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Automated Artifact-Detection Procedure for Vaginal
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ABSTRACT
Vaginal photoplethysmography is themost commonly usedmethod of assess-
ing women’s genital sexual arousal. Raw photoplethysmograph data consist
of a series of peaks and troughs, and movement by the participant results in
artifacts indicated by unusually high or low peak-to-trough amplitudes. The
gold-standard approach to artifact detection involves visual inspection by a
trained experimenter and manual removal of artifacts from the data set, how-
ever, this process is time-consumingand subject tohumanerror.Wepresent an
automated data-processing procedure that uses a series of smoothing regres-
sion splines to model the data and identify outliers. The automated proce-
dure was applied to a set of neutral data and sexual-arousal response data,
and artifacts identified were compared to artifacts identified by the standard
approach of visual inspection. The automated method showed acceptable
accuracy in terms of sensitivity and specificity comparable to the manual-
processing method. The automated procedure could reduce human error and
data-processing time for studies using vaginal photoplethysmography.

Vaginal photoplethysmography provides a physiological assessment of women’s genital sexual-arousal
response, and is thought tomeasure the vasoengorgement of blood in the vaginal walls. Although a num-
ber of othermeasures for assessing female genital arousal exist such as genital thermography (Kukkonen,
Binik, Amsel, & Carrier, 2010) and clitoral ultrasonography (Berman et al., 1999; Kukkonen et al., 2006),
vaginal photoplethysmography is the most commonly used measure of women’s genital sexual arousal.
The photoplethysmograph was developed by Sintchak and Geer in 1975. Photoplethysmograph data
are typically analyzed as two filtered signals: the direct current and the alternating current. The direct
current (DC) signal is believed to measure slow changes in vaginal blood flow, termed vaginal blood
volume (VBV). The alternating current (AC) signal reflects phasic changes in blood flow that occur with
each heartbeat, called vaginal pulse amplitude (VPA). Of the two components, VPA has been identified
as the more sensitive measure of female genital sexual arousal (Laan & Everaerd, 1995). VPA has also
been identified as a sexual arousal-specific response to the presentation of sexual stimuli; in other words,
VPA only increases in response to the presentation of sexual stimuli and does not change in response
to the presentation of other types of affective stimuli such as anxiety-provoking stimuli (Laan, Everaerd,
& Evers, 1995; Suschinsky, Lalumière, & Chivers, 2009). Vaginal photoplethysmography provides con-
tinuous readings of VPA, and therefore a rich set of data; however, one drawback is its sensitivity to
movement by the participant.
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Figure . Example of VPA artifact in raw electrocardiogram and vaginal photoplethysmograph data. ECG= electrocardiography; VPA=
vaginal pulse amplitude.

Like other types of physiological assessment such as electrocardiography (ECG) and electroen-
cephalography (EEG), vaginal photoplethysmography data collection is interrupted when the partici-
pant physically moves during the experiment. In addition to gross bodily movement, contraction of the
pelvic muscles can also create movement artifacts in vaginal photoplethysmography (Laan et al., 1995).
VPA is measured by the amplitude from the peak to the trough (or the trough to the peak) of each wave-
form.When artifacts occur, the normal peak-to-trough pattern is interrupted by abnormally high or low
amplitudes (see Figure 1 for an example of artifacts). Movement artifacts should not be retained as these
high and low VPA readings have the potential to skew subsequent data analyses. Photoplethysmograph
data requires processing for detection and removal of these artifacts.

The gold-standard procedure for identifying movement artifacts in photoplethysmograph data con-
sists of visual inspection of the data andmanual removal of the artifacts by a trained experimenter (Laan
et al., 1995; Meston & Heiman, 1998). The experimenter scrolls through the raw data on a computer
screen and identifies artifacts by visually comparing each peak to its neighboring peaks and removing
peaks that do not fit in size with the others. The description of this manual data-processing procedure
in academic papers is usually brief and general, failing to specify the exact definition of a movement
artifact (e.g., see Chivers, Roy, Grimbos, Cantor, & Seto, 2014; Heard-Davison, Heiman, & Kuffel, 2007;
Laan et al., 1995; Meston & Heiman, 1998; Peterson, Janssen, & Laan, 2010; Rellini & Meston, 2011;
Suschinsky & Lalumière, 2011). Some researchers, however, provide more specificity, such as noting that
data points must be greater than a 100% increase from nearby data points in order to be deemed an arti-
fact (Bloemers et al., 2010), and others set the criterion at “3 standard deviations above the mean of the
15-second period [immediately before]” (van der Made et al., 2009, p. 432). Still others allow for “peak-
to-trough measures +/−3 SD from the mean” and identify any points outside that range as artifacts
(Lorenz, Harte, Hamilton, & Meston, 2012, p. 115). Although these three artifact descriptions are more
specific, they vary significantly between research laboratories. To our knowledge, none of these more
specific artifact criteria have been examined empirically, therefore little is known about their validity
and potential impact on study outcomes. The procedures for artifact detection are inconsistent between
research laboratories, and these discrepancies may introduce unnecessary variability to study findings
reported by these laboratories. Manual data processing is also subject to human error such as fatigue
and distraction, which might introduce variability into the data retained within a single lab. Other types
of physiological data such as ECG and EEG are processed fully automatically (Nolan, Whelan, & Reilly,
2010) or partially automatically (Delorme & Makeig, 2004) with software toolboxes, suggesting auto-
matic solutions for processing vaginal photoplethysmograph data may be possible.

A few other research groups have previously addressed the weakness of the current data-processing
procedure forVPAdata; however, none of thesemethods have becomewidely adopted.One suchmethod
performs a graphical inspection of the data via a two-pass algorithm that automatically identifies artifacts
to be deleted (Both et al., 2008). Thismethodwas developed by the Technical Support Department of the
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University of Amsterdam and to our knowledge is used exclusively by research teams in the Netherlands
(Both Laan, et al., 2008; Both, Spiering, et al., 2008). This method does not appear to have been formally
published, which limits other researchers from utilizing the method. Another method involves the use
of wavelet transforms to denoise the VPA data. Rather than identifying the artifacts for removal (as in
most othermethods), the wavelet method reduces the size of the artifacts to bring them into line with the
rest of the neighboring peaks and maintains these revised peak values in the data set (Prause, Williams,
& Bosworth, 2010; Rafiee, Rafiee, & Michaelsen, 2009; Rafiee, Rafiee, Prause, & Schoen, 2011). Some
benefits of this method are that it retains all of the data, it can be adapted for use with data recorded at
different sampling rates, and it reduces data-processing time in comparison to the manual method. One
drawback of this method is that it requires purchasing specialized software (Matlab software). Despite
these many benefits, the wavelet method does not appear to be in widespread use at this time; a litera-
ture review revealed a total of three citations (Clifton, Seehuus, & Rellini, 2015; Prause, Barela, Roberts,
& Graham, 2013; Prause, Staley, & Finn, 2011) since the method was published in 2010. The wavelet
method is available for free via download on the MatLab Central File Exchange.

We propose an automated VPA data-processing procedure to identify movement artifacts for dele-
tion that is free, rapid, and easily adapted for use with data recorded at different sampling rates. Our
procedure was programmed in the open-source R software environment (R Foundation, 2014), and
although R itself is often regarded as somewhat syntactically complex, we have organized the procedure
in a program that is straightforward to use. For data recorded at 200 Hz, using this procedure requires
nothing more than loading the raw data into the R software and running the program. If the data are
recorded at a frequency other than 200 Hz, the user must change a single value indicating the record-
ing frequency within the program, and then the rest of the process is fully automated. The proposed
method uses a series of smoothing regression splines to model the data and identify outliers. The pro-
cess involves an iterative approach in which the data are modeled, artifacts are identified and removed,
and then the data are modeled again and the process repeated until all of the significant artifacts have
been identified and removed. The automatic process produces an output file of all data points with the
artifacts flagged.We compared the accuracy of our newmethod to the gold-standardmanual-processing
method on two sets of data: neutral data with no stimuli present in which participants were instructed
to make movements to create artifacts intentionally, and sexual-arousal response data in which par-
ticipants viewed a short erotic film. Potential advantages of the proposed automated method include
reducing data-processing time and reducing the human error associated with the manual-processing
approach.

General method

Overview

In both experiments women came to the laboratory and electrocardiogram and vaginal photoplethys-
mograph equipment was used to record their heart rate and genital response. In the first experiment,
women were instructed to physically move at certain time points to intentionally create movement arti-
facts in their data, and in the second experiment women viewed a short neutral film clip followed by a
short erotic film clip. The second experiment featured the standard erotic film presentation paradigm
commonly used in female sexual psychophysiology research (Hoon, Wincze, & Hoon, 1976; Laan et al.,
1995).

Participants

For both experiments, women over the age of 18 were recruited to participate in the experiment with
online and print advertisements. Interestedwomen contacted the lab and completed an eligibility screen-
ing via phone or email. Eligible women were invited to schedule a study session.
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Measures

Demographics
Participants completed a short demographics questionnaire assessing age, sexual orientation, race, eth-
nicity, marital status, and level of education.

Vaginal response
Vaginal photoplethysmographywas used to assess genital response. Electrocardiography (ECG)was used
to assess heart rate simultaneously with the photoplethysmograph assessment. Heart rate was assessed
with a three-lead ECG with disposable electrodes positioned by the experimenter using a three-limb
site paradigm based on Einthoven’s triangle (upper right chest, lower left chest, and inner right ankle).
The vaginal photoplethysmograph (Behavioral Technology, Inc., Salt Lake City, UT) is a tampon-shaped
devicewith an infrared light-emitting diode embedded inside, inserted into the vagina by the participant,
and secured with a placement shield around the cord to ensure the device remains at a consistent depth
within the vagina during the experiment. ECG and VPA data were collected at a sampling rate of 200 Hz
and recorded on a Dell personal computer using AcqKnowledge software version 3.9.1 and a Model
MP100 data acquisition unit (BIOPAC Systems, Inc., Santa Barbara, CA). The VPA signal was amplified
by 20 and was bandpass filtered with a high pass filter of .5 Hz during data collection. Heart rate was
recorded in volts (V) and the amplitude of the VPA peak-to-troughwaveformswas recorded inmillivolts
(mV).

Procedure

All study procedures were performed in accordance with the ethical standards of the institutional and
national research committee and with the 1964 Helsinki declaration and its later amendments or com-
parable ethical standards. All study procedures were approved by the Institutional Review Board of The
University of Texas at Austin. A research administrator greeted participants and informed consent was
obtained from all individual participants included in the study. The administrator oriented participants
to the study procedures, including how to insert the vaginal photoplethysmograph and attach the ECG
monitoring equipment. The research administrator cleaned the participant’s skin with a small alcohol
pad and attached the disposable electrodes to participant’s upper right chest, lower left chest, and inner
right ankle. The participant was left alone in the experiment room to attach the equipment. The partic-
ipant and administrator communicated through an intercom system for the rest of the session. At this
point the procedure for the two studies diverged; specific details for each experiment are provided in
their respective sections.

Overview of data processing and comparison
The current article presents two experiments: Experiment 1 on intentional artifact neutral data, and
Experiment 2 on sexual-arousal response data. Data from both experiments were processed and evalu-
ated in the same manner, therefore we present the common data processing and comparison approach
here.We note that the evaluation of the automatic program to replicate the results of themanual program
occurred within each experiment respectively.

In order to compare themanual and automated data-processingmethods, eachmethodwas applied to
the raw data to identify artifacts. Each processing method produced a Microsoft Excel file that included
time, VPA magnitude, and a column denoting each VPA peak as either no artifact (0) or artifact (1).
For the manual method, the first author (a researcher with five years of experience in manual data pro-
cessing), who was blind to the times when participants were instructed to make the movements to cre-
ate artifacts, visually reviewed the raw data files in AcqKnowledge and noted artifacts manually in the
Excel file for the manual method. The automated method was conducted in the R open-source software
environment and includes the following three steps: (1) identification of heartbeats, (2) identification of
VPA peaks, and (3) identification of artifacts, and produces an Excel output file with the artifacts flagged
(0 for no artifact, 1 for artifact). Next the results from both methods were compiled in a single Excel file
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and the classification of VPA peaks was compared, with the manual process treated as the gold-standard
method. The following sections explain the steps of the manual and automated processes in detail.

Manual data reduction and processing
For the manual data-processing method, VPA data were manually extracted from the AcqKnowledge
files into Excel, and the first author viewed the raw data file to determine artifacts, which she noted in
the Excel file. VPA peaks were identified using the Find Peak tool in AcqKnowledge software version
3.9.1, in which the researcher sets a threshold in the ECG channel to capture the R peak of each QRS
complex, and these heartbeat internals are used to define VPA peaks in the VPA channel (see BIOPAC
Systems, Inc., 2014, p. 264, for more detailed information on the Find Peak tool). The Peak Finder tool
identifies R peaks to highlight the VPA peak associated with each heartbeat interval. The researcher sets
the threshold for the ECG channel by viewing the ECG waveforms and selecting a value low enough
to capture the R peaks but high enough not to capture the T waves that occur after the R peaks. The
threshold value used in manual data processing is generally between 1.0 and 2.0 volts. If the selected
threshold misses some of the R peaks, it can be reset to a lower value during data extraction to ensure
that all R peaks are identified and therefore all VPA peaks are defined. The Find Peak tool prints the time
stamp from the second ECG peak surrounding each VPA peak and the VPA peak magnitude into the
AcqKnowledge Journal, which can then be exported to Excel.

The Find Peak tool was used to extract the time stamps and VPA magnitudes from each raw data
file, and data were then exported to Excel. Raw VPA data were visually inspected by the first author by
scrolling through the data files and flagging VPA movement artifacts in the Excel file, using the same
procedure that was used in previous studies (e.g., Chivers et al., 2013; Laan et al., 1995; Rellini &Meston,
2011). Movement artifacts were defined as VPA peaks that extended beyond the standard display win-
dow (8 mV to +8 mV), or that appeared noticeably different from their neighboring peaks in size. If
a participant had a high baseline VPA such that the majority of her VPA peaks extended beyond the
standard display window, then the window was enlarged to include the entire waveform so that artifacts
could be accurately evaluated. Sections in which movement artifacts occurred in the ECG channel and
R peaks could not be clearly identified were also marked as artifact; these sections will be referred to as
out-of-phase peaks. Physicalmovement interrupts both ECG andVPAdata collection, therefore artifacts
in the ECG channel are generally accompanied by artifacts in the VPA channel.

Automatic data reduction and processing
For the automatic VPAdata-processingmethod, raw ECG andVPAdata were exported fromAcqKnowl-
edge software version 3.9.1 to Excel. Data were recorded at 200 Hz; therefore each Excel file included
200 readings per second for the full duration of data collection. These Excel files contained columns for
“time,” “heart rate,” and “vpa” records. Data for each subject were individually submitted to the automatic
processing tool, programmed in the open-source R software environment that produces an output file
with the artifacts flagged. The processing tool locates the ECG peaks in order to identify the intervals for
the VPA peaks (akin to the Find Peak tool in AcqKnowledge used in the manual-processing method),
flags out-of-phase heartbeat peaks (explained in detail later), calculates the VPA peaks, and then flags
the VPA movement artifacts. For the current study, the automatic program was set up to process ECG
and VPA data recorded at 200 Hz, but can be easily modified to process data recorded at other sampling
rates. The steps of the automatic data-processing program will be explained in detail in the following
section, yet all that is required of the user is to import the raw data from Excel to R, set the processing
speed if the speed used was different than 200 Hz, and run the automatic program, which will produce
an output file with artifacts and out-of-phase heartbeat peaks flagged.

The first step of the automatic procedure is to identify the peaks of the QRS complex (R peaks) from
each heartbeat waveform. For each subject, the mean and standard deviation of all the ECG records
are computed and then the records that are greater than two standard deviations from the mean are
identified; this provides ranges of records within which the R peaks lie. Data records within each range
were examined in order to identify the specific R-peak record within each heartbeat waveform. The
longest possible gap in a QRS complex is approximately .12 seconds (Cacioppo, Tassinary, & Berntson,
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Figure . Example of VPA and out-of-phase heart rate peak artifacts in raw electrocardiogram and vaginal photoplethysmograph data.
ECG= electrocardiography; VPA= vaginal pulse amplitude.

2007), indicating that any records within .12 seconds of one another should belong to the same heartbeat.
In our data files, recorded at 200 Hz, .12 seconds corresponds to 24 records. Therefore any two records
separated by less than 25 records were considered part of the same heartbeat. Once the heartbeat ranges
were identified, the highest value within each heartbeat was denoted as the R peak, and each peak was
associated with a time and row number in the data frame.

As with all physiological recordings, ECG assessment is also sensitive to physical movement by par-
ticipants (Nolan et al., 2010). When participants move during the experiment, artifacts in the heart-rate
waveform may occur in addition to the artifacts in the VPA waveform. Artifacts in the ECG channel
are usually accompanied by artifacts in the VPA channel, but the reverse is not true; artifacts in the
VPA channel are not necessarily accompanied by artifacts in the ECG channel. The time between the
two R peaks of these out-of-phase heartbeats will have different durations than normal heartbeats and
will not accurately define the window of a VPA peak. Therefore these out-of-phase heartbeats must be
removed (see Figure 2 for examples of out-of-phase heartbeats). The automatic process calculates the
mean and standard deviation of the time intervals between heartbeats and performs an outlier test using
a Bonferroni-adjusted alpha of .05 (.05/number of intervals) on the time intervals between R peaks to
identify out-of-phase heartbeat peaks. These out-of-phase peaks are flagged in the output file of the pro-
cessing programwhere theymay later be examined and retained or deleted according to the standards of
the experimenter. In the current study, out-of-phase heartbeats were considered artifact and combined
with the VPA artifacts to calculate total number of artifacts per file.

With the boundaries of each heartbeat identified, the next step is identifying the VPA peak (i.e., the
maximum VPA record) within each heartbeat interval. We modeled this part of the process after the
Find Peak tool in AcqKnowledge, which uses the interval between two ECG peaks to identify VPA peaks
(BIOPAC Systems, Inc., 2014). In the Find Peak tool, the time stamp for the second ECG peak is the time
associated with the VPA peak for that interval, therefore we used the time stamp from the second ECG
peak in our automated system as well to facilitate comparison with the manual-processing method. The
automatic program creates a data frame including these time stamps andVPApeaks (i.e., maximumVPA
records).

With time and VPA values having been determined and accumulated in the data frame, the auto-
maticmethod uses a standard generalized cross-validated smoothing spline to create a smooth trajectory
through all of the VPA data records. Critical ancillary packages used within the R open-source software
environment were the mgcv package (Wood, 2006, 2011) and the car package (Fox & Weisberg, 2011).
In the mgcv package, the gam function was used, which selects the degree of smoothing via generalized
cross-validation, which (among other things) approximates the well-known Akaike Information Crite-
rion (AIC; Akaike, 1974) for optimal model selection. Default settings in the gam function were used:
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family was set to gaussian, weights were set to null, andmethodwas set to “GCV.Cp.” The car packagewas
used for the Bonferroni-adjusted outlier tests. To account for the fact that VPAdata are time-oriented, we
also included an auto-correlated error term during the gam call (i.e., using the correlation = corAR1()
option). The smoothing spline solution represents the VPA trajectory through the experimental time
period for one individual subject. The residuals are assumed to be zero-mean and normally distributed,
and the standard deviation of the residuals is used to compute z scores for each VPA record (Please see
the Appendix for the statistical code for the automated method). The z scores are converted to proba-
bility values for each record. If the probability value for a record is less (i.e., more extreme) than 1/N,
withN being the total number of VPA records in the data file, then that record is identified as an artifact.
Identified artifacts are removed from the data frame to facilitate the next step of the process (note that
all artifacts are retained in the output Excel file in which artifacts are flagged).

The process then repeats, starting with fitting a new smoothing spline through the remaining VPA
records; the shape of this smoothing spline will necessarily be slightly different than it was in the first
pass as the most extreme outliers will have been removed. The removal of those artifacts affects the new
smoothing spline as well as the standard deviation used to calculate the z scores and p values, and alters
theN used to evaluate the probability values to determine which records are artifacts. This iterative pro-
cess continues through as many cycles as necessary to identify and eliminate all of the artifacts. The
iterations terminate and all artifacts are deemed to have been removed when there are no longer any
p values produced that are less than 1/N (see Figure 3 for examples of processed data). Finally, any VPA
record situated between two artifacts with less than three heartbeats between them was also denoted as
artifact. Physical movement by the participant typically produces artifacts that span more than a single
VPA peak, therefore any VPA record of normal magnitude between two VPA records identified as arti-
facts was also identified as an artifact. In Figure 3, these normal magnitude peaks within an artifact are
represented by the Xs within the confidence bounds. The processing tool produces an Excel output file
with the VPA movement artifacts and out-of-phase heartbeats flagged. The artifacts and out-of-phase
heartbeats may then be reviewed by the experimenter.

Statistical analyses
The automatic-processing method was compared to the gold-standard manual method with measures
of sensitivity and specificity. For the automatic method, both VPA artifacts and out-of-phase heart-rate
peaks were considered artifacts: the column noting VPA artifacts (0/1) and the column noting out-
of-phase heart-rate peaks (0/1) were combined into a “total artifacts” column, and any data point that
received a 1 for either type of artifact (or both types) was considered artifact in future steps of the com-
parison process. As previously noted, data from both methods were compiled in a single Excel file in
which each VPA peak was noted as no artifact (0) or artifact (1) by each method (time stamps for each
VPA peak were identical for the two methods). VPA peaks identified by both methods as artifacts (1)
were labeled “hits.” VPA peaks identified through the manual method as artifact (1) and the automatic
method as no artifact (0) were labeled “misses.” VPA peaks identified through the manual method as
no artifact (0) and the automatic method as artifact (1) were labeled “false alarms.” VPA peaks identi-
fied through both methods as no artifact (0) were labeled “correct rejections.” Then, the values for hits,
misses, false alarms, and correct rejections were used to calculate sensitivity and specificity indices.

Accuracy of artifact detection was evaluated with statistics of sensitivity and specificity; d prime is a
sensitivity index based on signal-detection theory that compares accuracy in correctly identifying arti-
facts when they occur (i.e., hit rate versus false alarm rate; Macmillan & Creelman, 1991). The d-prime
statistic was calculated with the following formula: d’ = z(H) – z(FA), H = hit rate, FA = false alarm
rate. The hit rate and false alarm rate were standardized by converting them to z scores, and then d
prime was computed for each participant individually. The d-prime value for each participant, as well as
the mean and standard deviation d-prime values for the sample as a whole, are reported. Higher values
of d prime indicate more sensitive signal detection. Acceptable d-prime values are approximately 2.0 or
above (Macmillan & Creelman, 1991).

Sensitivity was also evaluated by calculating the percentage of artifacts identified by the gold-standard
manual method that the automated method correctly identified as artifacts (i.e., sensitivity = detected
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Figure . Graphical representation of the automated artifact-detection program for two individual subjects. The black line in the center
of the band is the smoothing regression spline, and the gray lines on each side represent confidence intervals around the smoothing
spline. Data are represented by dots, and artifacts are represented by Xs. Data that fall outside of the widest confidence band are identi-
fied as artifacts. Data points that did not appear to be artifacts by theirmagnitude but occurred immediately between two other artifacts
were also identified as artifacts, and they account for the Xs within the confidence intervals. VPA= vaginal pulse amplitude.

artifacts/total artifacts; Nolan et al., 2010). Specificity refers to correctly reporting when artifacts do not
occur (i.e., specificity = 1 – [false alarms/total nonartifacts]). Sensitivity and specificity percentages
for each participant, as well as the mean and standard deviation values for the sample as a whole, are
reported. The ideal signal-detection method is 100% sensitive (identifies every artifact correctly) and
100% specific (identifies every nonartifact correctly), yet that ideal is rarely achieved. Researchers aim to
strike a balance between the detection process being too sensitive and leading to a high false-alarm rate,
and being too specific and leading to a high miss rate. Comparison of the misses and false alarms of a
signal-detection method can help to evaluate the relative balance of errors.

We also examined the impact of the two data-processing methods on study summary statistics.
Artifacts identified by each method were removed from the data files respectively, and means, standard
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deviations, and change scores (for Experiment 2 data only) were computed and compared with paired
samples t tests. The results of these comparisons are reported and discussed.

Experiment 1

In Experiment 1, participants were asked tomake specific physical movements that have previously been
associatedwithmovement artifacts to create intentionalmovement artifacts in their data.No stimuliwere
presented during the experiment.

Method

Participants

Participants were women over the age of 18 recruited from the psychology department of a large public
university. Exclusion criteria for the study included history of sexually transmitted diseases, history of
pelvic surgery, current pelvic or urinary tract infections, and experiencingmenopause or perimenopause.
The sample included 17 women ages 21 to 32, with a mean age of 24.88 (SD = 2.96). All participants
had completed some years of college, with the majority having completed college (82.35%). In terms
of sexual orientation, 88% of the sample identified as heterosexual, one woman as bisexual, and one
woman as lesbian. Eighty-two percent of the sample was Caucasian and 18% was Asian. The sample
was approximately evenly split between single women (47.06%) and women in a committed relationship
(52.94%).

Procedure

A research administrator greeted participants and oriented them to the study procedures. The admin-
istrator explained the methodology of vaginal photoplethysmography and that the purpose of the study
was for participants to make intentional movements to create movement artifacts in their data on pur-
pose in order to compare data-processing tools for artifact detection. Participants were seated in a large
comfortable armchair during the experiment. The administrator then explained the seven specificmove-
ments participants would be asked to make on cue during the experiment. These movements included
(a) a Kegel exercise (contracting the muscles of the pelvic floor); (b) lifting her left leg; (c) lifting her left
arm; (d)moving from left to right in the chair (described by the research administrator as “wiggling back
and forth in the chair”); (e) pushing her body up in the chair using the armrests; (f) slouching down in the
chair; and (g) reaching for the intercom with her right hand. These movements were selected as they are
the ones most commonly reported by participants in previous studies in our laboratory and movements
we have observed participants make in the chair during the orientation section of previous studies. Con-
traction of the pelvic floor (i.e., a Kegel exercise) has been associated withmovement artifacts in previous
laboratory research on women’s sexual-arousal response (Laan et al., 1995). Participants were asked to
practice each movement for the research administrator to ensure they understood and could adequately
perform each one. Participants were told they would be asked to make each movement at the adminis-
trator’s verbal signal for one full second. Each movement was made six times with a pause of 30 seconds
between each movement.

The research administrator left participants alone to insert the probe and attach the ECG leads, and
subsequently communicated with the participants via the intercom system. To enable participants to
focus their full attention onmaking themovements at the indicated times, no audio or audiovisual stimuli
were presented. After participants attached the equipment, they were instructed to sit as still as possible
in the chair and baseline data were recorded for threeminutes. Then the research administrator followed
a written time line in which she used the intercom to instruct participants to make each movement for
one full second, with a 30-second pause between eachmovement. This procedure resulted in a total of 42
movements. The research administrator tagged the time she gave the instruction tomake eachmovement
with the typed-in labels in AcqKnowledge. At the end of the series of 42 intentional movements, the
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Table . Experiment  intentional artifact neutral descriptive data.

Subject Manual Artifacts Auto Artifacts Hits Misses False Alarms Correct Rejections d prime Sensitivity (%) Specificity (%)

    . . , . . .
    . . , . . .
   , . . , . . .
    . . , . . .
    . . , . . .
    . . , . . .
   , . . , . . .
    . . , . . .
   , . . , . . .
    . . , . . .
   , . . , . . .
    . . , . . .
   , . . , . . .
    . . , . . .
    . . , . . .
    . . , . . .
    . . , . . .
M . . . . . , . . .
SD . . . . . . . . .

Note. This table presents the number of artifacts identified by the manual process and the automatic process for the intentional artifact
neutral data and, thenumberof hits,misses, false alarms, and correct rejectionswhen treating themanual process as thegold-standard
method of data processing. This table also presents the d-prime sensitivity index (acceptable d-prime values are . or above; Macmil-
lan & Creelman, ), and the sensitivity and specificity percentages (as described by Nolan et al., ).

participant was again asked to remain as still as possible and an additional three minutes of data were
recorded. The data collection period lasted approximately 27minutes and 12 seconds (1,632 seconds) for
each participant. After participants removed the probe and the ECGwires, they completed the self-report
questionnaire on demographics and were debriefed by the research administrator.

Results and discussion

For the neutral data, the number of artifacts identified by the manual method ranged from 140 to 490,
with amean of 253.53 (SD= 77.57). The automatedmethod identified between 138 and 457 artifacts per
file, with a mean of 265.35 (SD= 77.55; note that the automatic artifact totals include both VPA artifacts
and out-of-phase heart-rate peaks). Using the manual method as the gold standard, artifact detection
was compared between the two methods to determine hits, misses, false alarms, and correct rejections.
The d-prime sensitivity index ranged from 2.48 to 4.52, with a mean of 3.53 (SD = .56). See Table 1 for
number of artifacts, hits, misses, false alarms, correct rejections, and d-prime values for eachmethod, per
participant. As d-prime values of 2.0 and above represent acceptable sensitivity (Macmillan & Creelman,
1991), it appears that the automaticmethod performed comparably to themanualmethod in detection of
artifacts. The other metric of sensitivity (i.e., correctly identifying artifacts when they occur; Nolan et al.,
2010) ranged from 66.54% to 99.26%, with a mean of 89.63% (SD = 7.99%). The metric for specificity
(i.e., correctly identifying when artifacts have not occurred; Nolan et al., 2010) ranged from 90.86% to
99.81%, with a mean of 97.88% (SD = 2.09%). The additional sensitivity and specificity metrics support
the conclusion that the automated method acceptably approximates the manual method in detection of
artifacts. As previously noted, signal-detection programs aim to balance betweenmisses and false alarms.
There was no significant difference between the number of misses and false alarms, t(16) = .97, p = .35,
with a paired samples t test, suggesting that when the automated programmakes errors, those errors are
balanced. The automatic program does not appear to be overly sensitive or overly specific, rather the
threshold for artifact detection appears to be appropriate.

The impact of each data-processing method on summary statistics for the neutral data set was also
examined. As the current study did not include any stimuli, the mean VPA and VPA standard devia-
tion for the entire study period were calculated after artifacts identified by the manual method and the
automated method were removed from the data respectively (see Table 2 for summary statistic means
and standard deviations per participant). Mean VPA with the manual method was normally distributed
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Table . Experiment  intentional artifact neutral data summary statistics.

Manual Auto

Subject M SD M SD

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
M . . . .
SD . . . .

Note. This table presents themeans and standard deviations for the data retained (i.e., nonartifact data) by both themanual process and
the automatic process for the intentional artifact neutral data. There were no statistically significant differences between the mean
VPA and VPA standard deviation in files processed with the two methods respectively. VPA= vaginal pulse amplitude.

according to the Shapiro-Wilk test,W(17)= .94, p= .31, andmeanVPAwith the automatic method was
also normally distributed,W(17)= .93, p= .25. A paired samples t test revealed no significant difference
in mean VPA between the two methods of data processing, t(16)= .41, p= .68. VPA standard deviation
for themanual method was normally distributed,W(17)= .94, p= .36, and VPA standard deviation was
also normally distributed,W(17) = .91, p = .10. A paired samples t test indicated no significant differ-
ence in VPA standard deviation between the two methods of data processing, t(16) = 2.02, p = .06. The
discrepancies between data identified as artifact by the manual and automated processing methods did
not significantly affect summary statistics in this experiment, suggesting that the automated method is a
promising tool for VPA data processing.

The manual-processing method took approximately two hours to process each 27-minute and 12-
second (1,632 seconds) file. The automated procedure took approximately 20 minutes to process each
file on an 8GB Intel® CoreTM Due CPU Dell personal computer. The approximate one hour and 40-
minute reduction in time to process a single file suggests that the automatic process could reduce the
time burden of processing VPA data.

Given that the automatic process identified artifacts at a comparable rate to the manual process on
neutral data, the efficacy of the automatic program was next tested on sexual-arousal response data.
These data differed in two ways from the neutral data: (1) VPA magnitude increased in response to the
erotic stimulus, and (2) data included naturally occurring artifacts rather than intentional artifacts.

Experiment 2

In Experiment 2, participants viewed a short neutral film clip followed by a short erotic film clip while
their heart rate and genital sexual-arousal response were measured. These data were collected as part of
a larger study on women’s sexual arousal response.

Method

Participants

Participants were women over the age of 18 recruited from the local community. Exclusion criteria for
the study included history of sexually transmitted diseases, history of pelvic surgery, current pelvic or
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urinary tract infections, experiencing menopause or perimenopause, being pregnant or breastfeeding,
and current diagnosis of a psychotic disorder. Inclusion criteria for the study included self-report of
a heterosexual or bisexual sexual orientation, as the stimulus film featured a heterosexual couple. The
sample included 20women ages 18 to 39, with amean age of 25.65 (SD= 5.87). In terms of education his-
tory, 40% of the sample completed some years of college, 35% completed college, 20% held an advanced
degree, and 5% completed some years of high school. In terms of sexual orientation, 85% of the sample
identified as heterosexual, and 15% of the sample identified as bisexual. The racial composition of the
sample included 75% Caucasian women, 15% Asian women, one African American/Black woman, and
one multiracial woman. Eighty-five percent of participants were married or in a committed relationship,
and 15% of participants were single.

Materials

The stimulus was a 10-minute film composed of a neutral (four-minute) and an erotic (six-minute) film
clip. The neutral portion featured nature scenes accompanied by classical music, and the erotic por-
tion featured a heterosexual couple engaged in foreplay (two minutes), cunnilingus (two minutes), and
vaginal intercourse (two minutes). This erotic film has previously been found to elicit both genital and
psychological sexual arousal in heterosexual and bisexual women in our laboratory.

Procedure

A research administrator greeted participants and oriented them to the study procedures. Participants
were left alone in a private room to attach the equipment and communicated with the research admin-
istrator through an intercom system. Prior to the film presentation, participants completed two short
questionnaires on subjective sexual arousal and state affect that were not analyzed in the current study.
Women viewed the erotic filmwhile their heart rate and genital sexual arousal were assessed. Participants
also reported continuous subjective sexual arousal during the film presentation. After the film, partici-
pants removed the equipment, got dressed, and were escorted into a separate room to complete a battery
of self-report questionnaires on a computer, starting with the demographics questionnaire described
in the General Method section. The other questionnaires were not analyzed in the current study. The
research experimenter debriefed participants at the end of the study.

Results and discussion

For the sexual response data, the number of artifacts identified by the manual method ranged from 11 to
151, with a mean of 58.45 (SD = 38.13). The automated method identified between 12 and 138 artifacts
per file, with a mean of 51.70 (SD = 34.70; note that the automatic artifact totals include both VPA
artifacts and out-of-phase heart-rate peaks). The d-prime sensitivity index ranged from 1.16 to 4.27,
with a mean of 2.61 (SD = .76). See Table 3 for number of artifacts, hits, misses, false alarms, correct
rejections, and d-prime values for each method, per participant. Given that acceptable d-prime values
are 2.0 and greater (Macmillan & Creelman, 1991), the automatic method acceptably identified artifacts
in the sexual response data. Only three participants’ data showed d-prime values under 2.0, and these will
be discussed in the General Discussion. The sensitivity metric (Nolan et al., 2010) ranged from 18.91%
to 100%, with a mean of 60.05% (SD = 26.08%). The specificity metric (Nolan et al., 2010) ranged from
96.94% to 99.81%, with a mean of 98.62% (SD = .87%). There was no significant difference between the
number of hits and false alarms per file, t(19)= 1.30, p= .21, with a paired samples t test, suggesting that
the automatic program is balanced in terms of signal detection (i.e., the program is not overly sensitive
or overly specific).

The impact of each data-processingmethod on summary statistics for the sexual response data set was
also examined. Artifacts identified by each method were removed from the data files respectively, and
then means and standard deviations were computed for the neutral and erotic film sections separately.
Studies using vaginal photoplethysmography typically focus on the change in VPA from the neutral
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Table . Experiment  sexual-arousal response descriptive data.

Subject Manual Artifacts Auto Artifacts Hits Misses False Alarms Correct Rejections d prime Sensitivity (%) Specificity (%)

      , . . .
      , . . .
       . . .
       . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
       . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
      , . . .
M . . . .  ,. . . .
SD . . . . . . . . .

Note. This table presents the number of artifacts identified by the manual process and the automatic process for the sexual-arousal
response data, the number of hits, misses, false alarms, and correct rejections when treating themanual process as the gold-standard
method of data processing. Thi s table also presents the d-prime sensitivity index (acceptable d-prime values are . or above; Macmil-
lan & Creelman, ), and the sensitivity and specificity percentages (as described by Nolan et al., ).

to the erotic film presentations, which is computed by subtracting the mean VPA during the neutral
film from the mean VPA during the erotic film (i.e., change in VPA = mean VPA erotic – mean VPA
neutral; Chivers et al., 2013; Clifton et al., 2015). Change in mean VPA was calculated in this manner,
and difference scores were also compared between the data files with artifacts removed by the manual-
and automatic-processing methods respectively (see Table 4 for summary statistic means and standard
deviations per participant).

Mean VPA during the neutral film that was processed with the manual method was normally dis-
tributed according to the Shapiro-Wilk test, W(20) = .93, p = .14, and mean VPA during the neutral
film that was processed with the automatic method was normally distributed, W(20) = .93, p = .13. A
paired samples t test indicated no significant difference in mean VPA between the two methods of data
processing, t(19) = .08, p = .94. Using the manual method, VPA standard deviation during the neutral
film was not normally distributed,W(20) = .84, p = .004, which appeared to be due to one outlier (Par-
ticipant 2with a value of 4.01 see Table 4) that was greater than three standard deviations above themean.
When this outlier was removed from the data set, the data were normally distributed,W(19) = .96, p =
.53. Using the automatic method, VPA standard deviation during the neutral film was not normally dis-
tributed,W(20)= .87, p= .01, which appeared to be due to the same outlier (Participant 2 with a value of
4.05 seeTable 4).With the outlier removed from the data set, the datawere normally distributed,W(19)=
.95, p= .46. A paired samples t test revealed no significant difference in VPA standard deviation between
the two methods of data processing, t(18)= 1.24, p= .23, for the neutral film. The discrepancies in data
identified as artifact between themanual- and automated-processingmethods did not significantly affect
summary statistics for the neutral film, suggesting that the automatic approach is acceptable.

Mean VPA during the erotic film that was processed with the manual method was normally dis-
tributed,W(20) = .95, p = .44, and mean VPA during the erotic film that was processed with the auto-
matic method was also normally distributed, W(20) = .95, p = .44. A paired sampled t test indicated
a statistically significant difference in mean VPA between the two methods of data processing, t(19) =
2.62, p = .02. Mean VPA for the manual method was slightly higher with a group mean of 8.96, while
mean VPA for the automatic method was 8.88—a difference of .08. Discrepancies in the data identi-
fied as artifact between the two processing methods will be examined in the General Discussion in an
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Table . Experiment  sexual-arousal response data summary statistics.

Neutral Film Erotic Film M Change

Manual Auto Manual Auto

Subject M SD M SD M SD M SD Manual Auto

 . . . . . . . . . .
 . . . . . . . . − . − .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
 . . . . . . . . . .
M . . . . . . . . . .
SD . . . . . . . . . .

Note. This table presents the mean and standard deviations for the data retained (i.e., nonartifact data) by both the manual process
and the automatic process for the sexual-arousal response data. There were small but statistically significant differences between the
mean VPA and standard deviation VPA during the erotic film. M Change refers to the difference between the mean VPA during the
erotic film and the mean VPA during the neutral film; there was no statistically significant difference between the mean change VPA
from data processed by the two methods. VPA= vaginal pulse amplitude.

effort to shed light on this significant difference. VPA standard deviation for the erotic film that was
processed with the manual method was normally distributed,W(20) = .93, p = .13, and VPA standard
deviation for the erotic film that was processedwith the automaticmethodwas also normally distributed,
W(20)= .94, p= .21. A paired samples t test indicated a significant difference in VPA standard deviation
between the two methods of data processing, t(19) = 3.33, p = .004. Manual VPA standard deviation
to the erotic film was slightly higher with a group mean of 2.33, while VPA standard deviation for the
automatic method was 2.19—a difference of .14. To further examine the source of these differences, dis-
crepancies between data identified as artifact between the two processing methods will be explored in
the General Discussion.

Change in mean VPA from the neutral to the erotic films was calculated for each method. Change
in mean VPA for the manual method was normally distributed, W(20) = .97, p = .83, and change in
mean VPA for the automatic method was also normally distributed, W(20) = .97, p = .72. A paired
samples t test showed no significant difference for change in mean VPA between the two methods of
data processing, t(19) = 1.92, p = .07. Although there were small but statistically significant differences
in mean VPA and VPA standard deviation to the erotic film, when the mean VPA scores were combined
into change scores, there was no significant difference in outcomes between the two methods of data
processing.

In terms of processing time, the manual method took approximately one hour to process each sexual-
arousal response file, which averaged 15 minutes (900 seconds) in length. The automated procedure
took approximately 10 minutes to process each file on an 8GB Intel® CoreTM Due CPU Dell personal
computer. The automatic method processes data more rapidly than the manual method.

General discussion

Vaginal photoplethysmography is themost frequently usedmeasure of women’s sexual-arousal response,
and data are typically processed by visual inspection of the raw data andmanual removal of artifacts. This
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process is time-consuming and subject to human error from fatigue and distraction.We proposed a tool
that attempts to automate this process. We tested the efficacy of the automated-processing procedure in
two experiments, one on neutral data and one on sexual-arousal response data. Across both experiments
the automated process identified the same artifacts as the manual process at an acceptable level of sen-
sitivity and specificity, suggesting the automated tool is a promising method of data processing worthy
of further testing. The errors committed by the automatic process in terms of missing artifacts that had
occurred and falsely identifying artifacts when none were present appeared to be balanced. Balancing
between misses and false alarms is one important goal of signal-detection programs.

When comparing the sensitivity and specificity indices between the two experiments, we saw that the
automatic program performed better on the neutral data than on the sexual response data (d prime of
3.53 vs. 2.61; sensitivity metric of 89.63% vs. 60.05%). Additionally, when comparing the study outcomes
for the sexual response data, there were small but statistically significant differences between the mean
VPA and standard deviation VPA (although not change in mean VPA). In an attempt to understand the
source of these discrepancies, we examined the data points forwhich themanual and automatic processes
disagreed on artifact classification (i.e., the misses and false alarms).

Two types of discrepancy patterns were identified, whichwere both associatedwith ECGout-of-phase
peaks. Although out-of-phase peaks are typically accompanied by VPA artifacts, this is not always the
case. One of the discrepancies we found was the occurrence of a single out-of-phase heartbeat peak
accompanied by nonartifact VPAdata. Themanual process identified both of theVPA records associated
with this out-of-phase heartbeat peak as artifact (i.e., the VPA record associated with this peak as well as
the next VPA record, following the logic that in the presence of an ECG artifact the VPA interval would
not be correctly defined), but the automatic method only identified the first VPA record as artifact (see
Figure 4). As seen in Figure 4, the second ECG interval does indeed capture theVPApeak for this interval
and visually appears to be valid data.

Another notable issue that emerged was that there were entire sections with artifacts in the ECG
channel but no artifacts in the VPA channel (see Figure 5). In this case the manual rater identified the
entire section as artifact, but the automatic method did not identify any artifacts in this section because
it was able to identify the R peaks to define the VPA intervals. When we examined the magnitudes of
the VPA peaks from these sections, they appeared to be within the acceptable range for each participant,
suggesting it is appropriate to retain them in the data set. This latter issue was apparent multiple times
but only in a small number of data files, suggesting that some participants may be predisposed to
produce ECG data of this pattern. The reader should keep in mind that in our automatic method the
out-of-phase heart-rate peak identification occurs before the smoothing spline process, so that any
VPA records from the second section of an out-of-phase heartbeat peak are also later subject to the
smoothing spline artifact identification process (i.e., if the VPA magnitude of these records is artifact,
it will be identified in this later step). In the Experiment 1 neutral data files, this discrepancy was
present in approximately 2.34% of the data. In the Experiment 2 sexual data files, this discrepancy was
present in approximately 1.23% of the data. In Experiment 2 these two discrepancy issues occurredmost
frequently in the files for Participants 10, 13, and 14, which were the three files with d-prime statistics
below the acceptable threshold of 2.0. It is possible that these issues are somewhat responsible for the low
d-prime values for these three files. Combining the new automatic method with the manual method
could help researchers to justify retaining more of their original data than when using the manual
method alone.

Another benefit of the automatic method is that it processed files much faster than the manual
method. The manual method required approximately one to two hours to process each file, depend-
ing on the length of the study session, yet the automatic method took just 10 to 20 minutes to process
each file. Studies using vaginal photoplethysmography have traditionally required a significant amount
of time for data processing, as the manual process is lengthy and requires the research administrator to
be alert and conscientious during processing. Studies with long protocols or multiple conditions require
evenmore time for data processing. The automated tool is capable of processing files muchmore quickly
than the manual method. Moreover, the automated tool can be set up to process a set of files while the
researcher is working on other tasks or is not even in the laboratory.
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Figure . This figure illustrates the single out-of-phase heartbeat peak discrepancy issue between the manual- and automatic-
processing programs. The out-of-phase ECG heartbeat peak is shown in the center of the image. The manual method identified both
the VPA record ending with this ECG R peak as well as the next ECG R peak as artifact. The automatic method, however, only identifies
the VPA record associated with the out-of-phase heartbeat peak (highlighted in Panel A) as artifact. The automatic program retained
the second VPA record (highlighted in Panel B) as valid data. Panel B shows that the second heartbeat interval appears to capture an
artifact-free VPA peak, which should likely be retained in the data set. ECG= electrocardiography; VPA= vaginal pulse amplitude.

This study had a number of limitations that warrant mention. In Experiment 1, the research admin-
istrator followed a written schedule and used a stopwatch to verbally instruct participants to make
the physical movements, which could introduce human error into the timing of these instructions.
In retrospect we could have exercised more experimental control by using a prerecorded audio of
the instructions, ensuring that all participants received the same instructions at the exact same times.
Another limitation is that the threshold used for outlier detection becomes more stringent as the exper-
imental sessions lengthen, and it is possible that this could change the efficacy of artifact detection for
longer data files. Accuracy of the automatic-processing procedure on data files longer than 27 minutes
is an important direction for future study.

There are few fully automaticmethods for detecting artifacts in physiological data (Nolan et al., 2010).
Although fully automated processes are alluring, best practices suggest reviewing the raw data for major
issues, and using a combination of automatic processes with manual review to evaluate the efficacy of
automatic tools. The automatic method we propose here appears to be a promising tool for helping
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Figure . This figure illustrates the multiple out-of-phase heartbeat peak discrepancy issue between the manual- and automatic-
processing programs. The manual method identified this entire section as artifact due to the ECG artifacts, but the automatic method
did not identify any artifacts in this section as its method of identifying R peaks was not impaired by the ECG artifacts. Themagnitude of
these VPA peaks were examined and appeared to be within the range for the rest of this file, suggesting that if these data points can be
extracted with the automatic method, it is appropriate to retain them in the data set. ECG= electrocardiography; VPA= vaginal pulse
amplitude.

researchers to process their VPA data more quickly and in a standardized manner. More research is
needed to further test the properties of this automatic process. We encourage other researchers to exper-
iment with the automated artifact-detection tool presented here. We will make the current version of
the program available on request. Ultimately, we plan to make it available as an official R package on the
Comprehensive R Archive Network (CRAN) repository. R is an open-source statistical environment,
and all R packages are available for free via download. The automated tool presented here detects arti-
facts at an acceptable level as compared to the gold standard of manual processing, is free, processes data
more quickly than the manual method, and can help to standardize artifact detection between research
laboratories.
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# This is where the input file is, and where output files will be written.

setwd("/name/of/directory/path/here")

# Change the names of the input and output files below by inserting the desired filenames.
# If the output file already exists, delete it before running this.
# This output file contains all the original data plus flags for whether the VPAmeasurement is an artifact
and a flag for an out-of-phase heartbeat.

rawinput_filename <- "filename.csv"
prepruned_heartbeat_VPA_output_filename <- "filename_prepruned_v2.csv"
recording_frequency <- 200 # Input the recording frequency in Hz, or measurements per second.

####################

##############################################################################

####################

data <- read.csv(rawinput_filename)
data$row_id <- c(1:nrow(data))

library(mgcv)

heartrate_gam <- gam(heartrate ∼ s(time), data=data)

data$heartrate_res <- heartrate_gam$residuals

# This addresses stationarity.

mean_res <- mean(data$heartrate_res)
sd_res <- sd(data$heartrate_res)

data$heartrate_res_z <- (data$heartrate_res - mean_res)/sd_res

prelim_indices <- as.vector(which(data$heartrate_res_z > 2))

# 95% CI corresponds to ∼ z>2. This appears to work well, but can be changed by the user if desired.

####################

##############################################################################

####################

# The loop below iterates through the flagged indices.
# If successive indices are different by less than the threshold, (recording_frequency/8), they are assumed
to be in the same R-peak.
# 0.12s is considered to be the upper bound of the QRS width and is a sensible value.
# At 200Hz, if the next index is 25 units or more away, it should be a member of a new peak in a normal
heart rhythm.
# If the data are recorded at a frequency different than 200Hz, input the frequency at the top of the file
and the cutoff will be adjusted here.
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cluster <- 1
clustervector <- c(1, rep(0,length(prelim_indices)-1))

# The above initializes everything.

for (i in 2:length(prelim_indices)) {

if (prelim_indices[i]-prelim_indices[i-1]< (recording_frequency/8)) {cluster<- cluster} else {cluster
<- cluster+1}
clustervector[i] <- cluster

}

####################

##############################################################################

####################

# With high heart value records identified and assigned a cluster membership, we flag those records in
the main dataset.

data$prelim_indices <- rep(0,nrow(data))

# This initializes a 0/1 vector in data to flag the rows in prelim_indices.

for (i in 1:length(prelim_indices)) {

targetrow <- prelim_indices[i]
data$prelim_indices[targetrow] <- 1

}

####################

##############################################################################

####################

# Here we extract all variables for the high heart value records and place them in a separate dataset.
# We also add the cluster membership information and declare it to be a factor.

data_prelim_indices_subset <- data[data$prelim_indices == 1,]

data_prelim_indices_subset$clustervector <- clustervector

data_prelim_indices_subset$clustervector <- as.factor(data_prelim_indices_subset$clustervector)

####################

##############################################################################
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####################

# Here we pull each cluster, identify the record in that cluster with the highest value, and store the asso-
ciated row_id.

final_indices <- rep(0,nlevels(data_prelim_indices_subset$clustervector))

for (i in 1:nlevels(data_prelim_indices_subset$clustervector)) {

tempdata <- data_prelim_indices_subset[data_prelim_indices_subset$clustervector == i,]
final_indices[i] <- tempdata$row_id[which.max(tempdata$heartrate)]

}

####################

##############################################################################

####################

# And in this section we flag the records corresponding to the peak heartrate in each cluster.

data$final_indices <- rep(0,nrow(data))

# This initializes a 0/1 vector in data to flag the rows in final_indices.

for (i in 1:length(final_indices)) {

targetrow <- final_indices[i]
data$final_indices[targetrow] <- 1

}

####################

##############################################################################

####################

# Right now, final_indices is still a vector with the actual index values in it – which is helpful.
# (In contrast to what we just created, which is a vector in the dataframe called data$final_indices that
has values 0/1.)
# This module will identify the VPA (maxminus min) within the heartbeat intervals and write that VPA
and the time (end of interval) to an output file.

time <- rep(0, length(final_indices)-1) # Initializing the vector.
vpa <- rep(0, length(final_indices)-1) # Initializing the vector.

for (i in 1:length(final_indices)-1) {

beginrow <- final_indices[i]+1 # This is the row after the ith entry in final_indices. (The ith entry is
the end of the prior interval, so the next row is the start of the current one.)
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endrow <- final_indices[i+1] # This is the i+1th entry in final_indices. (The i+1th entry is the end
of the current interval.)
currentsubset <- data[data$row_id >= beginrow & data$row_id <= endrow,]
time[i] <- data$time[endrow]
vpa[i] <- max(currentsubset$vpa)-min(currentsubset$vpa)

}

phase1output <- data.frame(time,vpa)

####################

##############################################################################

####################

# This module is designed to identify out-of-phase rows.
# These will eventually be written to the pre-pruned copy of phase1output as a 0/1 vector.
# This is based on a Bonferroni-corrected outlier test on the heartbeat intervals.
# This appears to perform better (fewer false alarms) than a non-parametric boxplot on a lagged regres-
sion of the differences.
# It does a reasonable job of (usually) capturing the first aphasic short interval while not flagging the
second.

diff1 <- numeric()
diff1[1] <- NA
diff1 <- append(diff1,diff(phase1output$time,differences=1))
phase1output$time_diff1 <- diff1

library(car)

phasetest <- outlierTest(lm(phase1output$time_diff1∼1, data=phase1output))

outofphasevector <- as.vector(as.numeric(row.names(as.matrix(phasetest$rstudent))))

# NOTE: At present, out-of-phase rows are NOT being deleted automatically – just flagged in the output
file.
# If we want to automatically delete them, take the programming just after the end of the repeat loop that
writes the 0/1 flag and move it up here.
# Then filter out the out-of-phase rows from data_working.

phase1output$time_diff1 <- NULL # Removing this vector as its utility is over.

####################

##############################################################################

####################

# This is the major analysis module.

# Everything that follows below is expecting an input of a time and a vpa.
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phase1outputcopy <- phase1output # This copy is going to be used to write out the phase1 extract plus
the flag for whether the row is an artifact.
data_working <- phase1output # This will be used for most of the processing, graph production, and
output of post-pruned data.
data_working$row_id <- c(1:nrow(data_working))

data_working$artifact <- rep(0,nrow(data_working))
artifact_vector <- NULL

# The above initializes an artifact variable.

repeat {

artifact_vector_length_prior <- length(artifact_vector)

data_working <- data_working[data_working$artifact==0,]

vpa_mean <- mean(data_working$vpa)
vpa_sd <- sd(data_working$vpa)

data_working$vpa_z <- (data_working$vpa-vpa_mean)/vpa_sd

time_ac <- gamm(vpa_z ∼ s(time), method = "ML", correlation = corAR1(), data=data_working)

sd_res <- sd(time_ac$gam$residuals)

data_working$pred_z <- as.vector(predict(time_ac$gam))

max_z <- qnorm(1-(1/(2∗nrow(data_working))))

data_working$sd_pred_z <- rep(0,nrow(data_working))
data_working$p_artifact <- rep(0,nrow(data_working))
data_working$lclmax <- rep(0,nrow(data_working))
data_working$uclmax <- rep(0,nrow(data_working))
data_working$lcl99 <- rep(0,nrow(data_working))
data_working$ucl99 <- rep(0,nrow(data_working))
data_working$lcl95 <- rep(0,nrow(data_working))
data_working$ucl95 <- rep(0,nrow(data_working))
data_working$lcl90 <- rep(0,nrow(data_working))
data_working$ucl90 <- rep(0,nrow(data_working))

for (i in 1:nrow(data_working)) {

z <- (data_working$vpa_z[i]-data_working$pred_z[i])/sd_res
data_working$sd_pred_z[i] <- sd_res
data_working$p_artifact[i] <- 1-(2∗(1-pnorm(abs(z))))
data_working$lclmax[i] <- data_working$pred_z[i]-(max_z∗sd_res)
data_working$lcl99[i] <- data_working$pred_z[i]-(2.58∗sd_res)
data_working$lcl95[i] <- data_working$pred_z[i]-(1.96∗sd_res)
data_working$lcl90[i] <- data_working$pred_z[i]-(1.64∗sd_res)
data_working$uclmax[i] <- data_working$pred_z[i]+(max_z∗sd_res)
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data_working$ucl99[i] <- data_working$pred_z[i]+(2.58∗sd_res)
data_working$ucl95[i] <- data_working$pred_z[i]+(1.96∗sd_res)
data_working$ucl90[i] <- data_working$pred_z[i]+(1.64∗sd_res)

}

max_p <- 1-(2∗(1-pnorm(max_z)))

data_working_artifact_rows <- data_working[data_working$p_artifact > max_p,]

artifact_vector <- append(artifact_vector, data_working_artifact_rows$row_id, after =
length(artifact_vector))

artifact_vector_length_current <- length(artifact_vector)

if (artifact_vector_length_current == artifact_vector_length_prior) { break }

data_working$artifact <- (data_working$p_artifact > max_p)∗1

}

############### Just visually setting off the end of the major repeat loop #################

####################

##############################################################################

####################

# The following does a bit of post-processing on the artifact vector created above.

artifact_vector # This shows the rows in the original data that are artifacts.

artifact_vector <- sort(artifact_vector) # Sorts the artifact vector.

newrows_vector <- NULL # Initiates a new vector into which additional artifact rows will be written.

for (i in 1:(length(artifact_vector)-1)) {

if (artifact_vector[i+1] - artifact_vector[i] == 2) {newrows_vector <- append(newrows_vector,
c(artifact_vector[i]+1))} else {}
if (artifact_vector[i+1] - artifact_vector[i] == 3) {newrows_vector <- append(newrows_vector,

c(artifact_vector[i]+1, artifact_vector[i]+2), after=length(newrows_vector))} else {}

}

# The loop above identifies additional rows as artifacts – i.e., any rows in between two artifact rows
separated by three heartbeats or less.

artifact_vector <- append(artifact_vector, newrows_vector, after=length(artifact_vector)) # Adds the
additional rows to the artifact vector.
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artifact_vector <- sort(artifact_vector) # Sorts the final artifact vector.

####################

##############################################################################

####################

# The following writes out all of this into files.

phase1outputcopy$artifact <- rep(0,nrow(phase1outputcopy)) # Initializes the variable.

for (i in 1:length(artifact_vector)) {
targetrow <- artifact_vector[i]
phase1outputcopy$artifact[targetrow] <- 1

}

phase1outputcopy$outofphase <- rep(0,nrow(phase1outputcopy)) # Initializes the variable.

for (i in 1:length(outofphasevector)) {
targetrow <- outofphasevector[i]
phase1outputcopy$outofphase[targetrow] <- 1

}

write.csv(phase1outputcopy, prepruned_heartbeat_VPA_output_filename, row.names=FALSE)

# The above writes the pre-pruned data with the flag for whether each row wound up being an artifact.

plot(density(data_working$p_artifact))

# This shows the density of the p-values for the pruned data.
# If the above does not look close to uniform, there are some outliers.

plot(data_working$time,data_working$vpa_z, type="p", pch=20, cex=0.6, xlab="time", ylab="vpa_z",
main="Pruned Data and Confidence Limits")
lines(data_working$time,data_working$pred_z, type="l", col="black", lwd=4)
lines(data_working$time,data_working$lclmax, type="l", col="red", lwd=2)
lines(data_working$time,data_working$uclmax, type="l", col="red", lwd=2)
lines(data_working$time,data_working$lcl99, type="l", col="orange", lwd=2)
lines(data_working$time,data_working$ucl99, type="l", col="orange", lwd=2)
lines(data_working$time,data_working$lcl95, type="l", col="yellow", lwd=2)
lines(data_working$time,data_working$ucl95, type="l", col="yellow", lwd=2)
lines(data_working$time,data_working$lcl90, type="l", col="green", lwd=2)
lines(data_working$time,data_working$ucl90, type="l", col="green", lwd=2)
legend(locator(1), c("90%ci", "95%ci","99%ci","maxci"), col=c("green", "yellow", "orange", "red"),
lty=c(1,1,1,1), lwd=c(2,2,2,2))

# This graph shows the smooth function and confidence limits for the pruned data.
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