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Category learning is fundamental to cognition, but little is known about how it proceeds in real-world
environments when learners do not have instructions to search for category-relevant information, do not
make overt category decisions, and do not experience direct feedback. Prior research demonstrates that
listeners can acquire task-irrelevant auditory categories incidentally as they engage in primarily visuo-
motor tasks. The current study examines the factors that support this incidental category learning. Three
experiments systematically manipulated the relationship of four novel auditory categories with a consist-
ent visual feature (color or location) that informed a simple behavioral keypress response regarding the
visual feature. In both an in-person experiment and two online replications with extensions, incidental
auditory category learning occurred reliably when category exemplars consistently aligned with visuo-
motor demands of the primary task, but not when they were misaligned. The presence of an additional
irrelevant visual feature that was uncorrelated with the primary task demands neither enhanced nor
harmed incidental learning. By contrast, incidental learning did not occur when auditory categories were
aligned consistently with one visual feature, but the motor response in the primary task was aligned
with another, category-unaligned visual feature. Moreover, category learning did not reliably occur
across passive observation or when participants made a category-nonspecific, generic motor response.
These findings show that incidental learning of categories is strongly mediated by the character of coin-
cident behavior.

Keywords: category learning, incidental learning, statistical learning, auditory-visual associations

Categorization, the ability to treat distinct perceptual experien-
ces as functionally equivalent, is a vital component of human cog-
nition that underlies many everyday behaviors. Auditory
categorization plays a role in deciphering words heard in a noisy

restaurant, deciding quickly whether an approaching animal is
friend or foe, and identifying one’s own cell phone ring from that
of others.

Although there is a rich literature on how humans learn catego-
ries, our understanding is largely based on laboratory studies con-
ducted with visual objects and using training paradigms that
involve explicit categorization. Typically, participants are aware
that the objects should be sorted, make overt category decisions,
and receive feedback that directs future decisions. This classic
approach has provided an informative literature characterizing cat-
egory learning (for reviews, see Ashby & Maddox, 2011; Holt,
2011; Richler & Palmeri, 2014). Nonetheless, results obtained
across overt training with visual objects may not generalize
broadly to other perceptual modalities, or to natural environments
that do not provide explicit training (Markman & Ross, 2003;
Roark & Holt, 2018, 2019; Scharinger et al., 2013; Wade & Holt,
2005).

Indeed, category learning in natural environments typically
occurs under much less explicit conditions. In everyday life, peo-
ple do not usually receive instructions to search for category-diag-
nostic dimensions, make overt category decisions, or obtain
explicit feedback. One possibility is that acquiring categories in
the “real world” involves accumulation of input regularities
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through purely passive exposure (Love, 2002; Maye et al., 2002;
McMurray et al., 2009; Yoshida et al., 2010). Exposure to distribu-
tions of perceptual input in the lab is indeed known to affect per-
ception of established speech categories (Clayards et al., 2008;
Idemaru & Holt, 2011) and to influence judgments of a set of vis-
ual objects (Oriet & Hozempa, 2016). Likewise, listeners can learn
novel nonspeech auditory categories experienced passively, when
the exemplars comprising the categories exhibit coherent a priori
similarity structure (Emberson et al., 2013; Wade & Holt, 2005).
However, there may be limits to the types of categories that can

be acquired through mere exposure to auditory regularities. More
complex nonspeech categories—like those modeling the multidi-
mensional nature of speech categories—are not readily learned via
passive exposure alone (Emberson et al., 2013; Wade & Holt,
2005). Infants are widely believed to form speech categories via
passive exposure to individual exemplars (e.g., Maye et al., 2002),
but a recent meta-analysis of data available across 26 published
studies (406 infants) concludes that infant category learning by
passive exposure may be somewhat limited (Cristia, 2018). Yet
introducing alignment across modalities in passive observation
may be beneficial for learning. Passive learning of statistical struc-
ture in the auditory modality can be improved by co-present,
aligned visual cues (Cunillera et al., 2010; Mitchel & Weiss, 2011;
Thiessen, 2010). Thus, there is reason to believe that the alignment
of statistical regularities in a learning environment will impact
learning outcomes.
It is an open question as to how category learning proceeds

when explicit feedback is unavailable, but passive accumulation of
acoustic regularities may be sluggish or insufficient. In the audi-
tory domain, motivated by speech category learning, there has
been progress in developing new approaches to studying category
learning under conditions that are neither explicit nor passive. In
these studies, the approach has been to examine category learning
in contexts in which participants interact actively with the cate-
gory-relevant information in the context of an engaging primary
task (Clapper, 2012; Gabay et al., 2015; Lim et al., 2019; Lim &
Holt, 2011; Protopapas et al., 2017; Seitz et al., 2010; Vlahou et
al., 2012; Wade & Holt, 2005). Notably, this primary task does
not involve instruction about the existence of categories, overt cat-
egory decisions, or explicit feedback about categorization. But
unbeknownst to participants, primary task performance can be
supported by category learning.
In such incidental category learning studies, sound categories

are learned by virtue of their relationship to success in performing
a task defined by other, and largely visuomotor, task demands.
Although participants do not overtly search for dimensions diag-
nostic to auditory category membership and do not receive explicit
feedback, incidental learning is neither passive nor entirely unsu-
pervised or feedback-free. There are rich associations of sound
categories with behavioral events and outcomes in the primary
task. Yet unlike explicit category learning, the incidental feedback
that might arise from these associations is not directly related to
overt category decisions (Lim et al., 2019).
For example, in a task originally developed by Wade and Holt

(2005; see also Kimball et al., 2013), the objective is to navigate a
space-themed videogame, targeting approaching aliens with a
laser. Participants are instructed only in how to maneuver in the
game. They are not instructed to form audio-visual or audio-motor
associations, and they are not told the significance of the sounds,

which are embedded in a more complex soundscape that includes
a background score and acoustic events unrelated to the categories.
The videogame task is largely visuomotor, but it is organized in
such a way that sound category learning can support successful
navigation. Specifically, each alien creature is associated with
multiple, acoustically variable sounds drawn from a category.
When an alien appears in the videogame, an associated sound-cat-
egory exemplar is repeatedly played. As players advance to higher
levels, the pace of play becomes more challenging and there is
increasing opportunity for the sound categories to support behav-
ior in the primary game navigation task because participants can
hear an approaching alien before seeing it and each alien originates
from a stereotypical region of visual space. Thus, learning to cate-
gorize across the acoustically variable sounds associated with spe-
cific aliens supports faster action. Indeed, participants quickly
learn both novel artificial nonspeech auditory categories (Lim et
al., 2015, 2019; Wade & Holt, 2005) and non-native speech cate-
gories (Lim et al., 2015; Lim & Holt, 2011; Wiener et al., 2019).
Moreover, they generalize this learning to novel category exem-
plars in a postgame overt labeling task in which novel sounds are
matched with alien creatures.

Although other-worldly, this task’s demands more closely ap-
proximate those of learning in a natural environment than tradi-
tional explicit learning or passive-exposure paradigms. Here,
sound categories are not themselves the focus of the task, but
instead convey information vital for recognizing events taking
appropriate actions in order to “survive and thrive.” Such para-
digms capture some of the incidental nature of learning categories
in everyday life.

Nonetheless, these games impose a trade-off: Because they are
necessarily more complex and dynamic, it is difficult to uncover
which of the videogame’s many elements are responsible for driv-
ing learning. To address this issue, Gabay et al. (2015) developed
a task that, while much simpler, targets aspects of the videogame
hypothesized to drive incidental learning. In this systematic multi-
modal association reaction time (SMART) task, participants rap-
idly detect the appearance of a visual target in one of four possible
screen locations and report its location by pressing a key corre-
sponding to the visual screen position.

Critically, a brief sequence of sounds precedes each visual tar-
get. Unbeknownst to participants, and like the Wade and Holt
(2005) videogame, sounds are drawn from one of four distinct
sound categories. There is a multimodal (auditory-category to vis-
ual-location) correspondence that relates variable sound category
exemplars to the location where a visual object will consistently
appear. Again, like the videogame, this mapping is many-to-one,
such that multiple, acoustically variable sound category exemplars
are associated with a single visual location. Likewise, sound cate-
gories are predictive of the action required to complete the task,
although in no way necessary for task completion.

In the training blocks, the categories perfectly predict the loca-
tion of the upcoming visual detection target and the corresponding
response button to be pressed. Thus, learning to treat the acousti-
cally variable sounds as functionally equivalent in predicting the
upcoming visual target location may facilitate visual detection
without requiring overt sound categorization decisions—or possi-
bly even awareness—of the existence of categories. Participants
are never told about the utility of the sounds, and the many-to-one
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association of sounds to locations prevents simple auditory–visual
associations from driving behavior.
Category learning can be measured covertly online during the

SMART task via a “random” block of trials. Here, the relationship
between auditory category and visual location is eliminated. Thus,
if participants incidentally learn sound categories to support quick
detection of the visual target, then in the “random” block visual
detection should be slower relative to the previous training block
for which audio-visual relationships were coherent—in other
words, a reaction time (RT) cost.
Additionally, an overt sound categorization posttest follows the

SMART task. In this task, participants hear novel sound exemplars
drawn from the sound categories and guess the location where the
visual target would be most likely to appear. No visual targets
appear, and there is no overt or incidental feedback. This provides
a measure of generalization of learning to novel exemplars, a hall-
mark of robust category learning. It also requires that participants
transfer learning to an explicit task that differs somewhat from the
incidental SMART learning context. It is impossible to succeed at
generalizing category knowledge in this explicit labeling task
without having learned incidentally in the SMART task. As this
test involves only novel category exemplars that were not experi-
enced in the incidental learning context of the SMART task, it is
impossible to perform this task above chance level by memorizing
training exemplars. Furthermore, the original Gabay et al. (2015)
paper introducing the SMART task included additional control
experiments that support this conclusion.
The SMART task shares some characteristics with a traditional

procedural learning paradigm, the serial RT (SRT) task (Nissen &
Bullemer, 1987). However, SMART—at least as described above
—measures category learning, and not sequence learning. There
are no embedded sequences across the trials, which instead
are randomly ordered across locations. SRT and SMART do share
the fact that participants are not alerted to a regularity in the train-
ing stimuli. This is done to promote incidental learning conditions,
which are distinct from both overt and passive paradigms. Here,
we make no claims about the extent to which SMART is implicit;
in fact, to foreshadow, it appears different samples of participants
tested in different contexts may engage in quite different strategies
during incidental learning.
Using the SMART paradigm, Gabay et al. (2015) examined non-

speech auditory category learning across the same sound exemplars
employed by Wade and Holt (2005) in the incidental videogame
paradigm. Although the task was a simple visual detection, partici-
pants nonetheless learned the auditory categories. This was demon-
strated first by the longer RTs to detect the visual target in the
“random” block, when the association between the sound categories
and the upcoming location of the visual target was destroyed. The
RT cost imposed by the loss of systematic mapping between sound
category and target location suggested that participants relied on
incidentally learned auditory category information to facilitate
speedy visual target detection. Moreover, this learning generalized
to labeling novel auditory exemplars in the posttraining test.
The SMART paradigm is a potentially attractive means of

addressing a number of open questions about what factors drive—
or, alternatively, hinder—incidental auditory category learning.
Across three experiments with seven unique conditions (with five
of these replicated across experiments), we systematically manipu-
lated the relationship of four novel auditory categories with a

consistent visual feature (color or location) that informs a simple
behavioral keypress response regarding the visual feature in the
SMART task. We first replicated the basic result reported by
Gabay et al. (2015). We next asked whether incidental learning is
dependent on the consistent alignment of auditory categories with
the visuomotor demands of the primary task. We examined how
the presence of an additional visual feature in the primary task that
is uncorrelated with auditory categories or motor response impacts
incidental learning. Finally, we tested whether learning of the au-
ditory categories would occur when participants experienced the
same auditory–visual statistical regularities via passive observa-
tion or with a generic motor response to the visual target that does
not differentiate categories.

The three experiments are differentiated largely by their
approach. Experiment 1 used traditional in-laboratory examination
of university students in a carefully controlled environment with
studies conducted across an extended period. Experiments 2 and 3
replicated and extended Experiment 1 with online testing of a
more diverse participant pool with random assignment to condi-
tions over a brief period.

Experiment 1

Method

Experiment 1 involved five conditions manipulating characteris-
tics of the SMART task to understand the factors supporting inci-
dental category learning (Figure 1A). There were independent
groups of learners participating in each condition, and learning
was examined within as well as between conditions. Two major
components differed across the five conditions: (1) the alignment
of the auditory categories and task-relevant visual features of the
primary visuomotor task, and (2) the motor response.

In the “baseline” Category Match: Location-Response (no
color) condition, each auditory category corresponded to a single
greyscale rectangle location on the screen, and the X in a location
guided a unique motor response. Thus, auditory category, location,
and motor response were all aligned. This situation reflects a
match between categories and the behaviorally relevant visual fea-
ture. This condition is a near replication of the SMART task devel-
oped by Gabay et al. (2015).

To assess the importance of the differential alignment of auditory cat-
egories with one of two behaviorally relevant visual features, we
devised two new conditions. In Category Match: Color-Response, audi-
tory categories were aligned with a different visual feature, color, that
directed the motor response. In this condition, location was not associ-
ated with either auditory categories or motor response. Category Mis-
match: Color-Response introduced a misalignment between auditory
categories and the visual feature that guides motor response. Here, audi-
tory category was associated with the visual target location, as in the
first condition, but the motor response was based on color, which is
uncorrelated with auditory category. This situation reflects a mismatch
between categories and the behaviorally relevant visual feature.

To assess the importance of category-specific versus category-
general motor response during incidental learning, we devised the
Generic Motor Response condition. Although auditory categories
are again uniquely linked to the visual target locations, participants
pushed the spacebar when a target appeared, regardless of its
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location. Finally, to assess the importance of explicit motor involve-
ment, the Passive Observation condition removed the motor task
completely, with participants engaging in passive observation of the
auditory category to visual location association.
A power analysis (calculated using G*Power and the pwr package

in R) using the effect size from comparison of the performance of
two groups in the generalization test from Gabay et al. (2015; Experi-
ment 1 vs. 3) indicated that to detect a large difference among condi-
tions (d = .87 or f = .4), a sample of 21 participants per group would
be needed to obtain statistical power at a .90 level with an alpha of
.05. Thus, for each condition, we met or exceeded this target of 21 in
recruitment and tested 120 participants across conditions.

Participants

Across conditions, participants were 120 (80 F, 40 M) members
of the Carnegie Mellon University community ages 18–29 years

who were given either partial course credit or $10 for participat-
ing. There were 21 (15 F, 6 M) participants in Category Match:
Location-Response (no color); 21 (13 F, 8 M) in Category Match:
Color-Response; 24 (14 F, 10 M) in Category Mismatch: Color-
Response; 23 (16 F, 7 M) in Generic Motor Response; and 31 (22
F, 9 M) in Passive Observation. Two Passive Observation partici-
pants were withheld from analyses: one due to poor performance
on catch trials (see below) and one due to failure to complete the
entire task, leaving 29 participants. There were slightly more par-
ticipants in this condition because we wanted to ensure results ro-
bust to potential individual variability in learning from passive
observation not guided by response engagement. All participants
had normal or corrected-to-normal vision and reported normal
hearing.

We note that Carnegie Mellon University community partici-
pants were not randomly assigned to condition in Experiment 1,

Figure 1
Condition Design Overview

Note. A. Design of Experiment 1 conditions in terms of the relationship between auditory categories (top row), visual features of spatial location and color
(middle row) and motor response (bottom row). B. Design of Experiment 2 conditions with the same organization as A. Experiment 3 conditions are out-
lined in the gray box. C. Example of a single trial for a Category C exemplar across all conditions. Category Match Conditions establish a deterministic
relationship between auditory categories and one visual feature of the target (color or location), which is also aligned with the unique motor response.
Category Match: Location-Response (no color; far left) is a near replication of the SMART task paradigm from Gabay et al. (2015) with a consistent rela-
tionship between each auditory category and the location of a visual target “X”. Response is aligned with location (Location-Response). In Category
Match: Color-Response and Category Match: Location-Response conditions, there is a consistent relationship between the categories and one of the visual
features; the other feature irrelevantly varies. Category Mismatch conditions break the alignment between the auditory category-relevant visual feature and
the motor-relevant feature. The Generic Motor Response condition maintains a consistent relationship between auditory categories and the visual location
of the target, but participants make a single motor response to all stimuli (spacebar). The Passive Observation condition requires no motor response while
participants observe a consistent auditory category to visual location mapping. See the online article for the color version of this figure.
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presenting a potential limitation. Experiments 2 and 3 addressed
this concern in replicating and clarifying results of Experiment 1,
with random assignment in independent online samples and data
collection accomplished in a brief (three-week, Experiment 2;
one-day, Experiment 3) period.

Stimuli

For all conditions, the auditory categories were defined by novel
nonspeech sound exemplars identical to those used by Gabay et al.
(2015), as originally developed by Wade and Holt (2005) and
illustrated in Figure 2. The stimuli are available at https://doi.org/
10.17605/OSF.IO/9DKJG. These sounds have some of the spec-
trotemporal complexity of speech but are unequivocally non-
speech due to their noise and square wave sources. Six unique
exemplars from each category were used in SMART training; an
additional five novel exemplars per category were withheld from
training for use in testing generalization of category learning at
posttest. Two categories were defined by a simple acoustic cue
(up- or down-sweep in frequency of a higher-frequency compo-
nent, Figure 2, categories A and B). The other two categories were
defined in a more complex, higher-dimensional perceptual space
(no single acoustic cue uniquely defined category membership,
Figure 2, categories C and D). Each exemplar was 250 ms in dura-
tion and exemplars were matched in RMS amplitude.

Procedure

SMART Task. All conditions make some variation of the
SMART task from Gabay et al. (2015; see Figure 1). We first
describe the procedure for the “baseline” Category Match: Loca-
tion-Response (no color) condition, which is a near replication of
the SMART task developed by Gabay et al. (2015). We then
describe the key differences in the methods for the other condi-
tions that manipulate this basic method.

In the SMART task, participants saw four greyscale boxes on
the screen aligned horizontally in a straight line that corresponded
with the participant response keys (“u”, “i”, “o”, “p”). On each
trial, participants heard five unique 250-ms sound exemplars
drawn from one of the four auditory categories (50 ms ISI, 1500
ms total duration). Immediately following the final auditory stimu-
lus, participants saw an X appear in one of the four boxes. Partici-
pants in Category Match: Location-Response (no color) were
instructed to report the location of the X with a unique button press
associated with each location. RT was measured from the onset of
the visual target to the keypress.

Participants completed five blocks of the SMART task (384
total trials). In Blocks 1–3 and 5, the sound category perfectly pre-
dicted the location of the upcoming visual target across 96 trials.
In Block 4, the relationship between the sound category and loca-
tion of the X was random, such that after five different exemplars
from a single category played, the X appeared with equal likeli-
hood in any of the four boxes. In Block 4, there were only 48 trials
(half as many as the other blocks) to limit the impact of this ran-
domization on the ultimate learning outcomes. Following the
approach of Gabay et al.’s (2015) study, we examined the RT in
Block 4 compared to Block 3 (when category-to-location associa-
tion was destroyed) to evaluate the cost of randomizing the associ-
ation of a sequence of five coherent auditory category exemplars
with the location of the upcoming visual target. We refer to this
difference as the RT cost, which serves as a covert index of inci-
dental auditory category learning.

One small change was made to the Gabay et al. (2015) para-
digm. Gabay et al. (2015) randomized Block 4 trials such that
each of the five auditory stimuli could be drawn from any auditory
category. Therefore, not only did the sounds convey no informa-
tion about target location, there was also no consistent category
membership across the five exemplars played in a trial. By con-
trast, the current study maintains within-category coherence within
Block 4 trials, which still enables participants to use the auditory
information to predict where the target will appear and prepare a
motor response. In all blocks, the sounds on a single trial are
drawn from the same auditory category, but in Block 4 the cate-
gory-to-location mapping is completely randomized.

Generalization Test. After completing the SMART task, par-
ticipants were informed that there was a relationship between the
sounds they had heard, and the location of the visual target. They
were then asked to complete a four-alternative forced choice
(4AFC) task with no feedback. In each of 96 trials, participants
heard five unique exemplars from one category, and were asked to
select in which location they believed a target might appear. Each
of these exemplars were novel and had not appeared in the
SMART task; thus, accurate response required generalization of
category learning.

Key Differences Across Conditions. The other conditions
make small variations to the “baseline” Category Match: Loca-
tion-Response (no color) condition SMART task to understand the
factors supporting successful learning. Across each condition, the
stimuli and basic procedure were the same. Below, key manipula-
tions are described for each condition.

Category Match: Color-Response. In the “baseline” condi-
tion, sound categories predict the spatial location of the visual tar-
get. In contrast, in the Category Match: Color-Response condition,
sound categories predict the color of the visual target. Instead of a

Figure 2
Auditory Categories

Note. Each higher-frequency component (colored lines) is paired with the
lower-frequency component (dashed line) to create six exemplars for each
category presented during training. The five generalization exemplars in
each category are not shown. The stimuli are available at https://doi.org/
10.17605/OSF.IO/9DKJG and described in more detail in Wade and Holt
(2005). See the online article for the color version of this figure.
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single black visual target (“X”), in Category Match: Color-
Response, there are four visual targets distinguished by color (red,
blue, green, and yellow “X” targets). Each of the distinctly colored
targets appeared in each location with equal probability, such that
visual target location was completely unassociated with the audi-
tory categories. Crucially, participants responded based on the
color of the target and not the location. Colored stickers affixed to
response keys facilitated the color-response mapping (see Figure
1). During the generalization test, participants were informed of
the relationship between the sounds and color of the visual target
and completed a 4AFC task with no feedback.
Category Mismatch: Color-Response. The Category Mis-

match: Color-Response condition was almost identical to Category
Match: Color-Response, with one key difference: The auditory
categories were associated with the target location, but the motor
response was based on target color. Thus, there was a misalign-
ment between the auditory categories and the behaviorally relevant
visual feature. The auditory category predicted the location of the
target X, with distinctly colored targets appearing in each location
with equal probability. After the SMART task, participants were
informed of the relationship between the sounds and location of
the visual target and completed the 4AFC generalization task with
no feedback.
This manipulation decoupled the association between the cate-

gory-associated visual feature and the task-relevant visual feature.
If a coherent category–visual association is sufficient to drive inci-
dental category learning, then we expect to observe learning. How-
ever, if the alignment of auditory categories with a task- and
motor-relevant visual feature is necessary for learning, then decou-
pling the auditory categories from the response should eliminate
or reduce incidental category learning.
Generic Motor Response. The procedure for the Generic

Motor Response condition was also nearly identical to the base-
line: Auditory categories mapped to visual target location and all
targets were the same color. But unlike the baseline condition, par-
ticipants pressed only the spacebar to indicate detection of a visual
target instead of reporting its location. At the start of the general-
ization test, participants were instructed about the spatial mapping
of the visual target locations and the “u,” “I”, “o”, and “p” keys on
the keyboard, and made responses based on this mapping.
If incidental learning of the auditory categories requires a

response unique to each category, we predict no category learning
effects in Generic Motor Response on either the covert RT cost
measure or the overt generalization test. If instead, consistent audi-
tory category mapping to visual target location plus the mere exe-
cution of a timed, yet generic, motor response is sufficient to
support incidental learning, then we should observe learning.
Passive Observation. In the Passive Observation condition,

the procedure was similar to the baseline Category Match: Loca-
tion-Response (no color). Again, auditory categories were linked
to spatial location, but participants made no motor responses dur-
ing training. This manipulation is critical. The lack of a motor
response makes this task entirely passive, but participants observe
the auditory-category to visual-location correspondence. As a
result, this paradigm can be distinguished both from the incidental
learning paradigms of each of the other conditions (which rely on
active engagement in the visuomotor task), as well as from com-
pletely unsupervised auditory category learning, since the associa-
tion of the auditory categories and visual location can serve as a

form of feedback (similar to Cunillera et al., 2010; Mitchel &
Weiss, 2011; Thiessen, 2010).

The Passive Observation condition included some additional
components to ensure that the experience of participants was as
similar as possible to that of other conditions, even in the absence
of a trial-wise motor response. First, following the last of the five
category exemplars presented on a given trial, the visual target
“X” remained on the screen for 500 ms. This value was based on
the average RT across all subjects and all blocks for Category
Match: Location-Response (no color; M = 432 ms), rounded up to
accommodate modest individual differences. Second, we included
several catch trials in each block to assure participants remained
engaged with the audio-visual stimuli, despite the lack of trial-by-
trial responses. Catch trials were signaled in the following way:
After visual targets appeared on the screen in the typical manner,
they subsequently appeared across all four visual locations (maxi-
mum 2 s). Catch trials comprised 12.5% of the total trials: 12 trials
for every 96-trial block, 6 trials in Block 4, randomly dispersed.
Participants were instructed to quickly press the spacebar when
they saw flashing Xs. If participants did not respond within 2 s,
they received feedback to respond faster. Participants responded
within the 2 s required on 99.5% of trials. We planned to exclude
any participants who did not respond or responded too slowly on
more than 5% of catch trials. As a result of this criterion, one par-
ticipant (94% accurate) was excluded from analyses. Including
this participant did not change any of the results.

Together, the Generic Motor Response and Passive Observation
conditions allow us to test hypotheses about how the motor
response supports learning in the SMART task. If any motor
response linked with the visual target supports learning, we should
observe learning in Generic Motor Response, but not Passive Ob-
servation. If motor response is not required for learning, we should
observe learning in each of these conditions. Finally, if a unique
motor response to visual target is required, we should observe a
lack of learning in these conditions.

Summary of Conditions in Experiment 1

Category Match: Location-Response (no color) is a near replica-
tion of the SMART task from Gabay et al. (2015) and forms the
basis of comparison across Experiment 1 manipulations. Category
Match: Color-Response switches the category-and-task-relevant
feature from the location of the “X” on the screen to a new visual
feature—color—but retains trial-to-trial variability in target loca-
tion, which is task- and category-irrelevant. Like Category Match:
Color-Response, Category Mismatch: Color-Response maintains
one task-relevant and one task-irrelevant visual feature. However,
in Category Mismatch: Color-Response, auditory categories are
associated with the task-irrelevant visual feature (spatial location,
as in the baseline), thereby breaking the association between audi-
tory categories and motor response. In Generic Motor Response,
we remove the uniqueness of this motor response: Instead, partici-
pants make the same keypress (spacebar) on each trial. This allows
for examination of whether incidental learning depends upon a
unique category-to-motor-response mapping. Finally, in Passive
Observation, we completely remove motor responses to determine
whether passive observation of a coherent auditory category–vi-
sual feature association is sufficient to drive category learning.
Figure 1 summarizes the conditions.
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Results

To compare learning, we examined the reaction times to detect
the visual target from visual target onset, the online measure of
learning (RT cost from Block 3 to Block 4), and the overt general-
ization posttest accuracy. Here and throughout, we used Welch’s
one-way ANOVA, Welch’s t-tests, and Games-Howell post hoc
tests to compare across conditions, which do not assume homoge-
neity of variances. Other model assumptions were met.

Reaction Time Measures

Preprocessing. Because the Passive Observation condition
did not require trial-by-trial responses, we examined RT measures
only for the other four conditions. On average, participants were
more than 95% accurate in visual detection in SMART training
across all conditions. As in Gabay et al. (2015), trials were
excluded from analyses for which there was a visual detection
error, or RT was less than 150 ms or greater than 1500 ms; these
boundaries were greater than two standard deviations calculated
from the most variable condition: Category Misaligned: Color-
Response. This led to a total of 3.8% of trials removed for Cate-
gory Match: Location-Response (no color); 7.9% of trials for Cat-
egory Match: Color-Response; and 7.7% of trials for the Category
Mismatch: Color-Response. Because the Generic Motor Response
condition required only visual detection rather than mapping to a
response, we expanded the lower bound of this criterion and
excluded trials with reaction times less than 50 ms or greater than
1500 ms (6.8% of trials). We removed trials from analyses based
on an a priori data analysis plan aligned with the approach of
Gabay et al. (2015). However, we note that the results do not
change when all trials are included in the analyses.
De-Meaned Reaction Times. Because task demands across

conditions were slightly different, there are some differences in
overall RTs that make a direct comparison of average RT differen-
ces difficult to interpret (Figure 3A). These relative differences in
overall RT could indicate differences about the effort or demand
of each individual task, with higher RTs reflective of more chal-
lenging tasks (e.g., mapping response to color vs. location). To
visualize the relative differences in RT across conditions while
controlling for these overall differences, we computed the de-
meaned reaction times for each of the conditions (Figure 3B). Spe-
cifically, for each participant, the mean RT across the nonrandom
training blocks (1–3, and 5) was used as a baseline. Then, the RT
for each trial for each participant was normalized using this base-
line measure (RTnormalized = RTunnormalized –RTmean). This visual-
ization illustrates the relative change in RT across blocks, with an
increase in RT in Block 4 (RT cost) for Category Match: Loca-
tion-Response (no color) and Category Match: Color-Response
conditions.
Reaction Time Cost. Incidental learning within the SMART

paradigm is measured as the RT cost to visual detection from
Block 3 to Block 4 (Figure 3C), for which the relationship
between auditory categories and visual features is eliminated
through randomizing category-to-feature assignment.
We first examined whether there was a significant RT cost for

each condition with paired samples t-tests across Block 3 and
Block 4 RTs. Category Match: Location-Response (no color) par-
ticipants had a significant RT cost with a mean of 20.8 ms (t(20) =
2.28, p = .034, d = .50, 95% CI [1.74, 39.8]). Category Match:

Color-Response, participants had a significant RT cost with a
mean of 69.3 ms (t(20) = 2.68, p = .015, d = .58, 95% CI [15.3,
123.3]). By contrast, there was no significant RT cost in Category
Mismatch: Color-Response (M = 1.43 ms, t(23) = .13, p = .90, d =
.03, 95% CI [–22.06, 24.9]) or Generic Motor Response conditions
(M = –7.67 ms; t(22) = 1.34, p = .19, d = .28, 95% CI [–19.5,
4.16]).

Next, we asked whether the magnitude of the RT costs differed
across conditions. A between-subjects Welch's ANOVA indicated
they did (Welch’s F(3, 43.2) = 4.48, p = .0078; est. x2 = .10). We
compared RT costs across conditions to assess the influence of the
alignment of the auditory-visual-motor information and the motor
response on RT cost. Whereas there were differences in the pres-
ence or absence of an RT cost across conditions, these were not
significantly different when comparing across conditions that dif-
fer in the alignment (Category Match: Location-Response (no
color), Category Match: Color-Response, Category Mismatch:
Color-Response, ps . .10) or motor response demands (Category
Match: Location-Response (no color) versus Generic Motor
Response, p = .057).

Generalization Test Accuracy

The same overt generalization posttest was used to examine cat-
egory learning in each of the five conditions (Figure 4A). First, we
examined accuracy in overtly mapping the auditory category-to-
response association established during the training phase in the
SMART paradigm, relative to chance performance (25%). In
“baseline” Category Match: Location-Response (no color), partici-
pants successfully generalized their knowledge, with an average
accuracy of 47.6%, significantly greater than chance (t(20) = 4.89,
p , .001, d = 1.07, 95% CI [37.9, 57.2]). In Category Match:
Color-Response, where the task-relevant feature (color) was pre-
dicted by auditory category and visual target location varied ran-
domly, performance was above chance (M = 48.1%, t(20) = 4.42,
p , .001, d = .96, 95% CI [37.2, 59.0]). In Category Mismatch:
Color-Response, where auditory category was not linked to the
task-relevant feature (color), but instead aligned with the task-
irrelevant feature (location), there was no evidence of learning
(M = 26.6%; t(23) = .53, p = .60, d = .11, 95% CI [20.4, 32.9]). By
contrast, in Generic Motor Response (M = 46.2%, t(22) = 4.19,
p = .00038, d = .87, 95% CI [35.7, 56.6]) and Passive Observation
(M = 40.7%, t(28) = 3.86, p = .00061, d = .72, 95% CI [32.4,
49.0]), performance was above chance.

Posttest accuracy varied across conditions (Welch’s F(4, 54.4) =
6.1, p = .00040, est. x2 = .15), such that generalization of category
learning at posttest was associated with alignment of auditory cate-
gory, visual feature, and motor response. Accuracy was signifi-
cantly higher when category response aligned in the Category
Match: Location-Response (no color) and Category Match: Color-
Response conditions compared to Category Mismatch: Color-
Response, for which category response was misaligned (p = .005
and .01, respectively); Category Match conditions did not differ
(p = 1.0).

Involvement of a category-unique versus generic versus no
motor response did not impact expression of incidental learning in
the overt task. Posttest accuracy for baseline Category Match:
Location-Response (no color) did not differ significantly from
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Generic Motor Response (p = 1.0) or Passive Observation condi-
tions (p = .80), which themselves did not differ (p = .92).

Discussion

Together, these findings demonstrate the robustness of inciden-
tal learning in the SMART paradigm and indicate that a key factor
driving learning is the alignment between auditory categories and
behaviorally relevant features of the primary task, here visual fea-
tures of location or color. Successful overt generalization occurs
when auditory categories are aligned with a task-relevant visual
feature (Category Match: Location-Response (no color)), even if
there is a task-irrelevant visual feature (Category Match: Color-
Response). Learning is hindered when auditory categories are no

longer associated with the task-relevant visual feature (Category
Mismatch: Color-Response), even when there is the same valid
auditory–visual association as in Category Match: Color-
Response. Seemingly in contrast to these findings of the impor-
tance of category-coupled motor responses, participants in the
Generic Motor Response and Passive Observation conditions also
showed significant auditory category learning in the explicit cate-
gorization posttest.

Experiment 2

To establish the robustness of these findings, particularly in
view of the potential for cohort effects due to the lack of random
assignment in Experiment 1, we conducted a replication and

Figure 3
Reaction time Measures Across Experiments

Note. Results for Experiment 1 are shown on the top (A–C) and Experiments 2 and 3 are shown on the bottom (D–F). A/D: Average, unnormalized
reaction times across all subjects for each condition except for the Passive Observation condition. In Experiment 2, conditions that are direct replications
of Experiment 1 are represented with solid lines, and extension conditions are represented with dashed lines. The Generic Motor Response and Passive
Observation conditions of Experiment 3 are shown alongside Experiment 2 as dashed lines. B/E: Average, participant-wise de-meaned reaction time
across the five blocks. C/F: Individual subject and average reaction time costs for each condition. The dashed line at 0 reflects no Block 4 and Block 3
reaction time difference (no RT cost). Positive values reflect a slowing in visual target detection when the category-to-target association is destroyed.
Error bars reflect the standard error of the mean. Spacing of the conditions along the x-axis reflects the alignment of the replication conditions across
the two experiments. See the online article for the color version of this figure.
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extension experiment. Here, we tested the same five conditions as
in Experiment 1 and added two additional conditions that serve as
counterbalanced versions of the Category Match: Color-Response
and Category Mismatch: Color-Response conditions to examine
how the particular visual feature associated with the auditory cate-
gories might impact learning. In addition, we move from the care-
fully controlled laboratory environment of Experiment 1 to online
testing, with a more heterogeneous sample of participants and ran-
dom assignment to condition.

Method

Participants

Participants were recruited via Prolific (www.prolific.sc) and
participated via the Gorilla experiment builder (www.gorilla.sc;
Anwyl-Irvine et al., 2020) across a three-week period in
April–May 2021. Participants were randomly assigned to one of
seven conditions. Across conditions, there were 209 participants

(55 F, 150 M, 3 nonbinary, 1 “prefer not to answer”) ages 18–35
years who were paid $10/hr for participating. By condition, there
were 30 (7 F, 22 M, 1 “prefer not to answer”) participants in
“baseline” Category Match: Location-Response (no color); 30 (4
F, 26 M) in Category Match: Color-Response; 29 (8 F, 21 M) in
Category Match: Location-Response; 29 (12 F, 16 M, 1 nonbi-
nary) in Category Mismatch: Color-Response; 30 (9 F, 21 M) in
Category Mismatch: Location-Response; 31 (8 F, 22 M, 1 nonbi-
nary) in Generic Motor Response; and 30 (7 F, 22 M, 1 nonbinary)
in Passive Observation.

Because this study was conducted online, we included addi-
tional measures to ensure task compliance. Specifically, we used a
headphone check task that utilizes dichotic pitch (Milne et al.,
2020) and introduced additional catch trials in each condition. Par-
ticipants were required to pass the headphone check prior to begin-
ning the experiment. Due to poor performance on catch trials (see
below), a total of 21 participants were withheld from analyses: 2
from Category Match: Location-Response (no color); 5 from Cate-
gory Match: Color-Response; 4 from Category Match: Location-
Response; 1 from Category Mismatch: Color-Response; 2 from
Category Mismatch: Location-Response; 5 from Generic Motor
Response; and 2 from Passive Observation. All participants
reported normal or corrected-to-normal vision and normal hearing.

Procedure

The stimuli and general procedure were the same as Experiment
1. As noted above, in addition to replicating the five conditions
from Experiment 1, we added two additional conditions, summar-
ized in Figure 1B. These conditions simply change which visual
feature is aligned or misaligned with the auditory categories. The
Category Match: Location-Response condition aligns the auditory
categories and response with the location of the target while color
irrelevantly varies. The Category Mismatch: Location-Response
condition aligns auditory categories with color, but response is
based on location.

Different from Experiment 1, participants pressed the “d”, “f”,
“j”, and “k” keys instead of “u”, “I”, “o”, and “p”. This served to
control for potential differences in which finger was used to make
responses, ensuring participants used more dominant fingers to
respond. We also included attention catch trials across all condi-
tions, described below. Because we could not place color maps on
online participants’ keyboards, the color mapping was present on
the screen at all times during the task for conditions requiring a
color response.

In Generic Motor Response and Passive Observation conditions,
we included auditory and visual catch trials to ensure that partici-
pants attended to auditory and visual information. In all other con-
ditions, we included auditory catch trials only, as we were able to
measure how well participants were attending to the visual infor-
mation based on their SMART task performance. There were 12
auditory catch trials and—where applicable—12 visual catch trials
for every 96-trial block (6 trials in Block 4), all randomly dis-
persed. Visual catch trials were identical to Experiment 1. Audi-
tory catch trials were similar, except that participants were
instructed to quickly press the spacebar (or the “t” key in the
Generic Motor Response condition) as soon as they heard a 200-
ms 1000-Hz pure tone. If participants did not respond within 2 s,
they received feedback to respond faster.

Figure 4
Generalization Test Accuracy Across All Conditions

Note. Accuracy averaged across all four categories relative to chance
(25%, dashed line with 95% CI across 96 trials in shaded region). Error
bars reflect the standard error of the mean. A. Experiment 1. B.
Experiments 2 and 3. Spacing of the conditions along the x-axis reflects
the alignment of the replication conditions across experiments. See the
online article for the color version of this figure.
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We excluded participants who did not respond within the
required time on more than 15% of trials. As a result of this crite-
rion, 21 participants across all seven conditions were excluded
from analyses. Included participants responded correctly on 97%
of catch trials; excluded participants responded correctly on 39%
of catch trials. We included this more liberal criterion relative to
Experiment 1 to accommodate for modest differences in online
participants compared to in-laboratory participants. We note that
using a 15% criterion to exclude participants in Experiment 1 does
not change the Experiment 1 results.

Results

We first present the results from the replication conditions
addressing the questions about alignment and motor response
introduced in Experiment 1. We then present the results from the
new Experiment 2 conditions to understand how the visual feature
associated with the auditory categories influenced results. A com-
parison of the RT cost and generalization test accuracies across
experiments can be found in Table 1.

Reaction Time Measures

Preprocessing. As in Experiment 1, visual target detection in
SMART training was highly accurate across all conditions
(. 91%). Trials for which there was a visual detection error or RT
was less than 150 ms or greater than 1500 ms were excluded from
analyses. For the Generic Motor Response condition, reaction
times less than 50 ms were excluded. This resulted in the follow-
ing exclusions: 4.5% Category Match: Location-Response (no
color); 9.8% Category Match: Color-Response; 6.9% Category
Match: Location-Response; 7.0% Category Mismatch: Color-
Response; 4.9% Category Mismatch: Location-Response; 8.7%
Generic Motor Response. As in Experiment 1, data exclusions
were planned a priori according to prior research, and including all
trials, without exclusions, did not change the outcomes of any
analyses.
De-Meaned Reaction Times. As in Experiment 1, we plotted

the average RTs (Figure 3D) and the de-meaned RTs across blocks
for all conditions (Figure 3E).
Reaction Time Cost. RT cost, the difference in RT between

Block 3 and Block 4, is the main measure of interest from SMART
training (Figure 3F). As in Experiment 1, RT cost estimates the
extent to which the task-irrelevant relationship between auditory

categories and visual features established in Blocks 1–3 impacts
behavior on the task-relevant response to the visual target.

As in Experiment 1, paired-samples t-tests of RT across Block 3
and Block 4 revealed a significant RT cost for baseline Category
Match: Location-Response (no color; M = 27.4 ms; t(27) = 3.55,
p = .0014; d = .67, 95% CI [11.6, 43.2]) and Category Match:
Color-Response (M = 52.8 ms; t(24) = 2.80, p = .0098; d = .56,
95% CI [13.9, 91.7]). The new Experiment 2 condition Category
Match: Location-Response was also positive but not significant
(M = 20.1 ms, t(24) = 1.71, p = .10, d = .34, 95% CI [–4.18,
44.5]). There was no significant RT cost for Category Mismatch:
Color-Response (auditory-location, color-response; M = �2.18
ms; t(27) = �.45, p = .66, d = .084, 95% CI [–12.2, 7.87]), Cate-
gory Mismatch: Location-Response (auditory-color location-
response; M = –5.80 ms; t(27) = �1.85, p = .075, d = .35, 95% CI
[–12.2, .63]), or Generic Motor Response conditions (M = �10.3
ms; t(25) = �1.21, p = .24, d = .24, 95% CI [�27.9, 7.25]).

We next asked whether the magnitude of RT costs differed
across the conditions in Experiment 1 replicated in Experiment 2
(Category Match: Location-Response (no color), Category Match:
Color-Response, Category Mismatch: Color-Response, and
Generic Motor Response). A between-subjects Welch's ANOVA
revealed RT cost differences (Welch’s F(3, 52.7) = 6.59, p =
.00073, est. x2 = .14). Unlike Experiment 1, the RT cost measure
was somewhat sensitive to differences in audio-visual-motor
alignment across groups. The baseline Category Match: Location-
Response (no color) condition had a larger RT cost than the Cate-
gory Mismatch: Color-Response condition (p = .034), but there
were no differences between Category Match: Location-Response
(no color) versus Category Match: Color-Response (p = .87) or
Category Mismatch: Color-Response versus Category Match:
Color-Response (p = .11). Also, unlike Experiment 1, the RT cost
was sensitive to motor demands: Category Match: Location-
Response (no color) condition had a larger RT cost than the
Generic Motor Response condition (p = .029).

Generalization Test Accuracy

Generalization of incidental category learning was similar
across Experiments 1 and 2 with the exception of the Generic
Motor Response and Passive Observation conditions (Figure 4B).
Notably, there was no evidence of generalization of learning in
Generic Motor Response (M = 25.4%; t(25) = .21, p = .84, d =
.040, 95% CI [21.0, 29.9]) or Passive Observation conditions (M =
31.1%; t(27) = 1.97, p = .059, d = .37, 95% CI [24.7, 37.5]).

Table 1
Comparison of Results in All Experiments

Experiment 1 Experiment 2 Experiment 3

Condition
SMART RT

cost
Posttest
accuracy

SMART RT
cost

Posttest
accuracy

SMART RT
cost

Posttest
accuracy

Category Match: Location-Response (no color) 20.8 ms 47.6% 27.4 ms 51.0% — —

Category Match: Color-Response 69.3 ms 48.1% 52.8 ms 35.7% — —

Category Match: Location-Response — — 20.1 ms 42.3% — —

Category Mismatch: Color-Response 1.43 ms 26.6% �2.18 ms 23.7% — —

Category Mismatch: Location-Response — — �5.80 ms 21.1% — —

Generic Motor Response �7.67 ms 46.2% �10.3 ms 25.4% �19.0 ms 25.6%
Passive Observation — 40.7% — 31.1% — 27.5%

Note. SMART = Systematic Multimodal Association Reaction Time.
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Aligned with the results of Experiment 1, there was successful
generalization of incidental learning in baseline Category Match:
Location-Response (no color; M = 51.0%; t(27) = 5.90, p , .001,
d = 1.12, 95% CI [42.0, 60.0]) and Category Match: Color-
Response (M = 35.7%; t(24) = 2.71, p = .012, d = .54, 95% CI
[27.6, 43.9]). Generalization in the new Experiment 2 Category
Match: Location-Response condition was also successful (M =
42.3%; t(24) = 3.97, p , .001, d = .79, 95% CI [33.3, 51.3]).
Across conditions, when categories were aligned with visuomotor
demands of the SMART task, there was successful generalization
of incidental category learning.
By contrast, when auditory categories were misaligned with the

task-relevant visual feature (color or location), there was no evi-
dence of learning. This was true for both Category Mismatch:
Color-Response (M = 23.7%; t(27) = -.66, p = .51, d = .12, 95%
CI [19.8, 27.7]) and Category Mismatch: Location-Response (M =
21.1%; t(27) = –2.43, p = .022, d = .46, 95% CI [17.7, 24.4]).
Generalization accuracy differed across the five replication con-

ditions (Welch’s F(4, 63.2) = 9.30, p , .001, est. x2 = .20). In
line with observations from the RT cost measure, the degree to
which auditory-visual-motor information aligned impacted postt-
est accuracy. Most notably, and in contrast to Experiment 1,
unique motor response demands had a strong effect on learning.
The baseline Category Match: Location-Response (no color) con-
dition had higher posttest accuracy than both the Generic Motor
Response (p , .001) and Passive Observation conditions (p =
.010), which did not differ significantly from one another (p =
.74).
Posttest accuracy did not differ according to the visual feature

that mapped to auditory categories and response (baseline Cate-
gory Match: Location-Response (no color) versus Category
Match: Color-Response conditions, p = .15). Again, the category-
response mismatch mattered; baseline Category Match: Location-
Response (no color) elicited more accurate generalization than
Category Mismatch: Color-Response (p , .001). However, there
was no difference between Category Mismatch: Color-Response
versus Category Match: Color-Response conditions (p = .12).
The full crossing of visual features (location, color) with condi-

tions in Experiment 2 allowed us to examine if incidental learning
outcomes differed as a function of visual feature. They did not.
There were no RT cost differences between Match conditions
(Color-Response vs. Location-Response, t(38.6) = 1.25, p = .22,
d = .35, 95% CI [–19.3, 82.5]) or Mismatch conditions (Color-
Response or Location-Response, t(45.9) = .43, p = .67, d = .11,
95% CI [–9.24, 14.2]). Nor were there differences in generaliza-
tion test accuracy (Match: t(47.5) = –1.13, p = .27, d = .32, 95%
CI [–18.5, 5.21]; Mismatch: t(52.6) = 1.067, p = .29, d = .29, 95%
CI [–2.36, 7.72]).
In line with Experiment 1, in these new conditions, the align-

ment of auditory-visual-motor information impacted posttest accu-
racy (Welch’s F(2, 39.6) = 24.9, p , .001, est. x2 = .38).
Specifically, post hoc tests indicated poorer accuracy in the Cate-
gory Mismatch: Location-Response condition versus either Cate-
gory Match: Location-Response (no color; p , .001) or Category
Match: Location-Response (p = .001), which were not different
from one another (p = .85). Alignment of auditory-visual-motor
associations is a strong factor in driving incidental auditory cate-
gory learning.

Discussion

Together, these results support and extend conclusions from
Experiment 1. When auditory categories incidentally align with
unique motor responses to a primary visuomotor task that is osten-
sibly unrelated to those categories, learning is robust (Baseline,
Category Match conditions), Without this relationship, the catego-
ries are not learned (Category Mismatch conditions). Notably, this
is true even when there is a perfectly predictive association of the
categories to a visual feature

Overall, as illustrated in Figures 3 and 4, Experiment 2 repli-
cated the in-laboratory results of Experiment 1 with online testing
and randomized assignment to learning conditions, with an inter-
esting exception. Generic Motor Response and Passive Observa-
tion elicited learning in Experiment 1, but not Experiment 2.
Experiment 3 further examines this discrepancy.

Experiment 3

In Experiment 1, we observed successful learning in General
Motor Response and Passive Observation. In Experiment 2, gener-
alization performance did not differ from chance for either of these
conditions. The online Experiment 2 replication was conducted in
a very different setting than Experiment 1, with distinct samples.
In Experiment 3, we sought to better understand the differences in
learning outcomes with another replication experiment with ran-
dom assignment of online participants to General Motor Response
and Passive Observation.

Method

Participants

Participants were recruited via Prolific (www.prolific.sc) and
participated using the Gorilla experiment builder (www.gorilla.sc;
Anwyl-Irvine et al., 2020) in one day in May 2021. Participants
were randomly assigned to one of the two conditions. Across con-
ditions, there were 60 participants (36 M, 23 F, 1 nonbinary) ages
18–35 years who were paid $10/hr for participating. There were
30 (17 M, 12 F, 1 nonbinary) participants in Generic Motor
Response and 30 (19 M, 11 F) in Passive Observation. Participants
all passed a headphone check prior to beginning the experiment
(Milne et al., 2020). Due to poor performance on catch trials (see
above), a total of 10 participants were withheld from analyses (4
from the Generic Motor Response and 6 from Passive Observa-
tion). Included participants were 98.6% accurate on catch trials,
and excluded participants were 59.4% accurate on catch trials. All
participants reported normal or corrected-to-normal vision and
normal hearing.

Procedure

The stimuli and procedure were identical to General Motor
Response and Passive Observation conditions of Experiment 2.

Results

Reaction Time Measures

Preprocessing. As in Experiment 2, Generic Motor Response
trials for which there was a visual detection error or RT was less
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than 50 ms or greater than 1500 ms were excluded from analyses.
This led to removal of 3.40% of trials. As in Experiments 1 and 2,
including all trials did not change the outcomes of any analyses.
De-Meaned Reaction Times. As in Experiments 1 and 2, we

plotted the average RTs (Figure 3D) and the de-meaned RTs
across blocks for the Generic Motor Response condition (Figure
3E).
Reaction Time Cost. According to a paired-samples t test,

and in line with trends from Experiments 1 and 2, participants in
the Generic Motor Response condition were significantly faster
in Block 4 relative to Block 3 (M = –19.0 ms; t(25) = –3.60, p =
.0014; d = .71, 95% CI [–29.8, –8.12]; Figure 3F), a RT facilita-
tion rather than a cost. This is likely indicative of continued
visuomotor task learning and not category learning because ran-
domization of category to location did not disrupt visuomotor
performance.

Generalization Test Accuracy

Replicating the findings in Experiment 2, there was no evidence
of incidental category learning in either Generic Motor Response
(M = 25.6%, t(25) = .28, p = .78, d = .055, 95% CI [21.2, 30.0];
Figure 4B) or Passive Observation conditions (M = 27.5%, t(23) =
.99, p = .33, d = .20, 95% CI [22.2, 32.8]). Accuracies were not
significantly different across the two conditions (t(45.9) = .56, p =
.57, d = –.16, 95% CI [–8.62, 4.79]).

Discussion

Thus, Experiment 3 replicates Experiment 2 and strengthens
confidence in the conclusion that incidental learning is not robustly
observed in the absence of a unique motor response or under con-
ditions of passive observation of auditory-visual statistical
regularities.

General Discussion

Category learning in natural environments often proceeds under
conditions in which learners do not have instructions to search for
category-relevant information, do not make overt category deci-
sions, and do not experience feedback directly. This contrasts with
the kinds of overt category training typically studied in laboratory
experiments. The present results emphasize that participants can
incidentally learn perceptual categories as they undertake seem-
ingly unrelated tasks, if the task demands of the primary task align
with the structure of the categories. Within an online sample that
may be more representative of the typical adult population than
Carnegie Mellon undergraduates, we observed a consistent lack of
learning in tasks with limited or no motor demands. This study
complements and extends earlier studies (Gabay et al., 2015; Lim
& Holt, 2011; Liu & Holt, 2011; Wade & Holt, 2005) and demon-
strates that incidental learning is driven by consistent alignment of
task-relevant visual features with the variable acoustic exemplars
defining an auditory category.
Incidental category learning occurred reliably when acoustically

variable category exemplars consistently aligned with visuomotor
demands of the primary task, but not when they were misaligned.
The presence of an additional irrelevant visual feature that was
uncorrelated with the primary task demands neither supported nor
harmed incidental learning. By contrast, learning did not occur

when auditory categories were aligned consistently with one visual
feature, but the motor response in the primary task was aligned
with another, category-unaligned visual feature. The importance
of a category-specific motor response for learning was underlined
by the results of Experiments 2 and 3: Category learning did not
reliably occur during passive observation or when participants
made a generic motor response. This lack of learning is striking.
In the absence of category-linked motor engagement, online par-
ticipants did not appear to internalize the deterministic relationship
between the visual feature and the auditory category that facili-
tated learning in the other conditions. However, the in-lab partici-
pants of Experiment 1 did appear to take advantage of these
associative links—a point we return to below.

Overall, consistent mapping between a unique motor target and
the variable acoustic exemplars defining each category greatly
facilitates learning, even without overt feedback or category task-
relevance. On this point, the Mismatch conditions are informative.
For Mismatch conditions, auditory categories aligned perfectly
with one of the two visual features (either location or color). This
strong statistical regularity might be expected to support learning,
even across passive exposure. For example, the addition of an
aligned visual cue can help infants and adults segment statistically
coherent units from continuous streams of speech (Cunillera et al.,
2010; Thiessen, 2010), and the alignment of auditory and visual
regularities is an important component in multimodal statistical
learning (Mitchel & Weiss, 2011). Indeed, the very category-loca-
tion alignment present in the Category Mismatch: Color-Response
condition robustly supported incidental auditory category learning
in baseline Category Match: Location Response (no color). Cate-
gory learning was equally robust when the auditory categories
were bound with location or color information—and, importantly,
when there was category-irrelevant variation in a different visual
feature, as shown in the Match conditions. Yet category learning
did not occur in the Mismatch conditions, where precisely the
same visual grouping information was available. Why? Crucially,
in the Mismatch conditions the category-relevant visual feature
was decoupled from the motor task, which instead was linked to
the category-uninformative visual feature.

A consistent mapping from an auditory category to a unique
motor response also appears important for incidental learning.
Generic Motor Response, for which participants responded to vis-
ual targets with a generic (spacebar) keypress, resulted in no audi-
tory category learning across two replications (Experiments 2 and
3, conducted online with random assignment). This is notable, as
this condition was identical to baseline Category Match: Location
Response (no color), which produced robust incidental category
learning, but for the category-unique (four-button) versus generic
(spacebar) motor response to the visual target. Generic Motor
Response had a lawful relationship between auditory categories
and visual location, exactly as in Category Match: Location-
Response. But participants failed to make use of the category-to-
location relationship to learn the auditory categories when only a
generic response was required. In other words, alignment of all
categories to a single response discouraged learning—despite the
availability of a consistent mapping from category to visual target
location. The results of Passive Observation (Experiments 2 and 3)
underscore these findings: When participants experienced the
association between auditory categories and visual target locations
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passively, without a response, there was no incidental category
learning.
The Generic Motor Response and Passive Observation results

described above replicated across independent samples in Experi-
ments 2 and 3, with no significant learning. Yet the learning was
observed in the same contexts in Experiment 1. We speculate that
this rather puzzling discrepancy may be driven by participant sam-
ple and testing environment. Experiment 1 was conducted among
Carnegie Mellon University undergraduates enrolled in psychol-
ogy course work, a population that others have regarded as distinct
from the general population of learners (Henrich et al., 2010)—a
WEIRD (Western, Educated, Industrialized, Rich, and Demo-
cratic) sample. Adding to the weirdness, the Experiment 1 partici-
pants learned under conditions that amount to sensory deprivation
—seated alone in a dimly lit and visually homogeneous sound-
attenuated booth wearing noise-shielding headphones. This envi-
ronment provides for excellent experimental control, but it
presents a highly unusual, focused context for learners to zero in
on the only engaging input—our stimuli. It is possible that, in the
context of relatively undemanding Passive Observation and
Generic Motor Response tasks, Experiment 1 participants—stu-
dents in psychology courses—may have been more likely to
engage in strategic hypothesizing about the study purpose than
would the heterogeneous sample of online participants in Experi-
ments 2 and 3 who participated at home. If this were the case, then
it should give us pause about whether “passive” observation
evokes different cognitive demands across different participant
samples and testing approaches. Savvy university student partici-
pants may be exploiting somewhat different strategies to discover
patterns in input than experimenters expect under “passive” or
less-demanding conditions. Indeed, the online participants may
reflect a broader sampling of the general population, which is a
clear benefit of online recruitment methods that allow for sampling
outside of local university populations (Clifford & Jerit, 2014).
Beyond sampling, the conditions under which the online partici-
pants may have completed the experiment (i.e., at home with dis-
tractions rather than a sound-isolating booth) may more closely
reflect real-world learning conditions, such as during everyday
speech perception. Nonetheless, given the robust replication with
online participants and random assignment across Experiments 2
and 3, it seems safe to conclude that incidental category learning is
more fragile—and maybe absent—under Passive Observation or
Generic Motor Response conditions that destroy the unique cate-
gory-to-response mapping.
A unique mapping from category to response, then, seems to be

the major factor in driving incidental auditory category learning.
Yet one might wonder if category-unique motor responses are ben-
eficial due to this unique motor mapping—or simply because this
more differentiated response may draw more engagement and
attention to the task than just pressing a spacebar when seeing an
X (Generic Motor Response), or just observing those Xs appear on
the screen (Passive Observation). However, on several grounds,
this is not a particularly compelling explanation for the lack of
learning we observed online in these conditions. First, participants'
catch trial performance was excellent (97% average accuracy for
all included participants), indicating attentiveness. Second, the
spacebar reaction times for the Generic Motor Response were not
only very fast, but also showed particularly low variability—the

opposite of what we would expect from inattentive or distracted
participants (Gómez-Guerrero et al., 2011; Kofler et al., 2013).

Nonetheless, the mapping to motor responses may not be as crit-
ical for learning some types of categories, under some conditions
(Ashby et al., 2003). For example, it is possible to learn categories
associated with a unique visual cue that is independent of the
response mapping when participants are aware of the categories
and use feedback to learn them explicitly. For instance, when one
category of images is mapped to a red circle and another category
is mapped to a blue circle, people can learn even when the catego-
ries are associated with a different response key on each trial
(Spiering & Ashby, 2008). This suggests that in overt learning
contexts—where it is clear to participants that they are performing
a category-learning task—learners can overcome inconsistent cate-
gory-response mappings when a consistent visual cue is present.
However, such overt tasks are not encountered frequently. Typi-
cally, people are quite unaware of how auditory, visual, and motor
information might relate to one another, much less to regularities
defining novel categories.

The cross-condition differences in mean RT also bear examina-
tion with regard to interpreting the role for motor responses.
Although mean RT did not influence RT cost or posttest accuracy
measures, it is obvious that visual feature and genre of motor
response had a marked impact on mean RT. Across conditions,
responses were fastest in Generic Motor Response conditions,
which simply required a tap of the spacebar to any X that
appeared. Responses were slowest for conditions mapping motor
response to color and intermediate for mapping motor response to
one of four locations. The longer RTs for responses to color were
likely due to the arbitrary and newly learned mapping of motor
response to color. By contrast, spatial location intuitively maps to
the left-to-right keyboard assignment. Nonetheless, these mean RT
differences were not accompanied by commensurate differences in
categorization accuracy.

The Representational Glue for Incidental Category
Learning

The temporal alignment of auditory, visual, and motor
responses has been argued to act as “representational glue” that
binds acoustically variable category exemplars—doing so without
instructions, overt category decisions, or feedback (Gabay et al.,
2015; Lim & Holt, 2011; Wade & Holt, 2005). The present results
refine this perspective. Here, experiencing a (perfect) statistical
regularity between auditory category and visual feature was not
sufficient for robust learning without alignment with a category-
unique motor response.

At this juncture, it is helpful to consider incidental learning in
broader terms. Incidental category learning as instantiated in the
present study may serve as a useful experimental proxy for “real-
world” settings where learners are active and can capitalize on rich
associations that exist between category exemplars and other
objects, events, and their own behaviors. In this context, we high-
light five points. First, although there is abundant evidence that
organisms—both human and nonhuman—are able to learn statisti-
cal regularities across mere exposure to the input (Frost et al.,
2019; Saffran & Kirkham, 2018; Saffran et al., 1996), there are
learning challenges for which passive exposure to regularities is
insufficient to drive learning (Cristia, 2018; Emberson et al., 2013;
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Wade & Holt, 2005). The present results show that incidental
learning hastens category acquisition above and beyond passive
exposure, without the need for overt category decisions or explicit
feedback. Specifically, Experiment 2 (replicated by Experiment 3)
showed no significant auditory category learning in Passive Obser-
vation, despite a deterministic relationship between visual location
and acoustic category. It is possible that longer exposure might
ultimately result in learning under Passive Observation. But cru-
cially, the present results demonstrate that simply embedding these
same regularities in an active task unrelated to category learning
produces robust learning across the same number of trials—as
long as the active behavior in a task ostensibly unrelated to cate-
gory learning tacitly aligns with category membership. Thus, inci-
dental learning may hasten learning that is difficult or impossible
through mere exposure alone.
The second issue involves how learners know what to learn.

Statistical learning accounts have long grappled with the question
of how the system selects which of the countless potential environ-
mental regularities are to be learned. Incidental learning suggests
that active behavior may serve to “funnel” information. As we
described above, passive accumulation of auditory statistical regu-
larities is facilitated by alignment with visual events (Cunillera et
al., 2010; Mitchel & Weiss, 2011; Thiessen, 2010). In the present
study, the underlying acoustic regularities defining auditory cate-
gories aligned with visual location or color. Whether learners
learned from the acoustic regularities to acquire auditory catego-
ries depended on whether those regularities aligned with active
behavior. The Match and Mismatch conditions possessed the same
auditory–visual statistical regularities; only the alignment of active
behavior with the regularities differed across conditions. Category
learning was observed when behavior was directed at a task that
aligned with the regularity. In this way, active engagement in an
environment may encourage “foraging” for information that
directs learners to specific statistical regularities among the essen-
tially infinite informational contingencies that exist in even simple
real-world environments.
The third issue relates to the “representational glue” that binds

variable input exemplars together as categories. One might have
expected Generic Motor Response learning to exceed Passive Ob-
servation learning because the temporally aligned motor response
for all trials would encourage trial-by-trial engagement to the in-
formation-bearing signal. Yet Experiment 2 (replicated in Experi-
ment 3) found no evidence of Generic Motor Response learning.
Just as the category-unique motor response was effective at driv-
ing the learning system to form separate categories based on the
auditory-visual-motor regularities, the single motor response may
have been effective at driving the learning system to forage for the
regularities aligned with the active one-button behavior. In this
case, the “representational glue” would bind all exemplars across
all categories according to their overarching regularities. The
Generic Motor Response might appear deleterious to learning pre-
cisely because it encourages incidental learning that collapses the
experimenter-intended categories into a single representation. If
this were the case, one would expect poor performance on the
four-alternative labeling task, as we observed. However, this
would not be indicative of no incidental learning; it would be in-
dicative of learning a single category representation that could not
drive performance in the four-alternative task. Future studies that

examine the perceptual space before and after incidental auditory
category learning would be able to address this possibility.

The fourth issue relates to how within-category exemplar vari-
ability aligns with task-relevant factors in the primary task. In
Gabay et al. (2015), Block 4 trials were randomized such that each
of the five auditory stimuli could be drawn from any of the four
auditory categories (category-mixed trials). Therefore, not only
did the sounds convey no information about target location in
Block 4, there was also no consistent category membership across
the five acoustic exemplars preceding a visual target in Block 4.
The Category Match: Location-Response (no color) condition in
Experiments 1 and 2 was a near replication of Gabay et al. (2015),
except in execution of how Block 4 was randomized. In contrast
to Gabay et al., exemplars from the same auditory category
defined a Block 4 trial, thus maintaining category exemplar simi-
larity and coherence within a trial even as the category-to-location
mapping was randomized. Examining outcomes across studies,
these differences appear to impact learning. Whereas Gabay et al.
report a 77-ms RT cost, the similar baseline condition in Experi-
ment 1 (20.8 ms) and Experiment 2 (27.4 ms) had substantially
smaller RT costs. Whereas Gabay et al. report average posttest ac-
curacy of 65.8%, the baseline condition in Experiment 1 (47.6%)
and Experiment 2 (51.0%) had lower accuracies. Although further
investigation is warranted in advance of strong conclusions (espe-
cially in the context of possible cohort differences), this diver-
gence might suggest that learners are sensitive both to the
category-to-location-to-response mapping in the SMART task that
produces the RT cost and to within-category regularities across
exemplars. Eliminating the within-category regularity, as in the
Gabay et al. manipulation, came at a much greater cost to the effi-
ciency of visual target detection.

Finally, it is worth considering variability of a different sort—
that of participants’ learning outcomes. Learning across perceptual
input invariably produces individual differences in learning out-
comes (Roark & Chandrasekaran, 2021; Shamloo & Hélie, 2020;
Shen & Palmeri, 2016). In the absence of sounds during the
SMART task, participants get faster at detecting the visual targets
with practice across blocks (Gabay et al., 2019). Thus, it is impor-
tant to recognize that incidental auditory category learning travels
together with visuomotor learning of task demands. This insight
might be helpful in considering participant variability in RT cost.
Participants may vary in the extent to which they are influenced by
the sound categories and their incidental relationship to the pri-
mary visuomotor task. Those participants who are more influenced
would be considered “good learners” in the present study inas-
much as they learned our target of interest: auditory categories.
This is evidenced by positive RT costs (slowing of visuomotor
behavior) upon disruption of the category-to-task relationships,
due to reliance on newly acquired categories in driving behavior.
Other participants would here be considered “poor learners” in
this context as they show no RT cost, or even a speeding of RT in
Block 4. The heightened variability in RT costs in the Category
Match: Color-Response condition across both Experiments 1 and
2 may be driven by how well participants learned both the auditory
categories and the color-response mapping, which was a more
demanding visuomotor task than the location-response mapping.
Individuals may differ in the extent to which they “cast a wide
net” in foraging for new regularities, with some participants more

14 ROARK, LEHET, DICK, AND HOLT

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



susceptible to incidental alignment of audio-visual regularities
than others.

Conclusion

Prior research has focused on category learning via overt feed-
back (Ashby & Maddox, 2011; Francis & Nusbaum, 2002; Gold-
stone, 1994; McCandliss et al., 2002; McClelland et al., 2002;
Nosofsky, 1986) or learning across passive exposure or without
supervision (Ashby et al., 1999; Clapper & Bower, 2002; Ell et
al., 2012; Folstein et al., 2010; Goudbeek et al., 2009; Kaplan &
Murphy, 1999; Maye et al., 2002; McMurray et al., 2009; Val-
labha et al., 2007). In contrast, in incidental learning categories are
discovered via their utility in supporting behavior on a primary
task. Incidental tasks model learning under conditions in which
learners do not have instructions to search for category-relevant in-
formation, do not make overt category decisions, and do not expe-
rience feedback directly—and yet are not entirely passive
observers. The present results demonstrate that incidental category
learning is supported by alignment between the variable acoustic
exemplars defining a category and a unique behavioral response,
even when that response is directed at a task ostensibly unrelated
to the categories. In this way, active behavior provides the repre-
sentational glue that supports incidental acquisition of categories
across statistical regularities in the input.
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