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Abstract
There is substantial evidence that two distinct learning systems are engaged in category learning. One is principally
engaged when learning requires selective attention to a single dimension (rule-based), and the other is drawn online by
categories requiring integration across two or more dimensions (information-integration). This distinction has largely
been drawn from studies of visual categories learned via overt category decisions and explicit feedback. Recent
research has extended this model to auditory categories, the nature of which introduces new questions for research.
With the present experiment, we addressed the influences of incidental versus overt training and category distribution
sampling on learning information-integration and rule-based auditory categories. The results demonstrate that the
training task influences category learning, with overt feedback generally outperforming incidental feedback.
Additionally, distribution sampling (probabilistic or deterministic) and category type (information-integration or
rule-based) both affect how well participants are able to learn. Specifically, rule-based categories are learned equiv-
alently, regardless of distribution sampling, whereas information-integration categories are learned better with deter-
ministic than with probabilistic sampling. The interactions of distribution sampling, category type, and kind of feed-
back impacted category-learning performance, but these interactions have not yet been integrated into existing
category-learning models. These results suggest new dimensions for understanding category learning, inspired by
the real-world properties of auditory categories.
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Introduction

Everyday decisions depend on well-learned category
representations, whereby perceptually discriminable ex-
periences are treated as functionally equivalent. For ex-
ample, one must be able to categorize an animal encoun-
tered on the street as Bfriendly^ or Bdangerous^ in order
to decide whether to approach or avoid it. Speech percep-
tion can be considered an example of categorization
(Holt & Lotto, 2010), in the sense that perceptually dis-
criminable and acoustically variable utterances come to
be mapped to phonetic categories. Speech presents a
challenging case of auditory perceptual category learn-

ing because phonetic categories are defined by multiple
acoustic dimensions that may not be perceptually sepa-
rable or easily verbalized and whose distributions are
highly overlapping (Hillenbrand, Getty, Clark, &
Wheeler, 1995; Holt & Lotto, 2008, 2010; Jongman,
Wayland, & Wong, 2000; Lisker, 1986; Vallabha,
McClelland, Pons, Werker, & Amano, 2007).

An influential cognitive neuroscience framework of
category learning, developed in the visual category-
learning literature (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998), has recently been applied to auditory
and speech category learning (Chandrasekaran, Koslov,
& Maddox, 2014; Chandrasekaran, Yi, & Maddox, 2014;
Maddox, Chandrasekaran, Smayda, & Yi, 2013; Yi,
Maddox, Mumford, & Chandrasekaran, 2016). The
COmpetition of Verbal and Implicit Systems (COVIS)
Bdual-systems^ model of category learning posits two
distinct learning systems mediated by the striatum: an
explicit system that involves the frontal cortex and the
head of the caudate nucleus, along with an implicit sys-
tem that recruits the putamen and the tail of the caudate.
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These dual systems are differentially engaged by distinct
distributions of category exemplars (Ashby & Maddox,
2011). Rule-based category distributions—which are
thought to engage an explicit, reflective, hypothesis-
testing system that relies upon working memory and atten-
tion—can be distinguished by a single, simple, verbalizable
rule (Ashby et al., 1998). Conversely, information-
integration category distributions—proposed to engage an
implicit, reflexive system that uses procedural learning—
can only be distinguished if information from multiple di-
mensions is integrated at a predecisional stage (Ashby &
Gott, 1988). Because this integration is predecisional, the
relationship between information-integration categories is
often nonverbalizable. In the dual-systems theory, the dis-
tribution structure of category exemplars is thought to be
the primary determinant of which of the two category-
learning systems drives the motor response.

Research on auditory category learning in the context of
the dual-systems model has focused mostly on nonnative
speech category learning of Mandarin lexical tones via
overt training (Chandrasekaran, Koslov, & Maddox,
2014; Maddox & Chandrasekaran, 2014; Yi et al., 2016).
In overt training, participants are aware that they are
performing a categorization task, make explicit categori-
zation decisions, and are given explicit feedback about
these decisions after each trial. Additionally, with overt
training, participants are sometimes explicitly informed
of the dimensions on which the stimuli vary. Under these
conditions, Mandarin tone speech categories are learned
best when participants use a reflexive strategy that relies
on the implicit system for learning information-integration
categories (Chandrasekaran, Koslov, & Maddox, 2014;
Maddox & Chandrasekaran, 2014; Yi et al., 2016). The
reasoning is that speech categories—like information-
integration categories—are defined by highly variable ex-
emplars signaled by multiple acoustic dimensions in a
manner that is difficult to verbalize (Chandrasekaran,
Koslov, & Maddox, 2014), and thus are learned better
via the implicit, reflexive learning system. In support of
this theory, functional neuroimaging has revealed that the
patterns of corticostriatal activation during speech catego-
ry learning are more consistent with involvement of the
implicit, reflexive system posited by COVIS (Yi et al.,
2016).

These recent results suggest the promise of dual-
systems theory for understanding auditory—and in par-
ticular, speech—category learning. However, the catego-
rization challenges presented by auditory (and speech)
signals are somewhat different from those invited by
the visual categories that have served as the principal
testing ground for dual-systems theory (Holt & Lotto,
2010). Important questions remain open about how well
auditory category learning aligns with the predictions of

dual-systems theory. In the present research, we exam-
ined the predictions of dual-systems theory in the context
of how manipulations of task, distribution sampling, and
category type affect auditory category learning.

We tested these questions using novel, artificial non-
speech auditory categories. Although nonspeech catego-
ries have not been used as frequently, in the context of
examining dual-systems theory, as nonnative speech cat-
egories (but see Chandrasekaran, Koslov, & Maddox,
2014), they provide us with the control to precisely de-
fine and manipulate category distributions, distribution
sampling, and the course of learning as a function of
different learning tasks. Thus, in the same way that very
simple visual dimensions have been used productively to
understand the learning systems available for categoriz-
ing more complex objects in the natural world, we
employed nonspeech sounds in order to understand the
processes available to support learning more complex
speech categories. We next describe the rationale for fo-
cusing on task, category distribution, and distribution
sampling in the present research.

Task

Nearly all studies of visual or auditory category learning
from a dual-systems perspective have used an overt train-
ing task (Ashby, Maddox, & Bohil, 2002; Chandrasekaran,
Yi, & Maddox, 2014; Dunn, Newell, & Kalish, 2012; Ell,
Ing, &Maddox, 2009; Maddox, Filoteo, Hejl, & Ing, 2004;
Maddox, Love, Glass, & Filoteo, 2008; for a discussion of
unsupervised learning, see Ashby, Queller, & Berretty,
1999). Participants are told how many categories exist,
they are instructed that the goal is to categorize the stimuli,
and they are provided with corrective trial-by-trial feed-
back on the category decisions. In an exception that used
an unsupervised category-training paradigm without overt
feedback, Ashby et al. (1999) found that rule-based (RB)
categories, distinguished by a single, simple, verbalizable
rule, could be learned without feedback, but that
information-integration (II) categories, which require in-
formation from multiple dimensions to be integrated at a
predecisional stage, could not. The researchers concluded
that learning II categories is critically dependent on feed-
back, whereas learning RB categories can occur without
feedback. Thus, due to the inability of participants to learn
II categories without feedback, the majority of research
from the dual-systems literature has utilized supervised-
learning tasks with overt feedback.

Yet, recent research in auditory category learning suggests
an alternative approach that is neither wholly explicit nor un-
supervised. Incidental learning occurs without instructions to
categorize, overt category decisions, or explicit feedback.
Instead, sound categories are learned incidentally by virtue
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of their relationship to success in performing a primary task
distinct from auditory category learning (Gabay, Dick, Zevin,
& Holt, 2015; Lim&Holt, 2011; Lim, Lacerda, & Holt, 2015;
Liu & Holt, 2011; Vlahou, Protopapas, & Seitz, 2012; Wade
& Holt, 2005). For example, when auditory categories’ exem-
plars are presented in a manner that correlates with where a
visual Bx^ will next appear on the screen in a visual detection
task, participants incidentally learn complex auditory catego-
ries, including speech, in the course of performing the visual
detection task (Gabay et al., 2015; Liu, 2014). Incidental au-
ditory category learning is also apparent acrossmore challeng-
ing primary tasks, such as navigating a videogame environ-
ment in which sound categories are correlated with aspects of
the input that support success in the primary, game navigation,
task (Gabay et al., 2015; Lim & Holt, 2011; Lim et al., 2015;
Liu & Holt, 2011; Wade & Holt, 2005). Inasmuch as this
incidental category learning proceeds even without instruc-
tions about the importance of the sounds, knowledge of the
existence of auditory categories, overt category decisions, or
explicit feedback about categorization, it may better model
aspects of category learning in natural environments whereby
correlated objects, events, and actions across modalities are
available as structure that may guide learning (Gabay et al.,
2015; Wade & Holt, 2005).

Although prior studies of category learning in a dual-systems
theory framework have relied nearly exclusively on overt train-
ing, extensive evidence has demonstrated the importance of task
variables in category learning. Investigations of the distinction
between II and RB category learning have emphasized the sig-
nificance of feedback timing (Dunn et al., 2012; Ell et al., 2009;
Maddox, Ashby, & Bohil, 2003; Maddox, Ashby, Ing, &
Pickering, 2004; Maddox & Ing, 2005; Smith et al., 2014;
Worthy, Markman, & Maddox, 2013), amount of feedback and
feedback type (Ashby et al., 2002; Ashby & O’Brien, 2007;
Ashby et al., 1999; Dunn et al., 2012; Goudbeek, Cutler, &
Smits, 2008; Goudbeek, Swingley, & Smits, 2009; Maddox et
al., 2008), and changing instructions to participants
(Chandrasekaran, Yi, Smayda, & Maddox, 2016; Grimm &
Maddox, 2013) However, the question of whether category
learning for the II and RB categories differs across overt versus
incidental training has yet to been investigated.

We hypothesize that II categories—which are difficult
to verbalize and require predecisional integration—may
benefit more from incidental training tasks, in which at-
tention is directed toward a primary task and away from
decisions about category exemplars. In contrast, consis-
tent with the dual-systems theory, RB categories may
benefit more from an overt training task, in which atten-
tion can be directed toward the stimuli and features that
distinguish the categories. The overt task may encourage
more explicit, verbalizable hypothesis testing to support
learning the RB categories. Since this kind of explicit
strategizing can be detrimental for II category learning

(Grimm & Maddox, 2013), incidental training may be
beneficial for learning II categories.

Category distribution sampling

The categorization challenges presented by speech—and,
indeed, most natural categories—almost always involve
complex, probabilistic category exemplar distributions
that overlap in acoustic space (Kuhl et al., 1997; Lotto,
Sato, & Diehl, 2004; McMurray & Jongman, 2011;
Peterson & Barney, 1952). Yet, many studies of speech
and nonspeech auditory category learning have examined
learning across nonoverlapping, deterministic distribu-
tions that are well differentiated in acoustic space and
characterized by a small number of exemplars experienced
repeatedly across training (Holt & Lotto, 2006; Kluender,
Lotto, Holt, & Bloedel, 1998; Kuhl, 1991; Lim & Holt,
2011; Mirman, Holt, & McClelland, 2004; Wade & Holt,
2005). Even when more probabilistic distributions of nat-
ural speech productions have been used to study category
learning among nonnative listeners (Bradlow, Pisoni,
Akahane-Yamada, & Tohkura, 1997; Lively, Logan, &
Pisoni, 1993; Logan, Lively, & Pisoni, 1991; Yi et al.,
2016), the impact of distribution sampling on learning
has not been a focus of the investigation.

The approaches using probabilistic and deterministic distri-
butions differ on several dimensions. However, each approach
is meant to approximate some sampling that is similar to real-
world categories, such as speech. Deterministic distributions
are highly stylized, their categories do not overlap, and there
are relatively few exemplars. Probabilistic distributions are ran-
domly sampled, their categories are often overlapping, and
there are many possible exemplars. It is important to under-
stand what, if any, effect sampling from these different kinds
of distributions has on category learning. To the extent that each
effectively approximates sampling from naturalistic categories,
then the approach to distribution sampling should not have an
impact on learning. However, it is entirely possible that sparser,
nonoverlapping, more stylistically sampled distributions may
be learned in a different manner from denser, overlapping, ran-
domly sampled distributions.

This issue has not been investigated thoroughly, even
with the artificially constructed visual categories upon
which the dual-systems model of categorization is based.
To our knowledge, only one study has addressed an issue
similar to that of probabilistic versus deterministic cate-
gory distribution sampling in the visual domain. Ell and
Ashby (2006) examined the impact of category overlap
on learning. The degree to which the exemplars from the
different categories were drawn from overlapping versus
entirely distinct regions of stimulus space impacted the
learning of visual II categories, but not of visual RB cat-
egories. Specifically, when the categories’ exemplars
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were moderately overlapping across II distributions, par-
ticipants were able to use optimal II strategies in category
learning; however, with too much or too little overlap of
the II distributions, participants relied on suboptimal, RB
strategies. This indicates that at least some aspects of the
sampling distribution—specifically, overlap—may in-
fluence the course of learning. Thus, it is important to
examine the potential learning differences between care-
fully sampled deterministic distributions and randomly
sampled probabilistic distributions, especially in light
of the fact that the auditory category-learning literature
has employed them somewhat interchangeably.

In the present study, we manipulate whether the II and RB
category distributions were sampled probabilistically or deter-
ministically in acoustic space. Examining the interaction of
category distribution type (II vs. RB), task (incidental vs.
overt), and distribution sampling (deterministic [nonoverlap-
ping] vs. probabilistic [overlapping]) is important, given the
ubiquity of probabilistic, overlapping category distributions in
speech and other natural categories, including visual catego-
ries (e.g., Nosofsky, Sanders, Meagher, & Douglas, 2018).

In the present study, we investigated learning across
highly stylized, deterministic distributions of sound cate-
gory exemplars like those that have characterized most
auditory category-learning studies to date. We also exam-
ined learning across categories defined more probabilisti-
cally. There is not a large literature to support strong pre-
dictions about the effects of these different sampling dis-
tributions on learning. Drawing from Ell and Ashby’s
(2006) results, one might predict that category overlap in
deterministic versus probabilistic sampling would impact
the learning of II, but not of RB, categories. Participants’
learning categories sampled deterministically may be bi-
ased toward explicit strategies, thereby impeding II learn-
ing and benefiting RB learning. To the extent that explicit
strategies influence the learning, there may also be an in-
teraction between task type (incidental, overt) and distri-
bution sampling. As compared to probabilistic distribu-
tions learned through incidental training, learning via
overt training may be better across deterministic, nonover-
lapping category distributions that are easy to learn with
verbalizable rules and for which the feedback is perfectly
consistent with optimal strategies.

Summary

In the present experiment, we examined the impact of task and
category distribution sampling on learning four auditory cat-
egories defined by either II or RB stimulus distributions. We
trained separate groups of participants with either a traditional,
overt categorization paradigm with explicit feedback on every
trial, or with an incidental paradigm in which neither the cat-
egorization decisions nor feedback were explicit task

demands. Finally, we varied the nature of the distribution
sampling in order to examine the influence of the probabilistic
or deterministic nature of the category distributions on learn-
ing. We directly examined the influences of category type,
task, and distribution sampling on auditory category learning
using within-training metrics, as well as a common overt la-
beling task administered posttraining, to assess the generali-
zation of learning to novel category exemplars.

Method

Participants

In all, 166 adults affiliated with Carnegie Mellon University,
ages 18–25 years (89 females, 77 males), participated for par-
tial course credit or a small payment ($10). All participants
had normal or corrected-to-normal vision and reported normal
hearing. A total of eight conditions were tested, which varied
by training task, category distribution, and distribution sam-
pling (Table 1). Participants were trained on either an inciden-
tal or an overt task, learned to categorize either rule-based or
information-integration category distributions, and the distri-
butions were either probabilistic or deterministic in their sam-
pling. An additional five participants were run but were ex-
cluded from all analyses because of equipment failure.

Stimuli

The learning challenge differed across four conditions defined
by the category input distributions. Each condition had four
categories separated by optimal decision boundaries, as is
shown in Fig. 1. Participants were trained on either II distri-
butions (Fig. 1b and d) or RB distributions (Fig. 1a and c) that
were sampled either deterministically (Fig. 1a and b) or prob-
abilistically (Fig. 1c and d) in acoustic space. For the deter-
ministic distributions, it was possible to define optimal deci-
sion boundaries that would classify the exemplars with perfect
accuracy, because there was no overlap between the catego-
ries. However, no decision boundary would result in 100%
accuracy for the probabilistic distributions, because exemplars

Table 1 Number of participants in each condition

Task Information-Integration Rule-Based

Deterministic sampling

Incidental task 21 20

Overt task 21 21

Probabilistic sampling

Incidental task 20 21

Overt task 21 21
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could probabilistically belong to more than one category due
to category overlap. Optimal performance for the probabilistic
RB and II conditions was 90.5% and 90.25%, respectively.
We used these moderate levels of overlap to reflect the similar
levels of overlap in Ell and Ashby (2006), who found that
moderate levels of overlap did not hinder learning for either
II or RB categories.

The two-dimensional acoustic space from which the stim-
ulus exemplars were sampled was defined by two dimensions:
center, or carrier, frequency (CF) and modulation frequency
(MF). CF can be approximately described as the pitch of the
tone, and MF can be described as the warble of the tone. We
chose these particular acoustic dimensions because they had
been used in an existing auditory category-learning study
(Holt & Lotto, 2006), demonstrating that listeners are able to
learn categories defined by these acoustic dimensions.
Additionally, in this previous study these dimensions were
psychoacoustically matched for discriminability across the
approximate range used in the present study (Holt & Lotto,
2006). Furthermore, manipulation of sounds across these di-
mensions creates highly artificial exemplars that participants
are unlikely to have heard previously. In the same manner that
Gabor patches provide a simple stimulus to manipulate

parametrically in the visual domain, these simple acoustic
stimuli provide us with a test bed for auditory category learn-
ing. Each 300-ms stimulus was defined by a CF modulated
with a depth of 100 Hz at the corresponding MF, with the
overall energy root-mean-square-matched across exemplars
and all synthesis accomplished using MATLAB R2014a
(The MathWorks, Inc., Natick, MA).

The stimulus distributions for the deterministic RB catego-
ries were adapted from Holt and Lotto (2006). The stimulus
distributions for the deterministic II categories were generated
by rotating the RB stimuli counterclockwise in acoustic space
by 45 deg. The deterministic categories were highly stylized,
in the manner of those in previous auditory studies (Holt &
Lotto, 2006; Kluender et al., 1998; Kuhl, 1991). The deter-
ministic categories also did not overlap and had a relatively
small number of exemplars per category. For the deterministic
categories (Fig. 1a and b), there were 48 exemplars per cate-
gory plus the centroid of each category. Half of the exemplars
were used during the training phase (24 exemplars/category,
96 total stimuli), and half of the exemplars plus the centroid
were reserved for the generalization test phase (100 stimuli).

To create the probabilistic stimulus distributions, we de-
fined the underlying distributions to have the same means in

Fig. 1 Stimulus distributions. (a) Rule-based deterministic. (b) Information-integration deterministic. (c) Rule-based probabilistic. (d) Information-
integration probabilistic.
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CF×MF acoustic space as each of the deterministic category
distributions. We increased the number of exemplars and the
variance of the category distributions in order to manipulate
the sampling. We then sampled randomly from the defined
distribution; the random sampling resulted in means, vari-
ances, and covariances that varied somewhat from those de-
fined in the underlying distribution (see the Appendix). The
probabilistic distributions (Fig. 1c and d) were created with
MATLAB R2012 and had 100 exemplars per category. Half
of the exemplars were used during the training phase (50
stimuli/category, 200 total stimuli), and half of the exemplars
were reserved for the generalization test phase (200 stimuli).
Unlike in the deterministic conditions, not all of the exemplars
from the probabilistic distributions were played in the test
phase. Rather, they were randomly sampled for each partici-
pant, for a total of 100 trials.

Task

Participants were trained on one of two training tasks: inci-
dental or overt (see Fig. 2). After training, all participants were
tested on an overt generalization posttest, which included ex-
emplars not experienced during training. By adding an overt
generalization posttest, we were able to compare learning be-
tween the incidental and overt training tasks and to better

understand learning that extends beyond the individual exem-
plars experienced in training, to include generalization to nov-
el exemplars consistent with the category distribution.

Training task: Incidental

Research in our laboratory has demonstrated the effectiveness
of a simple incidental-learning task, the SMART task, in train-
ing listeners to categorize sounds (Gabay et al., 2015; Liu,
2014). This paradigm was adapted as a highly simplified ver-
sion of a videogame training paradigm that has successfully
been used to train speech and nonspeech categories inciden-
tally, without overt training or feedback (e.g., Lim & Holt,
2011; Wade & Holt, 2005). In the SMART task, the primary
objective is to rapidly detect the appearance of a visual target
in one of four possible screen locations by pressing a key
corresponding to that screen location.

Within-trial category–exemplar variability On each trial, five
unique exemplars drawn from one of the four sound catego-
ries preceded the appearance of the visual target. For the de-
terministic categories, the sound categories perfectly predicted
the location of the upcoming visual target and, consequently,
the action required to complete the visual detection task. The
overlap of the probabilistic categories made it such that the

Fig. 2 Outline of the tasks used in the present experiment: (a) Incidental training task. (b) Overt training task.
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exemplars played on a single trial might not be equally repre-
sentative exemplars of the category based on the optimal
boundary between the categories. However, the exemplars
played on each trial were always drawn from a single catego-
ry, so the sound category was predictive of the visual target
location. Prior research had demonstrated that participants
learn auditory categories incidentally in the SMART task
and generalize learning to labeling novel exemplars in an
overt, posttraining labeling task (Gabay et al., 2015). The gen-
eralization to novel sound category exemplars underscores the
important point that this learning is not a simple sound-to-
location mapping. The inherent variability in sound category
exemplars encourages participants to learn sound categories
that robustly generalize to guide subsequent responses to nov-
el, unfamiliar exemplars (Gabay et al., 2015).

In the present experiment, we used the SMART task to
assess incidental auditory category learning and generaliza-
tion across deterministic and probabilistic II and RB category
distributions, using a covert reaction time (RT) measure dur-
ing online learning and an overt, posttraining category-
labeling task.

Covert reaction time measure of learning Participants were
instructed that their task was to indicate where a visual target
(a red X) appeared on the screen by responding with the cor-
responding keyboard button (responses weremadewith the U,
I, O, and P buttons; see Fig. 2). Participants were told that
sounds would precede the X, but no mention was made about
the relationship between the sounds and the location of the X.

Participants experienced three training blocks (96 trials/
block) in which each of the four sound categories predicted
the appearance of the visual target in one specific location.
Subsequently, they completed a brief random test block (48
trials), in which the mapping of sound categories to visual
target locations was fully random; any sound category exem-
plar could precede the presentation of the visual target in any
position with equal probability. Following the approach of
Gabay et al. (2015), this block was shorter so as to avoid
extensive exposure to a random mapping that might erode
category learning across the training blocks. The final block
was one last training block. This block was included in order
to reinstate category learning prior to the posttraining gener-
alization posttest.

On each trial , the sound category was chosen
pseudorandomly (random shuffle of a fixed number of trials for
each category per block). Then, five exemplars were randomly
selected from the pool of category exemplars. The 300-ms ex-
emplars were each presented once, with a 50-ms interstimulus
silent interval. The final exemplar was followed by a 500-ms
silence, after which a red X appeared in the location is associated
with the sound category. The trial structure was identical for the
random test block, except that the red X appeared in a randomly
selected location instead of the location that had been associated

with the sound category in the training blocks. Participants
responded, indicating the location of the red X by pressing the
associated button as quickly as possible. Reaction times were
measured as the time lapsed from the onset of the visual detection
target to the press of the response key. After each experimental
block, participants were encouraged to rest briefly.

The random test block provided for a covert measure of
incidental category learning to be collected online during
training. If participants incidentally learned the sound catego-
ries in service of guiding their visual detection behavior, then
eliminating the consistent relationship between category and
location in the random test block should slow responses to the
visual target. As was evident in prior studies (Gabay et al.,
2015; Liu, 2014), learning should become apparent through
an RT cost (RTBlock4 – RTBlock3) between Block 4 (random)
and Block 3 (consistent). This RT cost would serve as our
covert RT measure of learning across incidental-training
conditions.

Overt measures of learning and generalizationAn overt label-
ing task immediately followed the SMART task. Before the start
of the generalization posttest, participants were informed that the
location of the X had been associated with the sounds that pre-
ceded it in the SMART task and that they should respond with a
keypress in order to guess the location where the visual target
would be most likely to appear. On each of 100 trials (25 trials/
category), five novel sound category exemplars not experienced
in the SMART task were randomly selected from the pool of
generalization stimuli and presented with the same timing char-
acteristics as in training. As in training, the generalization posttest
had within-trial variability. However, no visual targets appear in
this task, thereby providing no feedback. This overt labeling task
provided an explicit test of category learning and its generaliza-
tion to novel exemplars not experienced in training.

Training task: Overt

The overt task modeled the training approach taken in most
studies of category learning (Ashby et al., 2002; Yi et al.,
2016), while aligning closely with many of the task details of
the incidental SMART task (Gabay et al., 2015). In the overt
task, participants experienced the same kind of multimodal
location-to-sound category mapping as did the incidental
(SMART) task participants, but they were explicitly informed
of the relationship between the sounds and the visuomotor tar-
gets,made explicit categorization decisions, andwere given overt
corrective feedback following each categorization decision.

As in the incidental-training task, these participants first expe-
rienced three training blocks (96 trials/block) in which sound
categories predicted the position of the visual target. However,
unlike in the incidental task, participants did not receive a random
test block, because such a block could play no role in the covert
assessment of learning in this overt feedback version of the
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paradigm. In sum, the overt task involved four training blocks
followed by the generalization posttest.

For each trial, the sound category was first chosen
pseudorandomly (random shuffle of a fixed number of trials
for each category per block). As in the incidental task, there
was within-trial variability in the overt task. Five category
exemplars were then randomly selected from the pool of ex-
emplars for that category. The 300-ms exemplars were se-
quentially presented at the onset of the trial, with 50-ms silent
intervals. Participants pressed a button (U, I, O, or P) to indi-
cate which visual location they believed was associated with
the sound. A 500-ms silence followed the response, after
which a red X appeared in the visual location associated with
the sound category presented on that trial, as feedback about
the category identity.

After each block, participants were encouraged to rest
briefly. Button presses were considered correct if they
corresponded to the correct visual location mapped to the
trial’s sound category, providing a measure of accuracy across
blocks.

Overt generalization posttest Immediately after the last block
of training, participants engaged in an overt categorization test
with within-trial variability that was identical to that in the
generalization posttest described for incidental training.

Results

We describe the results separately for the incidental and overt
training conditions because somemeasures were task-specific.
The incidental training task provided covert online measures
of learning via RTs (Fig. 3), whereas the overt task did not. For
the overt task, the relevant behavior was accuracy across

training blocks (Fig. 4). Across the incidental and overt con-
ditions, a common posttraining overt labeling task was includ-
ed in order to assess the generalization of learning (Fig. 5).

Training task: Incidental

Reaction time filteringWe filtered the RTs in order to include
only trials on which participants were accurate in responding
to the X on the screen and for which the RTs were less than
1,500 ms and greater than 100 ms. A total of 3.77% of the
trials were excluded across all conditions (2.74% of trials were
excluded for II–probabilistic, 3.74% for RB–probabilistic,
4.46% for II–deterministic, and 4.11% for RB–deterministic).

Covert reaction time measure of learning The covert measure
of learning, RT cost, provided an online measure of incidental
category learning.We predicted that eliminating the consistent
relationship between the sound category and the upcoming
location of the visual target established across Blocks 1–3
would slow the RTs to detecting the visual target in Block 4,
as compared to Block 3, as expressed by a positive RT cost
(RTBlock4 – RTBlock3). Since exemplars varied on a trial-by-
trial basis, this would be indicative of sound category learning.

Figure 3 shows the averageRTs for each condition. Following
the approach of prior research (Gabay et al., 2015), we first
examined the RT cost by conducting paired-sample t tests com-
paring the Block 4 and Block 3 RTs for each condition. There
were significant RT costs, indicative of incidental auditory cate-
gory learning, for both the deterministic II [M = 33.7 ms, t(20) =
3.39, p = .003, Cohen’s d = 0.56] and RB [M = 22.3 ms, t(19) =
2.79, p = .012, Cohen’s d = 0.38] distributions. For the probabi-
listic distributions, only the RB condition resulted in a significant
RT cost indicative of incidental auditory category learning [M =
31.2 ms, t(20) = 3.39, p = .003, Cohen’s d = 0.45]. The RT cost

Fig. 3 Average RTs during the incidental training task. Ribbon error bars represent the standard errors of the means. Individual points represent the
individual participants’ averages. The participants in the II condition are shown as circles, and the participants in the RB condition are shown as squares.
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for the probabilistic II condition was not significant [M = 12.3
ms, t(19) = 1.10, p = .29, Cohen’s d = 0.10]. Thus, with the
exception of the probabilistic II condition, each group exhibited
significant incidental auditory category learning, as indexed by
the covert, online RT cost measure.

We next askedwhether themagnitude of the RTcost varied as
a function of the learning challenges presented by the different
conditions. It did not. A 2 (Category Distribution) × 2
(Distribution Sampling) between-subjects analysis of variance
(ANOVA) revealed that the magnitude of the RT cost did not

Fig. 4 Block-by-block performance during the overt training task. The
dotted line denotes chance performance (25%). Ribbon error bars
represent the standard errors of the means. Individual points represent

the individual participants’ averages. The performance for participants
in the II condition is shown by circles, and performance for the RB
condition is shown by squares.

Fig. 5 Generalization test performance for all conditions. The dotted lines denote chance performance (25%). Error bars represent the standard errors of
the means. Individual points represent the individual participants’ averages.
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depend on either category distribution [II vs. RB;F(1, 78) = 0.15,
p = .70, ηp

2 = .002] or sampling [deterministic vs. probabilistic;
F(1, 78) = 0.42, p = .52, ηp

2 = .005], and there was no interaction
[F(1, 78) = 2.48, p = .12, ηp

2 = .031]. Although all except the
probabilistic II condition demonstrated evidence of incidental
category learning according to the RT cost measure, the magni-
tude of the RT cost was not dependent on either the category
distribution or sampling.

Average reaction times We also compared the average RTs
across all training blocks as a function of condition. The partic-
ipants learning deterministic category distributions were margin-
ally faster (M = 381 ms, SE = 11.4) to respond to the visual
targets than were the participants learning probabilistic category
distributions (M = 413 ms, SE = 11.4) [F(1, 78) = 4.06, p = .047,
ηp

2 = .049]. It appears that the more highly overlapping probabi-
listic category distributions slowed visual target detection some-
what, relative to simpler, more coherent deterministic category
distributions. One possibility is that participants might be sensi-
tive to the deterministic versus probabilistic structure of the cat-
egory input distributions. However, group differences cannot be
ruled out in this between-subjects design. We observed no effect
of category distribution (II, RB) on the average RT [F(1, 78) =
0.56, p = .46, ηp

2 = .007], and only a marginal interaction be-
tween category distribution and sampling [F(1, 78) = 3.63, p =
.060, ηp

2 = .045].
Note that we did not have any a priori predictions that

the conditions would differ in average RTs. Thus, examin-
ing average RTs served as a manipulation check to make
sure that the different conditions did not differ in RTs.
However, one participant in the probabilistic II condition
was consistently slower than the other participants. We
also ran the analyses excluding this participant, who was
more than three standard deviations above the mean on
four of the five blocks. No other participant was more than
three standard deviations above the mean on any individual
block. Examining the RT data without this participant pro-
duced largely the same results, except in terms of average
RT. When we excluded the outlier from the probabilistic II
condition, the effect of sampling distribution on average
RT disappeared, such that there were no significant differ-
ences between the probabilistic and deterministic average
RTs [probabilisticM = 404 ms, SE = 9.6; deterministic M =
381 ms, SE = 11.4; F(1, 77) = 2.94, p = .090, ηp

2 = .037].
Similar to the results including the outlier, the effect of
category distribution and interaction were not significant
after excluding the outlier from the probabilistic II condi-
tion [category distribution, F(1, 77) = .042, p = .84, ηp

2 =
.001; interaction, F(1, 77) = 2.52, p = .12, ηp

2 = .032].
After excluding the outlier in the probabilistic II condition,
there were no differences between the groups in average
RTs, indicating that any differences in learning were not
tied to differences in RT.

Training task: Overt

Normalization Recall that an optimal observer would achieve
100% accuracy in the deterministic conditions, but only
90.25% or 90.5% accuracy in the probabilistic conditions.
To account for this difference, we first computed normalized
accuracy values for the data from the probabilistic learning
conditions as (normalized accuracy = raw accuracy/optimal
accuracy), with optimal accuracy = .9025 and .905 (for prob-
abilistic II and RB, respectively). All comparisons were con-
ducted with these normalized accuracy values. We note that
none of the qualitative patterns of results changed as a result of
normalization; it simply provided for equitable cross-
condition comparisons.

Accuracy across blocks In the overt training task, (normalized)
accuracy across blocks was the principal measure of category
learning; Fig. 4 plots these results. Examining performance
across blocks with a 2 × 2 × 4 repeated measures ANOVA
[Category Distribution (II, RB) × Sampling (deterministic, prob-
abilistic) × Block], we found that independent of category distri-
bution or sampling, participants generally improvedwith training
across blocks [F(2.6, 209.2)1 = 15.42, p < .001, ηp

2 = .162].
Participants in the deterministic condition learned more across
blocks than did participants in the probabilistic condition [F(2.6,
209.2) = 3.25, p = .029, ηp

2 = .039]. Performance across blocks
was not impacted by the interaction of category distribution (II,
RB) and sampling [F(2.6, 209.2) = 1.40, p = .25, ηp

2 = .017], and
there was no advantage for learning II versus RB category dis-
tributions across training [F(2.6, 209.2) = 0.54, p = .63, ηp

2 =
.007]. Generally, this may indicate that sampling—whether the
categories were sampled deterministically or probabilistically—
was the main driver of the difference in improvement across
conditions, rather than category distribution or the interaction
between category distribution and sampling. Deterministic audi-
tory categories were learned more readily than probabilistic au-
ditory categories. The overall patterns of learning were differen-
tiated by the distribution sampling, not by category distribution.

In examining overall accuracy, rather than performance across
blocks, we found that participants learning the RB categories had
higher average accuracy than did participants learning the II cat-
egories [F(1, 80) = 11.58, p = .001, ηp

2 = .13]. Deterministic
category input distributions were learned more easily than prob-
abilistic category input distributions [F(1, 80) = 21.87, p < .001,
ηp

2 = .22]. There was no interaction between category distribu-
tion and sampling [F(1, 80) = 1.12, p = .30, ηp

2 = .014], indicat-
ing that the RB conditions were learned better than the II condi-
tions for both deterministic and probabilistic category distribu-
tions. Moreover, the deterministic distributions were learned bet-
ter than the probabilistic distributions for both II and RB

1 Huynh–Feldt corrected because Mauchly’s test of sphericity was significant,
p < .001.
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categories. These results support the prediction that overt training
should benefit RB category learning. We also predicted that RB
might not be affected by the sampling distribution. In contrast to
our predictions, the sampling distribution affected learning for
both II and RB categories, such that deterministic sampling led
to better overall category learning than did probabilistic
sampling.

We also note that learning was quite rapid. Significant learn-
ing was evident in the first 96-trial block of training in each of the
conditions [chance = 25%; deterministic II, t(20) = 13.15, p <
.001, M = 56.4%, Cohen’s d = 5.88; deterministic RB, t(20) =
12.62, p < .001, M = 64.7%, Cohen’s d = 5.64; probabilistic II,
t(20) = 12.41, p < .001,M = 51.0%, Cohen’s d = 4.97; probabi-
listic RB, t(20) = 13.57, p < .001,M = 64.2%, Cohen’s d = 5.66].

Generalization posttest: Incidental and overt training

Both incidental and overt training resulted in auditory category
learning, as assessed by the task-specific measures during train-
ing. Here, we examine the posttraining measure of generaliza-
tion of category learning, assessed using a common task across
the groups trained incidentally and overtly. Performance during
the generalization posttest is shown in Fig. 5.

Normalization As for the overt training task, we normalized
the generalization test accuracies. We computed normalized
accuracy values for data from the probabilistic learning con-
ditions as (normalized accuracy = raw accuracy/optimal accu-
racy), with optimal accuracy = .9025 and .905 (for probabilis-
tic II and RB, respectively). We did not compute normalized
accuracies for the deterministic conditions because the opti-
mal accuracy was 100%. We note that none of the qualitative
patterns of results changed as a result of the normalization; it
simply provided for fair cross-condition comparisons.

To compare learning in all conditions, we ran a 2 × 2 × 2
ANOVA on Training Task (Incidental vs. Overt) × Category
Distribution (II vs. RB) × Sampling (deterministic vs. probabilis-
tic). This allowed us to determine the aspects of the training task
and/or stimulus components that drove the differences among
conditions. The COVIS model predicts that the main driver of
differences in performance would be category distribution, be-
cause the II and RB categories are learned by distinct neural
systems. Additionally, we examined the impacts of training task
and distribution sampling on performance. We predicted that
learning differences would depend on the category distribution,
but also on the training task and sampling. In comparing the
generalization test performance, we found a marginally signifi-
cant three-way interaction among training task, category distri-
bution, and sampling [F(1, 158) = 3.75, p = .055, ηp

2 = .023]. To
understand the causes of this marginal interaction, we looked
more closely at the two-way interactions.

We predicted that performance on the II and RB category
distributions would depend on training task, such that overt

training would better support learning RB categories and in-
cidental training would support learning the II categories. We
did not find support for this hypothesis; the interaction was not
significant [F(1, 158) = 0.002, p = .96, ηp

2 = .000]. Instead, we
found significantly better generalization of category learning
for overt than for incidental training, irrespective of whether
the categories were RB or II. Ignoring distribution sampling,
for both II and RB, overt training resulted in significantly
greater generalization of category learning than did incidental
training [RB, t(81) = 3.78, p < .001, Cohen’s d = 0.84 ; II, t(81)
= 3.41, p = .001, Cohen’s d = 0.76].

We also predicted that the incidental and overt training tasks
might have different effects on probabilistic and deterministic
category learning. We predicted that overt training would lead
to better performance for deterministic than for probabilistic cat-
egories, but that incidental training would lead to better perfor-
mance for probabilistic than for deterministic categories. We
found that performance for the probabilistic and deterministic
distributions did depend on training task [F(1, 158) = 5.18, p =
.024, ηp

2 = .032]. In linewith our predictions, overt training led to
better generalization of category learning for deterministic cate-
gory than for probabilistic distributions [t(82) = 2.37, p = .020,
Cohen’s d = 0.52]. Ignoring category type for overt training, the
deterministic conditions had an average test accuracy of 68.2%,
and the probabilistic conditions had an average test accuracy of
54.1%. However, incidental training did not result in significant
differences in generalization across learning deterministic and
probabilistic distributions [t(80) = 0.75, p = .46, Cohen’s d =
0.17]. Ignoring category type for incidental training, the deter-
ministic conditions had an average test accuracy of 49.4%, and
the probabilistic conditions had an average test accuracy of
47.46%. These findings cannot be accounted for directly by the
differences in difficulty between the deterministic and probabi-
listic distributions, because we used normalized accuracies in
these analyses. In line with our predictions, overt training led to
better learning for deterministic than for probabilistic categories.
However, we predicted that probabilistic categories would be
learned better during incidental training, but instead we found
that deterministic and probabilistic categories were learned
equivalently during incidental training.

Our third prediction was that deterministic and probabilistic
sampling might not affect the performance of participants learn-
ing RB categories, but that deterministic sampling would be
learned better than probabilistic sampling for II categories. We
found an interaction between category distributions (II, RB) and
the distribution sampling for the generalization of category learn-
ing [F(1, 158) = 13.31, p < .001, ηp

2 = .078]. In support of our
prediction, generalization of RB categories did not differ for the
deterministic and probabilistic distributions [t(64.1) = 1.56, p =
.13, Cohen’s d = 0.39, corrected for inequality of variances]. We
also note that this was different fromwhat we found during overt
training, in which deterministic categories were learned better
than probabilistic ones. After either incidental or overt training,
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the generalization of RB categories did not differ between deter-
ministic and probabilistic distributions. Also in support of our
prediction, for II categories the deterministic distributions result-
ed in significantly higher generalization accuracy than did the
probabilistic distributions [t(76.3) = 3.00, p = .004, Cohen’s d
= 0.69, corrected for inequality of variances]. The ability to gen-
eralize RB categories is not affected by differences in the sam-
pling distributions, but generalization of II categories is worse
with probabilistic than with deterministic distributions.

Though overall generalization accuracy can give us some
clues as to what participants were able to learn about these cate-
gories through overt or incidental training, this does not allow for
a full understanding of the category representations that partici-
pants learned. To gain a better understanding of these represen-
tations, we constructed confusion matrices for each condition,
learning II (Fig. 6) or RB (Fig. 7) categories. These confusion
matrices demonstrate participants’ response behavior in the gen-
eralization test on the basis of the actual category that was pre-
sented to them. For correct responses, the actual category on a
trial (columns) and the categories of participants’ responses
(rows) converge (Figs. 6 and 7 on the positive diagonal). For
incorrect responses, we can observe a clear pattern of confusion
among multiple categories or a random confusion across all cat-
egories. Confusion matrices allow us to quantify similarities and

differences among categories on the basis of categorization errors
during the generalization test.

The pattern of results in the confusion matrices for II cate-
gories demonstrates a tendency for the participants in all four
conditions to respond in a way that groups categories A and B
together and groups categories C and D together (Fig. 6). The
confusable categories are not easily distinguished by either
dimension used to construct the categories. Instead, this par-
ticular pattern of responses is consistent with responses being
informed by integration along the positive correlation between
the two dimensions. Note that this pattern of responses was
similar across II conditions, despite the quantitatively different
levels of overall performance.

The pattern of results in the confusion matrices for RB cate-
gories demonstrates a different tendency (Fig. 7). The partici-
pants in the RB overt deterministic condition were the most
consistent in their responses across the four categories. These
participants did not demonstrate a clear pattern of confusion
among any of the categories in the generalization test, which
may have stemmed from their higher accuracy in the generaliza-
tion test. The participants in the other three RB conditions dem-
onstrated varying levels of confusion between categories B and
C. Participants demonstrated clear response patterns that distin-
guished categories A and D from the other categories, and there

Fig. 6 Confusion matrices for information-integration conditions in the
generalization test. Each column represents the actual category identity of
the exemplars played on a trial, and each row represents the category
response that participants made. The shading gradient and percentages

within each cell represent how frequently participants gave a particular
response for each category. The cells in each column sum to 100%. To the
right is a schematic diagram of the information-integration category struc-
tures (also shown in Fig. 2).
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was some confusion between categories B and C. Categories B
and C differed on both stimulus dimensions used to construct the
categories, just as the distinct categories of A and D had. In these
three RB conditions, participants did not appear to be using sim-
ple unidimensional rules to separate the four categories into two
groups. Instead, there is amore complex pattern of responses that
even includes confusion of two categories that differ on both
acoustic dimensions. The pattern of responses—and particularly
of the errors—in the generalization test provides us some infor-
mation about how participants represented the categories and the
relations between the categories as a function of task and distri-
bution sampling.

General discussion

We examined learning and generalization of auditory catego-
ries across incidental and overt training tasks, likewise
assessing the influence of probabilistic versus deterministic
sampling of category distributions defined by a simple rule
or requiring integration across dimensions. To our knowledge,
this study is the first to compare dual-systems category learn-
ing across II and RB stimulus distributions in an incidental
training task and an overt training task, as well as the first to
systematically examine the effect of the sampling distribution

of the categories and the interaction with training task type.
We aimed to understand the extent to which category learning
generalizes to novel exemplars, since generalization is a cen-
tral characteristic of categorization. This further served to pro-
vide a common measure across the incidental and overt train-
ing tasks, which we will focus on in discussing the results.

Incidental versus overt training

The results demonstrate that artificial nonspeech auditory cat-
egories can be learned incidentally under conditions in which
participants to not overtly make categorization decisions and
are not informed that categories of sound relate to the primary
(visual detection) task. Participants were engaged in a simple
visual detection task and were not told that the sounds were
important or related to the task, that the sounds were drawn
from different categories, or that the sounds would later be
central in an overt generalization task. The incidental category
learning was apparent in overt labeling of novel generalization
sounds at posttest, which requires a transfer of incidentally
acquired category knowledge to an explicit category-labeling
task. Across conditions, incidental training led to successful
generalization of category learning across both II and RB
stimulus distributions, defined both deterministically and
probabilistically. This tells us that explicit awareness of the

Fig. 7 Confusion matrices for rule-based conditions in the generalization
test. Each column represents the actual category identity of the exemplars
played on a trial, and each row represents the category response that
participants made. The shading gradient and percentages within each cell

represent how frequently participants gave a particular response for each
category. The cells in each column sum to 100%. To the right is a sche-
matic diagram of the rule-based category structures (also shown in Fig. 2).

Atten Percept Psychophys



relevance of the feedback, or even the goal of the task to learn
and generalize category knowledge, is not necessary for cate-
gory learning. This is notable because prior studies have al-
most exclusively examined learning with training tasks that
involve explicit feedback following each overt categorization
decision (Ashby et al., 2002; Chandrasekaran, Yi, &Maddox,
2014; Dunn et al., 2012; Ell et al., 2009; Maddox, Filoteo, et
al., 2004; Maddox et al., 2008; for a discussion about
unsupervised learning, see Ashby et al., 1999).

The COVIS model emphasizes the importance of feedback
in driving learning, particularly in the case of learning II stim-
ulus distributions. In this context, it may seem surprising that
there was such robust incidental learning of II stimulus distri-
butions. However, although the incidental training paradigm
does not utilize feedback in the traditional manner of overt
training tasks, it should not be considered to lack feedback
entirely. The consistent correlation of category exemplars with
the location of visual targets presents a situation in which
auditory categorization supports predictions regarding the pri-
mary visual detection task. These predictions are either correct
or incorrect, as indicated by the ultimate appearance of the
visual target. In this way, categorization is incidentally asso-
ciated with outcomes via the primary visual detection task. We
have argued previously that this form of feedback may relate
more closely to how sound categories are used in the world;
they allow listeners to use variable sensory input to make
predictions that support behavior in the larger environment,
which sometimes leads to positive outcomes (Gabay et al.,
2015; Lim&Holt, 2011). The present results demonstrate that
this alternative, less overt, form of feedback is sufficient to
support category acquisition across both RB and II stimulus
distributions when they are sampled either probabilistically or
deterministically. Even for II distributions, which COVIS
posits rely more heavily on feedback, neither overt awareness
of the category-learning task nor explicit feedback appears to
be necessary for category learning.

This result has important implications for theory. On the
basis of the prior literature on visual and auditory category
learning and the COVIS model, we predicted that categories
defined by II stimulus distributions would be learned better
via incidental than via overt training and, conversely, that
categories defined by RB stimulus distributions would be
learned better under overt than under incidental training.
Specifically, since the incidental task was speeded visual de-
tection and not auditory categorization, it directed attention
away from overt categorization decisions. Thus, we hypothe-
sized that learning the II stimulus distributions would benefit
from incidental training because overt reasoning is thought to
hinder II learning (Ashby & Maddox, 2011). The data did not
support this prediction; there was no interaction of training
task and category stimulus distribution. Both RB and II stim-
ulus distributions were learned better in the overt, relative to
the incidental, training task.

Overt training led to better performance than incidental
training, regardless of category type. One factor possibly con-
tributing to this finding was that the incidental training task
involved a brief block in which the relationship between
sound category and visual location was randomized (in order
to covertly assess learning online). This short block may have
been enough to differentiate the incidental training condition
from overt training in its influence on generalization perfor-
mance. Another possible explanation for the overt training
advantage was that the simple visual detection of the
SMART incidental training task may not be fully tapping into
the procedural learning system that best learns II categories.
Therefore, caution is warranted in concluding that learning via
overt training is necessarily always superior to learning via
incidental training.

Category distribution sampling

The sampling distributions defining the categories impact-
ed learning and generalization performance. This finding
is critical, because many speech and nonspeech auditory
category-learning studies have used highly stylized, deter-
ministic distributions, whereas natural categories, includ-
ing speech, are defined by more variable and probabilistic
distributions. We predicted, on the basis of the visual
category-learning results of Ell and Ashby (2006), that
sampling might affect the learning of II, but not of RB,
categories. Our generalization test results were consistent
with Ell and Ashby’s findings that overlap affected the
learning of II but not of RB categories. We found poorer
category generalization accuracy for II stimulus distribu-
tions defined probabilistically than for distributions de-
fined deterministically. In contrast, category generaliza-
tion accuracy was equivalent across the probabilistic and
deterministic RB stimulus distributions. Although our re-
sults are consistent with the general premise from Ell and
Ashby—that RB category learning is unaffected by differ-
ences in overlap, but that II category learning is affect-
ed—our finding that generalization was better for deter-
ministic than for probabilistic distributions is inconsistent
with their findings. Ell and Ashby found that moderately
overlapping categories, such as our probabilistic distribu-
tions, led to better II learning than did categories that did
not overlap, such as our deterministic distributions. Of
course, the sampling manipulation in the present study
involved more than just overlap, which may have
accounted for the differences between our study and Ell
and Ashby’s. Additionally, this difference may have been
driven by the stimuli themselves. It is possible that sim-
ple, verbalizable visual dimensions may be used different-
ly by participants during learning than are the auditory
dimensions used in the present study. Further research
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will be needed to disentangle the effects of overlap or
sampling distribution on auditory II category learning.

Our results provide further evidence of the applicability of
COVIS to auditory category learning and the instantiation of
the multiple-systems theory for auditory category learning.
Although Ell and Ashby (2006) did not test the generalization
of learning to novel category exemplars, this finding is in
accord with their conclusion that category overlap, one of
the differences between our sampling distributions, affects II
but not RB category learning.

In future research, it will be necessary to disentangle
the potentially interacting effects of the factors defining
deterministic and probabilistic category distributions, in-
cluding overlap, number of exemplars, and stylistically
sampled versus randomly sampled distributions. The de-
terministic distributions that mirror those used in many
nonspeech and speech category-learning studies have
fewer exemplars and less exemplar overlap, both be-
tween and within categories, than did our probabilistic
distributions, which were meant to more closely approx-
imate natural category distributions. The differences in
learning that were explained by the sampling distribu-
tions underscores the significance of this factor in cate-
gory learning. If our goal is to understand natural cate-
gory learning, whether visual or auditory, it will be crit-
ical to closely approximate the natural structure of those
categories in future experimental studies.

These results caution that reliance on simple, carefully de-
signed deterministic input distributions may not capture the
learning challenges involved in acquiring speech categories,
characterized by highly overlapping distributions across com-
plex and multidimensional input dimensions (Hillenbrand et
al., 1995; Swingley, 2009). If we are to generalize the conclu-
sions about II categories and the mechanisms that are used to
learn them, we must also carefully consider differences in the
distributions that can define different existing real-world
speech categories (see Wanrooij & Boersma, 2013, for a
similar argument about frequency distributional learning).

Interaction of sampling and task

We predicted that sampling distribution might also interact
with training task, such that incidental training might be
better across probabilistic distributions, whereas overt
training might be better across deterministic distributions.
In line with our predictions, overt training led to better
generalization of category learning for deterministic than
for probabilistic stimulus distributions. However, in con-
trast to our predictions, incidental training resulted in
equivalent generalization of category learning across deter-
ministic and probabilistic stimulus distributions. This
interacted with the type of stimulus distribution sampling,
as well. For II stimulus distributions, the learning

advantage of overt training over incidental training held
for both probabilistic and deterministic distributions. For
RB stimulus distributions with deterministic sampling,
there was an overt-training advantage. However, this ad-
vantage was not apparent for probabilistic RB stimulus
distributions. This highlights that important differences in
category learning occur with different distribution sam-
pling, training, and category types.

For probabilistic distributions, participants receive in-
formation about category boundaries that is inherently
less consistent than the feedback given for deterministic
distributions. All category exemplars in the deterministic
distributions fell perfectly within the hypothetical bound-
aries within acoustic space defining the respective cate-
gories. For the probabilistic categories, a minority of ex-
emplars from each category crossed these hypothetical
boundaries, leading to category overlap. This meant that
the category-consistent feedback (incidental or overt) that
was available in training was not as well-aligned with
exemplar similarity in the probabilistic as in the deter-
ministic conditions. The ambiguous nature of the align-
ment of the feedback signal with acoustic similarity may
lead to less clear category representations, especially
around category boundaries. Thus, this would lead to a
specific benefit of deterministic over probabilistic distri-
butions in the overt task when information was available
to explicitly process feedback and incorporate it in future
category decisions. According to the hypothesis that
feedback given in a deterministic manner depends more
on explicit memory systems (Seger & Cincotta, 2005),
the poorer alignment of exemplar similarity and feedback
that is associated with probabilistic distributions might be
less impactful during learning in the incidental task if it
draws from learning via more implicit procedural-
learning systems. The nature of the category distributions
and the complexity of the category sampling are impor-
tant aspects to consider, because they can greatly impact
learning outcomes.

Within-trial variability

A key difference between the present study and previous
studies investigating the dual systems of category learn-
ing is that we used within-trial variability in our training
and testing paradigms. On each trial, participants heard
five unique exemplars from within a single category. In
typical dual-systems experiments, whether visual or au-
ditory, participants encounter a single exemplar on each
trial. This methodology allows experimenters to model
the decision-bound strategy response on the basis of
how a participant responds to each exemplar.

Previous research with auditory category learning, includ-
ing speech, has demonstrated an overall benefit in
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generalization performance following training with high
within-category variability (Bradlow et al., 1997; Iverson,
Hazan, & Bannister, 2005; Liu, 2014; Logan et al., 1991).
This appears to be particularly potent when within-category
variability is aligned with trial-level feedback. Using the same
incidental training task as in the present study, Gabay et al.
(2015) found superior learning when participants experienced
category exemplar variability within a trial, and therefore
when such variability was tightly coupled with task-driven
predictions and feedback. Participants who experienced the
same overall exemplar variability across individual trials in
the experiment learned less. However, whereas within-trial
variability is likely to have promoted learning and generaliza-
tion in the present study, it also precluded the use of decision-
bound modeling to assess individual participant response
strategies during learning. Current iterations of decision-
bound models map an individual’s decision boundary on the
basis of the location of a single exemplar in the stimulus space,
given their response. In future work, it will be useful to build
decision-bound models that can incorporate within-trial
variability.

Strategy use during category learning across within-trial
exemplar variability remains an open question for future re-
search. Amongmany possible strategies, for example, it could
be that our participants used only one exemplar out of the five
that they experienced on a trial to make their decisions, or that
the average similarity space of exemplars experienced within
a trial influences decisions. Since distributional sampling had
an influence on learning in the present research, it will be
informative to direct future research toward understanding
how trial-level distributional statistics and longer-term distri-
butional statistics that must be accumulated across an experi-
ment interact to influence category learning.

To take a step in this direction, we examined the patterns of
responses in the generalization test in order to obtain a broad
sense of participant strategies. Participants’ category confu-
sions across the generalization test provide a window through
which to approximate the kinds of representations learned.
The confusion matrices make clear that similar overall perfor-
mance in the generalization test can be arrived at via distinct
paths. For the II categories, the pattern of confusability implies
that listeners tended to group categories in a way that suggests
integration across the dimensions, particularly in a positive-
going direction. Intriguingly, this same pattern may be evident
in the confusion matrices for RB categories. Rather than con-
fusing RB categories distinguished by a single dimension in
the stimulus space, listeners tended to make errors consistent
with dimension integration across the positive-going dimen-
sion correlation. The apparent pattern of reliance on a
positive-going integration strategy is consistent with recent
results demonstrating a learning advantage for categories de-
fined by a positive-going, as compared to a negative-going,
slope in this same stimulus space (Roark & Holt, 2018).

Implications

Although dual-systems theory has been largely devel-
oped in the context of empirical data regarding visual
category learning, recent work has very successfully ap-
plied it to auditory and speech categorization and yielded
important insights (Chandrasekaran, Koslov, & Maddox,
2014; Chandrasekaran, Yi, & Maddox, 2014; Maddox &
Chandrasekaran, 2014). Because the categorization chal-
lenges presented by auditory (and speech) signals are
somewhat different from those of visual categories
(Holt & Lotto, 2010), this also presents the opportunity
to examine the first principles of the model in greater
detail through the lens of auditory category learning.
We view the present research as a necessary bridge be-
tween auditory category-learning research that has fo-
cused on the representations acquired in category learn-
ing and the highly influential COVIS approach that is
beginning to influence auditory category-learning re-
search. Our results highlight that small differences in
task demands result in quite different patterns of learning
that interact with the sampling of category exemplars in
acoustic space. Overt categorization decisions and explic-
it awareness of the category-learning task were not nec-
essary for learning II or RB categories. In the present
work, the most effective training approach involved overt
training across deterministic category distributions. Since
the majority of studies informing the theoretical develop-
ment have relied on just such category-learning chal-
lenges, it will be important to consider that laboratory-
based studies may tend to overestimate the ease of cate-
gory learning under more natural conditions that involve
probabilistically defined categories learned across inci-
dental conditions. This is true for both auditory and vi-
sual studies. Although we have used a specific pair of
acoustic dimensions here, future work should examine
the effects of these aspects of the training stimuli on
learning with other acoustic dimensions and visual di-
mensions. The dual-systems approach has not yet inves-
tigated the effect of these aspects of distributions and
training tasks with either auditory or visual dimensions.
Next-generation models of category learning will need to
consider the nature of the complexity and overlap of
sampling distributions, along with their interaction under
more incidental learning situations, in order to better
characterize how the system reacts to real-world catego-
ry-learning challenges.
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Appendix: Category distribution means,
variances, and covariances

Deterministic category distribution information

Probabilistic category distribution information

The probabilistic category distributions were created by
defining a two-dimensional Gaussian distribution with the
same means and increased variances relative to the determin-
istic category distributions. Then, 100 random samples from
that underlying distribution were taken to form the probabilis-
tic category distributions. Thus, the means, variances, and
covariances between categories in the probabilistic category
distributions vary relative to the underlying multidimensional
Gaussian distributions.
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