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him immediate fame and an academic post as Professor of Physiology,
where he devoted his efforts to studying the eye and the mechanism of
seeing.

In 1858 he was offered the post of Professor of Anatomy at that most
beautiful of German university towns, Heidelberg, some 150 miles from
Bayreuth. In the thirteen years he was there, his work on the eye led him
to study the ear and the way we hear. He applied his results to the theory
of music, which he published in a monumental work On the Sensations
of Tone. In this book, for the very first time, the psychological perception
of music was opened up for investigation— the field we now call psycho-
acoustics. It was a turning point in the scientific study of our subject.

After Heidelberg he moved to Berlin as Professor of Physics, where
much of his efforts were devoted to electromagnetism: and from there his
influence spread, not least through the students he taught. Heinrich Hertz
was one of these, and the experiments on radio waves were undertaken
at Helmholtz’s suggestion. Another was Max Planck who would soon be
responsible for the revolutionary new Quantum Theory; but more of that
later. Helmholtz died in 1894, almost 11 years after Wagner, the most
respected scientist in his own country and acknowledged throughout the
whole of Europe.

These two intellectual giants, so influential in different spheres of Ger-
man life, existed side by side for a span of two generations. They were oc-
casional friends. Helmholtz was in the audience for the first performance
of the Ring at Bayreuth, at the composer’s invitation, and wrote indig-
nantly to the press about what he called the critics’ ‘icy non-recognition’
of the work’s importance. Likewise, when they were in Berlin, the Wagn-
ers were guests at the Helmholtzs evenings-at-home, at which most of the
fashionable intellectuals gathered. At one time they even found themselves
on opposite sides of a public argument about vivisection. But they didn’t
seem to impinge on one another professionally. It is only in retrospect
that we can see how much they had in common, and how similar were the
effects they had on German intellectual life.

The field where they might have interacted is, of course, the theory
of music: and I want now to examine what Helmholtz contributed to that
subject. But before I can do that I will need to talk about a bit of physics I
have avoided so far—a more complete description of resonance.

The theory of resonance

Up till now T have been rather cavalier in talking about resonance. I've
discussed it only in the following terms. You have some system which can
oscillate with its own natural frequency; and if you disturb it (periodically)
at exactly this frequency, then energy will keep going in, and a very size-
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able amplitude of vibration will build up. The simplest model, you will
remember, was of pushing a child on a swing. But I've never addressed
the question: what happens if you don’t do it at the right frequency?

To answer that 1’1l have to go back to my discussion (in Chapter 3)

of why systems oscillate—of how energy changes periodically between
potential and kinetic forms. However, the argument I want to go through
is a bit involved, and if you don’t want to follow it in detail, you can skip
the next five paragraphs.

The problem is one of putting energy into a system, and therefore
it makes sense to discuss it in terms of impedance—though of a
slightly different kind, called mechanical impedance. This is the
property of a system which determines how great an oscillating force
has to be, in order to get the system moving at a certain speed.
Strictly it is the ratio of force applied to velocity produced. If you
apply a big force and only produce a small movement, you say the
mechanical impedance is large. But if a small force results in large
movement, you say it is small. It may not look like the same sort of
impedance I talked about earlier, but it is clearly a related concept.

Now for clarity, I will talk about one particular oscillating system—
a mass on the end of a spring. First I want you to consider the mass
in isolation, and to think about how it responds if you
try to get it moving by shaking it at a constant fre-
quency. Obviously, if it is heavy, it will be difficult
to make it move very fast. Its mechanical impedance
must be directly related to its inertia. But even a light
mass won’t respond if you try to shake it too rapidly —
just imagine, for example, trying to shake anything at
more than about ten or twenty times a second. This
means that inertial impedance must depend on fre-
quency: it gets bigger as the frequency increases.

Secondly, think of the spring by itself. If you apply an oscillat-
ing force to it, you simply stretch or compress it; and the amount of
stretch or compression depends only on the amount of
force you apply, not on the frequency. Therefore the
velocity with which the end of the spring moves will
depend on the frequency, since it has to move through
a fixed distance in each period of the oscillating force.
So the kind of impedance involved here gets smaller
as the frequency increases. :Furthermore, because the
spring pushes in the opposite direction (i.e. against
you) when you push on it, elastic impedance is, in a
sense, the negative of inertial impedance.
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Therefore when you analyze a system consisting of
both a spring and a mass, you must think of it as hav-
ing a total mechanical impedance equal to the sum of
these two (actually the difference, since one is nega-
tive). So, if the frequency is either very high or very
low, the total impedance will be large, because one of
its components is large, even though the other is small.
However there is one particular frequency, somewhere
in between, where the two parts of the impedance have
exactly the same value and cancel one another out. At
that frequency even a tiny applied force will produce
a huge response. And that is of course just what we mean by the
term resonance.

But one further point. Even at resonance, the total impedance can
never go exactly to zero. There will always be friction, or some other
means by which energy can leak away; and these will contribute an-
other kind of mechanical impedance (just like electrical resistance)
which can’t be compensated for. So the exact impedance at reso-
nance, and therefore the magnitude of the system’s final response,
will depend on how small this ‘resistance’ is. The actual reason
for this concerns the time it takes for the energy to dissipate. The
vibration will settle down only when the rate at which you put en-
ergy in just balances the rate at which it leaks out. Therefore if the
systemn has a small resistance and loses energy slowly, the amplitude
at resonance will be high; whereas if its resistance is large, it will
lose energy quickly, and the resonant amplitude will be low.

Let me summarize the conclusions of this argument by means of a
graph. I will plot how the response of the system (measured by the velocity
of its motion) varies as I change the frequency at which the driving force
is applied.
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The main feature of this graph is what we already knew —that at one
particular frequency, the resonant frequency, the system responds much
more violently than at others. But what is also shown is that there is a band
of frequencies around resonance at which the system still shows quite a
large response. This range is called the bandwidth.

If you want to get a simple intuitive feeling for this graph, think about
tuning a radio. As you turn the knob you are altering the circuit in such
a way that the frequency at which it oscillates changes. You sweep this
past the frequency of the radio station, and at one point they match. Then
the tiny signal in the air is able to set up a big electrical oscillation inside
and the andio message will come through loud and clear. But you can still
hear it even if you are not quite ‘on the station’. This is what I mean—this
range of ‘almost acceptable tuning’ — when I talk about bandwidth. There
are important applications of this principle in many musical instruments
(especially in wind instruments, when players are able to correct for slight
inaccuracies in tuning); but above all, it is vital in understanding how the
ear behaves.

The ear

The ear can be considered in three distinct parts. The first, the outer ear,
is the most obvious, consisting of the bits you can see and feel: the large
shell-shaped lobe (called the pinna) which leads down through a narrow
tube (the auditory canal) to the eardrum.

We have already noted that
this is essentially the col-
lector of sound energy; the
narrowing shape provides
enough of an impedance
match so that a reason-
able fraction of the energy
falling on it ends up in a vi-
pinna 7 bration of the surface of the
eardrum drum. However, recent re-
search has shown that the
pinna does a bit more than
this. The convolutions of its
shape actually enable us to locate how high above the ground is the source
of a sound. Similarly the auditory canal has its own acoustic properties.
Being a tube about 3 cm long, closed at one end, it has a fundamental res-
onance mode at about 3 000 Hz; and that accounts for the fact that human
hearing is most acute around that frequency. But, so far as understanding
a message is concerned, we must look to the other parts of the ear.
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In the middle ear the en-
ergy of vibration of the drum
is transferred, by a mechan-
ical lever system made up
of small bones (called the
ossicles), to where it sets
into vibration a second mem-
brane (the oval window).

ossicles

eardrum

The function of this stage oval window
is primarily amplification—
the lever system translates sustacean tube

the small pressure variations

on the (comparatively large) drum, to considerably larger vibrations of the
(much smaller) oval window. But a secondary function is that of a buffer—
if the pressure variations of the drum are too large, it doesn’t amplify them
nearly so much, thereby offering some protection to the more sensitive
workings of the inner ear.

It is necessary for the middle ear to be unencumbered at all times, and
so it is connected (via the eustacean tube) to your throat. When, for
example, you go up in an aeroplane, or dive deeply under water, and a
pressure difference builds up across the eardrum, you can equalize this
difference by swallowing. There are several things that can go wrong with
the workings of this part of the ear, which can lead to varying degrees of
deafness—the drum can be punctured, the small bones can seize up, the
chamber can become filled with mucus. Luckily most of these complaints
are, at least in principle, treatable to some degree.

The next stage, the inner ear, is the most interesting from our point of
view. Ignore the strange loops at the top of the diagram—the so-called
semi-circular canals, which are concerned with the body’s balancing
mechanism—and concentrate on the bit that looks like a snail shell. It
is a helically coiled bone cavity, filled with fluid, and is called the cochlea.
Its internal structure is easiest to understand by imagining this coil to be
‘unwound’; in which case it might look like this:

auditory nerve
window i oval window

cochlea
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The chamber, about 3 cm long, is divided most of the way down the
middle by a narrow strip of taut skin called the basilar membrane, which
separates the fluid in the upper and lower halves. This membrane is nar-
rowest and tautest at the front end (near the oval window) , and widest and
slackest at the other. When the ossicles set the oval window vibrating, this
motion is communicated, via the fluid in the cochlea, to this membrane.
And this is where the sound wave is actually ‘detected’.

Underneath, in the lower half of the chamber, there are millions of tiny
hair-like nerve cells which respond to any movement of the membrane by
firing tiny electric currents. These current surges are conducted out of the
cochlea, by the auditory nerve, to the brain. If anything goes wrong with
this part of the ear, it is obviously extremely serious; and unfortunately
this is where damage resulting from excessive loudness occurs. When the
nerve cells are subjected to too much stress, they are destroyed one by
one. Under a microscope they look like a bomb site. And this can be
disastrous because, as we will see, they are responsible for the ear’s ability
to distinguish pitch. Therefore musicians who play in very loud rock bands
are often putting at risk their most valuable asset—their musical ear.

Just in passing, it is worth mentioning a particularly impressive ex-
ample of the marriage of technology and medicine —the bionic ear, or if
you prefer, the cochlear transplant. This device was developed by Aus-
tralian scientists in the 1970s, and it collects sounds with a a tiny micro-
phone sited just behind the ear. These are transmitted to a receiver buried
under the skin, where they are converted into coded electrical signals by
a speech processor. They are then passed on to 22 electrodes which have
been surgically implanted into the cochlea at particular points along the
basilar membrane. The procedure is still very expensive, and requires a lot
of rehabilitation for the patient’s brain to learn to interpret the unfamiliar
signals it is receiving; but they do work and many, many thousands of deaf
people have been fitted with them in the past decades.

Anyhow, in this discussion I've left out a lot of detail, and my descrip-
tion of the essential function of each part of the ear is grossly oversimpli-
fied; but it highlights an important consideration in thinking about the ear
as a instrument for interpreting music. Every sound we hear is processed
twice: once by the cochlea, where it is coded into an electrical signal, and
then by the brain, where its message is extracted. It is currently fashion-
able to think of the human brain as a kind of electronic computer, and
the processing of information to be carried out by some kind of computer
program. In so far as this is valid, it is clear that the second stage of pro-
cessing is more or less under our control —we can learn to change the way
we think about music. But that which is done by the cochlea we are stuck
with; and a lot of our response to musical sounds must be tied up with
exactly what it is that the cochlea does. So we have to look at that next.
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Pitch recognition

Clearly what is important is the way the basilar membrane responds to
vibrational energy falling upon it. Remember that it is roughly triangular
in shape; and up till now, I have said nothing about how standing waves
are set up on a two-dimensional surface. But the basic principles are the
same as those we have met before, and a good deal of insight can be gained
by thinking about the membrane as though it were made up of a whole lot
of short strings, like some long, thin, many-stringed dulcimer. It has very
short, taut ‘strings’ at the front end, near the oval window; while those
further down are longer and slacker. If the fluid around it vibrates at a pure
frequency, then there will probably be one ‘string’ somewhere along the
line which will resonate with it—near the front end if the pitch is high,
further along if it is lower. This resonant vibration will, in turn, cause the
nerve cell beneath it to fire, and therefore the brain will be able to recognize
the frequency by noting which ‘string’ resonated.

This description is a bit simplistic, and many researchers prefer to talk
about the process which gives energy to a particular part of the membrane
in terms of a travelling wave, rather than a vibration (i.e. a standing wave).
You see, the process has to happen quickly, so there can’t be any significant
‘build-up’ time for the resonance. Instead they describe what happens like
this. A wave of displacement travels down the basilar membrane. As it
does so, it continually reaches parts of the membrane (the ‘strings’) where
the elastic properties are different, and the speed of the wave gets slower
(how much depends on the frequency). Eventually there will be a point at
which the wave stops and dumps all its energy, causing the membrane to
oscillate strongly at that point. (The process is exactly the same as a surf
wave breaking when the depth of the water gets too shallow.)

However, I have made the point many times that there isn’t much con-
ceptual difference between a vibration and a wave, and therefore my model
will let you intuit what is going on. Certainly that was how Helmholtz
imagined the ear working —as a row of graded resonators: and the process
of recognizing frequency as being equivalent to locating where on this row
the resonance occurred.

It certainly explains very simply how your ear assesses the fimbre of
different notes. Since a complex periodic vibration is entirely equivalent to
the summation of pure tones of harmonically related frequencies, then, de-
pending on which overtones are present, more than one part of the basilar
membrane will respond at the same time. The cochlea therefore performs
the kind of harmonic analysis I described in Chapter 4, and the message it
sends to the brain consists of a number of electrical signals along different
fibres of the auditory nerve, one for each overtone. The brain can then be
‘programmed’ to identify them.
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There is good evidence that this is a very useful model of the cochlea’s
function. It concerns a particular relationship between tones which are
added together. You will recall (see page 95) that, if I add a fundamental
oscillation to one of its harmonics, I generate a complex shape, like so:

However, when I (or rather, my computer) drew these figures, I started
off both oscillations exactly in step. I didn’t have to do this. I could equally
have started one of them at a different part of its cycle (i.e. with a different
phase); and the result would look different.

But if these shapes were pressure waves in the air (provided they were
not too loud) they would sound the same. Your cochlea can tell that there
are two tones present, and what their amplitudes are; but it can’t tell any-
thing about their relative phase,

This observation has been known for over a century, and is usually
given the name Ohm’s law of acoustics (after the same Ohm who did all
that work on electrical circuit theory). I’m sure you will appreciate how
strongly it supports the ‘place theory’ of pitch recognition. The nerve cells
in the cochlea can tell that two different parts of the basilar membrane are
vibrating, and how strongly; but, because they are physically separated,
they have no way of telling whether or not they are going up and down in
step with one another.

There is another piece of evidence which supports this same model.
In Chapter 4, I talked about difference tones. You will recall that, if I
add two high frequency oscillations, I characteristically get an oscillation
whose amplitude fluctuates with time.
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If the two frequencies are close to one another, you can hear this fluctuation
as a beat; but if they are far apart you can sometimes hear the fluctuation as
a tone. Now I want to ask the question: why only sometimes? Why can’t
you hear it all the time?

The answer lies in a detail which I have avoided saying much about
so far. Whenever I talked about wave motion, I implicitly assumed the
properties of the system which control how the wave moves are not af-
fected by the wave’s being there. I took it for granted that two waves can
travel through the same medium, and the motion of each is unchanged by
the other. Now when you come to think of it, this requires the medium
to have some pretty specific properties. When it is stretched because of
the passage of one wave, it must still be able to stretch the same amount
extra as a second wave goes through. (This property is called linearity
by mathematicians, in case you ever come across the term.) If your ear,
for example, really does behave like this, then you can see that it will not
hear the fluctuations we were talking about, as an independent tone. It will
simply register that there are two pure tones present, because its response
to each one is unaffected by the presence of the other.

But of course, very few materials are absolutely, absolutely linear.
There is a limit to how far any elastic material can stretch, and if you get
near that limit, then it’s not much use trying to make it stretch any more.
A second wave will not be able to travel through properly. And there are
lots of points in your ear which behave elastically and which may not be
able to respond absolutely faithfully to a large wave coming through —the
eardrum, the ossicles, the oval window, the basilar membrane itself. So
when your ear encounters a loud signal which fluctuates, the signal will be
distorted. Then when your cochlea tries to harmonically analyze the sig-
nal it will still detect the two pure tones, but it will also detect a distortion
which fluctuates with a frequency equal to the difference of the two pure
frequencies. You will hear the difference tone. Likewise you may be able
to detect a change of phase in two very loud tones, because they stretch the
elastic materials in your ear differently.

Therefore I hope you can see that this model of how the cochlea works
allows us to understand a lot of what we know about hearing in a simple
and straightforward manner. I should point out here that this whole field
of research is still changing. For example, there is evidence that the brain
receives some direct information about how rapidly the basilar membrane
vibrates—in the rate at which the nerve cells fire. As a result, some re-
searchers have proposed a so-called ‘time theory’ of pitch recognition to
complement the ‘place theory’. Obviously a definitive understanding of
the mechanism of hearing is not yet with us. Nonetheless, most of the fea-
tures T want to talk about can be understood from the simple picture, even
if it isn’t complete. And that’s all we want.

|
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Range of pitch

Let me now turn to the question of what range of frequencies the ear is
sensitive to. Everyone’s ears are a little different; and over the years many
experiments have been done, getting volunteers to listen to tones of differ-
ent frequencies, trying to determine the lowest intensity they can detect.
The average results of countless such tests are usually summarized in a
graph like this:
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Notice that loudness is measured in its own special unit, called the
decibel (abbreviated as dB). If you are interested, I have included a brief
discussion of this unit in Appendix 4.

You interpret the graph as follows: 1% of people can hear any sound
whose intensity is above the 1% curve; 10%, a sound above the 10% curve;
and so on. The topmost curve represents the intensity at which most people
start feeling pain.

The graph is not extended below 60 Hz, because of a rather strange
observation. When you listen to a repetitive pressure wave of very low
frequency (say around 10 Hz) you don’t hear it as a tone at all. It just
sounds like a series of clicks; and this is true up to about 20 Hz. After
that the clicks run together, but you don’t start hearing them as a tone until
about 50 Hz. In between, the sound is fuzzy and not particularly pleasant.

The upper frequency limit is even less well defined. Some people can
hear as high as 20 000 Hz; but for most of us, the threshold 1s much lower.
It is one of those sad facts of life that this figure decreases as we grow
older—after age 40 at the alarming rate of about 80 Hz every six months.
There are a lot of reasons for this, the most straightforward being that all
skin loses resiliency with age, and none of the membranes respond as well
as they should.

One of the starkest examples of this is in the background squeal of a
TV set. In television, the image 1s built up in lines, by the bright spot
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moving across the screen about 600 times for each frame. The illusion of
motion is achieved by the picture changing 25 times a second. So in every
TV signal there is a pulse telling the spot to start a fresh sweep, which
occurs about 15000 times each second. This gets into the audio system,
and comes out as a tone of 15000 Hz. Children and young adults can hear
this clearly; and, I am told, find it very annoying. The rest of us, alas, have
long since sunk below the level at which we can even hear it.

Between the upper and lower frequency limits, our ears respond with
varying degrees of sensitivity. It is greatest around 3 000 Hz; and one factor
accounting for that is, as I mentioned earlier, the physical size of the outer
ear. But an equally important factor involves the way the resonators are
distributed along the basilar membrane. In this diagram, I have indicated
which ‘strings’ respond to various musical pitches:
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Notice firstly that the musically most important range of frequencies
(from about 100 Hz to about 4 000 Hz) occupies roughly 2/3 of the length
of the membrane, while the rest of the scale (up to nearly 20000 Hz) is
squeezed into the remaining 1/3. Secondly, notice that the frequencies are
spaced logarithmically (a word which you will find defined more carefully
in Appendix 2); that is, whenever the frequency is doubled (and the pitch
rises an octave) the resonant point moves roughly the same distance (some
4 mm) to the left.

The importance of this last observation cannot be overemphasized. It
gives a straightforward explanation of that intriguing fact I mentioned in
the very first chapter of this book—that the natural way to express the
‘difference’ between the pitch of two notes involves forming the ratio of
two frequencies, rather than subtracting those frequencies. Once you know
how the ear works, it seems perfectly reasonable that the apparent interval
between two notes should depend on the number of auditory resonators
separating them; and that depends on the ratio of their frequencies.

Of course, this leaves unanswered the question of why our ears should
have evolved in this way. So we haven’t solved everything yet. But it is
interesting that all members of the animal kingdom who employ sounds
which we consider to be musical —like birds or whales or dolphins —have
ears whose structure is very similar to our own. Surely there can be no
doubt that a lot about music is determined by the way our ears are put
together.

)
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Pitch discrimination

The next question to be addressed is: how good is the ear at telling fre-
quencies apart? Or, if you prefer, what is the smallest pitch interval you
can have between two notes and still hear that they are different?

The most useful evidence bearing on this comes from the kind of exper-
iment in which you sound two pure tones of different frequencies together
and listen to what they sound like. The results of such experiments, again
the average of many listeners, can be summarized like this:

e When the two frequencies are very close together you hear beats—a
regular pulsation in loudness at a single pitch somewhere between
the two. (I talked about this in Chapter 4). This effect persists up to
a frequency difference of around 20 Hz.

e On the other hand, when the notes are widely separated, you hear
them as two clearly distinct pitches, and this is true for any two tones
which are more than about a minor third apart (i.e. three semitones
or about 20% difference in frequency).

o In the in-between region, what you hear is a bit uncertain. The sen-
sation is often described as ‘roughness’, a term which is used by a
remarkably wide range of listeners.

A lot of this can be explained from what we know about the way that all
resonating systems behave. Let us think first of all how we would expect
the ear to respond to one tone. When a single pure tone is sounded, there
is only one auditory resonator, one ‘string’ in the cochlea, which exactly
matches it in frequency. This is the one which will respond most strongly.
But there are other resonators nearby which nearly match, and these will
also be set vibrating. Whether or not they do so with an appreciable ampli-
tude, depends on the bandwidth. If this is large, i.e. if each resonator will
respond to a wide range of frequencies, then many neighbouring resonators
will respond to the tone. A large area of the membrane will vibrate.

It is useful to represent this conclusion diagrammatically, by imagining
that the response of the nerve cells along the basilar membrane follows a
resonant curve, like the one on page 226.

response of nerve cells —

minor third «— frequency
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Now consider what happens when the ear hears rwo tones together.

s If they are very close together in frequency, these areas will overlap
and the part of the membrane in the overlapping region will be per-
forming two independent oscillations. It will have a big amplitude
when they are in phase, and a small amplitude when they are out
of phase; and will change regularly from one to the other. You will
hear beats.

e If the two tones correspond to parts of the membrane well outside
one another’s bandwidth, then this effect should be entirely absent—
the two vibrations should proceed independently of one another.
You will hear two distinct pitches.

¢ But if they are not too widely separated and their bandwidths par-
tially overlap, it is more difficult to say what will happen. Perhaps
some of the signal going to the brain would say “two distinct fre-
quencies”, while another part of the same signal would say “a pul-
sating single frequency”. It seems plausibie that such a message
might be described as ‘rough’. It is equally plausible therefore, that
we can identify the bandwidth of the auditory resonators to be the
range over which this roughness is known to be detected—i.e. a
minor third.

That seems a plausible explanation for the observations, but it does
raise another question. If each resonator will respond to any note within
three semitones of its natural frequency, how is it that we can identify pitch
as accurately as we can? Most people with minimal training can pitch a
note correctly at least to within a semitone. And a trained ear can do much
better. There are plenty of choir conductors who expect their singers to be
able to distinguish between a Pythagorean tone (a ratio of 9/8) and a just
tone (10/9). The difference between these is a ratio of 81/80, or about 1/5
of a semitone.

What is clear, 1 think, is that the cochlea cannot, of itself, make such
distinctions. Once again, it is just like tuning your radio. You can get to
within the bandwidth of a particular station, just by listening to how loud
the signal is. But if you want to get it ‘right on’, you’'ve got to wait till
you hear something you can recognize and then try to judge whether it is
distorted or not. The point is that you need more information to work on.
It must be the same with the auditory system. The brain needs more in-
formation than it gets from the simple observation of which resonators
are moving. Just what this extra information is, is still the subject of
investigation—1it probably has something to do with the regularity of nerve
firing—but I don’t think it is important right now. It is enough to know that
it is a secondary process, under the control of the brain. So you can learn
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accurate pitch recognition; but the broad, general features of relating tones
to one another is built in.

1 cannot leave this section without making some brief mention of the
fascinating topic of absolute (or perfect) pitch. Most people, if they hear
one tone, and then another, can tell whether the second is higher or lower
than the first. Those with musical training can usually recognize the stan-
dard intervals between two tones, or can sing these intervals after having
heard a reference tone. Many with well trained ears can detect a frequency
shift of as little as 1% (or a sixth of a semitone), and sometimes even
smaller intervals. This is called relative pitch, and it is, when you come
to think of it, a quite extraordinary sensory ability. It is difficult to think of
any evolutionary advantage which could have caused our ears to develop
like this.

But even more extraordinary are those 0.01% of the population (or even
fewer) who have absolute pitch—who can recognize or sing a given note,
without referring to any other tone as a reference. Psychologists have been
studying absolute pitch for nearly a century, but there is still no agreement
about why some people have it and others don’t. Some researchers claim
there is evidence that it is inherited. There have been some very recent
studies reported which suggest that many babies are born with this ability,
but quickly lose it as they listen to the way the people in their world sing
and play music without much need for absolute tuning. But there are just
as many studies which suggest that it is an acquired characteristic, and can
be learned (most successfully while you are young).

Possessing absolute pitch can obviously be advantageous for a profes-
sional musician—as a singer you don’t need an accompaniment to sing in
the correct key, or as a conductor can more easily determine what notes
should be played. However it also has disadvantages. It is a reasonably
common complaint among choral singers with absolute pitch that they get
put off when the rest of the choir, blissfully unaware, drifts out of tune.
And it is certainly not an essential prerequisite for a musician. Many com-
posers have been reported to have had perfect pitch, including Mozart and
Beethoven, but there are even more who didn’t.

Loudness

The other job that your ear has to do is to recognize how loud a sound is.
And here you can see what a truly remarkable instrument 1t 1s, because the
range of intensities it will respond to is enormous.

The intensity of a sound is measured as the amount of energy which
falls each second on an area of standard size (usually taken to be 1 metre
square). Hence its unit of measurement is the watt/square metre, or W/m?*
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The psycho-acoustical theory of consonance

Let us return to the problem that we have kept coming back to many times
throughout this book, the centuries old puzzle of consonance which I last
mentioned when I was talking about Galileo’s contributions to musical the-
ory: why do some pairs of musical notes sound well together, while others
do not? There is information bearing on this to be got from a series of ex-
periments that were carried out in the 1960s, by a pair of Dutch scientists,
Reinier Plomp and Willem Levelt (among others).

In rough outline, these experiments consist of the following. You play
two pure tones of different frequencies together and, this time, ask listeners
whether or not the combination sounds pleasant. (You must use untrained
listeners, because you don’t want them to have any preconceived notions
of which intervals ought to sound good). Your results will probably look
like this graph—which actually comes from many such experiments over
the years.
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Obviously nearly everybody agrees that two tones less than about a
minor third sound dissonant, and at about a semitone, extremely so. But
what is interesting is that intervals greater than this are all judged more
or less equally pleasant. There seems to be no preference at all for the
musically significant intervals —the fifth, fourth, third and so on.

This observation can be reconciled with what T said before, when 1
tentatively identified the resonant bandwidth of the auditory nerve cells
as a minor third. Let me try to. represent on a diagram the nerve cells’
response to two pure tones at various intervals apart.

very close together within a minor third widely separated

Now it seems plausible to identify on these diagrams the areas where
the nerve cells respond erratically —the regions of ‘roughness’ —as those




Summertime in Heidelberg 241

areas where the two curves have large amplitudes at the same frequency
but are different from one another.

A conclusion we would draw from these diagrams is that, when the
two tones are far apart in frequency, there is no physiological reason why
we should perceive any dissonance at all. But we all know that there is
a widespread preference for the classical musical intervals when ordinary
musical notes are heard together. The only significant difference between
pure tones and real notes is that the latter contain overtones; so the solution
must be sought in how our ears respond o these.

If you bear in mind that, when a single pure tone is sounded, the res-
onators within the critical bandwidth all respond; then when a real note
is played, resonators within many such bands will start resonating. The to-
tal response can then be represented by plotting the vibration amplitude of
each of the resonators against their natural frequencies—in other words, by
drawing the frequency spectrum of what the basilar membrane detects.

resonator amplitude —

!
fundamental

harmonics ~

Each of these resonant peaks is centered on a harmonic of the fun-
damental. These should be equally spaced along the frequency axis, but
1 have used a logarithmic scale (because that’s what the ear prefers). On
that scale the higher harmonics get closer and closer together. However the
critical bandwidth stays the same apparent width—it’s always just under a
minor third remember—so for the higher harmonics there is considerable,
and increasing, overlap. And that kind of overlap implies ‘roughness’.

This must mean that, in any real note, there is actually a fair bit of dis-
sonance, especially if the high harmonics are strong. It doesn’t follow that
they should sound unpleasant: ‘rough’ doesn’t necessarily mean ‘nasty’.
Nonetheless the effect is noticeable. We use the adjective ‘brassy’ for any
note with very prominent upper harmonics, like those of a trumpet; while
those of a flute, which has very few, are often described as ‘gentle’. It is
as though a little bit of dissonance is a kind of spice —too much is to be
avoided, but food tastes bland without it.

But now think what happens when rwo notes with overtones are sounded
together. If their frequencies are randomly chosen, even if their fundamen-
tals are separated by more than a minor third, it’s likely that there will be
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a great deal of overlap among the harmonics. (I can’t keep using this way
of drawing things, but it will serve to indicate what I mean here.)

resonator amplitude -

| F
fundamental 2 3 4 5 6 7 8 ...
harmonics —

It is difficult to believe that your ear won’t register this as pretty ‘rough’.
To continue the culinary metaphor, it is surely a bit too highly spiced.
Though again, you could learn to like it—there is such a thing as an ac-
quired taste.

However, there are some special intervals between the two notes for
which this won’t happen. The most obvious is when they are an ocrave
apart. Then the resonant peaks of the higher note will exactly coincide
with every second peak of the lower. So adding the former to the latter
will produce no increase in roughness at all. That seems to me to go a
long way towards explaining why two notes an octave apart are so com-
pletely harmonious that they can almost be considered the same note. In
other words, the absence of any extra roughness must be what we mean by
‘perfect consonance’.

A similar claim can be made if the two notes are a perfect fifth apart
(with frequencies in the ratio 3/2). Then every second peak of the higher
will coincide completely with every third one of the lower.

rescnator amplitude —

tundamental 2 3 4 5 6 7 8 .-
harmonics —

There is clearly more roughness here than for either note singly, but
much less than in the preceding diagram. This is because the ratio of fun-
damental frequencies is just what is needed to put some of the peaks com-
pletely on top of one another, and cut down on the total amount of overlap
roughness.
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Much the same will be true for other pairs of notes whose frequen-
cies are in the ratio of two small whole numbers. Therefore it is possible
to calculate the degree of overlap from any pair of notes, and to predict
how much dissonance they should generate when sounded together. The
result of this calculation, as first carried out by Plomp and Levelt, is as
follows. (Note that the graph is plotted so as to look like the results of the
experiment at the start of this section.)
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Clearly the traditional musical interval ratios stand out from others
around them as being particularly free of dissonance. It would appear
therefore, that we have found a truly basic explanation, in terms of the
properties of the ear, for why these intervals should be pleasing to listen to.
This is an important change in the theory of harmony, because it suggests
that consonance is a negative feature—an absence of dissonance—rather
than a positive quality in its own right. It is also important because it shows
that the property of consonance is not absolutely dependent on the exact
value of the frequencies involved. There is room for a little inaccuracy, and
therefore the intervals will sound much the same no matter what musical
scale (i.e. just or equal tempered) they are played in.

These insights were largely developed by Helmholtz during those years
in Heidelberg —although some of the results 1 called upon came from more
recent research. In his book On the Sensations of Tone, he went a great
deal further than this. He devoted a lot of time to discussing combination
tones, and pointed out that, when two notes sound together, there will be
many difference tones at the frequencies separating the various harmonics.
These will only be heard faintly (as we discussed earlier) but unless the
fundamental frequencies are in simple ratios (again), they will be dissonant
with the primary tones. Hence he was led to a theory of chords and an
understanding of the role of the fundamental bass, exactly as Rameau
had been over a century earlier.

To me, there is a paradox about Helmholtz’s place in the history of the
theory of harmony, as seen by musicians. If you look under his name in
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most of the standard musical encyclopedias, you will find only the briefest
mention (if any). I suppose from the point of view of those interested in
aesthetic questions, he didn’t do much that was new. But from the view-
point of someone like me, his contribution was immense. He supplied
an answer to the great question: “Why?” Whereas Rameau had said that
the rules of harmony had to be as they were because the consonances on
which they were based sprang from a kind of cosmic ‘rightness’, it was
Helmholtz who firmly showed that the answer lies — to coin a phrase —not
in our stars, but in ourselves.

Envoi

Helmholtz died in 1894 and Wagner e¢leven years earlier, in 1883. With
their deaths, a chapter of the history of both music and physics seemed
to close. Almost immediately both went through a period of such great
change as can only be described as a revolution. I will talk about the new
music later, but now let me concentrate on what happened to physics.

In the 1880s, James Clerk Maxwell had announced, with typical Vic-
torian complacency, that essentially all of physics had been solved. To use
his metaphor, the scientific sky was perfectly clear, except for one or two
small clouds on the horizon. These ‘clouds’ were a couple of obscure ob-
servations about the way that light reacted with electricity, and the newly
discovered phenomenon of radioactivity. They were to prove precursors of
a cyclone.

Both in chemistry and physics, the really exciting area of research in
the second half of the 19th century, was into the structure of matter. Exper-
iments had finally confirmed that all substances were made up of atoms;
and that electricity was also carried by small particles (called electrons).
On a fine enough scale, all of nature seemed to be ‘grainy’. It seemed rea-
sonable that these electrons were a part of the atoms, and therefore elec-
tricity was a fundamental property of all matter. Because light was also
intimately connected with electrical effects, the source of all light waves
must be electrons oscillating inside atoms.

But just as matter and electricity was ‘grainy’, experiments seemed to
be pointing to the conclusion that energy was also. The first to realize this
was one of Helmholtz’s ex-students, Max Planck, in 1900. He proposed
calling these ‘grains’ of energy, quanta; from which the whole subject
came to be known as the quantum theory. Within five years, (in 1905, the
same year in which he published his work on relativity) Einstein showed
that Planck’s hypothesis would be perfectly understandable if it was as-
sumed that light were made up of particles (photons), just as Newton had
said. But this really created a paradox, because Young'’s results were still




