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INTRODUCTION
Depression and sleep are tightly intertwined. Insomnia and 

hypersomnia are disease-defining symptoms for major depressive 
disorder and sleep-wake disturbance is a risk factor for depres-
sion onset, recurrence, and severity.1,2 Objectively measured 
sleep disturbances predict poor treatment outcomes in patients 
with depression; in particular, short sleep duration is a risk factor 
for poor depression treatment outcome.3 Insufficient sleep is 
associated with suicidality, even after controlling for depression 
symptomology, sleepiness, and insomnia.4,5 High suicidality is 
associated with increased discrepancy between weekday and 
weekend sleep duration, a common metric of chronic sleep debt.5

The optimal amount of sleep needed to maintain physi-
ological homeostasis is individualized and influenced by both 
genetic and environmental factors. The physiologically normal 
“sleep fraction” in humans is between 29% and 33% of the 
sleep-wake cycle, or 7 to 7.9 hours under conditions of environ-
mental and temporal isolation.6,7 The heritability of sleep dura-
tion is between 31% and 55%, suggesting a substantial amount 
of sleep need is genetically determined, but environmental 
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factors also contribute.8-11 Modern society, with its ubiquitous 
technology and countless competing interests for time, along 
with the zeitgeist deemphasizing sleep’s importance, creates an 
environment that promotes sleep deprivation.12 Currently, about 
one-third of the working population sleeps ≤ 6 hours per night. 
Over the past century, habitual sleep duration has dropped an 
estimated 1.5 to 2 hours per night.13-15 Meanwhile, human phys-
iological sleep need remains unchanged. This growing discon-
nect between sleep need and sleep actualization has substantial 
adverse consequences for cognitive functioning and metabolic, 
cardiovascular, immunological, and psychological health.3,16-22

This study examines the association between habitual sleep 
duration and depressive symptoms using a genetically informed 
twin design. Twins, if reared together, are identical in age and typi-
cally well matched for shared family background and numerous 
childhood and adolescent exposures. As such, twin comparisons 
can be used to control for third-variable confounders that typi-
cally differ among unrelated individuals. This approach is partic-
ularly helpful when investigating the relationship between sleep 
duration and depression because many subjective and objective 
aspects of these phenotypes are genetically influenced.23,24 Twin 
studies can also be used to estimate gene × environment inter-
action (G×E) effects. In the current paper, we examine sleep 
duration as an “environmental” moderator of the heritability of 
depressive symptoms, while also modeling genetic influences on 
habitual sleep duration. Previous studies suggest age, gender, and 
depression recurrence influence the heritability of major depres-
sive disorder by way of G×E effects.25 Therefore, the goal of the 
current study was to: (1) determine the magnitude of genetic and 
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environmental influences on sleep duration and depressive symp-
toms, and (2) determine if sleep duration moderates genetic influ-
ences on depressive symptoms.

METHODS

Participants
The University of Washington Twin Registry is a community-

based sample of twins constructed using data from the Wash-
ington State Department of Licensing. The minimum age for 
participation is 18 years. As of September 2013, the Registry 
consisted of over 8,000 pairs. Zygosity is determined using previ-
ously validated self-report methods that are correct ≥ 95% of the 
time.26,27 Every twin enrolled in the Registry completes a recruit-
ment survey. In 2006 and 2008, an additional health survey was 
mailed to more than 4,000 enrolled twins that included sleep dura-
tion and depression symptom questions. Since 2009, the recruit-
ment survey has included the same questions. The data collection 
procedures were approved by the University of Washington Insti-
tutional Review Board. All twins were raised together.

Measures

Sleep Duration
Habitual sleep duration was obtained from responses to 

the question, “On average, how long do you sleep per night?” 
reported in hours and minutes. For the purposes of our calcu-
lations we categorized sleep duration into 3 groups. Normal 
sleep duration was considered 7-8.9 h because this range 
encompasses the physiologically normal sleep fraction in 
humans6,7 and the sleep duration considered normal in previous 
studies.28-30 We classified sleep duration of < 7 h per night as 
short sleep and ≥ 9 h per night as long sleep. One exception to 
these definitions involves our calculation of heritability. Heri-
tability estimates are generated from model parameters that 
require a single number. Therefore, we defined normal sleep as 
8 h/night, short sleep as 5 h/night, and long sleep as 10 h/night 
for these specific calculations.

Depressive Symptoms
Depressive symptoms were measured using partici-

pants’ self-report on the modified 3 question Patient Health 

Questionnaire-9 (mPHQ-9), which asks “In the past 4 weeks, 
how often have you been bothered by the following prob-
lems”: Little interest or pleasure in doing things; Feeling 
down, depressed, hopeless; and Feeling tired or having little 
energy. All items were rated on a 4-point Likert scale ranging 
from 0 = Not at all to 3 = Nearly every day. Responses were 
summed to yield depressive symptom scores (range = 0 to 9; 
mean = 1.71; standard deviation (SD) = 1.82; 25th-75th percen-
tile = 0 to 3). As described below in the section labeled 
“Sensitivity Analysis,” we also conducted a complimentary 
analysis that omitted the item referring to “feeling tired or 
having little energy.”

Sociodemographics
Age, sex, and race were self-reported. Race was dichoto-

mized into Caucasian and non-Caucasian (American Indian, 
Alaska Native, Native Hawaiian, Pacific Islander, Asian, Black 
or African American, or other) categories. Education was ascer-
tained by the question, “What is the highest level of school you 
have completed?” A total of 7 responses were possible, ranging 
from “eighth grade or less” to “graduate or professional degree.” 
The midpoint was “some college, but no degree or certificate.”

Statistical Analyses
We began by examining zygosity specific twin pair correla-

tions for sleep duration and depressive symptoms. The within-
trait, cross-twin correlations (e.g., the correlation between 
sleep duration in Twin A and sleep duration in Twin B) can be 
used to evaluate the magnitude of genetic and environmental 
influences on a given phenotype, while the cross-trait, cross-
twin correlations (e.g., the correlation between sleep duration 
in Twin A and depressive symptoms in Twin B) can be used 
to evaluate the extent to which the association between sleep 
duration and depressive symptoms is accounted for by genetic 
versus environmental pathways.

Next we evaluated these questions more formally with 
quantitative genetic models using the software program 
Mplus (Muthén & Muthén, 1998-2012). This approach allows 
modeling of genetic overlap and moderation effects between 
sleep duration and depressive symptoms. First, we fit a bivar-
iate twin model, shown in Figure 1. Total variance in each of 
the observed phenotypes (the boxes labeled “Sleep Duration” 

Figure 1—Structural equation model of sleep duration and depressive symptoms in adult twins. A, additive genetic variance; C, shared environmental variance; 
E, nonshared environmental variance. A, C, and E components standardized (mean = 0, SD = 1). Correlation between A components fixed at 1.0 in monozygotic 
twins and 0.5 in dizygotic twins. Correlation between C components fixed to 1.0 in all twins. Correlation between E components fixed to 0 in all twins.
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and “Depressive Symptoms”) was decomposed into 3 latent 
factors: additive genetic influences (A), shared environmental 
influences (i.e., environmental influences that make siblings 
similar to one another, or C), and non-shared environmental 
influences (i.e., environmental influences that are unique to 
each twin, plus measurement error, or E). The ACE compo-
nents for each phenotype were standardized (mean = 0, 
SD = 1) and the paths from the ACE components to the pheno-
type were estimated. The correlation between additive genetic 
influences (A) in the first and second member of each twin pair 
was fixed to 1.0 in monozygotic (MZ) twins and 0.5 in dizy-
gotic (DZ) twins, consistent with genetic theory. The correla-
tion between common environmental (C) factors was fixed to 
1.0 in all pair types, whereas the correlation between unique 
environmental (E) factors was fixed to 0 in all pair types. 
Finally, depressive symptoms were regressed on the ACE 
components of sleep duration. These cross paths estimate 
the extent to which genetic and environmental influences on 
sleep duration also influence depressive symptoms. Previous 
authors have described the logic and parameterization of twin 
models in great detail.31

We fit an extension of the bivariate twin model that exam-
ined the interaction between sleep duration and the genetic 
influences on depressive symptoms. As illustrated in Figure 2, 
this interaction model allows the genetic and environmental 
cross paths between sleep duration and depressive symp-
toms (pathways labeled: ac + a’c*sleep; cc + c’c*sleep; and 
ec + e’c*sleep), as well as the residual genetic and environ-
mental variation in depressive symptoms (pathways labeled: 
ad + a’d*sleep; cd + c’d*sleep; and ed + e’d*sleep), to vary as a 
function of habitual sleep duration. Note that the cross paths 
between the ACE components of sleep duration and depressive 
symptoms represent genetic and environmental influences on 
depressive symptoms that are shared with (common to) sleep 
duration, whereas the ACE components of depressive symp-
toms represent genetic and environmental influences unique 
to depressive symptoms. Further explanation about using 
variance components for testing gene-environment interac-
tions are explained in detail elsewhere.32

RESULTS
The study sample includes 1,788 individuals from 894 same-sex 

twin pairs (604 monozygotic [MZ], 290 dizygotic [DZ]). Sample 
characteristics are summarized in Table 1. Overall, the sample was 
composed of younger adults (mean = 36.1 years), who were well-
educated (42% with a college degree or higher), predominantly 
Caucasian (88%), and female (69%). The most common twin 
relationship was female-female MZ pairs (46%). The mean sleep 
duration in the sample was in the normal range (mean = 7.17 h). 
Most participants (n = 1,186, 66%) reported “normal” sleep dura-
tion (7-8.9 h), while 24% (n = 434) reported “short” sleep (< 7 h) 
and 9% (n = 166) reported “long” sleep (≥ 9 h).

Sleep duration was negatively correlated with depres-
sive symptoms (r = -0.16, P < 0.001). As shown in Figure 3, 

Table 1—Sample characteristics

Twin Pairs N (%)
MZ male-male 192 (21%)
MZ female-female 412 (46%)
DZ male-male 81 (9%)
DZ female-female 209 (23%)
Total 894

Demographic Characteristics N (%)
Caucasian 791 (88%)
No high school degree 22 (2%)
≥ College degree 374 (42%)

Study Variables Range Mean SD
Age (years) 19-89 36.1 15.3
Sleep duration (hours) 1-12 7.17 1.24
Depressive symptoms 0-9 1.71 1.82

MZ, monozygotic; DZ, dizygotic; SD, standard deviation.

Figure 2—Interaction model of sleep duration and depressive symptoms 
in adult twins. Only one twin per pair is shown. A, additive genetic 
variance; C, shared environmental variance; E, nonshared environmental 
variance. A, C, and E components standardized (mean = 0, SD = 1). 
Correlation between A components fixed at 1.0 in monozygotic twins and 
0.5 in dizygotic twins. Correlation between C components fixed to 1.0 in 
all twins. Correlation between E components fixed to 0 in all twins.

Figure 3—Mean depressive symptoms by sleep duration classification. 
Possible range of depressive symptoms = 0 to 9. Bars represent ± 1 SE. 
Data based on one randomly selected twin per pair. Differences between 
the groups statistically significant at P ≤ 0.05 (see text).
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individuals with normal sleep duration reported significantly 
fewer depressive symptoms, on average, than individuals with 
short (b = 0.36, SE = 0.18, P = 0.05) or long (b = 0.86, SE = 0.13, 
P < 0.0001) habitual sleep duration.

What are the Magnitudes of Genetic and Environmental 
Influences on Sleep Duration and Depressive Symptoms?

The within-trait and cross-trait twin correlations for sleep 
duration and depressive symptoms are summarized in Table 2. 
The MZ correlation for sleep duration (0.36, 95% CI 0.29-
0.43) substantially exceeded the DZ correlation (0.14, 95% 
CI 0.02-0.25), suggesting that familial resemblance in sleep 
duration was primarily due to genetic influences, with minimal 
contribution of the shared environment. As expected, the MZ 
correlation for depressive symptoms (0.31, 95% CI 0.23-0.38) 
exceeded the DZ correlation (0.23, 95% CI 0.11-0.33), consis-
tent with a genetic contribution to variance in depression. (The 
significance of the MZ-DZ differences was formally tested with 

the quantitative genetic models, described below.) Finally, the 
cross-trait, cross-twin correlations were negligible (and not 
significantly different than zero) in either MZ or DZ twins. That 
is, twin A’s sleep duration was unrelated to twin B’s depressive 
symptoms (for comparison, the phenotypic correlation between 
sleep duration and depressive symptoms was -0.11, P < 0.01). 
These results suggest genetic influences on sleep duration do 
not account for the association between sleep duration and 
depressive symptoms.

These initial results were investigated more formally with 
quantitative genetic models. The bivariate model (Model 1, 
Table 3, illustrated in Figure 1) fit the data well (χ2 = 43.87, 
df = 35, P = 0.15, RMSEA = 0.024, CFI = 0.956, see footnote 
A).33 In addition to the full bivariate model, we also fit a reduced 
bivariate model (Model 2, Table 3), in which the shared environ-
mental variance (cs pathway) in sleep duration and the shared 
environmental pathway between sleep duration and depressive 
symptoms (cc pathway) were fixed to zero. This reduced model 

also fit the data well (χ2 = 44.68, 
df = 37, P = 0.18, CFI = 0.962, 
RMSEA = 0.022), and the change 
in model fit was not significant 
(Δχ2 = 0.81, Δdf = 2, P = 0.67). 
Consequently, these parameters 
were fixed to zero in all subse-
quent models.

Unstandardized parameter esti-
mates from Model 2 are summa-
rized in Table 3. There were 

Table 2—Within-trait and cross-trait twin correlations for sleep duration and depressive symptoms

Within-Trait, Cross-Twin Correlations Cross-Trait, Cross-Twin Correlations
Zygosity Sleep Duration Depressive Symptoms Sleep Duration – Depressive Symptomsa

MZ 0.36* 0.31* -0.03 / -0.03
DZ 0.14* 0.23* 0.01 / -0.06

*Significantly different than zero at P < 0.05. aTwo correlations are presented: Twin 1’s sleep duration with 
Twin 2’s depressive symptoms, and Twin 2’s sleep duration with Twin 1’s depressive symptoms.

Table 3—Unstandardized parameter estimates from behavioral genetic models of sleep duration and depressive symptoms

Parameter Model 1 Model 2 Model 3 Model 4
Covariates

Age → Depressive Sx -0.01 (0.003)* -0.01 (0.003)* -0.01 (0.003)* -0.01 (0.003)*
Gender → Depressive Sx 0.34 (0.11)* 0.34 (0.11)* 0.28 (0.10)* 0.32 (0.10)*
Age → Sleep Duration -0.01 (0.002)* -0.01 (0.002)* -0.01* (0.002)* -0.01 (0.002)*
Gender → Sleep Duration 0.16 (0.07)* 0.16 (0.07)* 0.16 (0.07)* 0.16 (0.07)*

Variation in Sleep Duration
Additive Genetic (as) 0.66 (0.08)* 0.70 (0.04)* 0.70 (0.04)* 0.64 (0.05)*
Shared Env. (cs) -0.20 (0.20) [0] [0] [0]
Non-Shared Env. (es) 0.97 (0.03)* 0.97 (0.03)* 0.97 (0.03)* 1.01 (0.03)*

Sleep Duration → Depressive Sx
A → Depressive Sx (ac) 0.12 (0.28) -0.11 (0.09) 0.08 (0.11) 0.19 (0.09)*

Sleep Interaction (a’c) 0.23 (0.08)* 0.50 (0.06)*
C → Depressive Sx (cc) 0.73 (0.27)* [0] [0] [0]
E → Depressive Sx (ec) -0.19 (0.06)* -0.17 (0.06)* -0.10 (0.08) -0.17 (0.07)*

Sleep Interaction (e’c) 0.05 (0.05) -0.11 (0.03)*
Unique Variation in Depressive Sx

Additive Genetic (ad) 0.66 (0.36)* 0.75 (0.30)* 0.33 (0.63) 0.88 (0.27)*
Sleep Interaction (a’d) -0.44 (.28) [0]

Shared Env. (cd) 0.00 (1.40) 0.65 (0.31)* 0.80 (0.24)* 0.18 (1.17)
Sleep Interaction (c’d) 0.36 (0.32) [0]

Non-Shared Env. (ed) 1.54 (0.04)* 1.54 (0.04)* 1.42 (0.06)* 1.45 (0.05)*
Sleep Interaction (e’d) -0.01 (0.03) [0]

Model 1 is the full bivariate model. Model 2 is the reduced bivariate model that fixed shared environmental variance (C) in sleep duration and the shared 
environmental pathway between sleep duration and depressive symptoms to zero. Model 3 is the full interaction model. Model 4 is the reduced interaction 
model that fixed interactions on the unique variation in depressive symptoms to zero. *P < 0.05.
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signifi cant effects of age and gender on both sleep duration 
and depressive symptoms: older adults and males, on average, 
reported shorter sleep durations and fewer depressive symp-
toms, consistent with previous studies.34,35 Controlling for age 
and gender, there were signifi cant additive genetic (as) and non-
shared environmental (es) infl uences on sleep duration: 34% of 
the variance in sleep duration was due to additive genetic differ-
ences [0.702 / (0.702 + 0.972) = 0.34], and the remaining 66% 
was due to non-shared environmental factors. There was also 
a signifi cant non-shared environmental pathway (ec) between 
sleep duration and depressive symptoms: within MZ twin pairs, 
the twin who reported longer sleep duration reported fewer 
depressive symptoms (ec = -0.17, SE = 0.06, P < 0.05). Finally, 
of the residual (unique) variation in depressive symptoms, 17% 
was due to additive genetic factors [0.752 / (0.752 + 0.652 + 
1.542) = 0.17], 13% to shared environmental factors, and the 
rest (70%) to non-shared environmental factors.

Does Sleep Duration Moderate Genetic Influence on Depressive 
Symptoms?

Unstandardized parameter estimates from Model 3 are 
summarized in Table 3. We found evidence for a signifi cant 
interaction between sleep duration and the genetic cross-
path from sleep duration to depressive symptoms (a’c = 0.23, 
SE = 0.08, P < 0.05). There were no signifi cant interactions 
on the unique variance components for depressive symptoms 
(parameters a’d, c’d, and e’d). That is, the genes that were not
shared with sleep duration were also not moderated by sleep 
duration; it was the shared genetic mechanism (genes that 
overlap between sleep duration and depressive symptoms) that 
became more infl uential as individuals diverged from normal 
sleep. Consequently, we fi t a reduced model (Model 4) that 
fi xed the interaction terms on the unique variance components 
to zero. Results from Model 4 are illustrated in Figure 4. Genetic 
infl uences on depressive symptoms were greater among indi-
viduals with either high or low sleep duration. That is, as sleep 
duration diverges from normal (7-8.9 h/night), genetic vulner-
abilities common to both sleep duration and depressive symp-
toms become more infl uential.

To further illustrate these results, we calculated the model-
implied heritability of depressive symptoms for individuals with 
habitual sleep durations of 8 h/night (within our defi ned range 
of normal sleep), 5 h/night (within our defi ned range of short 
sleep), and 10 h/night (within our defi ned range of long sleep). 
Among individuals sleeping 8 h/night, the total heritability of 
depressive symptoms was approximately 27% (95% CI 0% to 
58%). However, among individuals with short or long sleep 
duration we observed increased genetic infl uence on depressive 
symptoms, particularly at sleep duration extremes (5 h/night: 
h2 = 53% [95% CI 31% to 75%]; 10 h/night: h2 = 49% [95% 
CI 26% to 72%]). Therefore sleep durations outside the normal 
range increased the genetic risk for depressive symptoms.

Sensitivity Analysis
Because our depressive symptoms measure, the mPHQ-9, 

included an item that referred to “feeling tired or having little 
energy,” we conducted a sensitivity analysis that omitted 
this item from the mPHQ-9 sum score. Notably, the pattern 
of results was unchanged: there was a signifi cant interaction 

between the genetic cross-path and sleep duration (a’c = 0.13, 
SE = 0.5, P = 0.01), resulting in U-shaped curve, with stronger 
genetic effects at both short and long sleep durations. More-
over, the interaction between sleep duration and genetic infl u-
ences unique to depression remained nonsignifi cant (a’d = 0.01, 
SD = 0.18, P = 0.96).

DISCUSSION
We found that genetic infl uences on depressive symptoms 

were moderated by habitual sleep duration. Both short and long 
sleep extremes were associated with the highest heritability of 
depressive symptoms. As sleep duration moved away from the 
extremes and toward the “normal” range, the effect of the non-
shared environment was more strongly associated with depres-
sive symptoms, while genetic factors became less important. 
These fi ndings show a gene-environment interaction between 
sleep duration and depressive symptoms.

Although our study does not specify the shared genetic 
factors that drive this interaction, recent fi ndings suggest candi-
date genes and pathways. The CLOCK gene encodes a tran-
scription factor that infl uences both the persistence and period 
of circadian rhythms and variants in the human CLOCK gene 
are associated with sleep duration.36-38 A point mutation in 
DEC2, a gene that regulates both CLOCK and another circa-
dian gene ARNTL, is associated with short habitual sleep dura-
tion.39 ARNTL, in turn, encodes a protein that heterodimerizes 
with CLOCK creating a complex that activates circadian rhythm 
associated genes including PER1 and is associated with sleep 
and wake onset times.37 ARNTL, PER2, and NPAS2 form a 
functional unit in the circadian system and polymorphisms in 
these genes are associated with seasonal affective disorder.40 The 
gene ABCC9 encodes an ATP-sensitive potassium channel and a 
recent GWAS study identifi ed a polymorphism in this gene that 
explained 5% of the variance in usual sleep duration.41 Variants 
in ABCC9 have also been found to be associated with depres-
sive symptoms.42 Polymorphisms in 5-hydroxytryptamine 

Figure 4—Proportion of total variance in depressive symptoms due to 
genetic, shared environmental, and non-shared environmental infl uences, 
by sleep duration. Implied by parameters from bivariate interaction model 
(Model 4, Table 3).
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transporter linked polymorphic region (5-HTTLPR) are associ-
ated with clinical response to sleep deprivation in bipolar depres-
sion43 and short sleep with higher depressed mood in young 
adults.44 Taken together these studies suggest that genes related 
to circadian rhythms, coupling of cell metabolism to electrical 
activity, and serotonergic neurotransmission may be central to 
the gene/environment interaction we report in this study.

Sleep deprivation, either total or partial, has long been 
considered a treatment option for depression.45-49 Approxi-
mately 46% to 70% of depressed patients respond to sleep 
deprivation, with improvement observed for all signs and 
symptoms of major depressive disorder.45 However, the ther-
apeutic response is usually temporary, lasting no more than 
several days, with the vast majority eventually relapsing and 
some experiencing worsening of their depression.50-52 Further, 
sleep reduction can provoke manic or hypomanic episodes 
in predisposed patients.53 At present, there is no convincing 
mechanism explaining the therapeutic benefits of sleep depri-
vation, although a number of hypotheses have been proposed 
including effects on: homeostatic sleep drive,54 cerebral 
adenosine concentrations,55 and synaptic monoamines—partic-
ularly serotonin and dopamine.43,44,56-58 In contrast, the long term 
effects of habitual short sleep are well-established and include 
adverse endocrine,59 immune,19,60,61 metabolic,62,63 and func-
tional impairment,64,65 resulting in diabetes,16,66,67 cardiovas-
cular disease,17,21,68-71 obesity,11,72,73 transportation accidents,74-76 
and reduced longevity.77 These factors, along with our current 
findings, raise questions about the value of sleep curtailment 
as a depression treatment. Alternatively, our study suggests 
that normalization of sleep duration may reduce genetic risk 
for depressive symptoms allowing greater influence of envi-
ronmental factors, such as psychotherapy, on mood. The thera-
peutic implications of this finding deserve further research.

The “normal” amount of sleep for any individual is age 
dependent and determined by the amount required to maintain 
physiological homeostasis and daytime alertness. Studies of 
humans in environmental isolation suggest 7 to 9 hours per night 
encompasses normal sleep for the majority of individuals.6,7 
This range also includes the amount of sleep considered normal 
in numerous epidemiological studies assessing the untoward 
effect of short sleep.10,17,21,77 Because about a third of sleep need 
is heritable,11 with substantial variability from person to person, 
the precise amount of sleep needed for optimal health and func-
tioning is best determined by the individual. This would be 
ascertained by the amount of sleep calculated from bedtime to 
natural wake time following a period of sleep saturation.

Both insomnia and insufficient sleep represent short sleep, 
but are physiologically distinct entities. Those with insomnia 
“can’t sleep,” while those with insufficient sleep “won’t sleep.” 
When compared to healthy controls, insomnia patients have 
higher scores on the multiple sleep latency test,78 an objective 
measure of sleep-ability where subjects are given four to five 
opportunities to take a 20-minute nap during the day generating 
a mean sleep latency score in minutes. This, along with the fact 
that insomnia patients may misperceive sleep for wakefulness 
makes insomnia a state of hyperarousal with decreased sleep 
drive.79,80 In contrast, both acute and chronic sleep deprivation 
decreases scores on the multiple sleep latency test.81 Therefore, 
the short sleep of insomnia, a common symptom of depression, 

is physiologically distinct from the short sleep of sleep depriva-
tion. We did not assess insomnia as a covariate in our analysis, 
but these distinctions suggest that future studies should assess if 
insomnia modifies the gene by environment interaction between 
short sleep and depressive symptoms.

Our study has several limitations. Our twins were predomi-
nantly younger adult Caucasian women, and therefore our 
results should be applied to the general population with caution. 
In particular, future research should examine the relation 
between sleep and depressive symptoms in racial/ethnic minor-
ities. It should be noted that our sample was derived from the 
community and not from a clinical population seeking health-
care. Self-reported sleep duration and depressive symptoms 
are commonly used in observational studies but can be prob-
lematic. However, the PHQ-9, from which the mPHQ-9 was 
derived for this study, is accurate as a screening instrument 
for depression,82,83 and self-reported sleep duration approxi-
mates objective measures of sleep length,84,85 although recent 
studies suggest it may be biased by overestimation.86 Future 
studies assessing gene-environment interactions between sleep 
duration and depression would benefit from direct objective 
measures or related endophenotype quantification.

In conclusion, this is the first study to demonstrate a gene 
by environment interaction between habitual sleep duration and 
depressive symptoms. Both short (< 7 h/night) and long (≥ 9 h/
night) sleep increased the heritability of depressive symptoms, 
suggesting genetic risk for depressive symptoms increases as 
twins move away from normal sleep duration (7-8.9 h/night). 
This works suggests that environmentally mediated treatments 
for depression may have the greatest opportunity for success 
when administered in a patient sleeping normal amounts of 
time. Future research should consider the effects of habitual 
sleep duration on treatment success.

FOOTNOTE
A. The χ2 statistic tests the discrepancy between the observed 

data values and the model-expected values, with values not 
significantly different from zero (P > 0.05) indicating that the 
model fits the data well. RMSEA (root mean square error of 
approximation) and CFI (comparative fit index) are alternate 
indices of model fit, with RMSEA values < 0.06 and CFI values 
> 0.95, indicating good model fit.
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