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The Perception of Natural Contour

David L. Gilden, Mark A. Schmuckler, and Keith Clayton

The observation that natural curves and surfaces are often fractal suggests that people may be
sensitive to their statistical properties. The perceptual protocols that underlie discrimination be-
tween fractals and between other types of random contour and fractals are examined. Discrimina-
tion algorithms that have precisely the same sensitivities as human observers are constructed.
These algorithms do not recognize the integrated scale hierarchy intrinsic to fractal form and
operate by imposing a metatheory of structure that is based on a signal-noise distinction. The
success of the algorithms implies that (a) self-affinity in random fractals is not perceptually recov-
ered and (b) people have a natural disposition to view contour in terms of signal and noise. The
authors propose that this disposition be understood as a principle of perceptual organization.

The environment that we live in has essentially two architec-
tural components: One is carpentered, designed, and built by
people; the other is everything else, the material form of nature.
If one observes carpentered structures with an unjaded eye, it is
difficult not to be struck by the smoothness of the surfaces and
the cleanness with which the lines are cut. Even the crudest and
least adorned structures have these properties. The things that
people make are at least minimally designed, and the primi-
tives of design are lines and planes. This is as true of primitive
structures and implements as it is of the things that are built
today. An inspection of natural structures reveals an entirely
different order. The boundaries that form natural surfaces and
contours are often not smooth. Natural form—landscapes,
mountain ranges, coastlines, stream paths, clouds, tree lines,
vegetation cover—is irregular and rough in appearance. The
apparent transparency of this observation belies the subtlety
that is required to fully appreciate its import. Geometric de-
scriptions of natural structures required the development of a
new set of elements that differ radically from those that com-
prise Euclidean geometry as well as new modes of analysis that
depart from the smoothness assumptions on which differential
geometry rests.

Real analysis, as developed by Cauchy, Weierstrass, and Bol-
zano, treats structures that have specific properties under mag-
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nification. The objects that fall within its purview are smooth
and regular when looked at with sufficient resolution. The
global structure is completely unconstrained, but the local
structure is smooth. This conception of structure pervaded the
historical development of the calculus. The idea of zooming in
on locally smooth neighborhoods and continuing to the limit is
what allowed the calculus to be founded on a rigorous method
of proof that was independent of the completed infinities that
characterized the first formulation by Leibniz. It is an empiri-
cal question whether the assumptions of real analysis provide a
useful point of departure for describing natural form, and it was
in direct response to an empirically motivated question that
directed attention to mathematical objects that are not smooth
under magnification. Fractal geometry found its first applica-
tion in the seemingly mundane analysis of the length of the
coastline of Britain (Mandelbrot, 1967).

A structural alternative to smoothness under magnification
is self-similarity under magnification. Self-similar contours
have the property that magnification brings into focus another
level of structure that is isomorphic to the global pattern from
which it emerged. This form of complexity is characterized by
an infinite nesting of structure on all scales, and there is no
convergence to a smooth limit on infinite refinement. Geomet-
ric objects that have this nesting property have been called
fractals, because it is possible to define a measure of dimension
on them that is nonintegral (Mandelbrot, 1983, and references
therein). One consequence of self-similar nesting is that fractals
may be continuous but nowhere differentiable. Consequently,
there is no differential geometry of fractals; there is no place on
a fractal where a derivative can be defined.

The primary application of fractal theory has been in discus-
sions of physical processes that are turbulent. The hydrodynam-
ical equations that describe geophysical change generally have
turbulent solutions (Tennekes & Lumley, 1983) because of the
high Reynolds numbers that characterize terrestrial gas and
fluid flows. Turbulence is not a particularly well understood
physical process, but it is generally conceived of in terms of an
energy flow that cascades down through a nested hierarchy of
fluid structures known as eddies. Energy is extracted from the
mean flow by eddies that have sizes on the order of the global
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flow dimension and is finally deposited by eddies on micro-
scopic scales through molecular viscosity. The range of sizes
that participate in turbulent flow can be on the order of 109.
Natural contours that are created by turbulent processes ex-
press their dynamical origin through fractal formations. Such
formations reflect the huge range of scales that are entrained by
turbulent flows and are natural simulations of an infinite recur-
sive process. It is in the domain of landscape geometry that
fractals have had their most celebrated application. The shapes
of clouds, coastlines, tree lines, and topography in general are
all fractal. This assertion has been verified by ecological sur-
veys of environmental form (Burrough, 1981; Keller, Crow-
nover, & Chen, 1987) as well as by computer simulations of
landscape features (Voss, 1985,1988).

There is a fundamental difference between objects of differ-
ential geometry and those envisioned by a fractal theory of
form. This difference essentially has to do with the way rough-
ness is regarded; that is, is it an intrinsic part of the object or
something extra that has been added on? The classical view of
object structure is expressed by the latter proposition, that
roughness is a surface phenomenon that does not penetrate into
the form that constitutes the object per se. The objects of classi-
cal analysis are composed of compact differentiable manifolds,
smooth curves or surfaces that include their boundaries. In this
view, natural contours consist of a superficial coating of texture
or irregularity that is attached to a compact underlying struc-
ture.

This understanding is implicit in formal theories of vision.
The pervading influence of differential geometry has guided
inquiry in virtually every aspect of formal modeling, including
that of image segmentation, object parsing, shape from shad-
ing, depth, and motion. (Examples of computational theory in
this domain are found in Barrow & Tenenbaum, 1986; Bieder-
man, 1987; Carlton & Shepard, 1990; Hoffman & Richards,
1984, 1988; Koenderink & van Doom, 1988; Richards, Daw-
son, & Whittington, 1988; Richards, Koenderink, & Hoffman,
1988.) The tacit conception of structure that underlies compu-
tational theories of vision is that the global structure can be
treated separately from local irregularity. The global structure is
presumed to have the necessary feature of smoothness under
magnification, whereas the properties of the local structure are
of secondary interest and are not explicitly considered in theo-
retical models. Within this phenomenology, roughness is re-
garded as a noise that does not add anything coherent to the
object; it simply acts as a mask. It is, epistemically, on top of the
object, a cloak that surrounds an underlying smooth form.

In this article we contrast these two conceptions of structure
in an inquiry that examines how roughness is perceived to be
embedded in natural form. An inquiry of this type makes con-
tact with basic issues in epistemology and metaphysics. What
distinguishes this work from pure phenomenology is that we
contrast mathematical and physical understandings of struc-
ture with perceptual understandings that are revealed in a labo-
ratory setting. The difficult part of this investigation is, of
course, gaining access to the intensional aspects of perception.
The tool that we use to infer subjective understanding is numer-
ical simulation. Discrimination sensitivities in three studies of
the perception of rough contour are modeled by explicit algo-
rithms. A particular class of algorithms are developed that have

exactly the same sensitivities to structure as human observers.
The instruction set that characterizes these algorithms provide
a sufficient account of how natural contour is perceived.

The Phenomenology of Roughness

Analytic work in perceptual theory treats natural objects as
having a two-part structure: an intrinsic core that is smooth and
differentiable, which is supplemented by added-on roughness.
This split is not only a structural distinction, it is a distinction
in value as well. The added-on part has reduced value by virtue
of its status as being extra, that is, independent of the defining
core. This bipartite understanding of object structure must not
be regarded as necessitated by physical theory. In fact, theories
based on fractals do not make this type of structural distinc-
tion. Rather, the partitioning of object structure into an intrin-
sic component and an added-on component reflects prior con-
ceptual commitments that reveal how people think about struc-
ture.

The following equation captures the splitting of structure
into two components:

phenomenal object = signal + noise.

This equation is to be understood as part of a metatheory of
object structure and not as an equation of physics nor as an
equation that is motivated by a compelling theory of natural
structure. This is, however, a familiar equation, and it is particu-
larly important in statistical and psychophysical theory. Appre-
ciating its utility in these contexts will clarify to a large extent
the way in which this type of thinking becomes generalized.
Distinguishing between these object components is more easily
done in practice than in principle. To develop a robust distinc-
tion between signal and noise, as well as to develop a language
that will allow contact to be made with fractal structures, we
articulate the difference in terms of their respective transfor-
mational properties. The following examples show how this
can be done.

Two contexts in which this equation explicitly appears are
data analysis and auditory and visual masking. In theories of
data modeling, such as the general linear model, an observed
datum is related to some underlying structure through the fol-
lowing equation, y0^ = y0 + e, where yobs is the observed value
and y0 is the underlying structure that would have been ob-
served in the absence of error, e. y0 is the signal that one at-
tempts to deduce through the logic of hypothesis testing and
the imposition of an experimental design. What makes y0 some-
thing that can be distinguished from the observation is that it
represents a natural kind, something that exists in nature that
structures the outcomes of experiments. It attains its value as a
signal by virtue of its invariance in the transformation that
consists of forming the ensemble of possible experiments. The
noise, however, is not invariant and is conceived to vary across
samples.

This notion of invariance also serves to distinguish signal
from noise in masking paradigms. Consider a pure tone that is
masked by noise. What uniquely identifies the tone as a signal
against the noise background is the invariance of the tone in
time. Successive time slices of the stimulus yield an ensemble
that consists of two parts: discrete samples of a sinusoid super-
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imposed on random fluctuations. The tone component is in-
variant in the sense that the slices sample a single coherent
object, that is, a normal mode of a vibrating system. The noise
component, however, is not an invariant quantity because slices
through it sample the distribution of a stochastic variable.

In spatial masking, the signal is an underlying shape. The
notion of shape has been extremely resistant to definition (see
Blum, 1973, for one attempt) and an attempt at definition will
not be made here. In this article we proceed informally and
consider what is entailed by the breaking of camouflage. For a
figure to be perceivable in the presence of overlapping con-
tours, it is necessary that some set of contours be perceptually
organized into a coherent form. The complement of this set,
although not devoid of perceptual organization, is not treated
as a figure. Let us consider these two sets in terms of their
equivalence classes. The set of contours that are organized into
a form belong to an equivalence class that contains just that
form; the form uniquely specifies the class. The other contours
belong to an equivalence class that consists of all random spa-
tial permutations; because the left-over contours do not make a
coherent form, they could in principle be located anywhere in
the image. Together these equivalence classes form an ensemble
of images. Each member of the ensemble is composed of the
form together with a selection from the set of random contours.
Within this ensemble, the contours specifying form are invari-
ant, whereas the other contours are not. In this way, spatial
masking is placed on the same footing as data structures, with
the only difference being that in the latter case the ensemble is
generated by equivalent measurements, whereas in the former
case the ensemble is generated by equivalent images.

The treatment that we have given here of two-part object
structure expresses the tacit understanding that grounds classi-
cal theories of object structure. These theories are predicated
on the notion of ensemble invariance of meaningful structure.
This notion and the entailed conception of noise as coinciden-
tal make sense ecologically if we consider what is required in
target finding. Often it is the case that noise is not an intrinsic
component of the target and must be penetrated for object rec-
ognition. In natural environments, the camouflage that hides
an animal is composed of whatever the animal happens to be
next to, and this changes stochastically as a function of posi-
tion. The animal is truly the invariant quantity in the ensemble
of possible positions. In such circumstances, it makes sense to
treat the underlying form as really being independent of the
surrounding noise, and a visual system that attempted to do
otherwise would be impaired. However, spatial noise need not
be understood as comprising the variant component in an en-
semble, and, in particular, this conception of noise is not appro-
priate for describing natural form.

Fractal conceptions of structure are not founded on a meta-
theory where the rough appearance of objects is secondary to
their intrinsic form. In a fractal metatheory, roughness is not a
surface property that coats ideal differentiable forms; it is not a
layer to be penetrated. Natural contours are to be conceived as
nothing but roughness. In a fractal description of contour, there
is no platform, no underlying form. Bipartite object structure is
replaced by a structural hierarchy. Fractal contours exist only as
recursive structures that reiterate roughness throughout all
scales.

The self-similarity that is key to fractal structure is a form of
invariance. A class of fractals, which we will refer to here as
deterministic fractals, are explicitly constructed to have the
property that the global structure is reiterated on all scales; they
have shape invariance under magnification. There are several
approaches to constructing deterministic fractals, and all are
algorithmic. One class of algorithms uses a base and generator.
The fractal is recursively constructed by operating on the base
with the generator, then operating on the result, and so on. An
example of base-generator recursion is the Koch snowflake,
shown in Figure 1 at the third level of recursion. The base of the
snowflake is a single line segment, and the generator consists of
removing the middle third from each straight line segment and
replacing it with two segments that would form the sides of an
equilateral triangle. A second class of algorithms uses iterated
contractive mappings. These algorithms, known as iterated
function systems (IPS; Barnsley, 1988a, 1988b), generate frac-
tals as the attracting sets of dissipative dynamical systems. IFS
have the generic property of dynamical systems that, even
though they are deterministic, their solutions may be chaotic
and therefore unpredictable. This feature gives IFS the ability
to render a variety of natural shapes and textures using fractal
descriptions. Note that, although it is possible to define the
procedure for constructing a deterministic fractal, there is no
formula for the contour that is generated in the limit of the
completed infinity of iterations. Yet, by the nature of the con-
struction, deterministic fractals are self-similar and invariant
under magnification.

In addition to deterministic fractals, there are fractals that
are intrinsically random. Random fractals are distinguished
from the chaotic attractors of IFS by incorporating stochastic
elements in their construction. The algorithms for random
fractals are nondeterministic in the sense that random numbers
are selected as part of the generation process. Terrestrial struc-
tures are typically modeled using random fractals (Mandel-
brot, 1983; Pentland, 1986; Voss, 1985,1988) because they natu-
rally capture the roughness of landscape features. Random
fractals generalize the notion of scaling invariance in two ways:
(a) The invariants are statistical properties of the contours as
opposed to specific pattern designs, and (b) self-similarity is
replaced by a less restrictive invariance, namely, self-affinity.

Fractional Brownian Motion

A particular class of random fractals that have been used
extensively in modeling natural contours are known as frac-
tional Brownian motions (Feder, 1988; Saupe, 1988). Fractional

Figure 1. The Koch snowflake is an example of a recursive determin-
istic fractal. (It is depicted here at a recursive depth of three iterations.)
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Brownian motion is a generalization of Brownian motion, and
the simplest way to introduce this family is in terms of a general-
ized random walk. Random walks in statistical mechanics
arise from considering the paths of particles as they are buf-
feted by collisions in a diffusion process (e.g., photons in radia-
tive diffusion and molecules or atoms in diffusion driven by a
concentration gradient). The erratic meandering of a diffusing
particle is referred to as Brownian motion, and the path gener-
ated is a random walk with independent increments. To make
contact with fractal contour, we consider random walks in one
dimension. Consider, then, the time history of a particle's posi-
tion as it diffuses in one dimension. An example of such a
history is shown in Panel A of Figure 2. This graph, within the
limits of plotting resolution, is a fractal contour.

In a classical random walk of the type that has been de-
scribed, the particle position at any given time is highly corre-
lated with where it has been in the past. The positional correla-
tion decreases with increasing look-back time. The presence of
an overall trend in Panel A, Figure 2 is the graphical evidence of
correlation. Each step in a random walk is, however, statisti-
cally independent. A diffusing particle is as likely to be pro-
pelled forward as it is backward in any given collision. It is at
this level of analysis that Brownian motion is generalized. Math-
ematically, it is possible to construct motions in which succes-
sive increments are negatively correlated (i.e., opposite sign) or
positively correlated (i.e., same sign). Examples of these types of
contours are shown respectively in Panels B and C. These mo-
tions are also fractals; they differ only in their fractal dimen-
sion. The amount of correlation that exists between successive
increments is a parameter that can be smoothly adjusted and
this leads to a continuous family of random fractals.

The type of invariance that fractional Brownian motions sat-
isfy is revealed by considering the power spectra of their time
histories. The power spectra of motions in this family is given
by P(f) = f~*, where /is the spatial frequency, and /8 is the
power law exponent that determines the nature of the fractal.

For (3 > 2, successive increments are positively correlated, and
for 0 < 2 they are negatively correlated. /? = 2 generates contours
that are classical random walks. The fractal dimension of frac-
tional Brownian motions is given for 1 < /3 < 3 by

D = E
3-0

where D is the fractal dimension, and E is the topological di-
mension; E = 1 for curves, and E = 2 for surfaces. Computer
modeling of landscapes (Voss, 1985,1988) and ecological inven-
tories (Keller et al., 1987) indicate that natural formations typi-
cally have power law exponents near ft = 2.

Power laws have affine symmetry in the following sense. A
transformation on a fractal contour of the type /-*• of can be
offset by a transformation on the amplitude (i.e., thesquare root
of the power spectrum) by A(f) -*• o^'^A(f). This type of invar-
iance is distinguished from self-similarity in that the statistical
structure of the contour is not invariant under magnification
until the amplitude has been adjusted. An example will clarify
this difference. Suppose that pictures are taken of a tree line
with variable settings of a zoom lens as was done in the Keller et
al. (1987) study. Zooming in has the effect of multiplying all the
spatial frequencies by some constant number a < 1; structures
that were small (i.e., high spatial frequency) now appear large
(i.e., low spatial frequency). The transformation in apparent size
can be eliminated, if the tree line is truly fractal, by a vertical
stretching or compression. This is the amplitude transforma-
tion.

The trade-off between frequency and amplitude will not
work if there is some nonfractal feature that appears in one of
the photographs. Suppose that individual trees are resolved
when the scene is magnified. This fine scale structure will not
disappear by an adjustment of vertical scale, and it will be
possible to discriminate the two photographs on this basis. Sim-
ilarly, if the overall extent of the stand is revealed by zooming

D Increments

1.5 independent

2.0 anticorrelated

1.0 correlated

Figure 2. Three fractional Brownian motions. (Panel A shows a classical random walk composed of
independent increments. Its power spectrum is a power law with exponent 0 = 2. It has a fractal dimension
of 1.5. Pane! B depicts a random walk with anticorrelated successive increments. Its power law exponent is
unity, and contours of this type are referred to as I//noise. It has the maximum fractal dimension of 2.
Panel C shows a random walk composed of correlated successive increments. It is quite smooth and has a
steep power law with an exponent of three. It has a fractal dimension equal to its topological dimension.)
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out, no transformation on the amplitude spectrum can elimi-
nate this feature. In this sense, tree lines and all landscape
forms are fractal only within certain scales of size.

Nonfractal features generally impose a signature in the power
spectrum that is not self-affine. Figure 3 illustrates how this
occurs. Panel A shows a power spectrum that is a pure power
law in the log(frequency), log(power) plane. A global change of
scale induces a multiplicative transformation on the frequency
with the result that the entire spectrum shifts horizontally. This
horizontal shift can be offset by a vertical shift—a multiplica-
tive transformation on the amplitude or spectral power. The
combined action of shifts in both amplitude and scale lays the
original spectrum precisely down onto the transformed spec-
trum. This is self-affinity. Now suppose that there is some fea-
ture in the power spectrum that deviates from the power law.
This is shown in Panel B as increased power at some frequency.
Horizontal and vertical shifts move the feature to a new fre-
quency, providing a basis for discrimination.

Figure 3 also clarifies what kind of objects natural fractals
are. Theories of object recognition (see Biederman, 1987, for an
example) generally treat the case in Panel B in which there is
some feature that stands out. Spectral analysis of the shapes of
everyday objects would reveal a multitude of nonfractal signa-
tures that would be associated with the existence of the various
parts that together compose the object. Self-affine contours,
however, do not have parts in this sense. There is no sense in
which a piece of the contour can be isolated and analyzed sepa-
rately. All pieces of the contour are essentially equivalent in
containing the same hierarchy of structure. What makes a con-
tour a fractal is the way all the scales are linked together. What
makes a contour fractal is that all scales embed and are them-
selves embedded in a hierarchy.

The idea that objects have parts is a metatheoretical notion
that is allied to the notion of bipartite structure. The signal-
noise distinction is, after all, fundamentally a separation into
parts. Now, natural contours do not mathematically fit into this
metatheory of structure by virtue of not having parts. They are
not decomposable into anything more primitive. The underly-
ing form of a fractional Brownian motion is, perhaps, best
thought of negatively; it is something that does not decompose.

Experiments in the Discrimination of Rough Contour

Overview to the Studies

That the environment is teeming with fractal structure does
not mean that people are sensitive to the information implicit

log frequency log frequency

Figure 3. Double shift transformations illustrate why power spectra
are self-affine. (Any deviation from a power law, as in Panel B, creates a
feature in the power spectrum that is not invariant under a horizontal
and vertical shift.)

in a hierarchy of structure. A visual system that operates in
terms of a bipartite metatheory of structure may still be able to
distinguish between fractal structures in certain regimes of
correlation. From an ecological point of view, it makes little
difference how information is processed so long as the animal
is informed. Ramachadran (1990) has articulated this observa-
tion in terms of perception as being a "bag of tricks." In the case
of fractal structure, however, the nature of processing is of inter-
est in itself. Fractals have a definite and delineated structure
that permits a focused inquiry into the concordance between
distal hierarchies and perceptual logic.

We have attempted to distill how fractional Brownian mo-
tions are perceived as exemplars of natural forms in three ex-
periments. In Experiment 1, fractals were discriminated from
other fractals. Discrimination sensitivity for fractional Brow-
nian motions was assessed as a function of the power law expo-
nent, /3. In Experiments 2 and 3, subjects discriminated fractals
from other types of rough contour that were not self-affine. The
non-self-affine contours were parametrically related to frac-
tional Brownian motions, allowing /3 to serve again as an inde-
pendent variable.

The experimental work that we present here must be placed
into context with the theoretical ideas that motivate this in-
quiry. First, we use stimuli that are abstract representations of
natural form. Inferences from our discrimination studies about
the perception of natural contour are allowable only to the ex-
tent that fractional Brownian motions cover the set of contours
that occur in nature. Ecological studies (Burrough, 1981; Keller
et al., 1987; Voss, 1985,1988) provide evidence that this infer-
ence can be made. Second, the theoretical points that we wish
to make are quite general, whereas the experimental work is
quite specific. This incongruity is inherent to the task we have
set for ourselves; it is necessary to conduct highly constrained
experiments to collect data that are interpretable. What permits
generalization from the empirical work to statements about
process are the numerical simulations. The simulation tech-
nique that we present is extremely powerful, and it is by virtue
of the clarity that simulation imposes that we are able to estab-
lish general claims concerning the processing of contour infor-
mation.

Previous psychophysical studies in the perception of fractals
have focused on establishing a correlation between some distal
aspect of fractal structure and the perception of that structure.
Early studies demonstrated that perceived roughness or com-
plexity is correlated with the fractal dimension. Pentland (1986)
showed that estimates of the roughness of 2D drawings of frac-
tional Brownian surfaces were highly correlated (r = .98) with
the distal roughness (i.e., fractal dimension) that the drawings
represented. In related work, Cutting and Garvin (1987) found
that complexity ratings of iterated geometric fractals were ex-
plained by both fractal dimension (r = .68) and generation char-
acteristics such as recursive depth (r = .86) and the number of
segments displayed (r = .47).

Knill, Field, and Kersten (1990) performed a correlational
study that is relevant to the work described here. They pre-
sented subjects with 2D, rasterized images in a discrimination
paradigm. The graininess of the images determined the rough-
ness or fractal dimension. It was found that people's ability to
discriminate between fractal images was a function of how
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rough the images were, and the sensitivity curves correlated
quite well with the frequency with which surfaces of a given
fractal dimension appear in nature. Most terrain surfaces have
fractal dimension on the order of 2.5, and it was found that
discrimination sensitivity for images with this dimension was
maximal. Knill et al. also attempted to suggest how discrimina-
tion might be accomplished by human observers. Their model
was based on band-pass filtration, which is similar in many
respects to the models we develop later. However, it is clear
from inspection of the relevant figures that Knill et al. were
largely unsuccessful in characterizing the processes mediating
discrimination; the theoretical curves do not bear even a faint
resemblance to the empirical discrimination functions.

Stimulus Construction and Methodology

The three experiments described in this article have a com-
mon methodology and logic in the construction of the stimuli.
In all of the experiments, subjects made a same-different judg-
ment on the presentation of two contours. Same in this context
meant that the two contours came from the same family. What
constituted a family depended on the experiment. The families
are shown heuristically in Figure 4 in terms of their spectra in
the log(power), log(frequency) plane. In Experiment 1 the two
families were both self-amne fractional Brownian motions
(fBms) and were distinguished by the power law exponent (ft).
In Experiments 2 and 3, fBms were compared with hybrid con-
tours that had a break in the power spectrum. Hybrids were
formed by smoothly joining two power laws at the geometric
mean of the frequency range. In Experiment 2, fBms were
compared with hybrids that had a larger power law exponent for
low spatial frequencies and the same exponent for high spatial
frequencies. In Experiment 3, the construction of the hybrids
was reversed: larger exponent for high spatial frequencies, the
same exponent for low spatial frequencies. Examples of the
contours and the sense in which they were paired in the respec-
tive experiments are shown in Figure 5.

Individual contours were created by assigning a random
phase to each frequency component and computing the inverse
Fourier transform. For the total range of excursion to be elimi-
nated as a cue for discrimination, all contours were normalized
to the same range. This normalization has the consequence of
effectively randomizing the absolute power at any given fre-
quency across contours within a given family. The only consis-

Experiment 1 Experiment 2 Experiment 3

log frequency log frequency log frequency

Figure 4. The stimuli used in Experiments 1,2, and 3 are most clearly
distinguished by their power spectra. (Fractals were discriminated in
Experiment 1. In Experiments 2 and 3, fractals were discriminated
from hybrids that were composed of two power laws.)

power law exponent ()3)
low v high v

1.2 1.6 /v*^V/HynVv
1.6 1.2

1.2 1.2

1.6 1.6

Figure 5. Exemplars of the stimuli used in discrimination Experi-
ments 1, 2, and 3. (The lines connecting the contours illustrate the
comparisons that distinguished the experiments.)

tent features within a family of normalized contours are the
power law exponents.

In Experiment 1, 14 fBm families were created by spectral
synthesis in the range 0 < ft < 3.9, where the /cth family had an
exponent & = 0.3 (k - 1), k = 1, 2, 3, . . . , 14. Each family
consisted of 200 exemplars of fBms with power law exponent ft,
and each contour consisted of 256 random numbers. All noises
were scaled to the same range. The noises subtended vertically
10.F and horizontally 14.0° at a viewing distance of 49 cm. A
block of trials consisted of showing all 200 exemplars from two
adjacent ft families. On a given trial a pair of contours would be
displayed. Pairs were presented simultaneously and were spa-
tially adjacent. Four contour pairings were used: (ftk, ftk), (ftk-s,
AtX (ft, An), and (ftk-i, fti-i)- The subject's task was to respond
same if they thought that the pair came from the same ft family
and to respond different otherwise. There were 100 same pairs
and 100 different pairs in each comparison block. Presentation
of the pairs was random. An example of the three different
types of pairings (two same types, one different type) is shown
in Figure 6 for ft = 2.1 and ft = 2.4. The proportion of correct
and incorrect different responses was used to compute the area
under the receiver operator characteristic (ROC) curve. This

2.1 2.1

Figure 6. Examples of the three types of trials that occur in Experi-
ment 1. (Depicted are fractional Brownian motions with ,3=2.1 and 0
= 2.4. The 0=2 .1 motions are slightly rougher and have greater point-
to-point fluctuation than do the /3 = 2.4 motions. The correct response
was same for trials illustrated by the top and bottom panels, and differ-
ent for trials illustrated by the middle panel.)
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area was computed by calculating d' from the number of hits
and false alarms (treating a correct response of different as a hit)
and then inverting the cumulative Gaussian (Falmagne, 1986).
The areas under the ROC curve in each of the 13 family compar-
isons constitute the data for this experiment.

Pilot experiments in discriminating fBms from contours
with breaks in the power spectrum revealed that this was a
more difficult task than discriminating two fBms. Recall that
the power law exponents for these stimuli were equated on one
side of the break point, ./break. To make the task in Experiments
2 and 3 more tractable, we increased the exponent separation
from 0.3 to 0.4. Thus, in Experiment 2, there were 10 fBm
families with power law exponents ft = OA(k - \), k = 1,2,3,
. . . . 10. The nonself-amne contours in this experiment had
these exponents for frequencies /> /break and exponents ft +
0.4 for /'< ./break. The four contour pairings used in each block
were of the form (ft, ft), (ft, ft + 0.4), (ft + 0.4, ft), and (ft +
0.4, ft + 0.4), where the pairings here refer only to the power
law exponent for /< /bre.ak; both contours had the same power
law exponent, ft, for /> ./brcak. In Experiment 3, the formal
construction was the same except that the pairings now refer to
frequencies /> ./break, and where the contours were equated on
ft for /< ,/J,reak. In all other respects, the design of the experi-
ments and the presentation of the stimuli were the same.

The procedure for the three experiments consisted of a train-
ing period in which the subjects became familiar with the stim-
uli and the sense in which random contours could belong to the
same family without appearing identical on a point-to-point
basis. This task is intuitive, and subjects took only a few minutes
of practice before they understood what was required of them.
Feedback was given on each trial. ThenumberofsubjectswasS,
5. and 5 in Experiments 1, 2, and 3, respectively.
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Figure 7. The discrimination data for Experiments 1, 2. and 3 as a
function of the mean power law exponent (/3) of the fractional Brow-
nian motions in each family comparison. (The measure of discrimina-
tion used here is area under the receiver operator characteristic [ROC ]
curve. An area equal to 0.5 corresponds to chance guessing, whereas an
area equal to 1.0 implies perfect discrimination. Also shown is the
region in power law exponent that corresponds to fractals encountered
in nature. Error bars depict the standard error.)

horizontal extent as in the original experiment. In this experi-
ment all 13 comparison blocks were repeated twice for both
large and small displays. The results of this study, averaged over
subjects, are plotted in Figure 8. The two curves illustrate the

Discrimination Sensitivity for Rough Contour

In Figure 7 the results of the three experiments are shown. On
the abscissa is the mean power law exponent fora family com-
parison. So, for example, if a block of trials in Experiment 1
compared fBms with /3 = 2.4 and /3 = 2.7, the data point is
plotted at ft = 2.55. Sensitivity is measured on the ordinate as
the area under the ROC curve. The discrimination profiles for
all three experiments are inverted U-shaped curves with max-
ima in the region of power law exponent 1.5 < 0 < 2.5. Other
studies of fractal discrimination are consistent with the results
from Experiment 1 (Knill et al., 1990). In particular, the finding
that maximum discrimination sensitivity occurs near /3 = 2
appears to generalize across different methodologies and stimu-
lus appearance.

We were concerned that the discrimination profiles may not
have reflected observer's sensitivity to /?, the power law expo-
nent used in the construction of the fBms and non-self-afnne
contours, but rather to some artifact in the way the contours
were presented. For example, the power spectrum of each con-
tour is determined not only by its exponent but also by a multi-
plicative constant, which sets the absolute amplitudes. To assess
the role of this multiplicative constant, we repeated Experi-
ment 1 with three new subjects using a larger stimulus display
(roughly twice as large) that had vertical height subtending 19.6°
at a viewing distance of 49 cm while maintaining the same
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FigureS. The mean discrimination curves for three subjects viewing
fractals subtending vertically 10.1° and horizontally 14.0° (small) and
subtending vertically 19.6° and horizontally 14.0° (large). (Stimulus
size does not influence the shape of the sensitivity profile and has only
a marginal influence on absolute discrimination. ROC = receiver oper-
ator characteristic.)
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discrimination accuracy for large and small displays of fractals
and are shown in the same format as Figure 7. The main effect
of stimulus size was quite small in magnitude; the average dif-
ference was .038 but was significant, F(l, 2) = 19.77, p < .047.
The size by exponent interaction was not significant, F(12, 24)
= 0.93, p < .54. It is evident from these data that the shape of the
sensitivity function is invariant under transformations of stimu-
lus size and that size has only a marginal effect on absolute
discriminability.

An issue that has arisen in the discrimination of fractal tex-
ture (Knill et al., 1990) is whether sensitivity is correlated with
environmental frequency. As mentioned earlier, landscapes,
have fractal forms that are typically characterized by 0 = 2,
random walks with independent increments (Burrough, 1981;
Keller et al, 1987; Sayles & Thomas, 1978a, 1978b; Voss, 1985,
1988). It turns out that discrimination sensitivity is also maxi-
mal at power law exponents near j3 = 2. In Figure 7 we have also
indicated the range in /? characteristic of topography. This
range should be compared only with the results of Experiment 1
in which only fractals were discriminated. Knill et al. inter-
preted the agreement between maxima in frequency of environ-
mental occurrence and sensitivity as evidence that perception is
efficient; resources are allocated so as to be able to distinguish
those structures that are likely to be met in nature. As a state-
ment limited to a summary of the data, it is true that perception
is efficient. However, the implication is that perception is effi-
cient because perception has been tutored by natural form. The
data suggest such an interpretation and we have also been
tempted by it (Gilden & Schmuckler, 1989). However, this
agreement is at best correlational, and there may be other con-
straints that lead to U-shaped fractal discrimination functions
that peak near ,8 = 2. An alternative interpretation of this agree-
ment is that the shape of the discrimination curve is not pro-
duced by environmental training but rather is a reflection of
the particular logic that is used in discrimination. This logic
may be quite general and subsume fractal discrimination as a
specific case. The idea here is that perception may have its own
protocols; these protocols exist for reasons unrelated to the oc-
currence of fractal structure, and it is primarily coincidence
that leads to the agreement between environmental frequency
and discrimination sensitivity. Note that a discrimination pro-
cess that fails for extremely rough contours (i.e., small 0) and
extremely smooth contours (i.e., large /3) will naturally generate
an inverted U-shaped discrimination profile as a function of 13.
The correlation that exists is limited to the observation that the
top of the inverted U is near the center of the (3 range where
environmental fractals are encountered. Both the maximum of
the discrimination profile and the range of fractal occurrence
are ill defined and the stated correlation is a weak result. In
what follows, we attempt to determine if there is, in fact, a logic
of discrimination.

Theory of Rough Contour Discrimination

The primary goal of this article is to produce a definite
theory of how rough contours are discriminated. There are sev-
eral distinct problems that must be considered: How is rough
contour organized in perception, what aspects of contour serve
as a basis for discrimination, and what kind of metric associates

difference in fractal dimension with perceived difference.
These sorts of questions require the construction of explicit
models of discrimination. The models contemplated here con-
sist of algorithmic instructions that serve as mathematical solu-
tions to the problems of organization, discrimination criteria,
and metric. In establishing criteria for agreement with the data
to be simulated, we adopt a conservative approach and shall
require models to actually reproduce the exact shapes and am-
plitudes of the discrimination profiles. The task of replicating
data through simulation is much more demanding than estab-
lishing correlation with data (e.g., as in Knill et al, 1990). As we
show later, replication places severe constraints on admissible
algorithms.

A central issue in these studies is whether people perceive the
fractal properties of fractals. There are a number of ways of
framing this issue. Is the roughness of fractal contour perceived
in terms of a scaling hierarchy? Is self-affinity a perceptible
transformational invariant? Is discrimination based on an
awareness of fractal dimension? We know from earlier studies
(Cutting & Garvin, 1987; Pentland, 1986) that people can rank
order random fractals in terms of their fractal dimension, and
this suggests that fractal structure may be manifest. This propo-
sition may be tested by the construction of explicit models of
discrimination. Now there is no sampling distribution of mod-
els; models come from insight, and it is necessary to develop
some ideas about how fractals are perceived and what aspects of
fractal contour are used in discrimination. The idea that frac-
tals are perceived in terms of a hierarchy of structure and that
discrimination is based on fractal dimension is only one model.

Ways of Looking at Rough Contour

We begin by simply looking at some fractals. Consider the
fractals illustrated in Figure 2. These contours were con-
structed to be self-affine up to the limits of resolution permit-
ted by the graphical interface and the finiteness of the random
number sequence. Even within these limitations, the contours
are self-affine over several orders of magnitude in resolvable
scale. There is nothing in principle that prevents some portion
of the hierarchy from being perceived. Yet the dominant im-
pression that one derives from inspecting these contours, an
impression congruent with the reports of subjects, is that they
are composed of two parts: a smooth trend that supports rough
oscillations. This impression is tacitly founded on a signal-
noise bipartite decomposition, and, though informally derived,
it is not trivial. It suggests that visual understanding of rough
contour is based on a perceptual splitting. Within this way of
looking at contour, fractals are perceptually differentiated by
the variations in the smooth and rough components.

Rough contours may also be analyzed in terms of a complete
decomposition into individual increments. There are several
measures defined on the increments that distinguish fractals
from one another. One measure that has been mentioned previ-
ously as a formal index of contour structure is the interincre-
ment correlation. Contours with positive increment correlation
are smoother than contours with negative correlation. A related
property of the increments is the width of their distribution.
The distributions may be inferred from Figure 2; one of the
features that distinguishes ft = 1 from /3 = 3 fBms is that the
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former has increments of all sizes, whereas the latter has incre-
ments only within a restricted range of size.

These ideas can serve as a basis for formulating models of
discrimination. This task is best served by considering the dis-
crimination problem in the respective experiments using con-
tours widely separated in power law exponent, ft. In Figure 9 we
show how self-afnne and non-self-affine contours constructed
from 0 = 1 and ft = 1 power laws appear when decomposed into
smooth and rough components. The contours are distinguished
in this figure by the slope of the power law at low and high
spatial frequencies, v. fBms (Columns 1 and 2) have the same
power law at all frequencies, whereas the hybrids (Columns 3
and 4) are formed by joining two power laws at the geometric
mean frequency. The lines connecting the boxes illustrate the
comparisons that were made in the respective experiments.
The top contours are stimuli representative of the types used in
the experiments, the middle contours are smooth approxima-
tions, and the bottom contours are the rough components com-
puted as contour minus smooth.

The smooth-rough decomposition displayed in Figure 9 was
computed using the smoothing algorithm suggested by Press,
Flannery, Teukolsky, and Vetterling (1986), which applies a
Gaussian window in the Fourier transform domain. Other
smoothing algorithms could have been used, but they are all
essentially identical to band-pass filtering in the Fourier do-
main. For example, smoothing may be achieved through con-
volution in which a set of adjacent points are averaged with
variable weights. Convolution in the spatial domain is equiva-
lent to multiplying by a window in the Fourier domain. If the

power law exponent ((3)
low v/high v

1/1 2/2 2/1 1/2

Experiment

Figure 9. Examples of self-affine contours and hybrid contours com-
posed of two power laws. (Also shown are smooth and rough extrac-
tions. Numbers across the top refer to the power law exponent at low
and high spatial frequencies. The lines connecting the panels illustrate
the sorts of comparisons that were made in Experiments 1 , 2, and 3. We
depict contours with a wide spacing in power law exponent to highlight
the information that could be used in discrimination.)

weights decrease with increasing distance from the center of
the smoothing window, then the window in the Fourier domain
can be approximated by a Gaussian.

The Press et al. (1986) algorithm accepts one parameter that
determines how faithfully the original contour is reproduced by
the smooth approximation. This parameter is roughly the num-
ber of adjacent points that are averaged together and is formally
the full width of the convolving Gaussian. The full width enters
as a degree of freedom in all theoretical models that are based
on smooth-rough decomposition; models based on increment
analysis do not have any free parameters. Full widths of approxi-
mately 25 points produced the best fits to data, and it is this
value that is illustrated in Figure 9. In practice we found that
simulated discrimination sensitivities were slowly varying func-
tions of the Gaussian full width. Perturbation of the full width
by as much as 25% produced little effect in simulated discrimi-
nation. In the simulations presented later the exact value of the
full width parameter plays a minor role. Models that are re-
jected did not provide adequate fits to data for any value of the
full width.

We consider the problem of feature extraction separately in
the three experiments. The task of identifying information that
is both available and accessible for discriminating fBms, the
task in Experiment 1, is informed by comparing the fractal ft = 1
and 0=2 contours depicted in Columns 1 and 2 of Figure 9.
These contours are easily distinguished on the basis of several
different but related characteristics. Consider first the incre-
ment distributions. The ft = 1 distribution contains mostly
small increments, whereas the ft = 1 distribution is more uni-
form. This relationship holds in general. The standard devia-
tion of the increment distribution decreases monotonically
with power law exponent as illustrated in Panel A of Figure 10.
For contours that are normalized to the same total vertical
range, small increments are associated with smooth profiles
and positive increment correlation, whereas large increments
are associated with spiky profiles and negative correlation. The
linkage between distribution width and increment correlation
is illustrated in Panel B by the increasing monotonic trend of
increment correlation with ft. Monotonicity in both functions
suggests that either the distribution width or the two-point in-
crement correlation may provide an adequate measure for the
purposes of discrimination.

There is further information in the rough and smooth extrac-
tions from a bipartite decomposition. Most salient is the differ-
ences in range. Treating range as an operator on the contour, we
have two manifest relations:

range(smooth, j3 = 1) < range(smooth, ft = 2),

range(rough, ft = 1) > range(rough, ft = 2).

These inequalities express an important and perceptually
transparent property of fractal contour; overall trend increas-
ingly dominates point-to-point fluctuation with increasing ft.
Either or both of the inequalities may be capitalized on in dis-
crimination. The general relationship between the respective
ranges and ft is illustrated in Panel A of Figure 11.

There is a second operator that may be defined on the
smooth and rough extractions that is motivated by a signal pro-
cessing approach to the measurement of fractal parameters
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tour variation and power law exponent, /3. (Panel A shows the relation-
ship between (3 and the standard deviation of the distribution of incre-
ments. Panel B shows the relationship between ,8 and the correlation
between successive increments.)

(Pentland, 1986). This approach uses several formal construc-
tions based on Fourier analysis to separate out the power spec-
trum. The contour is first band-pass filtered at all scales. The
outputs of these filters are squared and spatially averaged to
yield estimates of the local band-pass spectral power (i.e., Parse-
val's Theorem). A regression of log power versus log spatial
frequency (i.e., spatial scale) yields a slope that is a direct esti-
mate of the power law exponent, ft of the fBm. The fractal
dimension is also estimated by this construction because it is
related to ft by a linear transformation for 1 < ft < 3.

This procedure requires only slight modification to define an
operator that is less oriented to machine vision and is more
psychologically plausible. Band-pass filtering will be presumed
to be coarse and limited to smooth-rough decomposition.
Coarse filtering removes the need for a regression analysis. The
modified procedure also consists of three steps. First, the frac-
tal contour is decomposed into smooth and rough components
by low- and high-pass filtration, respectively. The Fourier
power in each of the two components is then estimated from
Parseval's Theorem. Panel B of Figure 11 shows how the rough
and smooth amplitude spectra vary with ft The power law expo-
nent, ft is itself estimated from the difference between log
power(smooth) and log power(rough). Over a wide range of ft

this difference, denoted as A log band-pass power, is linearly
related to ft This is shown in Panel C of Figure 11.

Figures 10 and 11 make it clear that there are a number of
functions that may be defined on fractals that are monotonic
with the power law exponent and the fractal dimension. Thus,
the result that people can rank order fractals in terms of their
fractal dimension does not have a unique interpretation. Any of
the functions that we have discussed would be adequate to this
task. In this article we argue that Monte Carlo simulation of
discrimination data may help decide the empirical matter of
how contours are decomposed for analysis and what contour
features are perceptually extracted.

In Experiments 2 and 3 fractals were discriminated from
hybrid contours that were constructed from joining two dis-
tinct power laws at the geometric mean frequency. The hybrid
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Figure 11. Measures of range and spectral power for the smooth and
rough extractions from fractal contour as a function of power law expo-
nent, /8. (Panel A shows that the range in the smooth and rough extrac-
tions are monotonically, but not linearly, related to 0. Panel B shows a
similar monotonic relation between the band-pass amplitude and 0 in_
the respective extractions. Panel C shows that an estimate of 0, A log
band-pass power, is linearly related to /3 over most of the domain.)
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contours have different increment and range properties than do
the fractals, and the issue of discrimination in these experi-
ments must be dealt with separately.

The contour discriminations that were required in Experi-
ment 2 are illustrated by comparing Columns 1 and 3 of con-
tours in Figure 9. In this experiment, the hybrids and the frac-
tals had the same power law at high spatial frequencies. The
equation of 0 at high spatial frequency has discernible implica-
tions for comparisons on the range of the smooth component.
A (ft =2 low v,ft=l high v) hybrid will appear to be more rough
than aft= 2 fBm. Consequently, the smooth component of the
hybrid has a reduced range compared with the smooth compo-
nent of the # = 2 fBm: that is, it approximates the smooth range
of the ft = 1 fBm. This makes the range of the smooth compo-
nent less useful as a point of comparison for discriminating (ft =
2 low v, ft = I high v) hybrids from /? = 1 fBms. Decomposition-
based discrimination between fractal and hybrid in Experi-
ment 2 may be reduced to analysis of the rough extraction
alone.

The equation of range in the two components is completed in
Experiment 3 in which the hybrids had the same power law at
low spatial frequencies. Compare the smooth and rough extrac-
tions in Columns 1 and 4 of contour in Figure 9. There is vir-
tually no difference in range within the respective components,
and these contours are much more widely separated in power
law exponent than was the case in the actual experiment. Dis-
tinguishing fractal from hybrid in this experiment may require
an explicit analysis of increments. The sufficiency of increment
information is demonstrated in Figure 12 in which the incre-
ment distributions of the ft = 1 fBm and the (ft = I low v,ft= 2
high v) hybrid are compared. The hybrid contour has fewer large
increments than does the fBm contour, and so its distribution
of increments has a smaller standard deviation. Note that the
range of the distribution does not provide useful information as
both contours have the full range of increment size represented.
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Figure 12. The distribution of unsigned magnitudes of successive
increments for a /3 = 1 fractal and a hybrid with @ = 1 at low spatial
frequencies and f) = 1 at high spatial frequencies. (The width of these
distributions may be used for discrimination.)

The difference is only in the probability with which various
increments are encountered.

Implications of Bipartite Decomposition

The decomposition of fractals into smooth and rough compo-
nents does not in itself imply that fractal structure is not per-
ceived or used in discrimination. Of critical importance is how
the two components are used in articulating structure. Decom-
position may be used in a coarse representation of the hierarchy
of structure, or it may be a first step in a complete dismantling
of the fractal where the two components are split for the pur-
poses of separate analyses. In the first case, decomposition is
interpreted as initiating an analysis of contour structure that
preserves the relations among scales that distinguishes fractals.
In the second case, decomposition is viewed as a visual heuris-
tic that is insensitive to these relations and expresses a logic that
has more to do with how people are prepared to see the world
and less to do with the structure of that which is available to be
seen.

The key aspect of the signal processing approach to fractal
dimension estimation is that decomposition is used only to
resolve scales and is not preparatory to an analysis of the compo-
nents as separate kinds of structure. This distinction is critical
because it bears on how information in the two components is
used. Regardless of what features in the two components are
extracted, once the fractal has been split there is a decision
problem that must be addressed: Are the two components to be
treated as being related in some way, or are they to be treated as
unrelated and separate entities? From the point of view of frac-
tal structure, the two components are related; they form a
nested hierarchy. However, there is another point of view, which
states that decomposition of the contour makes two things: a
smooth thing and a rough thing. This is the signal-noise point
of view. Signals and noise always appear in conjunction, but
they are causally unrelated and are to be regarded as indepen-
dent channels of information. In this second case, the decom-
position results in a decision theory in which each component
is treated in isolation.

The difference between these two views of structure can be
clarified by formalizing the way in which parts of an object may
be used to establish difference. Let A and B be the result of
bipartite decomposition of a fractal, and let a fractal be denoted
by Oj = (Ait BI). The two decision theories are distinguished by
how the Aj and Bt are grouped in discrimination. If the two
components are regarded as having some relation to each other
(e.g., nesting), and this relation is important in discrimination,
then the perceived difference between two fractals will have the
following form:

perceived difference(<9,, OJ) = Difference[,F(,4,, B,), F(Ar BJ)],

where F is some procedure for characterizing the fractal on the
basis of features in both components, and Difference is some
measure of psychological distance along a continuum induced
by this characterization. In the specific case of fractal parame-
ter estimation, F computes the difference of the logarithm of
the power in the two components. The computation of this
difference effectively recreates the hierarchy of nested struc-
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ture. The important point is that the two components are kept
together to serve as arguments within a single function.

Consider now the case in which the two components are not
regarded as having any particular relation to each other. Here,
the two components are regarded as forming two separate types
of information. In this case, discrimination will have a differ-
ent form:

perceived difference (Oit OJ)

= Difference [F(A,, AJ, G(B,, £,)],

where now F and G are feature analyses that are applied to
contours within a given type, and Difference is some measure
of psychological difference in a two-dimensional space of
types. Explicit models in which Fand G are the same functions
and are interpreted either as spectral power or range are con-
structed in the following section.

In this second way of looking at structure, decomposition
produces separate categories; it is not just an operation for reso-
lution of scale. This distinction is critical for how we interpret
what people see when they look at fractal contour. An observer
that computes fractal parameters sees a relation between the
components and discriminates on the basis of that relation.
Such an observer could be said to perceive fractal structure. An
observer that discriminates on the basis of the separate compo-
nents has produced a category d istinction that violates the struc-
tural integrity of the fractal. This observer provides the sense in
which fractals are not perceived in terms of the structural prop-
erties that define them. One goal of the simulations is to clarify
whether people perceive the characteristics that define fractals
or whether they make implicit category distinctions that are
incompatible with fractal structure.

Implications of Increment Decomposition

An analysis of rough fractal contour in terms of its incre-
ments leads to several measures that are monotonically related
to the power law exponent, ft and so can be used as features for
the purpose of discrimination. The one-to-one relationships
depicted in Figure 10 establish that either correlation or distri-
bution width may be used to estimate fractal parameters. The
observation that these measures may be used to estimate fractal
parameters might suggest that were people to discriminate on
the basis of the measures, they would be perceiving fractal
structure. There are several arguments against this inference.
First, these measures require that the contour be decimated.
The self-affine property of fractals, that they contain a nested
hierarchy of structure, is lost in this procedure of deconstruc-
tion. Second, there are many functions that can be defined on
fractal contour that are monotonically related to ft For exam-
ple, both range and spectral power defined on either the
smooth or rough components can be used as estimates of ft
Now the entire class of functions that permit monotonic map-
pings into ft for fractal contours can be also used to analyze
nonfractal contours. These operators are general tools for tak-
ing apart contour and provide measures of structure regardless
of the domain of application. It is questionable to suppose that
a procedure that may be applied universally has a special inter-
pretation when applied to fractals.

A final point has been raised by Westheimer (1991) in a study
of fractal border discrimination. Westheimer showed that peo-
ple can easily discriminate between contours that have the
same fractal dimension when the increments are chosen from
different statistical distributions. This result implies that frac-
tal dimension does not uniquely specify the perceived attrib-
utes of random fractal contour. The features that people use to
discriminate rough contour are not completely captured by
properties of the power spectrum, such as fractal dimension.
The phase spectrum plays an important role here as it does
generally in object recognition (Piotrowski & Campbell, 1982).

A second issue is whether these measures are perceptually
accessible. In one sense, inquiring into the perceptual status of
the increment correlation is idle because the increment correla-
tion is completely confounded with the manifest appearance of
the contour. However, it is not idle to inquire whether the incre-
ments of a j3 = 2 contour appear to be independent with zero
correlation or whether the increment correlation of ft = 1.5 and
)3 = 2.5 contours can be distinguished by sign. In this sense, it is
not clear that correlation is itself a perceptual property of con-
tour. On the other hand, the width of the increment distribu-
tion emerges as a contour property that is perceptually penetra-
ble. Breaking up contour in terms of the distribution of incre-
ments does not require a perceptual analysis that goes beyond
seeing (a) mostly little jumps or (b) both big and little jumps.
The width of a distribution does not share the subtlety of corre-
lation in terms of reliance on sign; it is an unsigned magnitude.
The issue of accessibility will ultimately be decided by compar-
ing simulated increment decomposition observers with the dis-
crimination data. The critical test bed for this comparison is
Experiment 3 in which a bipartite decomposition does not yield
distinguishable ranges and in which an increment analysis ap-
pears to be forced.

Models of Rough Contour Discrimination
In preceding sections we have developed a number of ways of

thinking about the structure of rough contour and have identi-
fied several mathematical functions that could be used in ex-
plicit algorithms for modeling discrimination. In this section,
we formalize this procedure and spell out in detail how discrim-
ination is represented in computer algorithms.

Perceptual organization in terms of increment decomposi-
tion leads to two discrimination models: one based on correla-
tion and the other based on the width of the distribution of
increments. An algorithm that discriminates in terms of incre-
ment correlation is formed by computing the correlation of
increments for the respective contours and then forming a
correlation contrast:

|corr(inc,) — corr(inc2)lcorrcontrast(contour,, contour2) = :— : .
|corr(mc,) + corr(mc2)|

An algorithm that discriminates on the basis of increment
distributions is formulated by computing the width of the in-
crement distributions, <r(dist), for each contour and then form-
ing a standard deviation contrast:

. . |o-(dist,) — o-(dist2)|a contrast(contour,, contour,) = -—, . V £-L .
<r(dlSt,) + <r(dist2)

Discrimination is based on the magnitude of the real number
associated with the a contrast or corr contrast functions. For a
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given threshold of discrimination, X, the two contours are per-
ceived to be in the same family if contrast < X, and are perceived
to be in different families otherwise. Discrimination based on
either of these contrasts has no free parameters. Simulations
based on these contrasts are applied to data from all three ex-
periments.

Models of fractal discrimination (i.e., Experiment 1) based on
bipartite decomposition fill the cells of a 2 X 2 design, feature
extracted (i.e., range or spectral power) crossed with contrast
procedure (i.e., within-component contrast or between-fractal
contrast). A model that discriminates on the basis of estimates
of power law exponent first forms the two quantities

A log power, = log power(smooth, 0,) - log power(rough, /?,),

A log power2 = log power(smooth, ft2) - log power(rough, fi2),

where the subscripts refer to the two contours to be discrimi-
nated. A log power, and A log power2 are estimates of ft and /32,
respectively. A measure of the difference between the contours
is formed by computing a between-fractal contrast of the two
slope estimates:

slope contrast =
I A. -A2 |

I A, + A 2 ]

or by computing a slope difference = (A, - A2|. In practice, these
two different estimates of difference lead to virtually identical
discrimination sensitivities.

Spectral power can be used for other purposes than compu-
tation of fractal parameters. Power may be used to form con-
trasts defined on the separate components; that is, where the
two components are treated as forming two distinct and inde-
pendent sources of information. In this case, spectral power is
not used to estimate ft but serves only as a feature that might be
useful in characterizing contour. This leads to a model based on
within-component contrasts:

power contrast(smooth)

_ [log power(smooth, /?,) - log power(smooth, gz)|
log power(smooth, /3,) + log power(smooth, /32) '

power contrast(rough)

_ | log power(rough, /?,) - log power(rough, /82)|
log power(rough, /?,) + log power(rough, /32)

When the smooth and rough extractions are treated as sepa-
rate dimensions of comparison, the respective contrasts must
be combined in some way to provide a unitary judgment of
same or different. A procedure for combining separate mea-
sures of difference into a single score entails the use of the
Minkowski metric:

f ( x , y) = (S + f]1".

In practice, we have used the city block metric, r=l, but the
simulations gave essentially the same results for the Euclidean
metric, r=2. The function, / effectively maps the two contours
into a single real number, the total difference score. The differ-
ence score serves analytically as a basis for discrimination. For a
given threshold of discrimination, X, the two contours are per-

ceived to be in the same family if /< X, and are perceived to be
in different families otherwise.

Discrimination models for range can be constructed analo-
gously to models based on spectral power. Again, we distin-
guish between a decision procedure that treats the fractal as the
fundamental unit of comparison and one in which the decom-
posed parts form the units of comparison. In the former case,
we define an operator similar to A log power:

A range, = range(smooth, $,) — range(rough, ft{),

A range2 = range(smooth, ft2) - range(rough, ft2).

The difference metric is formed by computing a range con-
trast between fractals as was done for spectral power above.
Alternatively, we can compute contrasts within the separate
components as

range contrast(smooth)

| range(smooth, /?,) - range(smooth,
range(smooth, /

range contrast( rough)

range(smooth,

range(rough, /8,) - range(rough, ft2)\
range(rough, range(rough, ft2)

Again, the two contrasts are combined within a city block met-
ric to provide a total difference score for the contours under
comparison. This last model is also applied to the fractal-hy-
brid discrimination data.

One additional model that arises in consideration of the com-
parisons made in Experiment 2 uses only the range of the rough
component. This leads to the following contrast:

contrast( rough)

_ | range( rough, fBm) — range(rough, hybrid)]
range( rough, fBm) + range( rough, hybrid)

This model is also applied to the data from Experiments 1
and 3.

As fBm contours are characterized by a power-law power
spectrum, discrimination data from Experiment 1 are well
suited to an analysis that is based on band-pass power estima-
tion. The discriminations in Experiments 2 and 3, however,
required comparisons between /5ms and non-self-affme con-
tours. The hybrids in these experiments were formed by
smoothly joining two power-law power spectra at the geomet-
ric mean frequency and so are examples of multifractals; they
are self-affme over restricted intervals in frequency. Now the
signal processing approach for estimating ft that has been out-
lined for fractals can be generalized for multifractals. The com-
plication that arises for hybrids is that the separate frequency
intervals within which the contour is self-affme must be identi-
fied. This identification requires band-pass filtering with an
array of filters that cover a wide range of scales and an ability to
resolve breaks in the power law in the Fourier domain. The
types of filters that are associated with visual receptive fields
are not relevant here; these contours are not formed by fluctua-
tions in brightness. The type of Fourier analysis that is contem-
plated for decomposition of line contour is purely formal and
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has not been given a physiological basis. Recognizing that this
analysis is possible in principle, the problem of interval identi-
fication seems patently psychologically intractable. For these
reasons we do not attempt to construct models based on spec-
tral power for fractal-hybrid discrimination data. As we demon-
strate in the following section on simulated discrimination,
even for the simplest case in which fractals were compared,
spectral power models do not generate discrimination func-
tions that bear any resemblance to human performance.

Construction of Algorithmic Observers

A discrimination strategy, when expressed as a formal algo-
rithm, is a mapping defined on two contours into the real num-
bers. For simplicity, we refer to the strategies collectively as
some function F that operates as F(contour,, contour2) = X. An
algorithmic observer is defined by the following procedure.

1. Construct the stimuli that would be used in a block of
trials. These stimuli are made exactly as described in the proce-
dure sections of the respective experiments. Thus, these blocks
consist of 200 pairs of contours, 100 from the same family and
100 from different families. There were 13 blocks in simulations
of Experiment 1 and 10 blocks in simulations of Experiments 2
and 3.

2. For each block of trials compute F(contour,, contour2) =
A r

i , / = l , 2 , . . . , 2 0 0 .
3. Compute the minimum and maximum values of {X-\.

These values serve to delimit the range of possible thresholds, X.
4. Construct a uniform sequence X, on the interval [min{Ar,},

max{A",-}]. This sequence discretely resolves the range of thresh-
olds.

5. Count the hits and false alarms: If Xt > \j, and the two
contours were from different families, then the discrimination
is a hit. Alternatively, if Xt > A,, and the two contours were from
the same family, then the discrimination is a false alarm. Com-
pute the fraction of hits and false alarms on the entire X grid.
These fractions generate the entire ROC curve.

6. Integrate under the generated curve in the (hit, false
alarm) plane to compute the area under the ROC curve. This is
the algorithm's discrimination performance for that block of
trials.

This procedure was performed for all blocks in all three ex-
periments using subsets of the various strategies based on spec-
tral power, range, increment correlation, and width of the in-
crement distributions. In each simulation, Steps 1-6 were re-
peated 10 times to reduce the noise associated with sampling
error.

Simulated Discrimination of Rough Contour

The simulations of fractal contour discrimination are of pri-
mary importance because they allow us to distinguish relevant
contour features and to place constraints on the type of deci-
sion process that occurs in human judgment of rough contour.
There are two issues that we address at the outset. First, is
spectral power a better predictor of human discrimination per-
formance than range? Second, are the smooth and rough com-
ponents of a given contour related to each other in some way, or
are they compared within types across contours? These two

ways of treating the components have been formalized earlier
and are now evaluated on the basis of the simulations. Figure 13
shows a 2 X 2 comparison of simulations of data in Experiment
1. The two variables are comparison feature and comparison
type. The two features that are isolated in these simulations are
range and the logarithm of spectral power. These features are
used in two ways, depending on the structure of the decision
theory. Panels A and C show results for simulations in which (a)
the smooth and rough components are contrasted separately
and (b) the separate contrasts are combined in a city block met-
ric to give a total difference score. Panels B and D show results
for simulations in which the two components are combined
within a single function to provide a unitary measure of fractal
contour. In these latter simulations, only one contrast is needed
to yield an index of difference. We wish to emphasize that in all
simulations that are presented in this article, no attempt has
been made to scale the algorithmic sensitivities. No slope or
intercept has been fit in a regression. The algorithms are simu-
lating the absolute, unadjusted values produced by human sub-
jects.

Panel A shows the results for a model that is based on infor-
mal observations of fractal contour: that range is a salient fea-
ture of contour and that comparing fractal contours involves
comparing the ranges of the separate smooth and rough compo-
nents. It is evident that this model provides an excellent fit to
human data across the entire range of power law exponent.
Panel D of Figure 13 illustrates the discrimination sensitivity of
a model that is motivated by current signal processing ap-
proaches to fractal recognition. This model estimates the power
law exponent, ft directly as A log band-pass power and should
perform optimally in regimes in which fractals are compared
with each other, that is, when each contour is characterized by a
single power-law power spectrum, as in Experiment 1. This
observer is not as sensitive as the human subjects except when
discriminating very smooth contours at large values of 0. This
result is seemingly paradoxical because an algorithm that dis-
criminates on the basis of estimated power law exponent should
be quite adept at distinguishing contours that actually do differ
in the single respect of power law exponent. To resolve this
paradox, it is helpful to consider the distributions of the quanti-
ties that serve as the basis of discrimination in the respective
models.

A semianalytic theory of the algorithmic observers can be
developed analogous to Thurstone's (1927) derivation of the law
of comparative judgment. In this theory, discrimination sensi-
tivity is proportional to the distance between the feature distri-
butions of neighboring ft families. These distributions are natu-
rally generated by variation among the exemplars within each
family. In practice, the distribution of a feature is computed by
taking a large sample of exemplars from each family and then
computing the numerical value of that feature for each exem-
plar. The distance between adjacent distributions is expressed
as

where ft- and /3y are exponents for adjacent families and where n
and a are the mean and standard deviation of the feature
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distribution. d'(fth /?7) is a measure of distance. In signal detec-
tion theory and theories of comparative judgment, the distri-
butions are of immanent neural activity and d' is a measure of
discriminability.

Figure 14 shows the results of calculations of <af'(ft, Pj) for the
features range(smooth), range(rough), and A log band-pass
power. The values of d'((3h /?,) were computed from distribu-
tions consisting of 2,000 exemplars from each fractal family.
These calculations serve two purposes. First, the discrimina-
tion sensitivities of the algorithmic observers can be accounted
for by establishing that the simulated areas under the ROC
curves are highly correlated with the values of rf'(ft, ftj) asso-
ciated with relevant feature distributions. We find that the
summed variable [smooth]<f(ft t , ftj) + [rough]d1[ft, ftj) is almost
perfectly correlated with the city block range algorithm (r = .98)
and so too is [A log band-pass power] £/'(/?,, ftj) with the spec-
tral power between-fractal algorithm (r = .99). Second, it is
clear from the graphs of <f(ft, ftj) that range(smooth) and
range(rough) taken together generate distributions that are
more widely separated than A log band-pass power. Although A
log band-pass power estimates the power law exponent, ft, it is

not optimal for accuracy. The range distributions are more
widely separated and are, therefore, intrinsically capable of sup-
porting more refined discrimination. Note that it is possible to
construct models based on spectral power that discriminate
much better than do humans, perfectly in fact. Band-pass fil-
tration of the contours that use a number of narrow filters,
followed by a regression analysis of the slope in the log (power),
log (frequency) plane yields an almost error-free estimate of ft.
However, models based on coarse band-pass filtering generate
estimates of ft that have error distributions, and these distribu-
tions have considerable overlap.

The case against spectral power being a discrimination fea-
ture is strengthened in Panel C of Figure 13. The algorithm
displayed here discriminates on the basis of separate power
contrasts within the rough and smooth components. This algo-
rithm differs from that depicted in Panel A only in terms of the
feature extracted, power versus range. The logical forms of the
contrasts are identical. The discrimination sensitivity for the
power observer bears little resemblance to the data. That the
range observer provides an excellent model of the data, and that
neither of the power observers is successful, is good evidence—
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as good as can be had within a simulation methodology—that
spectral power is not an extracted feature. We conclude that
there is no support for the notion that human observers use
spectral power in discriminating between fractals. The evi-
dence is clearly that they use the much simpler and more vi-
sually salient feature of range.

The model illustrated in Panel B of Figure 13 is critical for the
interpretation of how people discriminate fractals. This model
uses range as an index of contour variation to characterize indi-
vidual fractals, not as a point of comparison between the rough
and smooth extractions from two fractals. The quantity that
this simulated observer uses is the range difference,
range(smooth) - range(rough). The analogue to the range-dif-
ference observer is the power law exponent estimator depicted
in Panel B. Range, when used in this way, generates an unavoid-
able pathology; there is a large dip in sensitivity near /3 = 1. This
dip is caused by the intersection of the respective ranges that is
illustrated in Panel A of Figure 11. Near the intersection, the
range difference becomes quite small and this leads to a severe
drop in discrimination sensitivity. The conclusion to be drawn
by the failure of this model to describe human performance is
that people do not use range(smooth) and range(rough) together
as a single index of fractal contour structure. The two compo-
nents are not viewed as forming an integral structure for the
purposes of discrimination. Rather, the smooth component is
taken to be one category of structure, and the rough component
is taken to be another. Range comparisons are made within the
respective categories.

The multifractal, non-self-affine contours used in Experi-
ments 2 and 3 motivated additional models. In Figure 15 we
show results of simulations for all three experiments for three
discrimination algorithms. The first algorithm is the one that
produced the best replication of Experiment 1 data; range con-
trasts within the smooth and rough components. The second
algorithm takes into account only the range contrast of the
rough component. The third algorithm computes the contrast
of the standard deviation of the increment distributions. The

most important panels in this figure are those along the diago-
nal. They represent models based on the informal observations
of contours in Figures 9 as to what information might be used
for discrimination in the respective experiments. It is evident
that the fits along the diagonal are uniformly excellent. (The
rough-smooth simulation of Experiment 1 is the same as in
Panel A of Figure 13.) In each experiment, the algorithm's dis-
crimination sensitivity over the entire range of power law expo-
nent, ft is virtually identical to the sensitivity displayed by sub-
jects.

Figure 16 depicts the results from simulations based on incre-
ment correlation. The correlation observer suffers from two
problems. In Experiments 1 and 3 it does not make any mis-
takes. These results suggest that either people do not use corre-
lation in a discrimination task, or they do so in some incom-
plete way that induces error. However, in Experiment 2, the
correlation observer makes too many mistakes for small ft and
not enough for large ft. Although it might be possible to develop
models for how people derive partial calculations of increment
correlation, it is not obvious how to proceed. These problems
do not arise for the observer that computes the width of the
distribution of increments. The increment a observer success-
fully models data from Experiment 3 without any tinkering
with the algorithm.

These simulations allow us to draw several conclusions about
how rough contours are discriminated. The first is that when
people look at rough contour, they essentially see two things,
noise and trend. These two forms of structure are not regarded
as having a coherent relationship but rather are treated as two
separate categories of information. Discrimination is based on
range comparisons within components. It is important to un-
derscore that people have access to a discrimination strategy
that is generally more sensitive; in Experiments 1 and 2 the
observer that discriminates in terms of the width of the incre-
ment distribution is generally more sensitive over the domain
of fBm families. Yet, our simulations suggest that if there are
range differences in at least one component, discrimination is
based on bipartite decomposition. In Experiment 1, in which
both smooth and rough contrasts are salient, ranges from both
components are used. In Experiment 2 in which the smooth
contrast is suppressed, the rough range is still used.

Access to a second strategy is revealed in Experiment 3 in
which we designed hybrid contours that could not be discrimi-
nated from fractals on the basis of range within a smooth-
rough decomposition. It was evident from the contours dis-
played in Figure 9 that the natural decompositions were not
informative. In fact, when bipartite decompositions are simu-
lated for Experiment 3 contours, the algorithms perform worse
than did subjects. When neither the smooth nor the rough ex-
traction provides an adequate basis for discrimination, subjects
can extract the more sensitive measure of the width of the incre-
ment distributions.

A strategy of discrimination that we have not discussed, but
which should be mentioned for the sake of completeness, is one
where only the smooth extraction is used for discrimination.
Such a strategy could have been attempted in Experiment 1. We
have performed simulations of this strategy in which a contrast
function was computed on the range of the smooth component
only. Smooth contrast observers perform above chance, but the
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Figure 15. Simulated observers based on decomposition and the standard deviation of the distribution
of increments compared with data in Experiments 1, 2, and 3. (Open circles are data; filled circles are
simulation. On the diagonal are simulations suggested by analysis of the contours illustrated in Figure 9.
ROC = receiver operator characteristic.)

area under the ROC curve never exceeded .75, whereas human
observers in Experiment 1 had areas near .9 over a wide range of
power law exponent. In fact, the discrimination data exceeded
that of the simulated smooth contrast observer for each family
comparison. Human observers evidently use both the rough
and smooth components for the purpose of discrimination
when the smooth component is sufficiently salient.

The agreement between simulation and data demonstrates
that observers perceptually organize rough contour, extract fea-
tures within these organizations, and apply them in a metric of
comparison that is consistent in detail with the algorithms that
we have formulated. The simulations and data converge on a
point-by-point basis, and this is a much stronger result than the
correlation between sensitivity and environmental fractal fre-
quency. The notion that the visual system is tuned to the statis-
tical distribution of environmental form (Gilden &
Schmuckler, 1989; Knill et al., 1990) is evidently founded on a
fortuitous coincidence. The sensitivity curves in Experiment 1
for the discrimination of fractal contours have the shape they
do because of the logic of discrimination. This logic not only
has nothing do with fractal form, it violates fractal form by
imposing a smooth-rough decomposition on hierarchically in-
tegrated structures and by using the extracted components as
separate categories of information. Such are the dangers of
drawing conclusions based on correlation.

Bipartite Decomposition as a Principle of Organization

It is evident that fractal contours have no special status or
priority in contour discrimination. They are perceived in terms
of a bipartite metatheory of structure, a theory founded on the
notion that surface roughness is supported by a coherent under-
lying form. This is a theory that does violence to the nested
hierarchic structure of self-affine contour. The hierarchy that
unites the different scales of roughness in a fractal is either not
perceptually penetrable or not used in discrimination. The way
people appear to think about contour is in terms of signals and
noise. They look for trend and treat the structure that is carried
by the trend as the noise, even if the distal contour does not
support this structural distinction. This way of looking at the
contour is not necessitated; it is a form of perception. This form
persists even with immersion in a world of fractal structures.

The perception of roughness in terms of a bipartite decom-
position should be viewed as a principle of organization. As a
principle it is distinguished from the protocols that establish
figure-ground relationships. In figure-ground organization,
both components mutually support each other, and both are
essential for either to be perceived. In a bipartite decomposition
that treats part of a contour as signal and part as noise, this
mutuality is lacking. The signal is not ground because the noise
is not figure. Neither is the noise ground; it does not provide a
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context for the signal. It is treated in perception simply as some-
thing extra, added on.

Bipartite decomposition is the way that perception routs out
structure. It is a fundamental principle of organization in that it
is implicit in every perceptual act. Yet, this principle does not
fall within the purview of traditional theories of perception. It
is not a minimum principle (Kohler, 1947) because it does not
recognize hierarchic structures, and hierarchies are the mini-
mal encodings of natural form. The entire nested structure of a
fractional Brownian motion is specified by a single parameter,
/3. Neither is it a principle based on likelihood (Helmholtz,
1910/1962) or intelligent inference (Rock, 1983, 1984). The
principle of decomposition contains the irony that it resolves
the ambiguity of proximal stimulation in terms of an agenda
that is insensitive to the information available in natural struc-
ture. This principle can only be understood as a metatheory of
structure, as a metaphysical statement about the way the world
is constructed.

The metaphysics that is expressed by bipartite decomposi-
tion is not recondite or arcane and should be placed into the
context of the philosophical literature on what constitutes
structure. It is a mode of thought that attempts to distinguish
what is essential from what is not, and it is based on the idea
that there is indeed something essential, that there are essences.
It is founded in Plato's distinction between ideal form and phe-
nomenal appearance. It is reiterated in British empiricism in
the distinction between primary and secondary qualities. It
reappears in 19th-century German idealism as the thing-in-it-
self distinguished from the thing perceived. All of these dis-
tinctions are at root an attempt to distinguish invariant struc-
ture. For Plato, invariance is achieved through an ideal realm
where change does not occur. For Locke, it is the Newtonian
properties of objects that are invariant. The thing-in-itself is
essentially invariance per se.

It is arguable that most perceptual tasks are linked to distal

events that do have a signal-noise structure. This way of per-
ceiving has clear ecological utility: Prey and predators are, in
fact, smooth invariant structures that are often masked by cam-
ouflaging noise. Measurement of any kind is inevitably the dis-
tillation of invariance. Indeed, if it were not for turbulent solu-
tions to the equations of hydrodynamical flow, fractals might
not be alternative structural possibilities in nature.

What we wish to point out is not that this mode of perceptual
analysis exists, but that it has become completely generalized.
As a principle of organization, it reduces all proximal data in
the same way. This tyranny has the odd consequence that it was
a mathematical discovery that natural form is hierarchic. The
fractal structure of natural form is not a perceptual truism.
That it is not is the best evidence that there is a general principle
of perceptual organization that preempts a hierarchical analy-
sis of form.

Summary

In this article we have inquired into the way that rough con-
tour is perceived. We were particularly interested in fractal con-
tours as a special class because of the seminal mathematical
work by Mandelbrot, which has redefined the geometry of natu-
ral form. The observation that fractals are part of everyday
natural experience led to the question of how people view hier-
archic structure. Three discrimination experiments were con-
ducted to establish a database for theoretical modeling of dis-
crimination sensitivity. The results of Experiment 1 were of in-
terest in themselves because they suggested that people's
sensitivities might be tuned to the frequency with which fractals
occur in nature.

Theoretical models of discrimination were constructed in
terms of procedures that did not recognize the structural prop-
erties of random fractals. Instead, they incorporated principles
common to the notion that rough contours can be decomposed
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into smooth differentiable trends and rough additions. This
way of decomposing contour was discussed in terms of a gen-
era] theory of bipartite structure that is based on a logic of
dividing objects into signal and noise. We found that the theoret-
ical models produced discrimination sensitivities that were vir-
tually indistinguishable from those produced by our subjects.
This result validated the logic of the models and also forced us
to conclude that fractal structure is either not perceptually pene-
trable in random contours or not sufficiently salient to be used
as a basis for discrimination.

This inquiry motivated a fresh look at the way structure is
perceived in general. We suggested that the signal-noise way of
thinking about structure be viewed as a principle of perceptual
organization. It is a principle of perception distinct from a prin-
ciple of natural order. The work of Mandelbrot and others has
made it clear that the natural order consists of integrated hier-
archies. Perception, however, does not appear to operate in
terms of hierarchies. Rather, its agenda is one of establishing a
two-part division in which coherency and invariance are distin-
guished from noise and variability. This agenda is enforced in
spite of the prevalence of structural alternatives. The percep-
tual analysis that is brought to fractal structure is apparently
guided by a design more tuned for the breaking of camouflage
than for the appreciation of statistical self-affinity.
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