condition and the indi-
vidual causal effect are uncorrelated. In many cases, the fifth assump-
tion may not be considered tenable. When the actual comparison
performance–causal effect correlation is not zero but is modeled as
such for the purposes of model identification, the structural equation
model depicted in Figure 1 will produce a biased estimate of the
variance of the causal effect (see Appendix A). Moreover, estimating
the comparison performance–causal effect correlation may, in fact, be
of substantive interest to the experimenter (e.g., in determining
whether unmedicated individual differences in reasoning ability are
related to the cognitive enhancement effects of the medication). A
design that allows for the covariance between the outcome in the
control condition and the causal effect to be estimated is therefore
discussed next.

Between � Within Design

This design (also sometimes referred to as the randomized
pretest–posttest design) combines many of the advantages of the
simple between-subjects design with those of the simple within-
subjects design. In this design, participants are randomly assigned
to one of two groups, each of which is measured on two occasions
(see Table 1). Participants in Group 1 experience the comparison
condition twice, whereas participants in Group 2 first experience
the comparison condition and then experience the manipulation
condition. Notice that the participants in Group 2 experience both
conditions, just in the simple within-subject design. As discussed
earlier, this has the advantage of allowing for both the comparison
and the manipulation outcomes to be observed on the same indi-
viduals, but if Group 2 were the only condition, this would also
have the disadvantage of introducing a number of extraneous
influences (validity threats) associated with the passage of time
(history and maturation) and with repeated measurements (reac-
tivity and regression to the mean). In the Between � Within
design, Group 1 serves as a control for these extraneous influences.
That is, all of the influences associated with the passage of time
and repeated measurements (i.e., history, maturation, reactivity,
and regression to the mean) are reflected in the changes observed
in Group 1, whereas all of these influences and the effects of the
manipulation are reflected in the changes observed in Group 2. As
such, any between-group differences in means, variances, or co-
variance/regression relations that are observed in the patterns of
Occasion 1 to Occasion 2 changes can be associated with the
causal effect.

An example of a Between � Within design might entail ran-
domly assigning participants to either (a) a group that takes a sugar
pill and a reasoning test on Day 1 and then repeats this process on
Day 2 or (b) a group that takes a sugar pill and a reasoning test on
Day 1 and then takes the medication and the same reasoning test
on Day 2. If the correlation between Day 1 performance and the
Day 2 minus Day 1 difference score differs across groups, this
would be evidence that performance in the comparison condition
(sugar pill condition) is truly correlated with the causal effect. This

can be tested with a multiple regression model in which Y2 (Day 2
performance) is predicted by Y1 (Day 1 performance), g (a dummy
coded grouping variable in which Group 1 � 0 and Group 2 � 1),
and the interaction of Y1 with g:

Y2 � b0 � b1 � g � b2 � Y1 � b3 � Y1

� g(� b4 � x � b5 � x � g) � u, (3)

with the test of b3 being analogous to a test of heterogeneity of
regression in an analysis of covariance. In Equation 3, a b3 coef-
ficient that is significantly different from zero would indicate that
performance in the comparison condition (sugar pill condition) is
correlated with the causal effect. Note that the terms in parentheses
in the Equation 3 can be included to test whether a measured
covariate, x, relates to the causal effect, just as was discussed for
the simple between-subjects design. A similar formulation of the
Equation 3 regression explicitly models the Y2 minus Y1 difference
as the outcome of interest:

�Y � Y2 � Y1 � b0 � b1 � g � b2 � Y1 � b3 � Y1

� g�� b4 � x � b5 � x � g
 � u. (4)

It is important to keep in mind that the Y2 minus Y1 difference
in Group 1 reflects change due to extraneous influences, whereas
the corresponding difference in Group 2 reflects both these extra-
neous influences plus the individual causal effect. As such, the
between-group difference in the mean difference score is an un-
biased estimate of the average causal effect, the between-group
difference in the regression of the difference score on Y1 (i.e., the
b3 interaction term) is an unbiased estimate of the regression of the
causal effect on comparison condition performance, and the be-
tween-group difference in the regression of the difference score on
a measured covariate (i.e., the b5 interaction term) is an unbiased
estimate of the regression of the causal effect on the covariate.
Moreover, the between-group difference in the (residual) variance
of the difference score is an unbiased estimate of the (residual)
variance of the causal effect, assuming that the causal effect is
uncorrelated with the extraneous influences (see Appendix B)
conditional on the covariates. To illustrate, in our example, the
Group 2 minus Group 1 difference in the variances of the Day 2
minus Day 1 difference score is an unbiased estimate of the
variance of the cognitive enhancement effect of the medication,
assuming that the magnitude of the cognitive enhancement effect
is uncorrelated with individual differences in history, maturation,
and reactive effects. In many cases this is an acceptable assump-
tion. For example, our hypothetical researcher may find it unlikely
that the extent to which participants benefit from the experience of
having taken the reasoning test before (e.g., the retest effect)
correlates with the cognitive enhancement effect that they get from
the medication.

An integration of these concepts serves as the basis for the
structural equation model depicted in Figure 2. In both groups, Y2

is regressed onto Y1 at a fixed value of 1, such that all remaining
predictors of Y2 can be interpreted as predictors of the Y2 minus Y1

difference score (McArdle & Nesselroade, 1994). This model (cf.
Sörbom, 1978; Steyer, 2005) is quite unique for analyzing exper-
imental data in that, in addition to including a factor representative
of the causal effect of the manipulation, it also explicitly includes
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a factor (FT) representative of extraneous influences (i.e., validity
threats).4 This factor is identified from the across-occasion change
in performance (i.e., the Y2 minus Y1 difference score) that is
observed in Group 1. As mentioned earlier, because this group
experiences the comparison condition twice and never experiences
the manipulation condition, any patterns of change in performance
that are observed from Occasion 1 to Occasion 2 in this group
necessarily constitute changes that are extraneous to the experi-
mental manipulation. Alternatively, because Group 2 experiences
the comparison condition on the first occasion and the manipula-
tion condition on the second occasion, the patterns of change in
performance that are observed from Occasion 1 to Occasion 2 are
composed of the changes attributable to the actual causal effect of
the manipulation in addition to changes that are extraneous to the
manipulation. Both groups therefore contain an FT factor repre-
sentative of extraneous influences, or validity threats. The mean,
variance, and regression/covariance relationships related to FT are
constrained to be equivalent in both groups. This is an assumption
that is ensured by the fact that the threat-related experiences (e.g.,
time elapsing, participants being tested twice) in both groups can
be assumed to be equivalent combined with the fact that partici-
pants are randomized to the two groups (such that individual
differences are evenly distributed across groups). This is indicated
in Figure 2 by the fact that corresponding terms are given same
label in both groups. Only the second group, however, contains an
F� factor, representative of the causal effect of the manipulation.
This factor accounts for the mean Y2 minus Y1 difference, the
variance of this difference, and the covariance/regression relation-
ships involving this difference that are not accounted for by FT. In
other words, F� accounts for the patterns that differ between
groups. Note that, for identification purposes, the covariance be-
tween extraneous factors (FT) and the causal effect (F�) cannot be
estimated with this method. As is analytically demonstrated in
Appendix B and empirically illustrated in the simulation study
reported later, this can potentially lead to biased estimates of the
variance of the causal effect (�F�

2 ). To make this concrete, this

model is unable to determine whether those participants who
receive the largest cognitive enhancement effect from the medica-
tion tend to be the same participants whose scores benefit the most
from the previous experience of taking the reasoning test. If such
a positive correlation exists, the estimated variance of the cognitive
enhancement effect will be upwardly biased.

Test Equating for Experiments

In many research areas, the dominant threat to internal validity
is participants’ reactivity to being retested on the same material. At
the same time, the measurement of individuals more than once
produces important information about changes that occur within
individuals as they proceed through varying aspects of the exper-
iment. One possible way to produce within-person estimates of
within-person differences while avoiding threats associated with
reactivity to retesting might be to use different measurement
materials for each phase of measurement. The main problem with
such a research approach, however, is that it results in outcomes
that are not easily comparable (an instrumentation threat). In this
section, test-equating approaches are reviewed, and new methods
to integrate them into the experimental paradigm to produce com-
parable nonrepeated measures are discussed. In a later section,
test-equating procedures are integrated with designs that allow for
the effects of history, maturation, and any remaining reactive
effects to be separated from the causal effect.

Test-equating procedures stem from a perspective that is foun-
dational to both classical and modern psychometric theory: Ob-
served levels of performance on a given measure are imperfect
indications of unobserved (latent) traits that can be measured at
least as well with many alternative materials and/or methods. By
constructing data-based models of the relations between the unob-
served (assumed) trait of interest and observed scores, researchers
can establish a more valid and generalizable network of relational
patterns between the trait and its correlates and, as a byproduct,
can produce inferences about the common trait, using a number of
alternative materials and methods of measurement. This byproduct
can be used advantageously to measure individuals on the same
outcome multiple times without ever repeating the actual method
of measurement. Reactive effects, therefore, can be potentially
reduced without producing the instrumentation threats that nor-
mally would be associated with using different measures at differ-
ent phases of the experiment.

Data collection designs for three basic forms of test equating are
schematized in the top portion of Table 3.5 These can be charac-
terized as common person equating, common test equating, and
equating purely by randomization (Angoff, 1971; Crocker & Al-
gina, 1986; Kolen & Brennan, 2004; Masters, 1985). Common

4 See B. O. Muthén and Curran (1997) for a similar approach, in which
treatment effects are distinguished from normative developmental trajec-
tories.

5 Note that for two reasons, Table 3 does not specify the sequence in
which the tests are administered. First, test equating is introduced here as
a means of reducing the effects of the sequences of measurement. Second,
this section introduces the basic elements of test equating so that they can,
in a later section, be incorporated into a more general framework that does
take sequences of measurement into account.

Figure 2. Structural equation model for the Between � Within design.
The subscripts on Y correspond to the first measurement (1) and the second
measurement (2). See Table 1 for a schematization of how data are
collected for this design, Table 2 for a glossary of symbols used, and the
in-text description for further details.
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person equating involves calibrating two (or more) tests to the
same group of people, such that when administered in the absence
of one another, the tests produce scores that are on the same
metric. Common test (or common item) equating involves admin-
istration of an anchor test (Test D) to each group, in addition to that
group’s unique test. The group-specific tests are then calibrated
relative to the anchor test, such that all scores are again on the
same scale of measurement. Equating purely by randomization
involves administration of separate tests to groups that have been
randomly assigned. Because it can be assumed that the random-
ization has produced groups that do not differ in the mean and
distribution of their true scores on the construct measured by the
two tests, the test scores can each be converted to a common metric
(e.g., the standardized z score metric).

Common Test Equating for Experiments

This novel design, which is schematized in the bottom portion of
Table 3, is characterized by (a) each participant being tested no
more than once on Test Forms A, B, and D; (b) one group in which
Test Form A is paired with the manipulation condition and Test
Form B serves as the comparison measurement; (c) one group in
which Test Form B is paired with the manipulation condition and
Test Form A serves as the comparison measurement; and (d) in
both groups, Test Form D serving as a common anchor to which
Test Forms A and B can be calibrated. The anchor test (Test Form
D) allows the experimental outcomes to occur on a common
metric, such that the causal effect can be deconfounded from
instrumentation artifacts associated with differential sensitivities
and/or differential difficulties of the different measurement mate-
rials. To make this idea concrete, an experiment involving cogni-
tive enhancement effects might entail randomly assigning partic-
ipants to either (a) a group in which they took Reasoning Tests A
and D after taking a sugar pill and Reasoning Test B after taking
the stimulant medication or (b) a group in which they took Rea-
soning Tests B and D after taking a sugar pill and took Reasoning
Test A after taking the stimulant medication. All participants
always experience the sugar pill and the medication conditions, but
no one takes the same reasoning test twice. Not repeating the same

measurements on a given individual may help to reduce any
practice effects on the reasoning test that might otherwise con-
found the calculated medication–sugar pill difference score. Fur-
ther, because all individuals are tested on Anchor Test D, their
scores on Tests A and B can be calibrated to a common metric,
such that meaningful (within-person across-condition) difference
scores can be computed.

A structural equation model for the common test equating for
experiments approach is displayed in Figure 3. In this figure, each
test is represented by a single variable. In this model, the specific
magnitudes of each test’s loading and intercept are allowed to
differ according to the specific test form (A, B, or D) but are
constrained to be invariant across groups. This is indicated in
Figure 3 by all loadings (�) and intercepts (	) having subscripts
that are specific to the test form. In both groups, all variables load
on Fc, the factor representative of comparison condition perfor-
mance. However, whether a given variable loads on the factor
representing the causal effect (F�) differs between groups depend-
ing on the condition that was paired with the test for the group. As
such, Test B loads on the causal effect in Group 1 but not Group

Table 3
Designs for Test Equating and Test Equating for Experiments

Group Test A Test B Test D

Common person equating
1 X
2 X
3 X X

Common test equating
1 X X
2 X X

Equating by randomization
1 X
2 X

Common test equating for experiments
1 Comparison Manipulation Comparison
2 Manipulation Comparison Comparison

Note. An X denotes a measurement.

Figure 3. Structural equation models for common test equating for ex-
periments. The subscripts on Y correspond to test forms A, B, or D. See
Table 3 for a schematization of how data are collected for this design,
Table 2 for a glossary of symbols used, and the in-text description for
further details.
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2, and Test A loads on the causal effect in Group 2 but not Group
1. This amounts to a simple within-subjects design specified to
occur at the factor level (i.e., the manipulation–comparison dif-
ference score is calculated from factors rather than manifest ob-
servations). As in the simple within-subjects design, this approach
does not include provisions for the estimation of factors represen-
tative of time- or sequence-related changes. However, compared
with the simple within-subjects design, this approach has the
advantage of never repeating measurements of the same partici-
pant with the same test, thereby potentially reducing reactive
effects. Later on, a more complex design is introduced that com-
bines the advantages of test equating for nonrepeated measure-
ments with those of the Between � Within design for controlling
for time- and sequence-related changes.

A General Framework for Experiments

Procedures have been reviewed that demonstrate how one can
begin to separate both the mean effects of and individual differ-
ences associated with the passage of time, the sequences of mea-
surement, and the specific measurement materials used, from those
associated with the actual causal effect of the experimental ma-
nipulation. Whereas the preceding statistical models have been in
path diagram form for specific data collection methods, a general
equation-based model is presented here to represent how all three
influences (manipulation condition vs. comparison condition, se-
quence/time, and test form/measurement materials) operate in an
experiment:

Yw,m,p,n � 	w � �w � Fc,n � m � �w � F�,n � p � �w � FT,n

� uw,p,m,n. (5)

This model explains that the score on measure w for person n,
administered in position p in the presence or absence of the
manipulation (m), is a function of a test-specific intercept (	), a
factor representing individual differences in comparison condition
performance (Fc), a factor representing the causal effect of the
manipulation (F�), an extraneous variable factor (or threat factor)
representing the effects of validity threats associated with the
sequence/time of testing (FT), and an assessment-specific unique
(residual) factor (u).6 The parameter � is a test-specific scaling
coefficient (factor loading). On the right side of the equation, m
and p act as (typically dummy coded) coefficients that denote
whether the material was accompanied with (1) or without (0) a
manipulation and whether the test was administered first (0) or
subsequently (1) in the sequence, respectively. With the exception
of the unique factors, the factors each have their own means (�, the
average effects) and variances (�2, individual differences in the
effects) and for many designs are allowed to have covariances with
one another (�). For some designs, the unique factors can be
allowed to have their own variances (�w

2 ). Conventional factor
identification constraints (e.g., fixing a single loading to 1 and a
single intercept to 0) are necessary.

Equation 5 makes explicit the rather straightforward assump-
tions on which each of the preceding analytical models (i.e., the
path diagrams depicted in Figures 1–3) were constructed. First, the
causal effect (F�) affects performance only on measurements that
have been paired with the experimental manipulation. Second, the

threat factor that is associated with extraneous variables (FT) does
not affect performance on the first measurement occasion and
always affects performance on the subsequent measurement occa-
sion. Third, test difficulty (the test intercepts), the extent to which
the tests reflect the latent outcome (the factor loadings), and errors
of measurement (the variances of the unique factors) are properties
of the test, rather than the person, such that they are invariant
across the groups or conditions. It follows from these assumptions
that the presence versus absence of the experimental manipulation,
the sequential positions of measurement, and the measurement
instruments, combine to produce individual levels of performance
on the outcome of interest, Y. Note that, although not represented
in Equation 5, the comparison condition performance (Fc), the
causal effect (F�), and the net effect of extraneous variables (FT)
can be regressed on (or allowed to covary with) other measured
variables or latent factors for which data may be available.

The path diagrams displayed in this article can all be considered
instantiations of Equation 5, with specification of the m and p
coefficients to correspond to each specific design’s features and
with constraints placed on the Fc, F�, FT, and u factor variances
and covariances to ensure model identification. Such design-spe-
cific parameter specifications and constraints can be found in Table
C1 of Appendix C. Table C1 also contains Equation 5 specifica-
tions for the two advanced experimental designs that are discussed
next. These designs integrate many of the advantageous features of
the preceding designs (e.g., randomization, a comparison condition
control group, multiple nonrepeated measurements), while allow-
ing for identification of all components of the comparison condi-
tion performance (Fc), causal effect (F�), and extraneous variable
(FT) factor variance–covariance matrix, thereby reducing potential
estimation biases with respect to the causal effect.

Two Advanced Experimental Designs

The framework developed in this article enables the careful
development of novel experimental designs that differ in their
combinations of methods or materials of measurement, the pres-
ence versus absence of the key manipulation, and the sequences in
which the measurements and manipulation presence versus ab-
sence occur. The specific design has direct implications for the
parameters that can be estimated (identified) in the corresponding
statistical model. Table 4 schematizes two designs that allow for
identification of all three (Fc, F�, and FT) factors in Equation 5 and
all covariances between them. As was the case for the standard
experimental designs reviewed earlier, the following designs rely
on randomized assignment of participants to conditions.

6 Some researchers may not be interested in analyzing individual causal
effects per se but may rather be interested in analyzing individual differ-
ences in performance under two different experimental conditions. The
current framework could be straightforwardly adapted for such purposes.
Rather than modeling outcome Y as a function of a threat factor, compar-
ison condition performance, and the causal effect of the manipulation/
treatment, one would model Y as a function of a threat factor, Condition 1
performance, and Condition 2 performance.
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Three-Group Repeated Measure Design

This design can be considered a further elaboration of the
Between � Within design. This design separates the effects of
the key manipulation and having been previously measured by
way of measurements in both the comparison and the manipu-
lation condition and both with and without the experience of a
previous measurement. Like the Between � Within design, the
three-group repeated measure design contains a comparison
condition:comparison condition repeated measurement control
group and a comparison condition:manipulation condition re-
peated measurement experimental group. The additional third
group, a manipulation condition:comparison condition repeated
measurement experimental group, helps to further deconfound
the manipulation from the threat-related factor. This allows for
identification of the correlation between the causal effect (F�)
and the net effect of extraneous influences (FT) and can prevent
a biased estimate of variance of the causal effect (�F�

2 ) that
may arise in the Between � Within design (see Appendix B).
Application of this design to a cognitive enhancement experi-
ment would entail randomly assigning participants to either (a)

a group that takes a sugar pill and a reasoning test on Day 1 and
then repeats this process on Day 2, (b) a group that takes a sugar
pill and a reasoning test on Day 1 and then takes the medication
and the same reasoning test on Day 2, or (c) a group that takes
the medication and a reasoning test on Day 1 and then takes a
sugar pill and the same reasoning test on Day 2.

A three-group path-diagram representation of the application of
Equation 5 to the data produced by the three-group repeated
measure design is depicted in Figure 4. The subscripts on Y
correspond to the first and second measurements. In parentheses
underneath the Y variables are indications of whether the measure-
ment was paired with the comparison condition (e.g., the sugar
pill) or the manipulation condition (e.g., the medication). No
manipulation condition is administered to Group 1; hence, the
causal effect, F�, does not affect performance on either Y1 or Y2

(this is equivalent to the m coefficient in Equation 5 taking on a
value of 0 for both measurements). In Group 2, the causal effect
influences the second measurement (Y2) but not the first measure-
ment (Y1). Finally, in Group 3, the causal effect influences the first
measurement (Y1), and a carryover of this causal effect to the
second measurement (Y2) is freely estimated as 
 (i.e., the m

Table 4
Two Advanced Experimental Designs

Group First measurement Second measurement

Three-group repeated measure
1 Comparison Comparison
2 Comparison Manipulation
3 Manipulation Comparison

Three-group nonrepeated measures
1 Comparison (A) Comparison (B)
2 Comparison (B) Manipulation (A)
3 Manipulation (A) Comparison (B)

Note. A and B are test forms.

Figure 4. Structural equation model for the three-group repeated measure design. The subscripts on Y
correspond to the first measurement (1) and the second measurement (2). See Table 4 for a schematization of
how data are collected for this design, Table 2 for a glossary of symbols used, and the in-text description for
further details.
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coefficient in Equation 5 is freely estimated for Y2). This freely
estimated carryover effect allows for the possibility that, for ex-
ample, taking the medication on Day 1 has a cognitive enhance-
ment effect that persists to some extent until Day 2. In all three
groups, the threat factor (FT) affects performance on the second
measurement but not the first and is therefore reflective of a
sequence/time effect. As in the Between � Within design, this
threat factor absorbs reactive effects, history effects, maturation
effects, and regression to the mean. With this design, all terms in
the comparison condition performance (Fc), causal effect (F�), and
extraneous variable (FT) factor variance–covariance matrix (�Fc

2 ,
�F�

2 , �FT
2 , �c,�, �c,T, and ��,T) are identified. To make this con-

crete, a researcher would be able to estimate the correlation be-
tween sugar-pill performance and the cognitive enhancement ef-
fect, the correlation between sugar pill performance and the net
effect of extraneous variables, the correlation between the net
effect of extraneous variables and the cognitive enhancement ef-
fect, and the means and variances of sugar pill performance, the
cognitive enhancement effect, and the net effect of extraneous
variables. This is the first design discussed in this article to enable
identification of all of these parameters.

Three-Group Nonrepeated Measures Design

This design is the same basic design as the three-group repeated
measure design; however, it ensures that the same method of
measurement is never repeated. As described earlier, all three
groups are measured twice, but here different measures/test forms
are used for each of the two measurements. That this design
includes one group in which the comparison condition measure-
ment is made first with Test Form A and one group in which the
comparison condition measurement is made first with Test Form B
effectively results in the equating of the different test forms by way

of the randomization process, and the experimental outcomes can
therefore be considered calibrated to a common metric.

As in the three-group repeated measures design, this design
allows for estimation of sequence- and time-related influences;
however, because retesting occurs with novel methods/materials of
measurement, such influences are potentially reduced. A three-
group path-diagram representation of the application of Equation 5
to the data produced by the three-group nonrepeated measure
design is depicted in Figure 5. The subscripts on Y correspond to
the first and second measurement, with factor loadings and test
difficulties varying according to the test form used. Standard factor
identification constraints are applied, in this case by constraining
the factor loading of Test Form A to 1 and constraining the
intercept of Test Form A to 0. As in previous designs, extraneous
variable factor, FT, is reflective of reactive effects, history effects,
maturation effects, and regression to the mean, and all terms in the
comparison condition performance (Fc), causal effect (F�), and
extraneous variable (FT) factor variance–covariance matrix (�Fc

2 ,
�F�

2 , �FT
2 , �c,�, �c,T, and ��,T) are identified.

It is of note that this design does not include all possible
combinations of test form, measurement sequence, and condition
(manipulation condition vs. comparison condition). Instead, the
minimum number of combinations are included that allow for
complete identification of the Fc, F�, and FT variance–covariance
matrix. To illustrate, Test Forms A and B each appear in first (Y1)
and second (Y2) positions in the sequence, as do manipulation-
present and manipulation absent conditions; however, the manip-
ulation-present condition is always paired with Test Form A. Of
course, a fully counterbalanced, albeit much more complex, design
that included all possible combinations of test form, measurement
sequence, and condition would allow for assumptions regarding
measurement invariance to be tested or, put another way, for
would allow for testing of whether the causal effect depends on the

Figure 5. Structural equation model for the three-group nonrepeated measures design. The subscripts on Y
correspond to the first measurement (1) and the second measurement (2). See Table 4 for a schematization of
how data are collected for this design, Table 2 for a glossary of symbols used, and the in-text description for
further details.

309INDIVIDUAL DIFFERENCES METHODS FOR EXPERIMENTS



type of material used. This issue is discussed in further detail under
the Assumptions and Limitations section of the Discussion (see the
Measurement Invariance and Statistical Additivity section).

Simulation Studies

Method

Here, simulation is used to demonstrate how each of the de-
scribed designs performs under a series of conditions in which
potential threats to internal validity are progressively added. The
strengths and weaknesses of each of the structural equation model–
design pairings with respect to internal validity have already been
discussed. This section serves to illustrate these strengths and
weaknesses with actual numbers.

The simulations were specified to resemble the hypothetical
cognitive enhancement experiment that has been used as an ex-
ample throughout this article. In the comparison condition, partic-
ipants take a sugar pill and are then administered a reasoning test.
In the hypothetical manipulation condition, participants take a
stimulant medication and are then administered a reasoning test,
for which up to three alternate forms are available (i.e., each form
is composed of the same types of questions representative of the
same underlying ability but the different test forms do not contain
any of the exact same questions). Scores on the reasoning tests
were placed on continuous 0 through 15 point scales. In all
generating models, true comparison (sugar pill) condition perfor-
mance, Fc, was specified to have a mean (�Fc) of 7 and a variance
(�Fc

2 ) of 1. Moreover the causal effect (the cognitive enhancement
effect), F�, was given a mean (�F�) of 2 and a variance (�F�

2 ) of
1. In other words, the medication enhanced reasoning performance
by 2 points on average, but this enhancement varied from person
to person, such that, for example, some people’s scores were
enhanced by 1 point and others’ were enhanced by 3 points. A
small magnitude positive covariance (�c,�) of .20 (r � .20) was
set between comparison condition performance and the causal
effect. An exogenous covariate, x (e.g., age), was also included.
It was specified to have a variance (�x

2) of 1, and covariances
with both comparison condition performance (�x,c) and the
causal effect (�x,�) of .40 (r � .40).

A best-case-scenario no-threat baseline simulation was first con-
ducted and threats to validity were progressively added in four
discrete steps. In Step 1, nontrivial error of measurement (�u

2 �
.20) was specified. In Step 2, the designs that implement multiple
test forms were specified to use test forms that were nonparallel
(�A � 1.00, �B � 1.10, �D � .80, 	A � 0.00, 	B � �1.00, 	D �
2.00). In Step 3, a sequence effect was introduced (�T � 1, �T

2 �
.50). In Step 4, the sequence effect was specified to have nonzero
covariances with comparison condition performance (Fc), the
causal effect (Fm), and the covariate (x), such that �c,T � .30,
�m,T � .30, and �x,T � .30. For all simulations, data were
generated for a total of 200 hypothetical participants evenly dis-
tributed across groups. For each design at each step of the simu-
lation, 100 data sets were generated and analyzed (i.e., each
parameter estimate reported later is the average estimate from 100
replications).

In addition to those designs discussed earlier in this article, two
other designs were fit to the simulated data. The first (a counter-

balanced order approach) was a within-subjects design in which
the order of manipulation-present and manipulation-absent mea-
surements is randomly counterbalanced between participants, data
are collapsed across groups, and manipulation-present minus ma-
nipulation-absent difference scores are calculated for each individ-
ual and analyzed according to a conventional within-subject pro-
cedure in which dummy-coded variables representative of order
(0 � first, 1 � second) are controlled for. The second (a counter-
balanced forms approach) was a similar design in which different
testing materials are used for each measurement, the pairing of
testing materials with manipulation presence versus absence is
counterbalanced between participants, data are collapsed across
groups, and manipulation-present minus manipulation-absent dif-
ference scores are calculated for each individual and analyzed
according to a conventional within-subject procedure in which
dummy-coded variables representative of testing material (0 �
Test Form A, 1 � Test Form B) are controlled for. Both designs are
schematized in the bottom portion of Table 1. These two designs
were fit because they might intuitively appear to control for threats
associated with sequence effects (reactivity, maturation, and his-
tory threats) or noncomparable test forms (instrumentation
threats), respectively. Note that although it would be possible to
estimate a (somewhat constrained) model that includes a random
threat factor (i.e., FT) from data generated by the counterbalanced
position design, this was not done here, because analyses of the
counterbalanced position design are meant to serve as an illustra-
tion of the results of best current practice.

Results

Results of the simulations are presented in Table 4, which is
subdivided into sections corresponding to the sequential steps
described earlier. At the top row of each section, the true parameter
values from the generating model are provided. In the ensuing
rows, the average parameter estimates from 100 replications (with
200 participants per replication) for each design are provided.
Average estimates that depart from the true values by more than
.05 units are in bold. Because the true variances of comparison
condition performance (Fc) and the manipulation effect (F�) were
set at 1 (�Fc

2 � 1, �F�
2 � 1), an estimate–true value discrepancy of

.05 corresponds to a Cohen’s d of .05, with respect to means (�s),
and a correlation unit of .05, with respect to covariances. Here, this
.05 level is considered nontrivial bias that suggests that a design
may be inappropriate for dealing with the validity threat.7

Baseline simulation. It can be seen that all approaches per-
formed perfectly with respect to mean estimates, and all but one
approach performed perfectly with respect to variance/covariance
estimates, in this best case scenario simulation. That is, all ap-
proaches produced estimates of means of comparison condition
performance (Fc) and the causal effect (F�), and all but one
approach produced estimates of the variances of and covariances

7 Parameter bias is sometimes indexed as a percentage deviation from
the true parameter value, with bias greater than 5% being the conventional
cutoff. Using percentages, however, is inappropriate when true parameter
values are very small or 0. Nevertheless, the current .05 unit cutoff is
compatible with the 5% convention in that F� and Fc each have variances
of 1, such that a .05 unit deviation is equivalent to a 5% deviation.
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among Fc, F�, and the covariate (x) that were nearly identical to
those specified in the generating model. The only problematic
design in this baseline simulation was the simple between-subjects
design. Because this design does not have a provision for measur-
ing the same participants in both manipulation and comparison
conditions, the covariance between comparison condition perfor-
mance (Fc) and the causal effect (F�) cannot be estimated, which
is equivalent to the �c,� parameter being incorrectly constrained to
zero. This incorrect constraint produces a biased estimate of the
variance of the causal effect (�F�

2 ). The discrepancy between the
true and estimated values for �F�

2 is approximately .40 units, which
is, not coincidentally, twice the value of the unmodeled �c,�

covariance (see Appendix A for derivation). It is of note that, had
the true value of �c,� been zero, the simple between-subjects
design would have been well suited to (i.e., unbiased with respect
to) these data. Even in the current situation, it accurately recovers
the covariate–causal effect covariance, �x,�.

Step 1: Imperfect measurement. The presence of measure-
ment error produced a number of notable results. First, because no
design, except for the common test-equating for experiments de-
sign, includes a measurement model that separates true (or com-
mon) variance from error (or unique) variance, it is not surprising
that many of the estimates of the variance in comparison condition
performance (�Fc

2 ) are inflated by the amount of unmodeled mea-
surement error. This is typical in individual differences research
and is generally considered tolerable when test reliabilities are
moderate to high.

Second, in the basic within-subjects design and the two coun-
terbalanced designs, the addition of measurement error resulted in
an overestimate of the variance of the causal effect (�F�

2 ) and an
underestimate of the covariance of comparison condition perfor-
mance and the causal effect (�c,�). It is illustrative to examine
more closely the biases that arose in the simple within-subjects
design. For this design, the estimate of the variance of the causal
effect (�F�

2 ) is upwardly biased by .40 units, which is twice the
amount of error associated with a single measurement. This is
consistent with the well-known fact that, in calculating difference
scores, the errors from both measurements become compounded
(see, e.g., Cronbach & Furby, 1970). It can be seen that the
estimate of the covariance between comparison condition perfor-
mance and the causal effect (�c,�) is biased downward by the value
of the measurement error, which is consistent with a well-estab-
lished literature on regression to the mean artifacts (Campbell &
Kenny, 1999). These same results occur for the two counterbal-
anced approaches, which are, in this step, equivalent to the simple
within-subjects design.

In contrast, measurement error did not bias estimates of the
variance of the causal effect (�F�

2 ) or the comparison condition–
causal effect covariance (�c,�) in the test-equating for experiments
design, the Between � Within design, the three-group repeated
measure design, or the three-group nonrepeated measures design.
Why are the estimates from these designs not biased in ways
similar to the ones discussed earlier? For the common test-equat-
ing for experiments design, the answer is straightforward. Mea-
surement error does not affect estimates at the structural level
because measurement error is removed at the measurement level.
For the Between � Within design, the three-group repeated mea-
sure design, and the three-group nonrepeated measures design, the
answer is somewhat more novel. Because these designs each

include a control group that is measured multiple times in the
absence of the experimental manipulation, these designs are able to
quarantine measurement-error associated biases from the causal
effect factor, F�, and into the exogenous influences factor, FT.
That is, �c,� and �F�

2 parameters are estimated without bias,
whereas the parameter representing the comparison condition–
exogenous influences factor covariance (�c,T) is attenuated (by
approximately .20 units, i.e., the magnitude of the measurement
error), and the variance of the exogenous influences factor (�FT

2 ) is
inflated (by approximately .40 units, i.e., twice the measurement
error). Although these latter parameters, which involve the exog-
enous influence factor, FT, indeed depart from the values specified
under the generating model, this is entirely acceptable, because FT

represents unwanted effects that, if not modeled, could bias esti-
mates of the causal effect. That is, FT does not represent phenom-
ena of experimental interest but is rather included simply to
decontaminate the causal effect factor, which does represent the
phenomenon of interest.

Step 2: Nonparallel indicators. This step, in which alternate
test forms were specified to be nonparallel, resulted in biased
estimates of the variance of the causal effect (F�) and the covari-
ance between comparison condition performance and the causal
effect (�c,�) in the counterbalanced forms design but did not result
in such biased estimates in the common test-equating for experi-
ments design or the three-group nonrepeated measures design. The
reasons for these differences are straightforward. The counterbal-
anced forms approach does not explicitly calibrate the different
test forms to a common metric, whereas the common test-equating
for experiments design and the three-group nonrepeated measures
design do.

The results with respect to the counterbalanced forms design are
somewhat concerning, given that researchers who use a counter-
balanced forms approach likely do so because it might intuitively
appear to correct for lack of measurement equivalence of alternate
forms. The results with respect to the common test-equating for
experiments design and the three-group nonrepeated measures
design are, alternatively, encouraging. When the goal is to use a
design that avoids the reactivity associated with repeated admin-
istrations of the same test, these latter two approaches each appear
to be sensible choices.

Step 3: Sequence/time-related effects orthogonal to covari-
ate and other components. This step, in which sequence/time-
related effects were specified to occur, highlights the deficiencies
of a number of designs. It is illustrative to first examine the biases
that arose in the simple within-subjects design. This design pro-
duces a simple difference score representative of all experimental
change, including both the causal effect of interest and the un-
wanted effects of history, maturation, reactivity, and regression to
the mean. For example, the magnitude of the mean causal effect
(�F�) was overestimated at approximately 3.00, which is the sum
of the mean of the causal effect (2.00) and the sequence/time-
associated gain (1.00). Moreover, the variance in the causal effect
(�F�

2 ) was estimated at 1.90, which reflects the sum of the actual
between-person variation in the causal effect (1.00), the error
terms from both measurements (2 � .20 � .40), and the between-
person variation in the unmodeled sequence/time-associated gain
(.50).

The counterbalanced position approach avoided bias in the
estimate of the mean causal effect (�F�) but did not prevent the
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bias in the estimate of the variance and covariance terms. It can be
seen in Table 4 that estimated variances of comparison condition
performance (�Fc

2 ) and manipulation-associated change (�F�
2 ) are

highly inflated (1.45 compared with a true value of 1.00, and 1.87
compared with a true value of 1.00, respectively). Similarly, the
covariance between comparison condition performance and ma-
nipulation-associated change (�c,�) is dramatically underestimated
(�.24 compared with a true value of .20). This is quite concerning
given that researchers who use a counterbalanced position ap-
proach likely do so because it might intuitively appear that se-
quence/time effects should cancel out.

The common test-equating for experiments approach was also
heavily biased by the addition of sequence/time-related effects that
constituted this step. It can be seen in Table 5 that, for this
approach, estimates of average comparison condition performance
(�Fc), variance in comparison condition performance (�Fc

2 ), vari-
ance in the causal effect (�F�

2 ), and the covariance between com-
parison condition performance and the causal effect (�c,�) were
incrementally biased by these added specifications (�Fc � 7.99
compared with a true value of 7.00; �Fc

2 � 1.43 compared with a
true value of 1.00; �F�

2 � .84 compared with a true value of 1.00;
and �c,� � .30 compared with a true value of .20). Although it is
likely that, in many cases, the common test-equating for experi-
ments approach can be used to avoid reactive effects, if any
sequence/time-related effects persist, the common test-equating for
experiments approach is apparently ill-equipped to deal with them.

The approaches that were resilient to the specification of se-
quence/time-related effects that occurred in this step were those
that explicitly modeled an FT threat factor. These were the Be-
tween � Within design, the three-group repeated measure design,
and the three-group nonrepeated measures design. It can be seen in
Table 4 that each of these three approaches produced accurate
estimates of the mean of, variance of, and covariances involving
the manipulation factor, F�, and that the mean and variance of the
sequence/time-related effects were appropriately absorbed by the
extraneous variable factor, FT.

Step 4: Sequence/time-related effects correlated with cova-
riate and other components. This final step, in which the
sequence/time-related effects were specified to be correlated with
the covariate (x) and the comparison condition (Fc) and causal
effect (F�) factors, can be considered a worst case scenario and,
accordingly, resulted in the most pervasive pattern of parameter
biases. The simple within-subjects design is once again illustrative.
It can be seen in Table 4 that, for this design, the unmodeled
covariance between the covariate and the sequence effect(�x,T)
was inappropriately absorbed into the covariance between the
covariate and the causal effect (�x,�), thereby inflating it. Simi-
larly, the unmodeled covariance between comparison condition
performance and the sequence effect (�c,T) was inappropriately
absorbed into the estimate of the covariance between comparison
condition performance and the causal effect, �c,�.

Because it performed very well in all previous steps, the most
notable bias arising in this step is observed in the Between �
Within approach. The inability of this approach to estimate the
covariance between the causal effect and the sequence effect
(��,T) resulted in bias in the estimated variance of the causal effect
(�F�

2 ) by approximately twice the unmodeled ��,T term (see Ap-
pendix B for a derivation).

In this final step, the two advanced experimental designs intro-
duced in this article—the three-group repeated measure design and
the three-group nonrepeated measures design—remained resilient
to the validity threats. All mean, variance, and covariance patterns
involving the causal effect (F�) remained unbiased. All threats,
including sequence/time-related effects and regression to the
mean, were absorbed by the threat factor (FT), and for the three-
group nonrepeated measures approach, the use of nonparallel
alternate forms did not introduce estimation bias. These results
illustrate the added value of the novel three-group repeated mea-
sure and the three-group nonrepeated measures approaches.

Discussion

Summary. In this article, a framework for collecting and
analyzing data in randomized single-manipulation experiments
was introduced. Researchers can vary the key manipulation, the
instruments of measurement, and the sequences of the measure-
ments and manipulations across participants, thus allowing both
means and individual differences in the effects of each of these
components to be statistically separated. A number of classical
designs, a test-equating for experiments approach, and two ad-
vanced experimental designs were explicated and evaluated for
their robustness to internal validity threats. Simulation studies
illustrated that, although classical designs produce accurate esti-
mates of mean effects, more sophisticated designs are often nec-
essary for accurate inferences with respect to individual differ-
ences. Compared with the classical designs, the three-group
repeated measure design and the three-group nonrepeated mea-
sures design both have particular advantages in their robustness to
estimation bias when reactive, history, or maturation effects oper-
ate, particularly if individual differences in these effects covary
with individual differences in the causal effect. Researchers, how-
ever, should not feel limited to the designs discussed in this article.
The designs discussed should merely be taken as examples of how
multiple-group structural equation models can be used to aid in the
conceptualization of issues of individual differences in causal
effects when designing experiments and analyzing data. Using the
framework introduced in this article, researchers can customize
their designs to fit their specific empirical needs.

Application and implementation of methods. The struc-
tural equation models described in this article can be implemented
with any standard structural equation modeling software that al-
lows for multiple group models. Example Mplus (L. K. Muthén &
Muthén, 1998–2007) scripts for the Monte Carlo simulations
reported here are available in the online supplemental materials for
this article. These scripts may be advantageous for substantive
researchers who are interested in producing power estimates when
planning experiments, examining the feasibility of adaptations of
the models discussed here, or analyzing real data that they have
collected. It should be emphasized, however, that the Mplus soft-
ware program is not necessary for carrying out the methods de-
scribed here. Any contemporary structural equation program can
be used to implement these methods.

Assumptions and limitations.
Convergent validity. Two of the designs introduced in this

article are based on the assumption that experimental outcomes
occur on unobserved factors that can be measured and operation-
alized in many alternative ways. Compared with those who are
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Table 5
Results of Simulation Studies

Design

Means Variances Covariances

�Fc �F� �FT �Fc
2 �F�

2 �FT
2 �c,� �c,T ��,T �x,c �x,� �x,T

Baseline: Measures approach
perfect reliability
(reliability � .99)

True 7.00 2.00 0.00 1.00 1.00 0.00 0.20 0.00 0.00 0.40 0.40 0.00
Simple within subjects 7.00 1.99 — 1.01 0.98 — 0.22 — — 0.40 0.41 —
Simple between subjects 6.98 2.00 — 1.00 1.42 — — — — 0.41 0.41 —
Between � Within 7.00 2.02 �0.00 1.02 1.01 0.02 0.23 �0.01 — 0.41 0.42 �0.00
Counterbalanced position 7.01 1.98 — 1.02 1.02 — 0.20 — — 0.40 0.41 —
Counterbalanced forms 7.01 1.98 — 1.02 1.02 — 0.20 — — 0.40 0.41 —
Common test equating for

experiments 7.00 2.00 — 1.00 1.01 — 0.20 — — 0.40 0.39 —
Three-group repeated measure 7.00 2.01 0.00 1.03 1.00 0.02 0.21 �0.01 �0.00 0.41 0.41 �0.00
Three-group nonrepeated

measures 7.00 2.01 �0.00 1.03 0.99 0.02 0.21 �0.00 �0.00 0.41 0.41 0.00
Step 1: Imperfect measurement

(reliability � .83)
True 7.00 2.00 0.00 1.00 1.00 0.00 0.20 0.00 0.00 0.40 0.40 0.00
Simple within subjects 7.00 2.01 — 1.21 1.40 — 0.01 — — 0.40 0.41 —
Simple between subjects 6.98 2.00 — 1.19 1.42 — — — — 0.41 0.41 —
Between � Within 7.00 2.01 �0.01 1.18 1.00 0.39 0.20 �0.19 — 0.39 0.41 �0.00
Counterbalanced position 7.00 1.98 — 1.21 1.40 — 0.01 — — 0.40 0.41 —
Counterbalanced forms 7.01 1.98 — 1.21 1.40 — 0.01 — — 0.40 0.41 —
Common test equating for

experiments 7.01 2.02 — 1.00 1.02 — 0.21 — — 0.40 0.39 —
Three-group repeated measure 7.00 2.01 0.00 1.22 0.99 0.40 0.21 �0.20 0.00 0.40 0.41 0.00
Three-group nonrepeated

measures 7.00 2.01 �0.00 1.22 1.01 0.40 0.20 �0.19 �0.00 0.40 0.41 0.00
Step 2: Nonparallel indicators

True 7.00 2.00 0.00 1.00 1.00 0.00 0.20 0.00 0.00 0.40 0.40 0.00
Simple within subjectsa

Simple between subjectsa

Between � Withina

Counterbalanced positiona

Counterbalanced forms 7.01 1.98 — 1.31 1.51 — 0.03 — — 0.42 0.43 —
Common test equating for

experiments 6.99 2.00 — 1.00 1.02 — 0.21 — — 0.40 0.39 —
Three-group repeated

measurea

Three-group nonrepeated
measures 7.01 2.01 0.00 1.18 1.01 0.36 0.18 �0.17 �0.01 0.40 0.39 0.01

Step 3: Sequence/reactive effects
(orthogonal to x, Fc, and
F�)

True 7.00 2.00 1.00 1.00 1.00 0.50 0.20 0.00 0.00 0.40 0.40 0.00
Simple within subjects 7.00 3.01 — 1.21 1.90 — 0.01 — — 0.40 0.41 —
Simple between subjectsa

Between � Within 7.01 1.99 0.99 1.19 0.96 0.93 0.21 �0.22 — 0.40 0.40 0.00
Counterbalanced position 6.99 2.04 — 1.45 1.87 — �0.24 — — 0.41 0.41 —
Counterbalanced forms 7.01 2.98 — 1.31 2.07 — 0.03 — — 0.43 0.43 —
Common test equating for

experiments 7.99 2.01 — 1.43 0.84 � 0.30 — — 0.43 0.36 —
Three-group repeated measure 6.99 2.00 0.99 1.17 1.00 0.90 0.19 �0.19 0.01 0.40 0.40 0.01
Three-group nonrepeated

measures 7.00 2.00 1.01 1.18 1.02 0.87 0.18 �0.17 �0.02 0.40 0.39 0.00
(table continues)
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interested in general constructs, researchers who are interested in
specific outcomes or behaviors may therefore find some designs
less suited to their goals.

Measurement invariance and statistical additivity. The as-
sumption that the outcomes in an experiment occur on general
factors, rather than specific tests, requires fulfillment of measure-
ment invariance across positions in the sequence (i.e., whether the
measure was administered first or second) and measurements in
the presence versus absence of the manipulation. If measurement
invariance holds, it can be concluded that the changes occur on the
factors rather than the specific measures. A full treatment of
measurement invariance is beyond the scope of the current article,
but a number of detailed articles on the subject exist (e.g., Horn &
McArdle, 1992; Meredith, 1993).

The methods advocated here also rely on the closely related
assumption of statistical additivity of the variance components
and of the mean effects. That is, these methods are based on the
premise that experimental situations in which none or a subset
of the change influences (e.g., sequence and manipulations
effects) are operating can be used to make inferences about
experimental situations in which all influences are operating,
such that the isolated components add together to form the total
change. In some cases, examinations of measurement invari-
ance can be used to test these assumptions, but in other cases,
more elaborate procedural and statistical methods may be re-
quired. One design that was not discussed here but can be used
to investigate whether the effects of an experimental manipu-
lation differ according to whether individuals were previously
tested is the Solomon four-group design (Solomon, 1949). An
analogous design could prove useful in determining whether the
effects of an experimental manipulation differ according to
whether individuals were previously tested on the same or a
different version of a test or measure (these possibilities are
closely related to what Poulton, 1975, termed range effects).
For examination of issues of nonadditivity of unmeasured vari-
ance components (latent factors), new developments in nonlin-

ear and interactive factor analysis are likely to prove useful
(e.g., Klein & Moosbrugger, 2000; Tucker-Drob, 2009).

Covariation and causation. The maxim that covariation
does not (necessarily) imply causation holds true for the indi-
vidual differences approaches described in this article. Just
because an exogenous individual differences variable is related
to the size of the causal effect of an experimental manipulation
does not mean that this variable causes a resistance or vulner-
ability to the experimental manipulation. It is very possible that
an unmeasured set of third variables plays the true causal role.
However, the methods reviewed here can be used to isolate
individual differences in the causal effect of the manipulation
from those related to other characteristics of the experimental
situation. Such assignment of variation to the appropriate
sources is an important preliminary step in the falsification of
causal hypotheses. Of course, in instances in which the exog-
enous correlate of the causal effect is itself a manipulated
variable, this caveat does not apply.

Focus on the causal effect. The methods described in this
article were developed with the goal of distilling mean and
individual differences associated with the causal effect from
those associated with other aspects of the experimental situa-
tion, such as reactivity, maturation, and history. These methods
may therefore be less useful when the primary research focus is
on (what are, in the current context, considered) validity threats.
For example, the cognitive psychologist may be interested in
retest-related transfer effects, the developmental psychologist
may be interested in age-related maturation, and the demogra-
pher may be interested in history-related cohort effects. In the
current framework, these influences are all considered se-
quence-related threats, and provisions are not included for
separating them from one another. Other methodological works
specifically focus on these sorts of issues (e.g., Baltes & Nes-
selroade, 1970; McArdle & Woodcock, 1997), and the inter-
ested reader is encouraged to consult them.

Table 5 (continued)

Design

Means Variances Covariances

�Fc �F� �FT �Fc
2 �F�

2 �FT
2 �c,� �c,T ��,T �x,c �x,� �x,T

Step 4: Sequence/reactive effects
(correlated with x, Fc, and
F�)

True 7.00 2.00 1.00 1.00 1.00 0.50 0.20 0.30 0.30 0.40 0.40 0.30
Simrple within subjects 7.00 3.01 — 1.21 2.51 � 0.31 — — 0.41 0.72 —
Simple between subjectsa

Between � Within 7.00 2.03 1.00 1.21 1.63 0.89 0.26 0.09 — 0.41 0.42 0.30
Counterbalanced position 7.00 2.04 — 1.76 1.87 — �0.09 — — 0.56 0.41 —
Counterbalanced forms 7.01 2.98 — 1.31 2.74 — 0.36 — — 0.43 0.75 —
Common test equating for

experiments 8.00 2.00 — 2.26 1.31 — 0.37 — — 0.70 0.39 —
Three-group repeated measure 6.99 2.00 0.98 1.17 1.00 0.90 0.19 0.10 0.30 0.40 0.40 0.31
Three-group nonrepeated

measures 7.00 2.01 1.01 1.18 1.01 0.87 0.19 0.12 0.28 0.40 0.39 0.30

Note. Rows labeled True contain the parameter values that were specified in the generating model. Values in bold depart from the true value by greater
than .05 units. Fc is a factor representing comparison condition performance. F� is a factor representing the manipulation-associated causal effect. FT is
a factor representing threats to experimental validity. A dash indicates that the parameter was not estimated, which is equivalent to it being fixed to zero.
a The threat was not relevant to the design in question.
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Future Directions

The approaches reviewed and introduced in this article can be
directly implemented for experimental research in many substan-
tive areas. Nevertheless, there is much room for future work. One
main issue is power. Power, of course, depends on a host of
characteristics of the sample, data pattern, and analytical model,
such that any power study will therefore be limited in its gener-
alizability. In designing a specific experiment, the most appropri-
ate type of power analysis would therefore be one tailored to that
experiment, but a general treatment of power for individual-dif-
ferences approaches to experiments would nevertheless be quite
useful.

Although the framework put forth is quite general for many
sorts of single-manipulation experiments, a number of extensions
are warranted. Perhaps the most obvious extension involves the
addition of provisions for multiple levels of the manipulation and
three or more measurements per person. This would allow for
conversion of the statistical framework from one of a difference
score approach to one of a growth curve, or random effects,
approach. One way that this could be achieved is by allowing the
m and p coefficients in Equation 5 to act as growth-curve basis
coefficients (see, e.g., McArdle & Nesselroade, 2003), taking on
values as parametric, or freely estimated, functions of manipula-
tion level and occasion of measurement, respectively. Extension of
the framework to multiple manipulation experiments would also
be particularly valuable. Such an extension would require the
development of provisions for a host of added methodological
issues, including interference and interactions among the different
manipulations. Finally, as discussed earlier, future provisions for
latent variable interactions in experiments would be particularly
valuable.

Conclusion

This article focused on three core ideas. First, random assign-
ment, the sine qua non of experimental science, permits research-
ers to examine not only the average effects of a manipulation or
treatment but also individual differences in responsiveness to the
manipulation/treatment and their correlates. When group member-
ship is randomly assigned and an experimental manipulation is
applied to participants in only one of the two groups, any differ-
ences between the groups can be attributed to the presence versus
absence of the manipulation, including, of course, mean differ-
ences but also any differences in variances, covariances, and
regression relationships. Second, individual differences are rou-
tinely neglected in experimental science, in part because research-
ers lack appropriate experimental designs and data analytical strat-
egies. This article begins to fill this gap in the methodological
literature by presenting novel individual-differences-oriented ap-
proaches to experimental design and data analysis that control for
threats to internal validity by way of integration of classical
within-subjects, between-subjects, and test-equating methods.
Third, individual differences in the causal effects of experimental
manipulations and the relations between individual causal effects
and person characteristics are, rather than being noise or nuisance
phenomena, critically important concepts for both basic theory and
applied psychology.
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Appendix A

Biased Variance of Manipulation Estimate in Simple Between-Subjects Design

In the simple between-subjects design, comparison condition
performance, Fc, and the causal effect, F�, are assumed to be
uncorrelated for identification purposes. Here, it is shown how this
assumption, if violated, can bias the estimated variance of the
causal effect.

The value of the simple between-subjects design derives from
the premise that any differences in means, variances, and covari-
ances observed between control and experimental groups can be
attributed to the effect of the manipulation. One can represent this
more formally as follows:

YGroup1 � Fc(� u), and (A1)

YGroup2 � Fc � F�(� u), (A2)

where Y is the measured outcome, and its superscript denotes the
randomly assigned group. Fc is comparison condition performance
and is allowed to have a mean, �fc, and a variance, �Fc

2 . The causal
effect, F�, is similarly allowed to have a mean, �F�, and a
variance, �F�

2 . For identification purposes, measurement error, u, is
not allowed in this model but in reality may have variance �u

2. Also
for identification purposes, no covariance (�c,�) is allowed be-
tween Fc and F�, although one may exist in reality. It follows that
the variances of Y in Groups 1 and 2 are actually

�2
Y
Group1 � �Fc

2 � �u
2, and (A3)

�2
Y
Group2 � �Fc

2 � �F�
2 � 2 � �c,� � �u

2, (A4)

but are modeled as

�2
Y
Group1 � �̂Fc

2 , and (A5)

�2
Y
Group2 � �̂Fc

2 � �̂F�
2 . (A6)

Subtracting A5 from A6 yields the predicted variance of the
causal effect, �̂F�

2 ,

�̂F�
2 � �2

Y
Group2 � �2

Y
Group1. (A7)

Substituting A3 and A4 into A7 yields

�̂F�
2 � ��Fc

2 � �F�
2 � 2 � �c,� � �u

2
 � ��Fc
2 � �u

2), (A8)

which reduces to

�̂F�
2 � �̂F�

2 � 2 � �c,�. (A9)

Equation A9 shows that �̂F�
2 will be biased by twice the covariance

between comparison condition performance and the causal effect.
If �c,� is positive, �̂F�

2 will be inflated, whereas if �c,� is negative,
�̂F�

2 will be attenuated.

(Appendices continue)
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Appendix B

Biased Variance of Manipulation Estimate in the Between � Within Design

In the Between � Within design, the causal effect, F�, and the
threat-related change, FT, are assumed to be uncorrelated for
identification purposes. Here, it is shown how this assumption, if
violated, can bias the estimated variance of the causal effect.

The Between � Within design can be written as

Y1 � Fc � u1, (B1)

Y2
Group1 � Fc � FT � u2, (B2)

Y2
Group2 � Fc � FT � F� � u2, (B3)

where Y is the measured outcome, its superscript denotes the
randomly assigned group, and its subscript denotes whether it is
the first or second measurement. Fc is allowed to have a mean, �Fc,
and a variance, �Fc

2 . F� is the causal effect and is similarly allowed
to have a mean, �F�, and a variance, �F�

2 . FT is the threat-related
factor and is allowed to have a mean, �Fc, and a variance, �Fc

2 . The
covariances between Fc and F� (�c,�) and between Fc and FT

(�c,T) are allowed, but to achieve identification, the covariance
between F� and FT (��,T) is not allowed, although it may exist in
reality. Similarly, for identification purposes, measurement error,
u, is not identified in this model but in reality may have a variance
of �u

2. It follows that the variances and covariances of Y1 and Y2 in
Groups 1 and 2 are actually as follows:

�Y1
2 � �Fc

2 � �u
2, (B4)

�2
Y2
Group1 � �Fc

2 � �FT
2 � 2 � �c,T � �u

2, (B5)

�2
Y2
Group2 � �Fc

2 � �FT
2 � �F�

2 � 2 � (�c,� � �c,T � ��,T) � �u
2,

(B6)

�Y1,Y2
Group1 � �Fc

2 � �c,T, and (B7)

�Y1,Y2
Group2 � �Fc

2 � �c,T � �c,�, (B8)

but are modeled as

�Y1
2 � �̂Fc

2 , (B9)

�2
Y2
Group1 � �̂Fc

2 � �̂FT
2 � 2 � �̂c,T, (B10)

�2
Y2
Group2 � �̂Fc

2 � �̂FT
2 � �̂F�

2 � 2 � (�̂c,� � �̂c,T), (B11)

�Y1,Y2
Group1 � �̂Fc

2 � �̂c,T, and (B12)

�Y1,Y2
Group2 � �̂Fc

2 � �̂c,T � �̂c,�. (B13)

Subtracting B12 from B13 yields

�̂c,� � �Y1,Y2
Group2 � �Y1,Y2

Group1, (B14)

and substituting B7 and B8 into B14 yields

�̂c,� � �c,�. (B15)

Equation B15 demonstrates that unmodeled measurement error
does not result in a biased estimate of the covariance of compar-
ison condition performance and the causal effect. Where does the
regression to the mean that might have been expected go? The
answer comes from substituting B9, B4, and B7 into B12 and
solving for �̂c,T, which yields

�̂c,T � �c,T � �u
2. (B16)

Equation B16 demonstrates that the regression to the mean in-
duced by unmodeled measurement error is actually absorbed into
the relation between comparison condition performance and the
threat-related change. That is, �̂c,T, rather than �̂c,�, is attenuated by
an amount equal to the measurement error in Y.

Subtracting B10 from B11 yields

�2
Y2
Group2 � �2

Y2
Group1 � �̂F�

2 � 2 � �̂c,�. (B17)

Substituting B5 and B6 into B17 reduces to

�F�
2 � 2 � �c,� � 2 � ��,T � �̂F�

2 � 2 � �̂c,�, (B18)

and substituting B15 into B18 reduces to

�̂F�
2 � �F�

2 � 2 � ��,T. (B19)

Equation B19 demonstrates that �̂F�
2 will be biased by twice the

covariance between the causal effect and the threat-related factor.
If ��,T is positive, �̂F�

2 will be inflated, whereas if ��,T is negative,
�̂F�

2 will be attenuated.

(Appendices continue)
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Appendix C

Parameter Specifications for Application of Equation 5 to Various Experimental Designs
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Group w m p �w 	w �w
2 �Fc �F� �FT �Fc

2 �F�
2 �FT

2 �c,� �c,T ��,T

Simple within subjects �Fc �F� — �Fc
2 �F�

2 — �c,� — —
1 (1st measurement) A 0 — 1 0 0
1 (2nd measurement) A 1 — 1 0 0

Simple between
subjects �Fc �F� — �Fc

2 �F�
2 — 0 — —

1 A 0 —
2 A 1 — 1 0 0

Between � Within �Fc �F� �FT �Fc
2 �F�

2 �FT
2 �c,� �c,T 0

1 (1st measurement) A 0 0 1 0 0
1 (2nd measurement) A 0 1 1 0 0
2 (1st measurement) A 0 0 1 0 0
2 (2nd measurement) A 1 1 1 0 0

Common test equating
for experiments �Fc �F� — �Fc

2 �F�
2 — �c,� — —

1 (Test A) A 0
1 (Test B) B 1 — �B 	B �B

2

1 (Test D) D 0 — �D 	D �D
2

2 (Test A) A 1 — 1 0 �A
2

2 (Test B) B 0 — �B 	B �B
2

Three-group repeated
measure �Fc �F� �FT �Fc

2 �F�
2 �FT

2 �c,� �c,T ��,T

1 (1st measurement) A 0 0 1 0 0
1 (2nd measurement) A 0 1 1 0 0
2 (1st measurement) A 0 0 1 0 0
2 (2nd measurement) A 1 1 1 0 0
3 (1st measurement) A 1 0 1 0 0
3 (2nd measurement) A 
 1 1 0 0

Three-group nonrpeated
measures �Fc �F� �FT �Fc

2 �F�
2 �FT

2 �c,� �c,T ��,T

1 (1st measurement) A 0 0 1 0 0
1 (2nd measurement) B 0 1 �B 	B 0
2 (1st measurement) B 0 0 �B 	B 0
2 (2nd measurement) A 1 1 1 0 0
3 (1st measurement) A 1 0 1 0 0
3 (2nd measurement) B �B � 
 1 �B 	B 0

Note. Parameters labeled 0 and 1 are fixed to those values. Other parameters are freely estimated. A dash denotes that a parameter corresponds to a factor
that is not included in the model. Means, variances, and covariances of Fc, F�, and FT factors are constrained to equality across groups within each design.
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