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Visual information from a speaker’s face profoundly influences auditory perception of speech.
However, relatively little is known about the extent to which visual influences may depend on
experience, and extent to which new sources of visual speech information can be incorporated in
speech perception. In the current study, participants were trained on completely novel visual cues for
phonetic categories. Participants learned to accurately identify phonetic categories based on novel
visual cues. These newly-learned visual cues influenced identification responses to auditory speech
stimuli, but not to the same extent as visual cues from a speaker’s face. The novel methods and
results of the current study raise theoretical questions about the nature of information integration in
speech perception, and open up possibilities for further research on learning in multimodal
perception, which may have applications in improving speech comprehension among the
hearing-impaired. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3479537�

PACS number�s�: 43.71.Rt, 43.71.An, 43.71.Es, 43.71.Ft �MSS� Pages: 2138–2149
I. INTRODUCTION

A basic property of speech perception is its dependence
upon multiple sources of information. Perceptual interpreta-
tion of a speech segment is driven by multiple bottom-up
sources, including auditory and visual information �e.g.,
McGurk and MacDonald, 1976�, as well-as higher order in-
formation such as the probable identity of the current word
�e.g., Ganong, 1980�. The use of multiple information
sources in speech perception also has important conse-
quences in situations where acoustic information is de-
graded. For example, speech comprehension in noisy condi-
tions is dramatically improved when listeners are allowed to
view the speaker’s face �Sumby and Pollack, 1954; Grant
and Seitz, 2000�. Visual speech cues also improve compre-
hension in hearing-impaired individuals and cochlear im-
plant users �Lachs et al., 2001; Massaro and Cohen, 1999;
Tyler et al., 1995� and the elderly �Walden et al., 1993�.

Relatively little is known about the extent to which vi-
sual influences in speech perception depend on learning.
Computational models of information integration in speech
perception �e.g., FLMP: Oden and Massaro, 1978; TRACE:
McClelland and Elman, 1986; and Merge: Norris et al.,
2000� posit associative links between various information
sources and speech categories, which can presumably be
learned through experience �as in the case of lexical catego-
ries�. These models share the common assumption that mul-
tiple sources are not merely used jointly but rather are inte-
grated into a unified percept. They also assume that the
mechanism for information integration is not affected by ex-
perience, in that the combination of information sources re-
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sults from basic architectural features of each model that
remain constant. However, learning mechanisms have been
incorporated into these models to account for experience-
based “tuning” of associations between existing information
sources �visual, lexical� and phonetic categories �Massaro et
al., 1993; Mirman et al., 2006; Norris et al., 2003�. Such
learning mechanisms might also be expected to enable the
incorporation of a completely novel information source in
speech perception �e.g., Massaro and Chen, 2008�, although
this prediction has not been extensively studied.

Very few empirical data are available to document the
formation of new links between auditory and visual informa-
tion in speech perception; in part, this is due to the intracta-
bility of decoupling auditory and visual speech information
in the experience of young infants. Studies with adult listen-
ers have demonstrated “recalibration” of phonetic represen-
tations based on relatively brief audio-visual experience
�Bertelson et al., 2003; Samuel and Kraljic, 2009�. Further,
some evidence suggests that orthography can influence
speech perception �Massaro, 1999; van Atteveldt et al.,
2004�, which implies that new sources of visual information
can be learned. However, other evidence suggests that the
use of novel sensory information in speech perception may
not depend on learning �Fowler and Dekle, 1991; but see
Massaro and Chen, 2008�.

It remains an open question whether adults can learn to
use completely novel visual cues in a manner similar to natu-
ral visual speech. Bernstein et al. �2004� found that simple
detection of auditory speech in noise was improved by the
presence of novel artificial visual stimuli �with no need for
learning�, although the improvement was not as great as with
natural visual speech. Massaro and colleagues �Massaro,
1998, ch. 14; see also Massaro et al., 2009� have also found
that perceivers can learn to use artificial visual cues gener-
ated from speech acoustics as a supplement to simultaneous,

natural visual speech. The current study went further than
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previous research by directly testing whether listeners can
learn to use an arbitrary new source of visual information in
speech perception. A set of dynamic visual cues for speech
categories was created and a training paradigm was devised
to provide participants with the greatest possible opportunity
to learn the novel visual cues and associate them with corre-
sponding speech categories. The influence of these novel vi-
sual cues on speech perception was then tested and compared
to the influence of natural visual cues from a speaker’s face.
If current computational models of speech perception are
correct, then to the extent that listeners can learn to interpret
such visual cues, they should combine them with auditory
speech in a manner similar to natural visual cues.

II. METHOD

A. General method

Adult participants were exposed to artificial, temporally-
dynamic, visual stimuli synchronized with auditory vowel-
consonant-vowel �VCV� utterances in the context of a video
game. The artificial visual stimuli were computer-animated
videos of a “speech robot” with moving parts whose posi-
tions specified phonetic categories �Fig. 1�. Across multiple
sessions, participants were trained to identify voiced conso-
nants �/b/, /d/, /g/� based on these visual cues.

Specific details of experimental stimuli and procedures
are provided below. The overall form of the experiment was
as follows. The experiment began with a unimodal, visual
identification pre-test in which participants attempted to
judge the consonants associated with the artificial visual
stimuli. Participants then completed several daily sessions of
audiovisual training in which they were exposed to artificial
visual signals synchronized with corresponding auditory
speech �the exact number of training sessions depended on
each individual’s performance�. Finally, participants com-
pleted four post-tests: unimodal visual identification �identi-
cal to pre-test�; factorial audiovisual identification; and two
tests of audiovisual mismatch identification in noise using
artificial visual stimuli and natural visual speech cues �i.e., a
human face�, respectively.

B. Participants

Twelve adult English speakers with native-language
competence, no reported hearing impairment, and normal or
corrected-to-normal eyesight, participated in the experiment
�six female; age range=23–33 years, mean=26.5 years�.
Participants gave informed consent prior to the experiment
and procedures �including experiment length� were approved
by Carnegie Mellon University’s Institutional Review Board.
After the experiment, participants were debriefed regarding
the nature of the experiment.

Participants were compensated for their time via pay-
ments made at regular intervals during the experiment. In-
stallment payments included $6 for every session that had
been completed. In addition, $1.50 for each session was paid
to participants as a bonus upon completion of the entire ex-

periment, and an extra bonus was awarded based on perfor-
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mance during training. Overall pay for the experiment across
the 12 participants ranged from $105 to $192 and the median
pay was $117.

C. Stimuli1

1. Distributions

Stimulus materials were constructed to represent 12 dif-
ferent VCV utterances based on the combinations of three
consonants �/b/, /d/, /g/� and four vowels �/i/, /æ/, /a/, /u/�.
These utterances were represented by overlapping distribu-
tions of cues in a two-dimensional audiovisual space. An

FIG. 1. �a� Still-frame images of the speech robot. The robot had two mov-
ing parts that transitioned smoothly between positions specifying phonetic
categories. �b� The positions of the moving parts were defined according to
parameter values that corresponded to locations on the robot display. �c� The
parameter values used in the experiment. The consonants differed only in
the rotational component.
example of this two-dimensional stimulus space is displayed

. W. Stephens and L. L. Holt: Learning in audiovisual speech 2139



in Fig. 2 for stimuli in the /a/ vowel context. The three cat-
egories are only separable when both the auditory and visual
dimensions are taken into account; thus, accurate categoriza-
tion depended on the use of information from both modali-
ties. This arrangement mirrors the category-conditional inde-
pendence of audiovisual speech in the natural environment
�Massaro, 1998, ch. 4; Movellan and McClelland, 2001�.

The two-dimensional stimulus space was manipulated
between participants by reversing the arrangement of ani-
mated visual cues corresponding to the /b/ and /d/ categories
for half of the participants. The rearrangement of audiovisual
categories for stimuli in the /a/ context is also shown in Fig.
2. This made it possible to test whether the effects of visual
information depended on the relationship of each category to
the other categories. For example, in the classic McGurk
effect �McGurk and MacDonald, 1976�, the combination of
auditory /b/ and visual /g/ is interpreted as /d/, which may
reflect a perceptual compromise based on overlapping audi-
tory features for /b/ and /d/ and overlapping visual features
for /d/ and /g/. In the current experiment, the “original” dis-
tributions represent this type of structure in the environment,
whereas the “rearranged” distributions represent an alternate

FIG. 2. Depiction of audiovisual category distributions for the /aba/, /ada/,
and /aga/ stimuli used in the task. The vertical axis represents the parameter
setting of the robot’s rotating component for each stimulus. The horizontal
axis represents auditory stimuli along a 40-member morphed series from /b/
to /d/ to /g/. Open symbols are stimulus combinations used during training.
Black dots represent the combinations used in the factorial audiovisual iden-
tification task. �a� Distributions reflecting an arrangement of visual and au-
ditory cues based on the parameters depicted in Fig. 1. �b� Rearranged
audiovisual category distributions used for half of the participants. The vi-
sual cues �vertical axis� were reversed for the /b/ and /d/ categories.
structure in which /b/ and /g/ have overlapping visual char-
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acteristics. This might be expected to result in a novel form
of the McGurk effect in which combinations of auditory /d/
and visual /g/ are interpreted as /b/.

A further aspect of the audiovisual distributions used in
the present study was that they were gradually broadened
over the course of training. Training was thus divided into
five phases: in the initial phase, participants were trained
only on the audiovisual combinations at the center of each
category distribution; in the final phase, the entire distribu-
tions were used for training. In this way, audiovisual identi-
fication became progressively more difficult as participants
became more skilled at interpreting the visual stimuli. The
expansion of the distributions across training phases is illus-
trated in Fig. 3.

2. Auditory stimuli

In order to create distributions of audiovisual combina-
tions with variability in the auditory dimension, auditory
stimuli were drawn from a set of “morphed” natural speech

FIG. 3. Schematic representation of task sequence in the experiment and the
expansion of the training set across phases �see text for details�. Adjoining
boxes represent tasks that were performed within a single session. For the
stimuli, each of the VCV utterances used in training �/aba/, /ugu/, etc.� could
be represented by any of 25 audiovisual combinations. In the first training
phase, only the central combination within each of these distributions was
used; the training set was gradually broadened until all 25 combinations
were used for each utterance.
tokens.
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a. Auditory stimulus creation. Morphed stimuli were
created by adjusting LPC filter coefficients �Atal and Ha-
nauer, 1971� to create a range of consonants that varied from
/b/ to /d/ to /g/ in each of the four vowel contexts. An adult,
Midwestern American male speaker �JDWS� produced three
repetitions of each of the 12 VCV combinations used in the
stimulus set. The tokens were recorded digitally on a per-
sonal computer using Computer Speech Laboratory �CSL;
Kay Elemetrics Corp., Lincoln Park, NJ� with 16-bit preci-
sion at a sampling rate of 11.025 kHz. The tokens were iso-
lated and saved separately as monaural PCM .wav files, and
matched in RMS power prior to further processing.

Within each vowel context, the tokens for each consonant
that were most compatible in pitch and temporal properties
�i.e., speaking rate, burst length, and duration� were selected
as series endpoints and edited to produce further temporal
alignment �i.e., by deleting or duplicating pitch periods, etc.�.
An LPC analysis was performed on each of these edited
natural endpoint tokens using the autocorrelation algorithm
�Markel and Gray, 1976� implemented in the computer pro-
gram Praat �version 4.3.19; Boersma, 2001�. The /d/ tokens
from each vowel context were inverse-filtered by their LPC
coefficients to extract approximate voicing sources for each
/d/ endpoint token. The resulting four source waves �one for
each vowel context� were saved and used in the subsequent
resynthesis of all stimuli within a corresponding vowel se-
ries.

To create series ranging perceptually between endpoint
consonants, new LPC filters were created by incrementally
adjusting coefficients in 20 equal steps between each end-
point �/b/ to /d/ and /d/ to /g/�. After each set of LPC filters
was created, the filters were applied to the source wave de-
rived from the /d/ token with the corresponding vowel, so
that all members of each VCV series were based on the same
voicing source. Subsequent to this resynthesis all 160 VCV
stimuli were RMS-matched. A more detailed description of
these morphing procedures and stimulus characteristics is
provided in Stephens �2006, Chapter 6�.2

All auditory stimuli used in the experiment were given a
slight echo �a 30-ms delay�, which made them sound more
stereotypically “robotic” without altering frequency charac-
teristics or adversely affecting intelligibility.

b. Auditory stimulus selection. In order to create over-
lapping audiovisual distributions, stimuli were selected from
the morphed series so that the /b/ and /d/ tokens lay near the
category boundary. Appropriate stimuli were identified via a
pilot study in which 27 participants �native, monolingual
speakers of English with no hearing impairment� gave iden-
tification responses �“B,” “D,” and “G”� to all 160 morphed
VCV stimuli. From the VCV series containing /a/, additional
tokens spanning the category boundary between /aba/ and
/ada/ were also selected for use in the factorial audiovisual
identification task �also displayed in Fig. 2�. One reliable
token each of /aba/, /ada/, and /aga/ was also selected for use
in the audiovisual mismatch identification in noise task �in
the case of /aga/, not enough reliable /aga/ tokens were found
in the pilot study to select a novel /aga/ stimulus for the

audiovisual mismatch identification task, so an /aga/ token
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was selected that was infrequently presented during train-
ing�.

3. Artificial visual stimuli

Videos of the speech robot were created with temporal
characteristics that corresponded to those of the auditory
speech tokens. The movements of the robot were defined by
the parameters depicted in Fig. 1, with /b/, /d/, and /g/ dif-
fering in the position of the rotating component at consonant
onset. This parameter space was intended to be an arbitrary
re-mapping of the structure of natural visual speech catego-
ries �cf. Montgomery and Jackson, 1983�. The parameters for
the consonants depicted in Fig. 1 represent the visual cues at
center of the audiovisual distributions. Variations in the vi-
sual stimuli within each category were created by adjusting
the parameter for the rotating component for each consonant,
as depicted in Fig. 1. As described above, the visual stimuli
for /b/ and /d/ categories were inverted for half of the par-
ticipants.

When animated, the robot’s moving parts transitioned
linearly between positions defining the vowel and consonant
in each utterance. Transitions were timed according to the
lengths of the initial and final vowels and the timing of con-
sonant bursts in the corresponding acoustic tokens. The vi-
sual transition from consonant to vowel began approximately
67 ms before the consonant burst, to take advantage of the
finding that slight audio lags facilitate audiovisual integration
�Munhall et al., 1996�. Each visual stimulus was saved as a
digital video file �.avi format� with a frame rate of 30 fps.

This procedure was used to create visual stimuli for the
various tasks in the experiment. For audiovisual training, 48
videos were created to correspond to the visual dimensions
of the bimodal distributions within each vowel context. For
the visual identification task, the 12 videos representing the
center of each consonant category in each vowel context
were used as well as six additional videos that were created
in order to test generalization. These stimuli represented ro-
bot movements for each consonant in two novel vowel con-
texts �based on parameters intended to correspond to /e/ and
/o/ in the visual stimulus space of Fig. 1�. For factorial au-
diovisual identification, five additional visual stimuli were
created with a special focus on the ambiguous region be-
tween /b/ and /d/ �also depicted in Fig. 2�. For the audiovi-
sual mismatch identification in noise task, videos represent-
ing the center of each category in the /a/ context were used.

4. Natural visual stimuli

Natural visual speech stimuli were used in the final task
of the experiment, a repetition of audiovisual mismatch iden-
tification in noise. Stimuli were created by videotaping the
lower half of the face of a speaker �JDWS� producing /aba/,
/ada/, and /aga/ in a normal manner. The digital videos were
given the same temporal characteristics as the artificial visual
stimuli by selectively deleting or duplicating individual
frames. The videos were limited to the lower half of the face
in order to provide a closer parallel to the artificial stimuli, in
which the moving parts occupied the majority of the visible

surface of the robot. Video size was also scaled such that the
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mouth occupied approximately the same area of the screen as
the moving parts of the speech robot.

D. Procedure

1. General procedure

The experiment was carried out across daily 40–60 min
experimental sessions. Nine participants carried out daily
sessions on laptop computers borrowed from the laboratory
�Gateway Computer Corp., Irvine, CA�, and three partici-
pants completed the daily sessions on a desktop computer in
the laboratory. All portions of the experiment were executed
using Presentation software �Neurobehavioral Systems, Inc.,
Albany, CA�, and tasks were designed so that participants
were automatically guided through the appropriate sequence
of sessions. This was achieved through the use of log files
that were created after each session and set the relevant pa-
rameters �e.g., experiment phase, current task� that were read
by the program the next time it was launched. Participants
were also provided with Beyer DT-150 headphones �Beyer-
dynamic GmbH, Heilbronn, Germany� and instructed to use
them when performing sessions. Volume levels were set to
provide stimuli at 65–70 dB.

A schematic representation of experimental tasks is
shown in Fig. 3. After a visual identification pre-test, audio-
visual training progressed through five phases, in which
stimulus distributions were gradually broadened. Daily train-
ing sessions within each phase alternated between explicit
and incidental training tasks. The progression of training
phases depended on the attainment of performance criteria
by each participant. Specifically, when a participant reached
a signal-to-noise ratio of �10 dB at any point in the explicit
training task, the next training phase was initiated in the
subsequent session.3 Thus, the number of sessions varied
across participants �10–22 sessions; the median number of
sessions was 12�. The rationale for this design was to obtain
a similar level of expertise in identifying artificial visual
stimuli for all participants by the end of training �a similar
pilot experiment that used a standard number of sessions for
all participants found substantial variability across partici-
pants in the ease with which they learned the artificial visual
cues�.

Factorial audiovisual identification tasks were performed
at the beginning of the third, fourth, and fifth phases, to
examine the use of the artificial visual cues in bimodal
speech identification over the course of training. After the
performance criterion was reached in the fifth phase, a visual
identification post-test was immediately performed. The next
and final session of the experiment then consisted of �in this
order�: a factorial audiovisual identification task, an audiovi-
sual mismatch identification in noise task with animated-
robot visual stimuli, and a second audiovisual mismatch task
with visual stimuli of a human face.

2. Audiovisual training tasks
a. “Explicit” training task. The purpose of the explicit

task was to provide direct instruction to participants on how
to interpret the artificial visual stimuli. During the task, par-

ticipants were instructed to watch and listen to the robot and
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indicate which consonant the robot spoke on each trial, using
the laptop’s J, K, and L keys �re-labeled “B,” “D,” and “G”�.
The task was presented as a video game in which learning
about the robot’s movements would enable participants to
perform well �as indicated by displays of point score and
difficulty level and occasional sound effects�. The Space bar
could be used to replay an audiovisual stimulus combination.
After correct responses, the word “Correct!” was displayed
in green text; after incorrect responses, the correct response
was displayed in red text. Each incorrect trial was immedi-
ately repeated once to provide an opportunity for correct
identification.

Background noise was added to auditory stimuli so that
participants were encouraged to use visual information.
Noise amplitude varied according to performance. Thus, the
signal-to-noise ratio was set to +10 dB at the beginning of
each explicit training session, and then adjusted by �1 dB
after any six consecutive correct responses and by +1 dB
after any two consecutive incorrect responses. Noise samples
were randomly selected at the time of presentation from a 60
s recording of multi-speaker babble with overall RMS power
matched to the auditory stimuli.

Each training session consisted of 30 trial blocks in which
one audiovisual combination was presented from each of the
12 VCV distributions for the current phase of training, for a
total of 360 base trials �as described above, repetition of
some trials occurred based on participants’ responses�. The
audiovisual combinations used in each block were selected
randomly from the current stimulus distributions. The order-
ing of base trials was random within each block.

b. “Incidental learning” task. The purpose of the inci-
dental task was to give participants additional exposure to
audiovisual stimulus combinations in the absence of noise
and without the requirement of overt identification re-
sponses. In this task, participants were asked to watch and
listen to the speech robot and simply indicate whether it
produced a malfunction. The malfunctions were relatively
infrequent events in which an anomalous auditory or visual
stimulus was presented. Five auditory and five visual stimuli
were created to represent the malfunctions: the auditory
stimuli consisted of edited samples of white noise and tones,
and the visual stimuli were animated videos of the robot in
which the robot’s parts moved erratically.

On each trial, a participant indicated whether the robot
had produced normal output, an auditory malfunction, or a
visual malfunction, using keys labeled “Normal,” “Audi-
tory,” and “Visual” on the keyboard �the A, S, and D keys�.
There were 30 trial blocks, each of which consisted of 12
normal audiovisual combinations which were randomly se-
lected from the VCV distributions for the current phase of
the experiment, and two randomly selected malfunctions,
one containing anomalous auditory information and one con-
taining anomalous visual information. Each type of auditory
and visual malfunction occurred with equal frequency �six
times� over the course of the task. The ordering of trials

within each trial block was random.
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3. Visual identification „pre-test and post-test…

The unimodal visual identification task tested partici-
pants’ labeling of consonants based solely on the robot’s
movements, with no accompanying acoustic speech stimu-
lus. Twelve visual stimuli �those containing /i/, /ae/, /a/, and
/u/� were part of the stimulus set used in audiovisual training.
Six additional videos �containing /e/ and /o/� were included
to test whether participants could generalize their knowledge
of visual consonants to vowel contexts that had not been
trained. There were 12 blocks in which the 18 unimodal
visual stimuli were presented in random order. After each
presentation, the participant used the keyboard to identify
which consonant had been produced by the robot.

4. Factorial audiovisual identification

The factorial audiovisual identification task tested for
effects of visual information on identification of auditory
consonants that ranged perceptually from /b/ to /d/. Partici-
pants’ identification responses were recorded for unimodal
presentations of stimuli from auditory and visual series and
for bimodal combinations of auditory and visual stimuli �i.e.,
6 auditory stimuli, 5 visual stimuli, 30 combinations�. On
unimodal auditory trials, the robot remained on the screen in
its neutral configuration. The task consisted of 10 trial
blocks, in which each of these 41 stimulus combinations was
presented in random order. After each presentation, the par-
ticipant used the keyboard to indicate whether the robot had
produced /b/ or /d/. Participants were instructed to do their
best to identify which consonant was heard on each trial,
except for unimodal visual trials. All repetitions of the task
between phases of training were identical to each other, and
the task was identical for participants trained on the original
and rearranged audiovisual distributions �responses were
merely coded differently depending on which visual stimulus
was trained as /b/ and which was trained as /d/�.

5. Audiovisual mismatch identification in noise

The audiovisual mismatch identification task evaluated
the extent to which newly-learned visual cues affected
speech perception in noise. Auditory and visual cues for
/aba/, /ada/, and /aga/ were presented in combinations that
were either consistent or inconsistent with participants’ au-
diovisual training. This task was given twice, first with the
animated robot and second with visual stimuli of a speaker’s
face. Identification responses were recorded for each of the
nine possible combinations of auditory and visual stimuli
and for each of the three auditory stimuli alone, at three
signal-to-noise ratios: +20 dB �noise inaudible�, �4 dB, and
�8 dB.4 As in the audiovisual training task, a noise segment
of appropriate length was randomly sampled from a 60 s
multi-speaker babble recording on each trial. The task con-
sisted of 10 trial blocks, in each of which the 36 differ-
ent combinations �12 auditory /audiovisual combinations
�3 noiselevels� were presented in random order. Partici-
pants were instructed to do their best to identify which con-
sonant was heard on each trial. The task was identical for
participants trained on the original and rearranged audiovi-

sual distributions �again, data were coded such that visual
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stimuli were classified as congruent or incongruent depend-
ing on which stimuli were trained as /b/ and /d/�.

III. RESULTS

A. Visual identification

Figure 4�a� displays proportion correct visual identifica-
tion responses for each of the 12 participants, at pre-test and
post-test. All participants exhibited good visual identification
performance at post-test. Improvement in proportion correct
unimodal visual identification between pre-test and post-test
occurred across all three consonants, for both arrangements
of audiovisual categories. A 2�pre-test vs. post-test�
�3�visual consonant��2�category arrangement� repeated-
measures ANOVA found a highly significant effect of test,
F�1,10�=219.8, p�0.001, �p

2 =0.96, and no reliable effect
of consonant F�2,20�=3.141, p=0.065, nor of category ar-
rangement, F�1,10�=0.106, p=0.75. No test by consonant
interaction was found, nor was there a consonant by category
arrangement interaction �both F�1�. However, there was a

FIG. 4. �a� Learning of novel visual speech cues as indicated by perfor-
mance of individual participants in the visual identification task. The hori-
zontal line represents chance performance. �b� Mean “B” responses to com-
binations of auditory stimuli with artificial visual /b/ and /d/ in the final
factorial audiovisual identification task �open symbols�. Also plotted are “B”
responses to unimodal visual /b/ and /d/ �closed symbols� and FLMP pre-
dictions for the data �Xs�. FLMP predictions are based on model fits to the
entire data set �see text�, which includes conditions not represented in the
figure. Error bars represent standard error of the mean.
three-way interaction of test, consonant, and category ar-
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rangement, F�2,20�=5.37, p=0.014, �p
2 =0.349. Inspec-

tion of the data suggested that this interaction was due to
different patterns of accuracy across consonants at post-test
for the two groups of participants trained on different cat-
egory distributions. This was to be expected given that the
most distinctive visual stimulus represented different conso-
nants in the two category distributions �i.e., /b/ in the original
distributions and /d/ in the rearranged distributions�.

B. Factorial audiovisual identification

1. Visual influence

In the interest of brevity, data are only presented from
the final factorial audiovisual identification task given after
the completion of training. Figure 4�b� displays average pro-
portion “B” responses across the auditory series for combi-
nations containing end point visual stimuli. Data in the figure
are combined from both groups of participants trained
on original and rearranged distributions �note that the par-
ticular stimuli used to represent visual /b/ and /d/ were re-
versed for the two groups�. A 6�auditory stimulus�
�2�visual stimulus��2�original vs. rearranged distribu-
tions� repeated-measures ANOVA on these data revealed sig-
nificant effects of auditory stimulus, F�5,50�=144.7, p
�0.001, �p

2 =0.94, and visual stimulus, F�1,10�=22.7, p
=0.001, �p

2 =0.69. The auditory�visual interaction was
also significant, F�5,50�=3.77, p=0.006, �p

2 =0.27. Thus,
the visual stimuli influenced consonant identification when
paired with auditory stimuli ranging from /b/ to /d/. The in-
teraction reflects the tendency for this influence to be greater
in the middle of the auditory series. The effect of original vs.
rearranged distributions was not significant, F�1,10�
=3.52, p=0.09, �p

2 =0.26; however, there was a trend to-
ward fewer “B” responses overall in the group trained on
rearranged distributions. This trend was greatest in the
middle of the auditory series, and was reflected in a signifi-
cant interaction of auditory stimulus�distribution arrange-
ment, F�5,50�=2.68, p=0.032, �p

2 =0.211. More impor-
tantly, however, the interaction of distribution arrangement
with visual stimulus was not significant, and neither was the
three-way interaction �both F�1�. Thus, the degree to which
newly-learned visual stimuli influenced identification of /b/
and /d/ did not differ depending upon which visual endpoint
stimulus was trained as /b/ and which was trained as /d/.
Figure 4�b� also displays responses given to the endpoint
visual stimuli when presented unimodally. It can be seen
from the figure that the differences in “B” responses across
unimodal visual conditions were considerably greater than
the differences caused by visual stimuli in bimodal condi-
tions, even when auditory information was ambiguous. This
suggests that participants were not making optimal use of the
visual cues to resolve auditory ambiguity �cf., Massaro,
1998, ch. 4�.

2. Model comparisons

The question of how participants combined the two in-
formation sources in this task was addressed formally by
comparing the fits of three models to the full data sets from

the four factorial audiovisual identification tasks. The proce-
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dure used here followed that of Massaro �1998, ch. 2�, by
comparing the Fuzzy Logical Model of Perception �FLMP�
to a Single Channel Model �SCM�.

a. FLMP. The FLMP assumes that information sources
are optimally integrated in perception. In the case of a two-
alternative task such as the one used here, the form of the
FLMP is equivalent to Bayes’ rule �Massaro, 1998, ch. 4�.
For example, the proportion of “B” responses in the factorial
audiovisual identification task would be represented by:

P�“B ” �Ai,Vj� =
aiv j

aiv j + �1 − ai��1 − v j�
, �1�

where Ai and Vj represent the auditory and visual sources of
information, and ai and v j are “fuzzy truth values,” which are
parameters representing the degree of support for the /b/ cat-
egory from the auditory and visual sources, respectively.
When one source is absent, it is represented by a fuzzy truth
value of 0.5. In the present model-fitting exercise, 11 param-
eters were estimated for each expanded-factorial task, repre-
senting the degree of support for the /b/ category from each
of the six auditory and five visual stimuli used in the task.

b. SCM. The SCM assumes that on any given trial, the
perceiver only uses information from one source. In the cur-
rent task the SCM predicts “B” responses thus:

P�“B ” �Ai,Vj� = paai + �1 − pa�v j , �2�

where ai and v j represent the probabilities of choosing a “B”
response based on auditory and visual sources, and pa repre-
sents the probability of responding based on the auditory
source in any given trial. For this analysis, 12 parameters
were estimated: one for each of the auditory and visual
stimuli, and one parameter representing the probability of an
auditory response.

c. Model fits. Each model was fit to the data by ini-
tially setting all parameters to random values between 0 and
1 and iteratively adjusting each parameter so as to minimize
the root mean squared deviation �RMSD� between the pre-
dicted and observed results. To avoid the possibility of set-
tling into local minima, the fitting procedure was carried out
20 times for each model with different initial parameters.
Average RMSD values for each model were computed across
the 12 participants and are presented in Table I. Although the
models performed similarly, the SCM provided better fits to
the data than the FLMP. A 2�model��4�task number�
repeated-measures ANOVA comparing the SCM to the
FLMP found a significant main effect of model on RMSD,

2

TABLE I. RMSD for model fits to data from the four factorial audiovisual
identification tasks.

Task

FLMP SCM

M SD M SD

1 0.068 0.013 0.062 0.015
2 0.067 0.015 0.064 0.014
3 0.073 0.025 0.058 0.018
4 0.061 0.012 0.052 0.015
F�1,11�=10.5, p=0.008, �p=0.49. The effect of task
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number was not significant, F�3,33�=1.63, p=0.20, �p
2

=0.13, nor was the model� task number interaction,
F�3,33�=1.15, p=0.35, �p

2 =0.09.
These results are in stark contrast to typical findings for

natural audiovisual speech, for which the FLMP performs
much better than the SCM �e.g., Massaro, 1998, ch. 2�. Some
of the FLMP predictions are displayed alongside observed
data in Fig. 4�b�, which illustrates that the FLMP has diffi-
culty reconciling the small size of the visual influence on
audiovisual identification with participants’ excellent ability
to identify visual stimuli that are presented unimodally. Re-
call that the FLMP represents completely ambiguous infor-
mation in the same way as if that information were absent
�i.e., with fuzzy truth values of 0.5�. Thus when auditory
information is ambiguous, the FLMP predicts that response
patterns to audiovisual stimuli should approach the patterns
observed for unimodal visual stimuli. The model fits confirm
that the current data do not conform to this prediction. It
should also be noted that the SCM did not perform much
better than the FLMP. In particular, the SCM is not capable
of predicting an auditory�visual interaction like the one ob-
served in the data of Fig. 4�b�. Thus, it is likely that partici-
pants used the two sources of information in a way that
somewhat reflected the ambiguity of each source. However,
there is no evidence that participants optimally combined the
two sources.

C. Audiovisual mismatch identification in noise

1. Intelligibility

Figure 5 displays average proportion of responses corre-
sponding to the auditory stimulus for congruent and incon-
gruent audiovisual combinations and for unimodal auditory
stimuli, at each noise level and in each version of the task
�artificial vs. natural visual speech stimuli�. The data in the
figure are divided between the two groups that were trained
on different distributions. It can be seen from the figure that,
under noisy conditions, visual stimuli had a substantial influ-
ence on participants’ identification of auditory consonants.
These intelligibility effects of natural versus artificial visual
cues were compared in separate 2�stimulus type;
robot vs. face��3�visual condition� repeated-measures
ANOVAs for each group of participants �original and rear-
ranged training distributions� on the data from the high noise
condition ��8 dB�. For participants trained on the original
audiovisual category distributions, there was an effect of vi-
sual condition, F�2,10�=24.2, p�0.001, �p

2 =0.83. There
was no significant main effect of stimulus type, F�1,5��1.
There was a significant interaction of visual condition and
stimulus type, F�2,10�=4.81, p=0.034, �p

2 =0.49, corre-
sponding to the greater magnitude of effects of congruent
and incongruent visual cues for natural visual stimuli than
for artificial visual stimuli. For participants trained on rear-
ranged audiovisual category distributions, the effect of visual
condition was significant, F�2,10�=70.3, p�0.001, �p

2

=0.93, and the main effect of stimulus type was not signifi-
cant, F�1,5�=1.24, p=0.32, �p

2 =0.20. In contrast to the
participants trained on the original arrangement of stimulus

distributions, the interaction of visual condition and stimulus
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type was not significant, F�2,10��1. Thus, the magnitude of
effects of artificial visual stimuli �in the high noise condition�
did not differ from those of natural visual stimuli for partici-
pants trained on rearranged distributions.

The effects of artificial visual stimuli on intelligibility in
high noise were as great as the effects of natural visual
stimuli among participants trained on the rearranged distri-
butions, but not among participants trained on the original
distributions. This finding suggests that the structure of the
stimulus space did have effects on the use of visual informa-

FIG. 5. Proportion correct identification of auditory consonants in the au-
diovisual mismatch in noise task. �a� Data for artificial visual stimuli with
original distributions. For the participant who received different noise levels
than other participants �+20, �8, �12 dB�, only data from the +20 and �8
dB conditions are included in the figure. �b� Data for artificial visual stimuli
with rearranged distributions. �c� Data for natural visual stimuli. Data for
natural visual stimuli represent averages of all participants trained on both
sets of stimulus distributions. Error bars represent standard error of the
mean.
tion in speech perception.
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Why did the two distributions lead to different degrees
of visual influence? Table II presents a confusion matrix for
participants’ responses in congruent audiovisual versus uni-
modal auditory conditions at the high noise level ��8 dB�.
For participants trained on the original audiovisual distribu-
tions, congruent visual information disambiguated /b/ from
the other consonants but was less successful in helping par-
ticipants to correctly identify /d/ and /g/. Natural visual
stimuli showed a similar pattern in that identification of /g/
improved little with congruent visual information �although
/d/ identification did benefit considerably�. In contrast, for
participants trained on rearranged audiovisual distributions,
artificial visual speech improved identification of all three
consonants, including /g/. From the response proportions in
the unimodal auditory conditions, it can be seen that auditory
/b/ and /g/ were least likely to be confused with each other,
whereas auditory /d/ was highly confusable with the other
consonants in noise. Thus, making /b/ the most distinctive
visual stimulus �as in the original audiovisual distributions�
did little to help distinguish between the most confusable
consonants. On the other hand, making /d/ the most distinc-
tive visual stimulus �as in the rearranged distributions� pro-
vided visual information that was complementary to the
available auditory cues and maximized the visual benefit.

2. McGurk effect

As with the data from the factorial audiovisual identifi-
cation task, the question arises whether artificial visual cues
were integrated with auditory information in a similar man-
ner to natural visual speech cues. For example, how do par-
ticipants respond when presented with combinations of audi-
tory /b/ and visual /g/? A “D” response in this condition
constitutes the classic McGurk effect, in which auditory and
visual information are apparently perceptually “fused.” How-
ever, “D” responses to auditory /b/ plus visual /g/ are also
possible without perceptual fusion. For instance, a perceiver
might produce a “D” response while selectively attending

TABLE II. Response proportions for congruent visu
visual mismatch in noise task, at �8 dB S/N ratio.

Stimulus

B

M SD

/b /+no visuala 0.41 0.19
/b /+face 0.89 0.21

/b /+robot-orig. 0.85 0.12
/b /+robot-rearr. 0.77 0.19
/d /+no visual 0.27 0.16

/d /+face 0.02 0.04
/d /+robot-orig. 0.13 0.15
/d /+robot-rearr. 0.05 0.12
/g /+no visual 0.18 0.14

/g /+face 0.00 0.00
/g /+robot-orig. 0.13 0.14
/g /+robot-rearr. 0.12 0.12

aData in the “no visual” conditions are averaged acro
only to auditory /b/ or visual /g/, as in the Single Channel
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Model. Starting from Eq. �2� above, if pa is assumed to re-
main constant throughout the experiment, the SCM predicts
that

P�“D ” �AbVg� = P�“D ” �AbVb� + P�“D ” �AgVg�

− P�“D ” �AgVb� . �3�

As a result, it was possible to test the predictions of the SCM
within the data sets from the audiovisual mismatch task, by
computing both sides of Eq. �3� from each participant’s re-
sponse proportions in the relevant conditions. Figures 6�a�
and 6�c� show “D” responses in the McGurk condition for
original distributions of artificial visual stimuli and for natu-
ral visual stimuli compared to the control condition repre-
sented by the right side of Eq. �3�. For rearranged distribu-
tions �Fig. 6�b��, an analogous analysis was performed that
examined “B” responses to auditory /d/ and visual /g/, since
/b/ was the intermediate audiovisual category in these distri-
butions. It can be seen from the figure that only natural vi-
sual stimuli produced McGurk-style fusions at a greater rate
than would be expected from selective attention to a single
modality on each trial. To confirm this observation, separate
2�fusion vs. control��3�noise level� ANOVAs were con-
ducted on the three data sets presented in Fig. 6 �excluding
the participant with different noise levels�. The data from the
task with natural visual stimuli revealed significant main ef-
fects of fusion vs. control, F�1,11�=23.5, p=0.001, �p

2

=0.68, and noise level, F�2,22�=4.67, p=0.020, �p
2 =0.30,

and a significant interaction, F�2,22�=7.17, p=0.004, �p
2

=0.39. For the task with robot stimuli from original distribu-
tions, there was a main effect of noise level F�2,8�
=6.00, p=0.026, �p

2 =0.60, but there was no main effect of
fusion vs. control, F�1, nor was the interaction significant,
F�2,8�=3.92, p=0.065, �p

2 =0.50. For the task with robot
stimuli from rearranged distributions, there was no effect of
noise level, F�2,10�=1.52, p=0.26, �p

2 =0.23, no main ef-
fect of fusion vs. control, F�1, and no interaction, F�1.
Thus, although participants made a measurable number of

ormation versus no visual information, in the audio-

Response

D G

M SD M SD

0.28 0.13 0.31 0.19
0.08 0.12 0.03 0.12
0.03 0.05 0.12 0.10
0.12 0.12 0.12 0.12
0.42 0.16 0.30 0.13
0.82 0.17 0.17 0.14
0.65 0.15 0.22 0.18
0.90 0.15 0.05 0.05
0.32 0.13 0.51 0.15
0.42 0.19 0.58 0.19
0.47 0.23 0.40 0.15
0.05 0.05 0.83 0.14

th tasks �robot and face�.
al inf

ss bo
McGurk-like responses with artificial visual stimuli, there is
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no evidence from this task that these responses resulted from
integration of the auditory and visual cues.

IV. DISCUSSION

A. Summary of current findings

In the present study, participants learned a new and ar-

FIG. 6. Proportion “fusion” responses characteristic of the McGurk effect,
compared to control predictions based on the assumption of selective atten-
tion to a single modality on each trial �see text�. �a� Data for artificial visual
stimuli with original distributions. For the participant who received different
noise levels than other participants �+20, �8, �12 dB�, only data from the
+20 and �8 dB conditions are included in the figure. �b� Data for artificial
visual stimuli with rearranged distributions. �c� Data for natural visual
stimuli. Data for natural visual stimuli represent averages of all participants
trained on both sets of stimulus distributions. Error bars represent standard
error of the mean.
bitrary source of visual information for phonetic categories.
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The visual cues were dynamic and were synchronized with
auditory speech. After training, participants correctly applied
phonetic category labels to these artificial visual speech cues,
and made use of the visual cues in phonetically labeling
acoustically ambiguous speech stimuli. Although the visual
stimuli shifted participants’ identification responses in the
identification tasks, the effects of artificial visual cues dif-
fered from those typically seen with natural visual cues from
a speaker’s face.

In the factorial audiovisual identification task, the effect
of artificial visual information was limited mainly to audio-
visual combinations in which the auditory stimulus was
highly ambiguous. With ambiguous auditory stimuli, the size
of the visual effect was not commensurate with participants’
high accuracy in identification of unimodal visual stimuli. As
a result, the Fuzzy Logical Model of Perception �Oden and
Massaro, 1978� did not fit the data more accurately than an
alternative model that does not assume information integra-
tion across modalities.

In the audiovisual mismatch in noise task, artificial vi-
sual cues influenced participants’ ability to correctly identify
auditory consonants presented in noise. Under certain condi-
tions, the effects of artificial visual cues on accuracy were as
great as those observed with natural visual stimuli. Addition-
ally, the specific visual effects on individual consonants re-
flected the structure of the audiovisual categories on which
participants were trained. As in the factorial audiovisual
identification task, there was no evidence that artificial visual
cues were integrated with auditory information in a manner
similar to natural visual cues, and an analysis of “fusion
responses” characteristic of the McGurk effect �McGurk and
MacDonald, 1976� indicated that the effects of artificial vi-
sual cues were consistent with the predictions of a model that
does not assume integration of information across modali-
ties.

B. Theoretical implications

The use of information from separate sensory modalities
has figured prominently in theoretical approaches to speech
perception. Computational models of speech perception
�e.g., FLMP: Oden and Massaro, 1978; TRACE: McClelland
and Elman, 1986; and Merge: Norris et al., 2000� posit that
information is perceptually integrated based on associations
among relevant information sources and perceptual catego-
ries. Further, research on such models has increasingly em-
phasized the optimality �in the Bayesian sense� of informa-
tion integration in speech perception �e.g., Massaro, 1998,
ch. 4; Movellan and McClelland, 2001; Norris and Mc-
Queen, 2008�. That is, the probability of identifying a pho-
netic category reflects an ideal combination of the condi-
tional probabilities of that category given the information
from each available source �e.g., auditory, visual, lexical�.
Based on this literature, it might be expected that newly-
learned artificial visual cues for consonants would be opti-
mally exploited by the perceptual system in this way. This
was not the case in the current study, demonstrated by the
comparison between current data and the predictions of an

optimal model �FLMP�. Rather, the effects of newly-learned
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visual information in the current study are consistent with
some form of attention-switching between modalities rather
than information integration �perhaps reflecting task de-
mands learned in training, in which use of the visual cues
was encouraged; see also Fowler and Dekle, 1991; Massaro,
1998, ch. 2�.

There is no ready explanation for why well-learned vi-
sual cues from the speech robot would not be combined with
auditory speech. Thus, the central theoretical question raised
by this study is: what conditions are sufficient to allow for
optimal use of an information source in speech perception?
One possible answer is that the newly learned visual cues
were in fact used optimally in some sense, if it is taken into
consideration that the perceiver has relatively little experi-
ence with them �compared to natural cues� and should treat
them as unstable or unreliable. Computational models of in-
formation integration might therefore be able to accommo-
date the current findings by incorporating some extra mecha-
nism by which new information sources compete with �or are
otherwise disadvantaged by� more established information
sources in perception. Predictions could then be made re-
garding the degree of experience and other conditions neces-
sary for novel information sources to be perceptually inte-
grated.

An alternative possibility is that information sources
such as the speech robot can never be perceptually integrated
with auditory speech, no matter how much experience is pro-
vided. According to the direct realist account of audiovisual
speech perception �e.g., Fowler, 1996�, perceptual integration
only occurs when both information sources are linked to a
shared environmental cause �i.e., the gestures of a speaker’s
vocal tract�. The current results are thus consistent with di-
rect realism, although they are equally consistent with the
interpretation that the amount of experience provided was
simply not sufficient for perceptual integration.

C. Implications for speech comprehension in adverse
conditions

Aside from theoretical considerations, the benefit of vi-
sual stimuli from rearranged category distributions on speech
identification in noise is interesting from a purely practical
standpoint. Even though it is unlikely that participants inte-
grated the visual and auditory stimuli as in natural audiovi-
sual speech perception, they nonetheless were able to use the
artificial visual stimuli to achieve similar levels of accuracy
in a noisy environment. A particularly interesting aspect of
the data was that the rearranged categories apparently disam-
biguated auditory cues more effectively because they pro-
vided the most distinctive visual cues for the consonant �/d/�
that was most confusable with other consonants in noise. A
possible implication of these findings is that artificial visual
cues may have some value as an aid to speech perception,
since they could be constructed specifically to disambiguate
confusable phonetic categories and thus maximize the infor-
mation available to perceivers when auditory information is

degraded.
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D. Conclusion

The current study establishes a novel empirical para-
digm for training perceivers on novel visual cues for conso-
nant categories. The results raise important theoretical ques-
tions about the nature of information integration in speech
perception and how it may be brought about through experi-
ence. The findings also imply that supplementing auditory
speech with dynamic visual information may be beneficial to
speech comprehension, even if the underlying perceptual
mechanisms are not equivalent to those of natural
speechreading.
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1Example audiovisual stimuli may be viewed at the following URL:
http://www.psy.cmu.edu/~lholt/php/gallery_audiovisual.php.

2The entire set of 160 tokens may also be downloaded from:
http://www.u.arizona.edu/~alotto/ACNS/StimuLibrary.htm.

3For the three participants who completed the experiment on a desktop
computer in the laboratory, an unforeseen programming bug affected the
adjustment of noise in the explicit training task and prevented these par-
ticipants from attaining the criterion in some sessions �two sessions for
two participants and one session for the other participant�. The only con-
sequence of this error was that it may have slowed the progress of these
participants through the phases of the experiment.

4Due to exploration of the best noise levels for use in the task, noise levels
in the version of the task that featured the robot were +20 dB, �8 dB, and
�12 dB for one participant �trained on original distributions�.

Atal, B. S., and Hanauer, S. L. �1971�. “Speech analysis and synthesis by
linear prediction of the speech wave,” J. Acoust. Soc. Am. 50, 637–655.

Bernstein, L. E., Auer, E. T., Jr., and Takayanagi, S. �2004�. “Auditory
speech detection in noise enhanced by lipreading,” Speech Commun. 44,
5–18.

Bertelson, P., Vroomen, J., and de Gelder, B. �2003�. “Visual recalibration of
auditory speech identification: A McGurk after effect,” Psychol. Sci. 14,
592–597.

Boersma, P. �2001�. “PRAAT, a system for doing phonetics by computer,”
Glot International 5, 341–345.

Fowler, C. A. �1996�. “Listeners do hear sounds, not tongues,” J. Acoust.
Soc. Am. 99, 1730–1741.

Fowler, C. A., and Dekle, D. J. �1991�. “Listening with eye and hand:
Crossmodal contributions to speech perception,” J. Exp. Psychol. Hum.
Percept. Perform. 17, 816–828.

Ganong, W. F. �1980�. “Phonetic categorization in auditory word percep-
tion,” J. Exp. Psychol. Hum. Percept. Perform. 6, 110–125.

Grant, K. W., and Seitz, P. �2000�. “The use of visible speech cues for
improving auditory detection of spoken sentences,” J. Acoust. Soc. Am.
108, 1197–1208.

Lachs, L., Pisoni, D. B., and Kirk, K. I. �2001�. “Use of audiovisual infor-
mation in speech perception by prelingually deaf children with cochlear
implants: A first report,” Ear Hear. 22, 236–251.

Markel, J. D., and Gray, A. H., Jr. �1976�. Linear Prediction of Speech
�Springer-Verlag, New York�, pp. 1–288.

Massaro, D. W. �1998�. Perceiving Talking Faces: From Speech Perception
to a Behavioral Principle �MIT, Cambridge, MA�, pp. 35–79, 95–127, and
415–443.

Massaro, D. W. �1999�. “Speechreading: Illusion or window into pattern
recognition,” Trends Cogn. Sci. 3, 310–317.
Massaro, D. W., Carreira-Perpinan, M. A., and Merrill, D. J. �2009�. “Opti-

J. D. W. Stephens and L. L. Holt: Learning in audiovisual speech



mizing visual perception for an automatic wearable speech supplement in
face-to-face communication and classroom situations,” in Proceedings of
the 42nd Hawaii International Conference on System Sciences, Waikoloa,
HI, January 5–8.

Massaro, D. W., and Chen, T. H. �2008�. “The motor theory of speech
perception revisited,” Psychon. Bull. Rev. 15, 453–457.

Massaro, D. W., and Cohen, M. M. �1999�. “Speech perception in hearing-
impaired perceivers: Synergy of multiple modalities,” J. Speech Lang.
Hear. Res. 42, 21–41.

Massaro, D. W., Cohen, M. M., and Gesi, A. T. �1993�. “Long-term training,
transfer, and retention in learning to lipread,” Percept. Psychophys. 53,
549–562.

McClelland, J. L., and Elman, J. L. �1986�. “The TRACE model of speech
perception,” Cognit Psychol. 18, 1–86.

McGurk, H., and MacDonald, J. �1976�. “Hearing lips and seeing voices,”
Nature �London� 264, 746–748.

Mirman, D., McClelland, J. L., and Holt, L. L. �2006�. “Interactive activa-
tion and Hebbian learning produce lexically guided tuning of speech per-
ception,” Psychon. Bull. Rev. 13, 958–965.

Montgomery, A., and Jackson, P. �1983�. “Physical characteristics of the lips
underlying vowel lipreading performance,” J. Acoust. Soc. Am. 73, 2134–
2144.

Movellan, J. R., and McClelland, J. L. �2001�. “The Morton-Massaro law of
information integration: Implications for models of perception,” Psychol.
Rev. 108, 113–148.

Munhall, K. G., Gribble, P., Sacco, L., and Ward, M. �1996�. “Temporal
J. Acoust. Soc. Am., Vol. 128, No. 4, October 2010 J. D
constraints on the McGurk effect,” Percept. Psychophys. 58, 351–362.
Norris, D., and McQueen, J. M. �2008�. “Shortlist B: A Bayesian model of

continuous speech recognition,” Psychol. Rev. 115, 357–395.
Norris, D., McQueen, J. M., and Cutler, A. �2000�. “Merging information in

speech recognition: Feedback is never necessary,” Behav. Brain Sci. 23,
299–325.

Norris, D., McQueen, J. M., and Cutler, A. �2003�. “Perceptual learning in
speech,” Cognit Psychol. 47, 204–238.

Oden, G. C., and Massaro, D. W. �1978�. “Integration of featural informa-
tion in speech perception,” Psychol. Rev. 85, 172–191.

Samuel, A. G., and Kraljic, T. �2009�. “Perceptual learning for speech,”
Atten. Percept. Psycho. 71, 1207–1218.

Stephens, J. D. W. �2006�. “The role of learning in audiovisual speech per-
ception,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA,
pp. 97–119.

Sumby, W. H., and Pollack, I. �1954�. “Visual contribution to speech intel-
ligibility in noise,” J. Acoust. Soc. Am. 26, 212–215.

Tyler, R. S., Lowder, M. W., Parkinson, A. J., Woodworth, G. G., and Gantz,
B. J. �1995�. “Performance of adult ineraid and nucleus cochlear implant
patients after 3.5 years of use,” Audiology 34, 135–144.

van Atteveldt, N., Formisano, E., Goebel, R., and Blomert, L. �2004�. “In-
tegration of letters and speech sounds in the human brain,” Neuron 43,
271–282.

Walden, B. E., Busacco, D. A., and Montgomery, A. A. �1993�. “Benefit
from visual cues in auditory-visual speech recognition by middle-aged and
elderly persons,” J. Speech Hear. Res. 36, 431–436.
. W. Stephens and L. L. Holt: Learning in audiovisual speech 2149


