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Abstract Gene 9 environment (G 3 E) interaction

studies test the hypothesis that the strength of genetic

influence varies across environmental contexts. Existing

latent variable methods for estimating G 3 E interactions

in twin and family data specify parametric (typically linear)

functions for the interaction effect. An improper functional

form may obscure the underlying shape of the interaction

effect and may lead to failures to detect a significant

interaction. In this article, we introduce a novel approach to

the behavior genetic toolkit, local structural equation

modeling (LOSEM). LOSEM is a highly flexible non-

parametric approach for estimating latent interaction

effects across the range of a measured moderator. This

approach opens up the ability to detect and visualize new

forms of G 3 E interaction. We illustrate the approach by

using LOSEM to estimate gene 9 socioeconomic status

interactions for six cognitive phenotypes. Rather than

continuously and monotonically varying effects as has

been assumed in conventional parametric approaches,

LOSEM indicated substantial nonlinear shifts in genetic

variance for several phenotypes. The operating character-

istics of LOSEM were interrogated through simulation

studies where the functional form of the interaction effect

was known. LOSEM provides a conservative estimate of

G 9 E interaction with sufficient power to detect statisti-

cally significant G 9 E signal with moderate sample size.

We offer recommendations for the application of LOSEM

and provide scripts for implementing these biometric

models in Mplus and in OpenMx under R.

Keywords LOSEM � LOESS � Kernel regression �
Gene 3 environment interaction � Cognitive ability

Introduction

Gene 9 environment (G 9 E) interaction studies test the

hypothesis that the strength of genetic influence varies across

environmental contexts, or equivalently, that environmental

effects vary as a function of genotype (Plomin et al. 1977).

Twin and family behavior genetic studies test for G 9 E by

estimating latent biometric variance components, typically

additive genetic effects (A), shared environmental effects (C),

and nonshared environmental effects (E), and examining

whether the magnitudes of these variance components differ

at different levels of a measured environmental variable.1

When themeasured environment is composed of a small set of

discrete categories, testing for G 9 E is straightforward;

however, in many cases the measured environment is a con-

tinuous variable. Existingmethods for estimatingG 3 Ewith

continuously measured environmental variables require a

priori specification of the interaction’s functional form
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introduce, and we return to this limitation in the discussion.
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(Purcell 2002). If the wrong function has been specified,

inferences may be biased and, at times, G 9 E effects present

in the data may not be detected.

In the current paper, we present a nonparametric method

for estimating the shape of G 9 E interaction in twin and

family data and provide scripts for implementing this

technique in Mplus (Muthén and Muthén 1998–2010) and

OpenMx (Boker et al. 2011). This method can help

researchers better understand patterns in their data and can

improve model selection and testing in the analysis of

G 9 E interaction. In the following sections, we first pre-

sent extant approaches to estimating G 3 E interaction in

biometric twin and family models when the environmental

moderator is measured at the family-level (i.e., is shared by

members of the twin pair). We then present the novel

approach, illustrate it with a real data analysis application

followed by several simulation studies, and finally discuss

its strengths and limitations.

Existing models for G 3 E

Categorical G 3 E model

When the environmental moderator is categorical (e.g.

impoverished vs. not impoverished), estimating G 9 E is a

straightforward application of multiple-group structural

equation modeling (Neale and Maes 2005, Chapter 9). In the

case of a dichotomous moderator and an ACE model fit to

data from monozygotic twins reared together (MZ) and

dizygotic twins reared together (DZ), instead of the usual

two-group model (one group for MZ twins and a second for

DZ twins), a four-group model is fit (with additional groups

for ‘‘low risk’’ and ‘‘high risk’’ environments each forMZand

DZ twins). Such amodel is represented in Fig. 1a. Each of the

A, C, and E component paths has two labels (e.g. al and ah) to

indicate that the parameter is estimated separately for the low

(‘‘l’’) and high (‘‘h’’) risk levels of the moderator. To test for

G 9 E, parameters for the low and high risk models are

constrained to be equal and compared by a v2 test to one in

which they are allowed to differ between the environmental

exposure groups. If the ‘‘a’’ (or c or e) parameters cannot be

constrained to be equal across environmental exposure

groups without significant loss of model fit, then the G 9 E

hypothesis is supported, as the genetic or environmental

variance estimate (e.g., a2) significantly differs across groups.

In cases in which the environmental moderator has been

measured continuously, a researcher could categorize the

environmental moderator variable by collapsing ranges of

the environment into discrete bins. If there is reason to be

specifically interested in discrete levels of environmental

exposure, or if a researcher has a strong a priori reason to

expect a discontinuous G 9 E effect at a known cut point,

this categorical approach may be optimal. Without strong

guidance from theory or past research, however, researchers

must make arbitrary or intuitive decisions regarding the

number of bins to use and the ranges of the environment to

cluster (i.e., the location of the cut points). Important aspects

of the interaction may be obscured if large bins are selected,

or results may be excessively noisy if small bins are selected.

Such decisions offer experimenter degrees of freedom

(Simmons et al. 2011) and may possibly lead to false dis-

covery (Benjamin and Hochberg 1995).

Parametric G 3 E model

Purcell (2002) introduced an extension of the classical twin

model for the analysis of G 9 E interaction with continu-

ously measured environmental moderators. As depicted in

Fig. 1b, this parametric G 9 E model controls for the main

effect of the observed moderator on the phenotype.

Moreover, it specifies that the regression paths from latent

biometric factors (A, C, and E) to the phenotype are

parametric functions of the observed moderator. When the

regression paths are specified to be linear functions of the

moderator (as is depicted in Fig. 1b), ACE variance com-

ponent estimates are quadratic functions of the moderator

(as the regression path must be squared in order to produce

a variance expectation). When the biometric interaction

model is expanded to include both linear and quadratic

interactions on the paths (such that the ACE variance

estimates are quartic with respect to the moderator), one

can test whether genetic variance is an inverted U-shaped

curve, with the highest genetic variance in the ‘‘average’’

environment (e.g., Burt et al. 2006). Others (e.g. Turkhei-

mer and Horn 2014) have endorsed exponential functions.2

Still others have considered how to test for G 9 E when

the moderator is not necessarily shared by members of a

twin pair, but may differ between twins, thus allowing for

the simultaneous consideration of gene-environment cor-

relation (e.g., Johnson 2007; Medland et al. 2009; Mole-

naar and Dolan 2014; Price and Jaffee 2008; Rathouz et al.

2008; Schwabe and van den Berg 2014; van der Sluis et al.

2012; van Hulle et al. 2013). We do not recapitulate these

theoretical and technical issues here, but simply refer the

reader to this previous literature, and note here that these

multivariate extensions also model the paths from the

2 ‘‘We prefer an exponential function rather than a quadratic one as a

model of the variances. Exponential models share with quadratic

models the desirable property of being positive, but have the

additional advantage of being monotonic uniformly increasing or

decreasing with respect to the moderator. Quadratic models of

variances are by definition parabolic with respect to the moderator,

and once again, biometric interaction models are difficult enough to

explain without having to account for why a biometric variance first

increases, and then decreases, as a function of SES’’ (Turkheimer and

Horn 2014, p. 44).
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biometric components to the phenotypes as parametric

functions of the moderator.

LOSEM: LOESS with latent variables

As noted above, categorical G 3 E is of limited utility when

an environmental moderator of interest is truly continuous

(e.g., socioeconomic status), because this approach lumps

together potentially distinct environmental contexts, risks

cutting the data at suboptimal points, or loses information

concerning the environmental variable. Parametric G 3 E

solves these problems by retaining the full continuous range

of the environmental variable. Yet parametric G 3 E mod-

els can still be limiting because the functional form (or

competing functional forms) of the interaction must be

chosen a priori. Researchers may not have strong theoretical

predictions regarding how potential moderating effects play

out in particular parts of the environmental range, or they

may suspect that the polynomial function they are estimating

is not capturing theoretically relevant effects. Creating a

flexible, yet powerful and informative, tool to investigate

varying levels of genetic influence on phenotypes is a critical

goal for behavior genetic methodology (e.g., Kirkpatrick

et al. 2015; Logan et al. 2012; Zheng and Rathouz 2015).

Local structural equationmodeling (LOSEM) is amethod

developed by Hildebrandt et al. (2009, see also Hülür et al.

2011; Schroeders et al. 2015) to generate nonparametric

estimates of differences in structural equation model

parameters across different levels of a measured putative

moderator. LOSEM is the latent variable analogue of LOESS

(LOcal regrESSion), or locally weighted regression

(Cleveland and Devlin 1988), a nonparametric regression

method that fits a ‘‘smoothed’’ line (a loess curve) through

the cloud of data points. Both methods draw on kernel

regression techniques, in which statistical models are locally

estimated for kernels of the data (Li andRacine 2007). In this

context, the term kernel refers to aweighting function used to

select datapoints to be used in local analyses. A variety of

nonparametric regression techniques are common in many

areas of scientific investigation and have proven highly

valuable to for gaining insight into the nuances of empirical

phenomena (e.g., Eubank 1999; Fox 2000; Green and Sil-

verman 1994; Hart 1997; Horowitz 2009; Takezawa 2006).

Key strengths of nonparametric approaches include consis-

tent estimation (i.e., no matter the underlying functional

form, nonparametric estimation will converge on the true

form given large enough sample size, which is not the case

for mis-specified parametric estimation) and primary reli-

ance on data visualization (i.e., flexible trend lines), rather

than dichotomous significance levels or static estimates, to

better understand empirical relations. Such approaches have

been widely used in standard regression contexts, but have

only recently been adapted for structural equation modeling.

In the following sections, we explain how LOSEM can

be applied to produce a nonparametric ‘‘smoothed’’ esti-

mate of how genetic and environmental variances differ

across the observed range of a measured family-level

environment. Overall, LOSEM involves running a large

number of models, one for each ‘‘target’’ value of the

moderator, and the estimates from all models are combined

into a nonparametric representation of how parameters

Fig. 1 Path diagrams representing each type of G 9 E model. In all

models, latent additive genetic (A), shared environmental (C), and

nonshared environmental (E) factors are estimated for a phenotype for

twin1 (Y1) and a phenotype for twin2 (Y2). The A factors correlate at

1.0 for monozygotic twins and at .5 for dizygotic twins. The C factors

correlate at 1.0, and the E factors are uncorrelated. A Categorical

G 9 E in which separate parameters are estimated for low risk (al, cl,

el, and ll) and high risk (ah, ch, eh, and lh) environments. B Parametric

G 9 E model in which the focal pathways are specified to be a linear

combination of parameters representing main effects (a, c, e) and

interaction terms (a0, c0, and e0) of the ACE components with the

moderator (M). The main effect of M is represented as a ‘‘moderated

mean’’ (b1). The intercept of the phenotype is also estimated (b0).

C Nonparametric LOSEM G 9 E model in which local parameters

for each level of the moderator are estimated (âM, ĉM, êM, blM), noting

the circumflex refers to the fact that these parameters are based on

weighted data rather than data precisely at the level of M. The

subscript [-m…0… ? m] refers to the fact that the parameters are

actually vectors that include weighted estimates from a lower bound

of M to an upper bound of M
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differ across the range of the moderator. The use of the

LOSEM approach has the potential to illuminate patterns

of G 3 E that may otherwise be obscured, and may help

guide researchers toward selecting the most appropriate

parametric G 3 E models.

Step 1: specify a general model

First, a general biometric structural equation model is

specified exactly as would be done in a non-G 3 E con-

text. Note that although the hypothesis being examined

predicts that some of the parameters of this model differ as

a function of a moderator variable, this moderator is not

included in the general structural equation model. In the

simplest case, in which one is interested in whether the

paths from the biometric components to a phenotype differ

as a function of the moderator, the specified model would

simply be a classical univariate twin ACE model. (Of

course, alternate univariate forms are possible, such as a

dominant genetic model, or a model without a shared

environmental estimate.) Because the nonparametric

approach does not require any moderation effects to be

specified explicitly in the general model, it is also easily

applied to more complex multivariate models (e.g., Cho-

lesky decomposition, correlated factors model, simplex,

etc.; Neale and Maes 2005) or to alternative parameteri-

zations (e.g., Molenaar and Dolan 2014; Schwabe and van

den Berg 2014). The primary parameters of interest are the

pathways from the latent genetic and environmental factors

to the phenotype, which, when squared, represent the

variance accounted for by the ACE components.

Step 2: select a range of target values

of the moderator

Second, a moderator and range of target values of the

moderator are selected. For instance, one might be inter-

ested in estimating latent genetic and environmental

influences on a phenotype across the socioeconomic status

(SES) range from 2 SD below the mean SES to 2 SD above

the mean SES. (Care should be taken to avoid extremely

high and low value of the moderator, e.g., ±3 SD, as the

effective sample size may become small and the estimates

imprecise.) If SES is on a z-scale, the target values of the

moderator would be a vector from -2 to ?2. To gain

sufficient clarity of the trends, the vector could include

increments of .1 or even .01. Importantly, this decision is

not the same as the decision regarding how many bins to

use in a categorical G 3 E model. The LOSEM approach

uses the entire dataset for every model, whereas binning

separates data into discrete subsets. By using smaller

intervals for the target value of the moderator in the

LOSEM approach, one simply reduces the distance

between estimates (i.e. the resolution of the trend), but the

estimates do not change depending on the interval.

Choosing smaller interval sizes also does not reduce the

effective sample size, because the weighting function does

not depend on the interval size (see below for further dis-

cussion of the weight function). The only tradeoff for

choosing very small intervals is computation time.

Step 3: specify a weight function

Third, a weight function is specified, so that observations

(i.e., rows of data in themodel) areweighted by their distance

from a target value of the moderator. For instance, individ-

uals for whom the moderator = 1 will be weighted most

highly when the target value is 1, but weighted much less

when the target value is -1. In this way, every row in the

dataset is informative at all levels of the target, but obser-

vations that are closest to the location of the target value of

the moderator are privileged (weighted more highly) com-

pared to distant observations.

To specify a weight function for LOSEM, we follow

Hildebrandt et al. (2009) and Gasser et al. (2004) in rec-

ommending that weights be calculated based a kernel

function in which the bandwidth (bw) depends on the total

sample size (N pairs of twins) and the variability of the

moderator (SDM):

bw ¼ 2 � N �1=5
� �

� SDM

This bandwidth selection is designed to minimize and

balance the amount of bias (i.e., oversmoothing) and

variability (i.e., undersmoothing) in the produced estimates

(Hart 1997, p. 12; Li and Racine 2007). As the bandwidth

is progressively expanded, the weighting function approx-

imates a uniform distribution across the moderator, and the

‘‘local’’ results actually weight all of the data equally. In

this case, the estimates will not capture any moderation

trends. As the bandwidth is progressively shrunk, the

weighting function privileges only data at or near a specific

level of the moderator. We return to alternative specifica-

tions of the weighting function in the discussion.

Thedistance (zi) between thevalue ofM for each individual

i and the target value ofM is then scaled according to bw:

zi ¼ Mi � targetMð Þ=bw

The kernel weights (K)3 for each individual i, for each

target value of M, are then calculated based on this

3 Other kernel forms are in use beside the Gaussian specification

(e.g., bi-square, triangular, uniform, etc.). However, the choice of the

type of kernel is largely unimportant for statistical inference (Eubank

1999 p. 177; Hart 1997, p. 11). The bandwidth is the primary

determinant of smoothing.
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distance, and re-scaled as final weights (W) that vary

between 0 and 1:

K ¼ 1=
p
2pð Þ � exp �z2i =2

� �

W ¼ K=:399

Figure 2 shows example weighting distributions. The

distribution of weights varies as a function of sample size

and the standard deviation of the moderator. Larger sample

sizes and smaller standard deviations of the moderator both

result in weighting distributions more tightly focused

around the target moderator value. Figure 2a illustrates

weighting distributions based on data used in the current

study (N = 650, moderator SD = 1).4 Figure 2b shares the

moderator SD of Fig. 2b, but is based on a ten times larger

sample (N = 6500) to demonstrate how the distribution of

weights shrinks with larger samples. The bw parameter is

the primary determinant of the width of the weighting

distribution. Researchers may easily manipulate this

parameter to produce different levels of smoothing.

Step 4: Run the model for each target value

of the moderator and compile estimates

Finally, the biometric model of interest is estimated once at

each target value of the moderator, each time weighting the

observations by their distance from the current target.5

Thus, if one were interested in characterizing genetic and

environmental influences across -2 SD SES to ?2 SD SES

in increments of .01, a total of 401 ACE models would be

estimated. Each model would be based on the full dataset,

but would give different weight to the data based on the

specified target level of the moderator. To examine the

obtained nonparametric G 3 E curve, the user may then

plot parameters of interest (e.g., the squared additive

genetic path from the A factor to phenotype) as a function

of the value of the target moderator. This approach renders

the nonparametric function of the genetic variance moving

smoothly across values of the environmental moderator.

The LOSEM approach to G 9 E is shown as a path

diagram in Fig. 1c. Each parameter is estimated at each of

a range of target values of the continuous moderator (in

Fig. 1c we specify this range in terms of ‘‘m’’ units above

and below a mean of 0), and this information is aggregated

to yield a nonparametric function of the parameter esti-

mates across the chosen range of the moderator. To sum-

marize, LOSEM involves running a large number of

models, one for each ‘‘target’’ value of the moderator, and

the estimates from all models are combined into a non-

parametric representation of how parameters differ across

the range of the moderator.

Work flow and implementation in Mplus and R

The online supplement includes example scripts to imple-

ment LOSEM. For analysts using Mplus (Muthén and

Muthén 1998–2010), automating the multiple models that

need to be run can be accomplished using the

‘‘MplusAutomation’’ package in R (Hallquist 2011; R

Development Core Team 2013). This package includes

commands to (1) create multiple modified input files based

on a template, (2) run all of the input models, and (3)

extract and combine model parameters from the output files

(see Online Appendix A–C for sample scripts). R can then

be used to extract model parameters and bind these into a

dataset across target levels of the moderator with associ-

ated model parameters and standard errors. This dataset can

then easily be used to plot nonparametric G 3 E interac-

tion trends. Using OpenMx (Boker et al. 2011), the func-

tionality of R can be used to accomplish similar tasks

directly (see Online Appendix D for sample scripts). These

packages make it extremely easy to run, extract, and

aggregate all of the necessary models and parameter esti-

mates. The whole process can take as little as 15 min.

In the sections that follow, we demonstrate the power of

this approach by re-analyzing G 9 SES findings and show

a potentially novel pattern of result that would have been

obscured had LOSEM not been employed. We test the

operating characteristics of LOSEM by simulating datasets

where the functional form of the G 9 E effect is known

and compare LOSEM results with results from standard

parametric models. Finally, we make several methodolog-

ical recommendations concerning the judicious application

of LOSEM.

Study 1: childhood SES and genetic effects
on cognitive ability in ECLS-B

We have previously used LOSEM in a study of how birth

cohorts differ in genetic influences on fertility behavior

(Briley et al. 2015) and in a study of how the relation

between pubertal timing and depression varies as a func-

tion of SES (Mendle et al. 2015). In both of these cases, we

expected nonlinear G 3 E trends, but it was unclear what

the exact functional form was. LOSEM allowed us to

explore the data and make informed analytic choices. Here

we present another example of LOSEM for the analysis of

G 3 E interaction using data from the early childhood

longitudinal study—birth cohort (ECLS-B; Snow et al.

2009). Previous publications have reported results of

4 Due to ECLS-B data regulations, all sample sizes are rounded to the

nearest 50.
5 Importantly, note that standard software applications of sampling

weights automatically rescale sampling weights such that the sum of

the weights equals the number of observations (Asparouhov 2005).
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parametric G 9 SES interaction analyses in this dataset.

Tucker-Drob et al. (2011) reported that longitudinal

increases in mental ability between 10 months and 2 years

were more heritable among children being raised in higher

SES families. Rhemtulla and Tucker-Drob (2012; also see

Tucker-Drob and Harden 2012) reported that age 4 math,

but not age 4 reading, was more heritable among children

being raised in higher SES families.

These results are consistent with a bioecological model,

in which resource-rich environments allow for personal

interests, preferences, desires, and temperaments to play a

large role in development (e.g., Bronfenbrenner and Ceci

1994; Tucker-Drob et al. 2013). However, alternative

theoretical models have been proposed, in which there is a

nonlinear relation between environmental circumstances

and the genetic variance of cognition (e.g., Scarr 1992;

Turkheimer and Gottesman 1991). Under a model of the

‘‘average expectable environment’’ (Scarr 1992, p. 5),

genetic variance is predicted to increase as the environment

transitions from poor to average, but then plateau follow-

ing. According to this perspective, there is a dramatic

difference between growing up in poverty and growing up

in the middle class, but a less appreciable difference

between growing up middle class and wealthy.

By applying LOSEM to model the shape of the

G 3 SES interactions, we seek to determine whether SES-

related increases in genetic variance occur throughout the

range of the SES distribution or are confined to a specific

range of the SES distribution. We apply LOSEM to all six

cognitive phenotypes available in ECLS-B: 10 months

Bayley mental development, age 2 years Bayley mental

development, age 4 years math and reading readiness, and

kindergarten math and reading achievement. For method-

ological details on the ECLS-B sample and measurement

of these phenotypes, including sample statistics, please see

Rhemtulla and Tucker-Drob (2012), Tucker-Drob and

Harden (2012), Tucker-Drob (2012), and Tucker-Drob

et al. (2011). All variables were standardized (mean = 0,

SD = 1) prior to analysis.

Results

Figure 3 compares LOSEM results with traditional para-

metric results (Purcell 2002). The first two columns present

variance in the phenotype accounted for by ACE factors.

Dotted lines represent ±1 standard error of the estimate.

The last two columns present the main effect of the mod-

erator. For the LOSEM approach, the graph plots the

estimated mean of the phenotype (i.e., the estimated twin

mean of cognitive ability at SES = -2 to ?2). For the

parametric approach, the graph plots the regression

parameter for the main effect of SES. Table S1 and Sup-

plementary Files S1-2 present parameter estimates and

model fit statistics for models fit for the current study and a

more complete analytic description. In the context of the

parametric model, we found significant genetic interaction

terms for age 2 Bayley (a0 = .193, p\ .001) and age 4

math (a0 = .164, p\ .001). Significant interaction terms

for the shared environment (c0 = .106, p\ .01) and the

nonshared environment (e0 = .075, p\ .001) were found

for age 4 reading. No other interaction terms were signif-

icant for the standard application of the parametric model.

Higher levels of SES were associated with higher levels of

ability; these regression coefficients ranged from .030 (n.s.)

to .476 (p\ .001, see Table S1).

Across most models, there was generally good con-

silience between the LOSEM results and the parametric

specification. The approaches largely agree on the direc-

tional trend of the variance components. For age 1 and age

Fig. 2 Example distributions of weighting variable (y axis) at three

target levels of the moderator (x axis). Data closer to the target level

of the moderator carries more weight in the analysis. The distribution

around the target is smaller with larger sample size and smaller

standard deviation of the moderator. a Distribution for the current

analysis based on data from ECLS-B (N = 650, SD = 1). b Distri-

bution for hypothetical analysis based on data from ECLS-B with ten

times the number of participants
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Fig. 3 Comparison of LOSEM and parametric gene 9 socioeco-

nomic status results for cognitive ability measures from ECLS-B.

a Age 10 months Bayley. b Age 2 years Bayley. c Age 4 years math

readiness. d Age 4 years reading readiness. e Kindergarten math

achievement. f Kindergarten reading achievement
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2 Bayley, shared environmental influences decrease, non-

shared environmental influences decrease slightly, and

genetic influences increase with increasing SES across both

analytic approaches. The general directional trends are also

very similar for age 4 math and reading. The results are less

consistent for kindergarten math and reading. The LOSEM

results imply fluctuating levels of genetic and environ-

mental influences, but the parametric results imply very

little change in parameters across different SES levels.

Despite the general agreement between approaches in

broad trends, a few substantial differences are evident.

Most notably, the linear parametric interaction model for

kindergarten reading ability (Fig. 3f) is clearly mis-speci-

fied. The LOSEM results indicate relatively low genetic

variance at low SES, a spike in genetic variance near

average levels of SES, and a steep decline in genetic

variance at high levels of SES. The linear specification of

the parametric model indicates that there is essentially no

difference in genetic variance across SES, obscuring rather

large differences apparent in the LOSEM results. Figure 4

presents a specification of the parametric model that

includes a quadratic interaction term, which is significant

for genetic influences (see Table S1).

As discussed earlier, alternate theories of child devel-

opment make competing predictions regarding where in the

research range of interest of the moderator most of the

increases or decreases in genetic variance occur. In

particular, the ‘‘average expectable environment’’ model

predicts the largest difference to be between poor and

good-enough environments, not between good and excel-

lent environments. The LOSEM approach easily captures

this important information. On the other hand, the para-

metric model, due to its specification, tends to predict more

extreme increases for more extreme values of the moder-

ator. At least for the six phenotypes under investigation in

the current study, this does not seem well-warranted.

Table 1 compares differences in the magnitude of

genetic variance across meaningful levels of the moderator

for each analytic approach. In particular, we were inter-

ested in whether interaction effects were concentrated at

the low-range (SES from -2 SD to -1 SD, D a2 low), mid-

range (SES from -.5 SD to ?.5 SD, D a2 mid) or high-

range (SES from ?1 SD to ?2 SD, D a2 high).6 Both

approaches indicate that there is very little increase in

genetic variance across the low-range of SES. Focusing on

the LOSEM approach, genetic variance increases to a

greater extent in the mid-range than in the high-range for

all phenotypes except age 1 Bayley and age 4 reading (for

which there was essentially no interaction). Turning toward

the parametric results, this trend is not evident, as the

Fig. 4 LOSEM, linear parametric, and nonlinear parametric model for Kindergarten reading achievement

6 Of course, such an approach is inadequate to capture many of the

nonlinearities found in the data.
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model requires that the increase in genetic variance is

always higher for the high-range of SES.

Study 2: simulation study with simple functional

form

LOSEM for G 3 E interaction is a novel technique, and as

such, it is unclear whether the results presented in Study 1

may be due to systematic biases inherent in the statistical

application. To evaluate this possibility and test various

statistical properties of LOSEM, we applied LOSEM to

datasets generated with a known parametric functional

form. Specifically, we evaluated whether LOSEM consis-

tently under- or over-estimated G 3 E interaction com-

pared to parametric approaches, and evaluated whether

inferential tests for LOSEM based on a permutation

approach perform similarly to parametric inferential tests.

We generated 100 datasets of 1000 total twin pairs (1/3 MZ

and 2/3 DZ), using a parametric specification with genetic

effects increasing across the moderator, shared environ-

mental effects decreasing, and nonshared environmental

effects remaining stationary. The simulated phenotype and

moderator were standardized (mean = 0, SD = 1). We

varied the magnitude of the interaction effect size from 0 to

.25 in increments of .05. At the average level of the

moderator, genetic and shared environmental effects were

specified to explain 40 % of the variation in the phenotype,

and nonshared environmental effects were specified to

explain 20 % of the variation in the phenotype at all levels

of the moderator. The main effect of the moderator was

specified to be .3.

Simulation results

Figure 5 presents the average model parameters derived

from LOSEM and the standard parametric approach across

all 100 simulated datasets for the six effect sizes. When

genetic and environmental effects do not vary across the

moderator in the generating model, both LOSEM and the

parametric approach consistently find flat levels of genetic

and environmental effects. This result implies that LOSEM

is not overly sensitive to minor fluctuations in the data and

does not simply find G 3 E interaction everywhere. As the

magnitude of the interaction effect in the generating model

increases, both LOSEM and the parametric approach imply

increasingly greater shifts in genetic and shared environ-

mental effects across the moderator. However, LOSEM

slightly underestimates this increase relative to the para-

metric approach. In general, LOSEM indicates a flatter

slope of G 3 E interaction, which pulls the estimates at

both high and low values of the moderator toward the

mean. Together, these results imply that LOSEM is able to

detect changing magnitudes of G 3 E interaction similar

to parametric approaches, but LOSEM is slightly more

conservative when the generating functional form is truly

parametric. Standard error bias of the LOSEM point esti-

mates was trivial. Across all variance components, average

standard error bias ranged from -2.3 to 2.0 %, and average

absolute bias ranged from 2.6 to 8.2 %. These results imply

that the observed standard errors closely match the popu-

lation standard errors, meaning LOSEM standard errors

accurately reflect model precision.

Inferential tests

To construct an inferential statistical test for LOSEM, we

applied a permutation technique (Good 2005). We were

interested in creating an omnibus test of whether the

variability of genetic or environmental effects across the

range of the moderator was greater than would be expected

by chance. Therefore, our primary test statistic was the

variance of genetic and environmental effects across the

moderator. To create a sampling distribution for this test

statistic under the null hypothesis of no G 3 E interaction,

we created 99 permuted datasets for each simulated dataset

in which observations were randomly assigned a value for

Table 1 Comparison of differences in the magnitude of genetic variance across levels of SES between LOSEM and parametric model

Phenotype LOSEM Parametric

D a2 D a2 Low D a2 Mid D a2 High D a2 D a2 Low D a2 Mid D a2 High

Age 10 months Bayley .162 -.025 -.032 .246 .027 -.005 .007 .019

Age 2 years Bayley .322 -.044 .372 -.133 .612 .041 .153 .265

Age 4 years math .412 -.003 .189 .186 .576 .063 .144 .225

Age 4 years read .112 .046 -.102 .092 .059 .013 .014 .017

K math -.025 .022 .096 -.148 -.055 -.014 -.014 -.014

K read -.204 .028 .212 -.387 .051 .012 .013 .014

K kindergarten. D a2 = (a2 at SES ?2) - (a2 at SES -2). D a2 low = (a2 at SES -1) - (a2 at SES -2). D a2 mid = (a2 at SES ?.5) - (a2 at

SES -.5). D a2 high = (a2 at SES ?2) - (a2 at SES ?1). Linear parametric model used for all comparisons

Behav Genet (2015) 45:581–596 589

123



Fig. 5 Average model

parameters for LOSEM and a

parametric model across 100

datasets for interaction effect

sizes (ES) ranging from .00 to

.25. All datasets included 1000

twin pairs
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the moderator drawn from the original population. This

process ensures that there is no systematic relation between

the moderator and the biometric variance components (i.e.,

no G 3 E interaction). If substantially more variability in

the biometric variance components is present in the

observed data compared to the permuted data, then this is

evidence for G 3 E interaction. On the other hand, if the

variability of the biometric variance components in the

observed data is similar to the variability in the permuted

data, then this is evidence that the biometric variance

components are not systematically related to the moderator

in the observed data. Importantly, this test is silent on the

form that the interaction takes, and visual inspection is

required to discern how the variance components are

changing. This is a crucial strength of the test because it

does not require a (potentially mis-specified) functional

form to operate. We performed this test for each simulated

dataset generated from each effect size (i.e., running

LOSEM on 6 effect sizes 9 100 simulated datasets 9 99

permutation datasets). The significance level (i.e., p value)

of such permutation tests is derived from ranking the

observed test statistic compared to the population of test

statistics obtained from the permuted datasets. For exam-

ple, if the observed test statistic is the 4th largest when

combined with the test statistics from the 99 permuted

datasets, this translates to a p value of .04.7

Figure 6 presents power curves for the standard para-

metric application, as well as the novel LOSEM inferential

test for significant variability of genetic effects. Impor-

tantly, the false positive rate was low for both tests. When

the generating model specified no G 3 E interaction, the

parametric test detected significant G 3 E interaction in 4

datasets, and the LOSEM test detected significant G 3 E

interaction in 3 datasets (i.e., false positive rates of

approximately .035). This result indicates that the LOSEM

test is not overly sensitive to random fluctuation in the data

and correctly affirms the null hypothesis when there is no

G 3 E interaction. As the effect size of the generating

model increases, power to detect significant G 3 E inter-

action increases similarly for both the LOSEM test and the

parametric test. Again, the LOSEM test is slightly more

conservative than the parametric test, but based on the

current specifications, the test is powerful enough to detect

even fairly modest effects (i.e., interaction effects of .15)

with adequate power (i.e., 80 %) in a sample of 1000 pairs.

Of course, power may differ depending on characteristics

of the sample or the interaction form. If the parametric

model is mis-specified, the LOSEM test may be substan-

tially more powerful in detecting G 3 E interaction.

Application of inferential tests to ECLS-B data

Table 2 provides significance tests of G 3 E interaction

from the ECLS-B data. The nonparametric results largely

match the parametric results (see Table S1), except the

significance levels are more conservative. For example, the

LOSEM test indicates that there is weak, marginal support

for significant variability of genetic effects for kindergarten

reading ability (p = .15), but the more powerful parametric

test is able to detect a significant nonlinear interaction.

LOSEM significance tests can be used to guide the selec-

tion of parametric models, but non-significant nonpara-

metric results do not preclude significant parametric

results. Visual inspection combined with guiding inferen-

tial statistics may prove the most useful.

Study 3: simulation study with complex functional

form

To explore how LOSEM functions when the form of the

interaction is not well-described by a standard parametric

model, we simulated 100 datasets with a sample size of

1000 pairs, in which the genetic variance had a complex

relation with the moderator. Genetic variance was specified

to be absent at low values of the moderator, increase

steadily until approximately .5 SD above the mean of the

moderator, and then sharply decline to zero at very high

levels of the moderator.8 The shared and nonshared

Fig. 6 Power curves for parametric and nonparametric tests of

G 3 E interaction for differing interaction effect sizes. All datasets

included 1000 twin pairs

7 The possible significance level of a permutation test is limited by

the number of permutated datasets that are created. Using an observed

test statistic and 99 permutation datasets, the lowest possible

significance level is .01. More precise significance levels can be

obtained by analyzing more permutation datasets (e.g., 999). For the

current purposes, this proved too computationally intensive when

hundreds of models were under investigation.

8 This complex form was accomplished by specifying that genetic

influences on the phenotype took the form of:

a ¼ 1þ :25�M � :20�M2 � :05�M3.
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environmental variance components were specified to not

depend on the moderator.

Simulation results

The average model parameters across all 100 datasets are

presented in Fig. 7. LOSEM successfully captures the gen-

eral increase in genetic variance from low levels of the

moderator to slightly above average levels of the moderator,

aswell as the sharp decrease in genetic variance at high levels

of the moderator. The standard application of the parametric

approach using only a linear term is unable to model this

complex relation. If one were relying exclusively on this

model, one would incorrectly infer that genetic variance

continuously and monotonically increases across the full

range of the moderator. However, using a properly specified

parametric model (i.e., one using 3rd order polynomials), the

generating model is successfully captured. The key strength

of LOSEM is that the proper polynomial function does not

need to be known beforehand.

Power to detect G 3 E interaction was high in each case.

Powerwas greater than 80 % for each of the polynomial terms

used in the properly specifiedparametricmodel, implying that

the complex functional form was necessary to accurately

describe the data. Power was also high for the improperly

specified linear parametric term (87 %). Although this model

successfully detected the general increase in genetic effects,

exclusive reliance on levels of significance misleads conclu-

sions about the actual functional form of the interaction.

Consistent with earlier results, LOSEM was slightly more

conservative than the parametric approach (power = 78 %),

but offers a flexible view of the interaction.

Recommendations for employing LOSEM

In this section, we offer initial recommendations on

effective ways to use the LOSEM approach to inform

studies of G 3 E interaction.

Define the research range of interest for the moderator

In the context of statistical moderation, the research range

of interest refers to (and is confined to) the span of the

moderator for which data are available (Roisman et al.

2012). For example, the plots in Fig. 3 are based on a

research range of interest between -2 SD and ?2 SD of

SES, a region that contains nearly all of the empirical

observations and does not extend to regions of no data

availability. Using a parametric approach, it would be

analytically feasible to explore the range from -8 SD to

-4 SD of moderators such as SES, but this range extrap-

olates well beyond the empirical data. Similarly, applying

LOSEM trends identified where data density is sufficient to

regions that have not been sampled adequately would be

suspect. Researchers should, of course, take care to inter-

pret results based on sufficient data and report on their

moderator in reference to a general standard (i.e., whether

the moderator spans from bad to normal, such as child

maltreatment to no child maltreatment, or from poor to

wealthy, such as is the case for most standardized measures

of SES in representative samples).

Get the main effects right

Just as the parametric G 3 E approach requires that the

shape of the interaction effect conform to a parametric

function, it also requires that the main effect of the mod-

erator conform to a parametric function; the means model

(‘‘main effect’’) is also capable of being nonlinear in ways

that parametric methods typically do not attempt to model

(Rathouz 2008). Prior to interpreting interaction effects

estimated using parametric and LOSEM approaches, it is

therefore important to scrutinize whether the means models

are consistent across the two methods. If these effects on

the mean differ, the interaction component may also differ,

as the biometric components (and biometric interactions) in

both approaches model phenotypic variance that is unique

of the moderator. In a situation in which the main effects

from the two approaches are not in close agreement, one

should use the function capturing the LOSEM mean effect

(column 3 of Fig. 3 and column H of Supplementary File

2) to residualize the phenotype prior to implementing the

parametric model (now with the means model set to zero).

This would enable parametric and nonparametric modeling

of ACE component variance on the same residuals,

allowing direct comparisons between the two approaches

Table 2 Significance levels for

ECLS-B based on LOSEM test
Phenotype A 9 moderator C 9 moderator E 9 moderator

Age 10 months Bayley .25 .51 .13

Age 2 years Bayley .03 .12 .50

Age 4 years math .05 .96 .04

Age 4 years read .84 .05 .08

K math .86 .53 .16

K read .15 .42 .20

Significance level based on a permutation approach
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to be made. Alternatively, the parametric specification of

the effect of the moderator on the phenotype may be

expanded to more closely capture the nonparametric trend,

but in certain circumstances this may prove difficult.

Choose the right baseline model

Standard approaches to model fitting/trimming (e.g., Neale

et al. 1989) can guide the selection of reduced biometric

models (e.g., an AE model over an ACE model) or an

alternative model (e.g., one including D rather than C

variance components). In the case of LOSEM, the possi-

bility exists for reducing or otherwise varying models

differently at each target value of the moderator. Such

locally-distinct genetic architectures are unlikely to have

biological validity. Different genetic architectures would

imply mechanisms that exist in the organism exerting not

just varying influence on the phenotype, but are actually

absent at some levels of the moderator. For this reason, we

recommend that the same variance components be modeled

at all levels of the moderator, with differences in magni-

tude being the primary focus. Still, it is conceivable that

there are highly complex processes at play that give rise to

a situation, for example, in which dominant genetic influ-

ences on a phenotype are only manifest at certain levels of

a moderator. Ultimately, this is a data- and topic-specific

question, and the near-endless modeling possibilities must

be tempered by the principle of parsimony.

Choose the right tool from the toolkit

The major advantage of using a nonparametric exploratory

approach, such as LOSEM, is the ability to detect (or to

rule out) nonlinear G 3 E interactions. In the current

application of LOSEM, we detected model mis-specifica-

tion for kindergarten reading ability and corrected this by

applying a more appropriate interaction function (Fig. 4).

This pattern is very easily noticed when nonparametric

approaches are used to inform model selection. Of course,

additional data are necessary to evaluate the replicability of

the nonlinearity, which was only observed for one measure

(reading) and at one developmental period (Kindergarten).

It is unclear whether other G 3 E interaction studies may

have reported biased results simply due to inappropriate

statistical models. Incorporating flexible, nonparametric

approaches as a data analytic step can help avoid such

pitfalls.

We simulated one hypothetical example in which this

pitfall occurred. LOSEM and a properly specified para-

metric model correctly identified a highly complex relation

between the moderator and genetic variance (see Fig. 7). A

linear specification of G 3 E interaction did not identify

this trend. Of course, investigators could add polynomial

terms to their parametric functions ad infinitum in an

attempt to capture all the complexity found in the data.

This process most likely will prove computationally

infeasible as even models incorporating second-order

polynomial terms are known to be ‘‘sensitive to starting

values and prone to local minima…Care must be taken

when fitting these models’’ (Purcell 2002, p. 562). Because

LOSEM relies on a very simple structural model, such

concerns are minimized, and LOSEM results can intelli-

gently guide parametric model fitting.

Examine differences in the magnitude of variance

across meaningful ranges of the moderator

and the proportion affected

To supplement basic visual inspection of LOSEM trends,

differences in the magnitudes of variance offers a conve-

nient way to quantify how quickly genetic or environ-

mental influences shift over meaningful levels of the

moderator. For example, Table 1 demonstrates how this

approach can help guide interpretation of trends. Further,

Fig. 7 Average model parameters for LOSEM, a linear parametric model (mis-specified), and a properly specified parametric model. All

datasets included 1000 twin pairs
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Roisman et al. (2012) suggested calculating the ‘‘propor-

tion affected’’ when evaluating the shape and importance

of candidate G 3 E interaction results. Individuals are

‘‘affected’’ by the interaction if they experience a level of

the environment beyond the crossover point of a candidate

G 3 E interaction (i.e., the point of the moderator at which

two genotypes appear equivalent on a phenotype). The

region beyond this point indicates that genotypes respond

differently to the environment. They argued that if 16 or

2 % of the sample falls above this point, then that would

provide good or speculative evidence, respectively, for the

practical importance of an interaction effect. This con-

vention was suggested based on reference to a normal

distribution in which 16 and 2 % of the sample would be 1

and 2 SD above the mean, respectively. In the current

context, the spike in genetic variance for age 4 math occurs

at SES of ?1.5 SD, indicating that approximately 7 % of

the sample is ‘‘affected’’ by the spike. By this criterion,

evidence for this increase in genetic variance might be

termed meaningful in magnitude (i.e., accounting for

approximately half of the total increase in genetic variance,

see Table 1) on a meaningful proportion of the sample.

Use permutation tests as a conservative inferential guide

to modeling G 9 E

Generally, nonparametric models are less efficient than

parametric models when the underlying functional form is

truly parametric (Eubank 1999, p. 9; Hart 1997, p. 1;

Horowitz 2009, p. 6). If investigators do not have prior

knowledge of the exact form a G 3 E interaction takes,

however, it is unclear which approach will prove more

powerful. Based on the current results, LOSEM is able to

detect statistically significant G 3 E interaction and offer a

flexible vantage point of the functional form that is not

constrained by limited prior knowledge. Permutation tests

offer a critical piece of information to guide statistical

inferences, but descriptive applications of LOSEM to

explore data may prove more useful pragmatically. We

encourage other investigators to improve or expand on the

nonparametric tests proposed in this manuscript. Currently,

we are pursuing applications that take into account model

fit (i.e., v2), or that are locally-sensitive, rather than pro-

viding an omnibus test of G 3 E interaction.

Conclusions and future directions

We have demonstrated the utility of a novel approach to

analyzing G 3 E interaction results. LOSEM produces

flexible nonparametric estimates of G 3 E interaction

trends that can detect nonlinearities and inform subsequent

confirmatory model fitting. We applied this approach to a

highly studied effect with widely used data to make novel

insights concerning trends found in the data. We plotted

nonparametric estimates of genetic, shared environmental,

and nonshared environmental variance across levels of SES

in the ECLS-B sample for six cognitive ability phenotypes.

Using the LOSEM approach, we detected an inverted-U

shape curve for the genetic variance of kindergarten read-

ing ability. Following up this approach with a standard

parametric model that included a quadratic term (Purcell

2002), we confirmed that this nonlinearity was statistically

significant. As mentioned previously, this result for a single

phenotype at a single age requires additional replication

and investigation before it can inform theory, but the

process of discovery represents a key strength of LOSEM.

Additionally, we used the flexible LOSEM results to

probe where in the SES distribution the majority of the

differences in magnitude of genetic variance occur. For

several phenotypes, the majority of the G 3 SES interac-

tion occurred in the transition from somewhat low SES to

somewhat high SES environments with almost no increase

associated with the high to very high SES range. Again,

this trend would be completely missed if relying solely on

parametric, linear models. Of course, the current study is

primarily concerned with displaying the utility of the novel

LOSEM approach for G 3 E interaction studies. Much

more empirical evidence will be needed to evaluate the

exact functional form of this interaction across different

ages and cognitive phenotypes.

As with all exploratory approaches, LOSEM has

potential pitfalls. Exploratory data analysis opens up

researcher degrees of freedom that might allow for inap-

propriate manipulation of data to capitalize on noise

(Simmons et al. 2011). For example, LOSEM results could

be used to find just the ‘‘right’’ points of the moderator to

dichotomize or categorize different groups. A related pit-

fall would be to over-interpret minor deviations of the

LOSEM trends as meaningful effects. We have provided

some recommendations for avoiding this pitfall, such as

using the proportion affected by the trend, using a con-

servative permutation test for nonparametric G 3 E inter-

action, and following LOSEM analyses with confirmatory

approaches.

Interpretation of LOSEM must balance the detection of

meaningful nuance from random noise. This balance is

primarily determined by the bw parameter. When this

parameter is increased, noise in the estimates is reduced,

but more nuanced micro-trends may be missed. When

shrunk, the estimates conform closely to local subsets of

the data, thus increasing the capability to pick up on

nuanced trends, but also increasing the chance of picking

up on statistical noise. This tradeoff is inherent in kernel

regression methodology (Hart 1997, p. 12; Li and Racine

2007). We have followed the recommendation of

594 Behav Genet (2015) 45:581–596

123

https://www.researchgate.net/publication/10912795_Variance_Components_Models_for_GeneEnvironment_Interaction_in_Twin_Analysis?el=1_x_8&enrichId=rgreq-d6308073-efe4-41be-8665-d868fd2c2977&enrichSource=Y292ZXJQYWdlOzI4MTU1Mjg4NDtBUzoyNzE4NDc4MTE5NzMxMjZAMTQ0MTgyNDk3NzEwMw==
https://www.researchgate.net/publication/10912795_Variance_Components_Models_for_GeneEnvironment_Interaction_in_Twin_Analysis?el=1_x_8&enrichId=rgreq-d6308073-efe4-41be-8665-d868fd2c2977&enrichSource=Y292ZXJQYWdlOzI4MTU1Mjg4NDtBUzoyNzE4NDc4MTE5NzMxMjZAMTQ0MTgyNDk3NzEwMw==


Hildebrandt et al. (2009) in calculating bw based on the

sample size and standard deviation of the moderator. As

discussed extensively in previously published work on

nonparametric regression methods, a number of other data

driven methods exist for choosing the optimal bw (Bow-

man 1984; Rudemo 1982; Huvich et al. 1998), along with

adaptive bandwidth approaches, in which local estimates

are weighted by a constant number of nearby datapoints.

Each of these methods may provide slightly different val-

ues for bw and therefore possibly produce substantively

different trend estimates. Additionally, we followed

Hildebrandt et al. (2009) in recommending the kernel

function follow a Gaussian distribution, but a number of

other functional forms are available. Generally, alternative

kernel forms do not impact substantive conclusions, espe-

cially compared to the more important choice of bw

(Eubank 1999, p. 177).

A major limitation of the LOSEM approach is that it

requires the environmental moderator to be measured at the

family-level. Quantitative behavior genetic methods use

the sibling pair as the unit of analysis, and the weighting

function must be applied at this level. Therefore, the

LOSEM approach, in its current form, is unable to estimate

G 3 E for moderators that vary within families. Several

papers have developed and scrutinized parametric G 3 E

methods for moderators that vary within families (Rathouz

et al. 2008; van Hulle et al. 2013; van der Sluis et al. 2012),

which allow for modeling of gene-environment correlation.

Future efforts to develop LOSEM methods to handle such

data structures would be highly valuable.

In conclusion, LOSEM can be a valuable tool in the

behavior genetic toolkit for probing G 3 E interactions. As

researchers have successfully adopted LOESS approaches

to regression to explore and visualize data, LOSEM can be

applied to behavior genetic data to detect nonlinearities or

discontinuities of trends that would otherwise be missed. In

the online supplement, we provide scripts for implementing

LOSEM in Mplus and in OpenMx. We encourage

researchers to apply LOSEM to better understand the

complex interplay between genetic and environmental

influences.
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