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ABSTRACT. Objective: Previous studies have found preliminary 
evidence for associations between common single-nucleotide polymor-
phisms (SNPs) in the cannabinoid receptor gene CNR1 and cannabis use 
and dependence. The present study examined a set of eight independent 
SNPs in or near CNR1 in relation to cannabis use measured longitudi-
nally across emerging adulthood. Method: Using latent growth curve 
modeling of 10 waves of longitudinal data spanning mean ages 18.4–
23.8 years in a sample of non-Hispanic White individuals (n = 334), we 
tested if genotype at each CNR1 SNP was associated with both level 
and growth of cannabis use over time. Peer group drug use, a known 
correlate of individual use, was evaluated as a time-varying predictor 
of cannabis use and as a moderator of the relationship between SNPs 
and individual use. Results: After correction for multiple comparisons, 

one SNP, rs806374, was signifi cantly associated with individual differ-
ences in level—but not growth—of cannabis use over time, such that C 
carriers were more likely to use cannabis more frequently at study onset 
(around age 18). Peer drug use was a predictor of individual cannabis 
use that grew in terms of effect size with time, but did not signifi cantly 
moderate the effect of rs806374 genotype. Conclusions: C carriers at 
rs806374 may be at specifi c risk for increased odds of use during the 
transition out of high school (around age 18). Future studies should 
investigate potential mechanisms at this developmental stage, including 
individual differences in subjective response, innate tolerance, reinforce-
ment mechanisms, or general liability for substance misuse. (J. Stud. 
Alcohol Drugs, 78, 686–695, 2017)
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CANNABIS (MARIJUANA) is the most commonly used 

illicit drug in the United States (Center for Behavioral 

Health Statistics and Quality, 2016), with emerging adults 

(i.e., those between 18 and 25 years old; Arnett, 2000) 

endorsing a higher rate (around 20%) of past-month use 

than any other demographic segment in the United States 

(Center for Behavioral Health Statistics and Quality, 2016). 

A meta-analysis across 28 twin studies (Verweij et al., 

2010) indicated that, for males and females, respectively, 

48% and 40% of the variation in cannabis use initiation is 

explained by heritable factors. Longitudinal twin modeling 

has demonstrated developmental fl uctuations in additive 

genetic effects on cannabis use across adolescence through 

emerging adulthood (Kendler et al., 2008). Heritability is 

close to zero from age 14 to 16, then increases up to nearly 

40% around age 17 to 18, followed by a decline to near 10% 

by age 21. After this, heritability increases to 45% by age 

25 and fi nally plateaus at 60% by age 32. Developmental 

fl uctuations in heritability suggest that genetic association 

studies will profi t from using longitudinal measurement, 

as the effects of certain genes may be specifi c to particular 

developmental periods.

 Initial targets for candidate gene studies of cannabis use 

(Agrawal & Lynskey, 2009) included the CNR1 gene, located 

on chromosome 6q14-q15 (Hoehe et al., 1991), which en-

codes the G-protein coupled cannabis receptor type 1 (CB1). 

The CB1 receptor binds a psychoactive constituent of canna-

bis smoke, �9-tetrahydrocannabinol (THC; Pertwee, 1997). 

The endocannabinoid system has been implicated in an array 

of processes, including movement, memory, appetite, mood, 

and pain (Elphick & Egertová, 2001; Porter & Felder, 2001).

 A few candidate gene studies have shown that common 

single-nucleotide polymorphisms (SNPs) within CNR1 are 

associated with both clinical diagnoses and cannabis-related 

behavioral phenotypes. Specifi cally, rs806368 (Agrawal et 

al., 2009), rs806380 (Agrawal et al., 2009; Hopfer et al., 

2006), and rs1049353 (Hartman et al., 2009) are associated 

with presentation of cannabis dependence symptoms. In 

terms of nondiagnostic phenotypes, rs2023239 was shown 

to interact with cannabis use status to predict lower bilateral 

hippocampal volume (Schacht et al., 2012), to predict neural 

response to cannabis cues in the orbitofrontal cortex, inferior 

frontal gyrus, and anterior cingulate gyrus (Filbey et al., 

2010), and is associated with levels of self-reported craving 

(Haughey et al., 2008).

 Importantly, these studies do not conclusively point to 

a single specifi c site of variation in CNR1 (Agrawal et al., 

2011, 2014), and to our knowledge, only one SNP (in the 

CSMD1 gene) has shown genomewide signifi cance of as-

sociation with cannabis dependence (Sherva et al., 2016). 
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Furthermore, in a large genomewide meta-analysis, no single 

SNP was signifi cantly associated with lifetime cannabis use 

(Stringer et al., 2016). Nonetheless, dependence and use per 

se may be infl uenced by distinct sets of genes, and no study 

has examined if SNPs in CNR1 associate with cannabis use 

across time, taking into account developmental trajectories 

of individual use.

 Variation in cannabis use is also attributable to social fac-

tors, including peer group substance use. Greater perceived 

peer use is positively associated with personal cannabis use 

(Jenkins, 1996) and a shorter time lag in the transition from 

initiation to subsequent use (Hines et al., 2015). Actual use 

from measured friend dyads also shows associations with 

personal use (Maxwell, 2002). Whether operating by peer 

selection or socialization (both of which can also be geneti-

cally infl uenced), peer group behavior is clearly an important 

factor in cannabis use.

 Last, it is plausible that genetic differences and peer 

group environment do not operate in isolation but instead 

interact to explain developmentally specifi c genetic effects 

on cannabis use. Several studies have reported that genetic 

effects on substance use phenotypes are potentiated in risk-

promoting peer contexts (Agrawal et al., 2010; Harden et 

al., 2008; Salvatore et al., 2014), although other studies 

have suggested that peer infl uences are less important for 

individuals at high levels of genetic risk (Johnson et al., 

2010).

 The goals of the current study were (a) to determine if 

SNPs covering variation across CNR1 associate with the 

trajectory of cannabis use across ages 18–24 in a target 

sample of non-Hispanic White individuals, (b) to test for 

time-varying main effects of peer group drug use, and (c) to 

assess Gene × Peer Drug Use interactions across this same 

time span. We expected that, overall, greater peer group drug 

use would be associated with greater individual cannabis 

use, but that the effect of peer group might differ between 

genotypes. To our knowledge, these analyses represent the 

fi rst longitudinal examination of cannabis use, CNR1, and 

peer group drug use.

Method

Participants

 Study participants were from an entering freshman class 

at a large Southwestern university beginning in 2004, as de-

scribed previously (Ashenhurst et al., 2015). Of those invited 

(N = 6,391), about 76% agreed to complete survey data (n 

= 4,832), and a subset (n = 3,046) were invited to complete 

a series of surveys beginning at the end of high school and 

continuing over the following 6 years. Of those invited, about 

74% (n = 2,245) provided informed consent and completed 

the fi rst survey. The majority of these respondents were fe-

male (n = 1,345, 59.9%).

 From the full longitudinal sample, a targeted subsample 

(n = 1,060) was invited to provide salivary DNA. Only a 

subset of the original sample was invited for the genetic 

study because of budgetary constraints. Criteria for invitation 

to the genetic study included permission to re-contact and 

completion of W1 plus at least one other survey. To date, 601 

individuals have provided saliva samples. To minimize any 

confounding effects of population stratifi cation, the target 

sample set used in analyses was the largest ancestral seg-

ment of the available data, comprising non-Hispanic White 

individuals. After quality control procedures (see Genotyping 

Procedures), the fi nal sample size was 334. The longitudinal 

data used for the present analysis are drawn from 10 assess-

ment waves at the time points provided in Table 1. The uni-

versity institutional review board approved all study surveys 

and procedures.

Measures

 Cannabis and peer drug use. One item assessed indi-

vidual cannabis use, as follows: “During the last 3 months, 

how many times did you smoke marijuana?” The available 

responses were 0 (0 times), 1 (1 time), 2 (2 times), 3 (3–5 
times), 4 (6–10 times), 5 (11–20 times), and 6 (>20 times). 

A second question assessed peer group drug use, as follows: 

“During the last 3 months, how many members of your so-

cial group do you think used illegal drugs (e.g., marijuana, 

stimulants, Ecstasy, etc.)?” Available responses were coded 

0 (none), 1 (some), 2 (half), 3 (most), and 4 (all). Both mea-

sures were treated as ordinal categorical variables.

Genotyping procedures

 Saliva was collected in Oragene-Discover (Oragene™, 

DNAgenotek, Ottawa, Ontario, Canada) kits distributed to 

participants through the mail. DNA extraction and purifi ca-

tion were conducted at the Institute for Behavior Genetics 

at the University of Colorado Boulder. Samples were stan-

dardized to 50 ng DNA/µl for chip genotyping. Purifi ed and 

diluted samples were sent to the Neuroscience Genomics 

Core at the University of California, Los Angeles, for SNP 

TABLE 1. Descriptive statistics of cannabis use across time

 Time  Mage, % endorsing
Wave point n in years use (SD)

 1 Summer 2004 2,245 18.4 14.9% (35.6%)
 2 Fall 2004 2,077 18.8 17.0% (37.6%)
 3 Spring 2005 2,026 19.2 19.6% (39.7%)
 4 Fall 2005 1,896 19.8 18.9% (39.2%)
 5 Spring 2006 1,790 20.2 20.7% (40.6%)
 6 Fall 2006 1,675 20.8 18.6% (38.9%)
 7 Spring 2007 1,639 21.2 18.4% (38.8%)
 8 Fall 2007 1,539 21.8 17.0% (37.5%)
 9 Fall 2008 1,429 22.8 13.8% (34.5%)
 10 Fall 2009 1,407 23.8 14.3% (35.0%)
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genotyping assay. Samples were run on an Illumina BeadLab 

platform using an Infi nium PsychArray BeadChip (Illumina, 

Inc., San Diego, CA). Chips were scanned on an Illumina 

iScan confocal laser, with genotypes called in GenomeStu-

dio (Illumina, v 2011.1, genotyping module v1.9.5). Data 

were converted to PLINK (v1.90b3v) format for subsequent 

analyses.

 Of the samples sent for DNA extraction (n = 601), a sub-

set yielded insuffi cient concentrations of DNA for further 

processing (n = 28) or suffered from poor amplifi cation (n 

= 8). Furthermore, three randomly selected samples were 

not assayed in order to run full plates only. Thus, the total 

sample with available genetic information was 93.5% (n = 

562) of the total collection sample.

 Next, we followed quality control procedures recom-

mended for the chip-based genomic data (Turner et al., 

2011), including sex check, identity by descent, and geno-

typing effi ciency analyses (Purcell et al., 2007), resulting 

in the removal of 11 samples. Although the target sample 

self-identifi ed as non-Hispanic White (quality controlled n 

= 338), we controlled for any additional population strati-

fi cation (Turner et al., 2011) using principal components 

extracted within this subsample by EIGENSTRAT (Price et 

al., 2006). This analysis resulted in the elimination of four 

individuals as ancestral outliers. The fi rst two principal com-

ponents were included as covariates in all analyses. After all 

quality control procedures, the fi nal sample set included in 

analysis was n = 334.

 CNR1 single-nucleotide polymorphism selection. Our 

goal was to capture the available variation across the gene 

with coverage both upstream and downstream of the gene. 

To select from available SNPs, we fi rst pruned the full data 

set of SNPs that showed strong pairwise linkage disequilib-

rium (LD) using PLINK (a window of 50 SNPs, a window 

step size of 5 SNPs, and an R2 LD threshold of .5). The 

target region was within the boundaries of the 26kb CNR1 

gene in GRCh37 coordinates plus a window of 10kb both 

upstream and downstream. Allele frequencies at the result-

ing eight SNPs and Hardy–Weinberg statistics are present-

ed in Table 2. Haploview (Barrett et al., 2005) identifi ed 

three SNP pairs with high LD in terms of D′ (Figure 1). 

Nonetheless, given the relatively low LD values in terms 

of R2, the planned analysis was to consider each SNP as 

independent.

 To determine if the eight SNPs selected adequately 

captured CNR1, we used the Tagger program within Hap-

loview (Barrett et al., 2005) to assess European-ancestral 

(CEU+TSI) reference panel data downloaded from HapMap 

(International HapMap Consortium, 2003). Reference data 

in the target region included 34 SNPs with minor allele 

frequencies over 5%. The eight SNPs captured 23/34 (67%) 

available alleles at R2 > .5 and 16/34 (47%) at R2 > .8. 

Pairwise average R2 between the eight target SNPs and the 

34 known SNPs was .675. Last, we examined the degree to 

which our SNPs could serve as proxies for SNPs with prior 

evidence of association (Agrawal et al., 2009; Filbey et al., 

2010; Hartman et al., 2009; Haughey et al., 2008; Hopfer 

et al., 2006; Schacht et al., 2012) using the SNAP web tool 

(Johnson et al., 2008) and data from the 1000 Genomes CEU 

reference panel (Abecasis et al., 2012). Table 3 displays the 

pairwise R2 and D′ values from these reference data for pairs 

with R2 > .30.

 For association analyses, all SNPs were coded as 0 = no 
minor alleles, 1 = minor allele carrier. To account for mul-

tiple comparisons, we applied a studywide Bonferroni cor-

rection such that the signifi cance threshold was p < .00625.

Analyses

 Latent growth analyses of cannabis use. Growth analyses 

of cannabis use over assessment Waves 1–10 were conducted 

in Mplus Version 7.2 (Muthén & Muthén, Los Angeles, 

CA). Repeated measures of cannabis use were modeled as 

a function of three latent growth factors: intercept (I), linear 

slope (S), and quadratic slope (Q) (McArdle & Nesselroade, 

2003). The intercept provides an estimate of level of can-

nabis use at the fi rst wave of assessment, whereas the linear 

and quadratic slopes capture linear growth and acceleration 

or deceleration in use, respectively. Fit statistics for such 

models included Akaike Information Criterion (AIC; Akaike, 

1987) and Bayesian Information Criterion (BIC; Schwarz, 

1978; Sclove, 1987). In separate models for each SNP, these 

latent I, S, and Q growth factors were regressed on demo-

graphic variables (biological sex, principal components) and 

on CNR1 genotypes.

 Infl uence of peers over time. The next step of the planned 

analyses was to examine the main effects of peer drug use 

and SNP × Peer Use interactions for SNPs showing prelimi-

nary indication of signifi cant association with use. Peer drug 

use was entered as a time-varying covariate at every avail-

able wave (Waves 1, 3, 5–10). To account for missing peer 

use data, a secondary variable was coded as 0 = available, 
1 = missing peer use data at each wave. Individual cannabis 

TABLE 2. Target single-nucleotide polymorphisms (SNPs) in CNR1 region

 Minor Major Minor/het/  HW
SNP allele allele majora MAF p value

rs10485171 G A 74/159/108 0.45 .28
rs806365 T C 59/165/117 0.42 1.00
rs806374 C T 41/157/142 0.35 .91
rs806376 C T 77/156/108 0.45 .16
rs6928813 G A 9/87/244 0.15 .68
rs12205430 C T 18/105/218 0.21 .25
rs2180619 G A 55/159/126 0.40 .73
rs10485170 C T 2/60/279 0.09 .75

Notes: MAF = minor allele frequency; HW = Hardy–Weinberg. aObserved 
allele frequencies of SNPs in the CNR1 gene in the sample of non-Hispanic 
Whites. Minor/het/major refers to the number of minor or major allele 
homozygotes versus the number of heterozygotes. No SNPs violated 
Hardy–Weinberg equilibrium.
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FIGURE 1. Linkage disequilibrium plot. Calculated linkage disequilibrium values based on 
observed allele frequencies within a non-Hispanic White sample. Values presented are (A) 
R2 and (B) D′. The observed pattern of allele frequencies indicated suffi cient independence 
between SNPs in terms of R2, although several SNP pairs showed high LD in terms of D′. 
Blank boxes indicate D′ = 100%.
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use was regressed on this time-varying missingness variable 

with regression coeffi cients constrained to be equal across 

waves. The percentage of respondents with missing peer data 

at a given wave ranged from 0.6% to a maximum of 18.6%. 

To model interactions between genotypes and illicit drug 

use, we generated time-varying cross-product interaction 

terms and entered them into the model.

Results

 We compared the characteristics of those included in this 

analysis to those who did not provide DNA or were dropped 

from analysis for quality control issues among non-Hispanic 

White individuals (total pool of non-Hispanic Whites, n = 

1,211; non-analysis sample, n = 877). The proportion of 

females in the analysis sample (64.7%) was signifi cantly 

greater than in the non-analysis sample (56.8%), χ2(1) = 

6.22, p = .013. Endorsement of cannabis use did not signifi -

cantly differ at each wave (ps > .05) except Wave 5, χ2(1) = 

4.36, p = .037. Ashenhurst et al. (2016) presented additional 

results comparing the non-Hispanic White genetic sample 

to non-Hispanic Whites without genetic data on a variety of 

other externalizing phenotypes and found that the groups did 

not differ with regard to alcohol use, property crime, tobacco 

use, risky sex, or sensation seeking and impulsive personal-

ity traits.

Overall growth model

 Our fi rst step was to examine trends in an unconditional 

growth model of cannabis use. The overall growth pattern, 

as shown in Figure 2A, was an inverted U shape, peaking at 

around age 20. Fit parameters were AIC = 4,322.875, BIC = 

4,410.532. There was no effect of sex on growth parameters 

(all ps > .20). Importantly, the standardized correlations 

between I and S or Q were not signifi cant (ps > .25), indicat-

ing independence between initial level of use and growth in 

use. We tested if the model could be simplifi ed to a linear 

rather than quadratic model, but this resulted in a signifi cant 

decrement in model fi t, AIC = 4,357.986, BIC = 4,426.587, 

χ2
diff(5) = 53.61, p < .001.

Growth models infl uenced by CNR1 single-nucleotide 
polymorphisms

 As a fi rst set of tests, CNR1 genotypes at each SNP 

were modeled separately as predictors of latent growth 

factors I, S, and Q, controlling for population stratifi cation 

and biological sex. After correction for multiple compari-

sons, one SNP, rs806374 (Table 4; Figure 2B), had a sig-

nifi cant effect on the latent intercept factor (β = .219, SE = 

.080, p = .0061) but not linear slope (β = -.164, SE = .098, 

p = .094), or quadratic slope (β = .110, SE = .096, p = .25) 

factors. The main effect of this SNP on level and growth of 

cannabis use is presented in Figure 2B. Again, there were 

no effects of biological sex on intercept or growth factors 

(all ps > .25). We queried this SNP in RegulomeDB (Boyle 

et al., 2012); rs806374 does not have any clear regulatory 

signifi cance (not in or near any known region of DNase hy-

persensitivity, transcription factor binding side, or promoter 

region).

 As a post hoc power analysis, we conducted a series of 

Monte Carlo simulations (Muthén & Muthén, 2002). Results 

from the growth model testing the association with rs806374 

were used to generate 100 simulated data sets of n = 334, 

and then the genetic association model was fi t to a simulated 

data set. Ninety-six (96) of 100 replications converged, and 

the SNP association was nominally signifi cant at p < .05 in 

78 replications. Of course, the effect size of the generat-

ing model, which was based on the effect size observed in 

the current study (R2 ~ 4%), is unrealistically large. As our 

results were based on a small sample, the observed genetic 

association with rs806374 should be considered preliminary 

until directly replicated.

TABLE 3. Proxy single-nucleotide polymorphism (SNP) evaluation

SNP in SNP from Key Distance
present panela literatureb references (bp) R2c D′
rs10485170 rs2023239 (Filbey et al., 2010; Haughey
   et al., 2008; Schacht et al., 2012) 22,170 .36 1.0
rs10485171 rs1049353 (Hartman et al., 2009) 10,245 .36 1.0
rs12205430 rs806380 (Agrawal et al., 2009; Hopfer
   et al., 2006) 3,272 .46 1.0
rs6928813 rs2023239 (Filbey et al., 2010; Haughey
   et al., 2008; Schacht et al., 2012) 1,216 1.0 1.0
rs806374 rs806368 (Agrawal et al., 2009) 7,220 .50 .84
rs806376 rs806380 (Agrawal et al., 2009; Hopfer
   et al., 2006) 6,005 .75 .96

Notes: bp = base pairs. aProxy-SNP evaluation of SNPs in the current analysis with reference to bSNPs previ-
ously indicated in the literature. Statistics are calculated from 1000 Genomes reference panel data (Abecasis 
et al., 2012) for individuals with European White ancestry (CEU panel). cLinkage disequilibrium statistics for 
pairwise comparisons are presented in terms of R2 and D′. Most pairs show a weak proxy relationship, with 
strong D′ values but most R2 values falling below .8.
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FIGURE 2. Latent growth models of cannabis use. Observed and estimated values for the series of latent 
growth curve models. Error bars for observed measures are standard error of the mean. (A) Unconditional 
growth model capturing change in cannabis use over time across not accounting for genotypes or peer 
group drug use. (B) Observed and estimated values from a model examining the main effect of genotype 
at rs806374 only. (C) Conditional estimated probabilities for those with either no or most members of their 
social group using illicit drugs, and the sample mean.
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Peer infl uence over time

 There was a signifi cant main effect of peer drug use at 

all waves. MODEL TEST functions of Mplus indicated that 

the model could not be simplifi ed by constraining the main 

effect of peer group drug use to be equal across time, Wald 

χ2(7) = 49.23, p < .001. Those endorsing a greater propor-

tion of friends who used illicit drugs were more likely to 

use cannabis themselves (Figure 2C, β range: .139–.559). 

The main effect of rs806374 genotype on the intercept also 

remained signifi cant (β = .232, SE = .084, p = .005).

 Peer × CNR1 interactions. To evaluate if genotype at 

rs806374 moderates the effect of peer group use, we entered 

a time-varying genotype by peer group cross-product term 

at each wave. There were no signifi cant interactions beyond 

the studywise correction factor (all ps > .00625), although 

interactions at Waves 5 (β = .103, SE = .048, p = .03) and 10 

(β = .206, SE = .105, p = .049) were statistically signifi cant 

without correction.

Discussion

 The goals of this study were to test for effects of CNR1 

SNPs on individual differences in level and growth in can-

nabis use across emerging adulthood, as well as time-varying 

effects of peer group drug use and potential CNR1 × Peer 

Group Drug Use interactions. The percentage of young 

adults using cannabis at least once in the past 3 months 

increased from 17% at mean age 18.4 up to 26% by mean 

age 20.2 and decreased thereafter to 18% at mean age 23.8 

(Figure 2A). This overall pattern is consistent with U.S. 

population data showing 22.3% past-month cannabis use 

among 18- to 25-year-olds (Center for Behavioral Health 

Statistics and Quality, 2016).

Developmentally specifi c genetic effects of CNR1 single-
nucleotide polymorphism rs806374

 Genotype at one SNP within CNR1, rs806374, had a 

signifi cant main effect on level of use (intercept), but not on 

linear or quadratic growth (Figure 2B). Carriers of the minor 

C-allele showed a higher level of use limited to the early 

assessment waves. By mean age 20.8, use patterns by geno-

type were entirely overlapping. These results converge with 

evidence from twin studies on the heritability of cannabis 

use across emerging adulthood, which demonstrate peaks in 

heritability around age 18, relative to middle adolescence or 

the early 20s (Kendler et al., 2008). The overall implication 

is that genetic effects of CNR1 are most prominent around 

the time that individuals in the United States are transition-

ing out of high school, around age 18–19. This fi nding of 

developmental specifi city could result from a number of pos-

sible mechanisms, as multiple personal and social changes 

are occurring as this point in the life span, and cannabis use 

at this age represents relatively early use.

 This fi nding also has relevance for genome-wide asso-

ciation studies (GWAS). The recent GWAS of cannabis use 

by Stringer et al. (2016), for example, used a meta-analytic 

sample with participants ranging in age from 16 to 87 years; 

if the strength of genetic associations differs by age, such 

age-heterogeneity may obscure genetic signals. Consistent 

with this idea, a GWAS of another psychiatric phenotype, 

depression, found differing genetic etiologies between adult- 

and adolescent-onset major depressive disorder (Power et 

al., 2017). In the continuing effort to understand the genetic 

etiology of cannabis use and cannabis use disorders, longi-

tudinal studies that track cannabis use over development will 

be particularly valuable.

 No other SNPs tested were signifi cant predictors of 

level or growth in cannabis use. According to proxy-SNP 

analysis (Johnson et al., 2008) of European-ancestry popu-

lation (CEU) reference data from 1,000 Genomes (Table 2; 

Abecasis et al., 2012), rs806374 can serve as a relatively 

weak proxy-SNP for the nearby SNP rs806368, which 

has previously been associated with cannabis dependence 

symptoms (Agrawal et al., 2009). Of note, two available 

SNPs that could serve as weak proxies for the previously 

identifi ed SNP rs806360 (Agrawal et al., 2009; Hopfer 

et al., 2006) were not signifi cant predictors in the overall 

growth model.

TABLE 4. Single-nucleotide polymorphisms (SNPs) as predictors of growth in cannabis use

SNP I S Q

rs10485171 -.038 [-.187, .112] .026 [-.170, .221] -.059 [-.251, .133]
rs806365 -.032 [-.186, .122] .011 [-.177, .199] .006 [-.181, .193]
rs806374 .219 [.062, .376] -.164 [-.355, .028] .110 [-.077, .298]
rs806376 -.013 [-.165, .139] -.008 [-.208, .193] .038 [-.163, .239]
rs6928813 -.018 [-.174, .137] -.028 [-.221, .164] .047 [-.140, .234]
rs12205430 -.002 [-.160, .155] -.070 [-.264, .124] .088 [-.097, .273]
rs2180619 .047 [-.106, .200] .182 [-.027, .391] -.097 [-.310, .115]
rs10485170 -.014 [-.180, .151] -.025 [-.211, .161] .062 [-.113, .236]

Notes: Standardized betas and 95% confi dence intervals [95% CI] for each SNP as predictors of 
latent growth parameters in models evaluating the main effects of SNPs among non-Hispanic Whites. 
One SNP (bolded) showed signifi cant effects on intercept after Bonferroni correction for multiple 
comparisons (p < .00625).
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Peer illicit drug use

 Greater peer group illicit drug use was strongly associated 

with greater odds of personal cannabis use across the time 

window examined, as was expected. Over time, the effect 

size of peer group behavior generally grew in terms of stan-

dardized betas, and these estimates could not be constrained 

to be equal. As such, it appears that peer group drug use 

becomes a stronger correlate of individual use across emerg-

ing adulthood (unstandardized model presented in Figure 

2C), perhaps as a consequence of ongoing peer selection or 

socialization processes. There were no robust interactions be-

tween genotype and peer group use at any wave, suggesting 

that the effect of peers was not different between C carriers 

versus noncarriers.

Mechanisms and future directions

 There is limited information about any functional con-

sequences of variation at the intronic SNP, rs806374. Given 

the role of CNR1 and the CB1 receptor in numerous sys-

tems (Elphick & Egertová, 2001; Hoehe et al., 1991; Pert-

wee, 1997), there is a broad array of potential explanatory 

mechanisms. Furthermore, it is unclear if the effect should 

depend on experience with cannabis or THC, given that the 

gene encodes a protein that binds the substance (Pertwee, 

1997). In other words, SNPs in CNR1 may be more relevant 

for the transition from initial use to habitual use than for 

use per se. Nonetheless, both the transition from nonuser to 

user and that from user to heavy/problem user are heritable, 

albeit with stronger additive genetic contribution for the lat-

ter transition (Agrawal & Lynskey, 2006). The present study 

did not include questions about lifetime or initiation of use, 

however, so we are unable to examine differences between 

ever and never users.

 The substance abuse literature provides examples of po-

tential mechanistic endophenotypes (Gottesman & Gould, 

2003), as investigated in experimental animals (Belin et al., 

2016) and human behavioral and neuroimaging paradigms 

(Jupp & Dalley, 2014; Müller et al., 2010; Ray et al., 2010). 

These could include individual differences in (a) subjective 

response to cannabis in terms of positive or negative affect, 

(b) reinforcement learning processes, (c) innate or acquired 

tolerance processes, or (d) disinhibitory or impulsive traits. 

It is also possible that CNR1 contributes to a general vulner-

ability to substance use not specifi c to cannabis, since much 

of the genetic vulnerability to substance misuse is shared 

across substances (Agrawal & Lynskey, 2006; Palmer et al., 

2012).

Strengths and limitations

 Our fi ndings must be considered within the unique 

strengths and limitations of this study. First, the longitudi-

nal assessment of cannabis use was a major strength of the 

study, as it allowed us to estimate time-varying effects of 

genetic infl uences in a person-centered framework. Although 

any single genetic association study should be considered 

preliminary until directly replicated, our analytic methods, 

which combine genetic data with methods for modeling in-

traindividual growth in cannabis use, illustrate one approach 

for integrating genetic and developmental methods. In partic-

ular, future work can examine the developmental specifi city 

of associations between cannabis use and polygenic scores 

that use GWAS results (e.g., Sherva et al., 2016; Stringer et 

al., 2016) to aggregate risk across the genome, rather than 

focusing on single genes. Such an approach would also help 

to mitigate the biggest limitation of the current study, which 

is the modest sample size.

 The present target sample was also not representative 

of the broader U.S. population, being composed of non-

Hispanic White individuals who attained admission to a 

large public university. Although the participants’ university 

is economically diverse, the sample is positively selected 

on cognitive abilities and personality factors predictive of 

academic achievement, compared with the nation as a whole. 

Results may not generalize to other populations, such as 

young adults who are not in college or who are seeking 

treatment. Finally, the peer group drug use variable was not 

specifi c to cannabis, and lifetime cannabis use information 

was unavailable, precluding analyses of initiation versus 

maintenance of use.

Conclusions

 This study presented the fi rst examination of CNR1 in the 

context of longitudinal assessments over late adolescence 

through emerging adulthood among non-Hispanic White in-

dividuals. Our models indicated an effect of one SNP in the 

CNR1 gene, rs806374. Minor allele carriers (C carriers) had 

greater odds of using across the transition from high school 

to college, around age 18–19, but not thereafter. Overall, 

peer group drug use was a strong predictor of individual 

cannabis use that strengthened over time.
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