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Introduction

Questions concerning the mind's ability to simultaneously apprehend

more than one object date back to Plato and Aristotle and continue to fuel

large branches of cognitive inquiry.  In the domain of visual psychophysics

these types of questions have motivated research spanning nearly four

decades.  The majority of work on this issue has sought to determine how

performance for simple visual discriminations deteriorates with increases in

the number of items that must be attended.  In the argot of the information

processing age, the issue is recast in terms of measuring capacity limitation

under conditions of divided attention.  If increases in the number of items

that must be attended to has little to no effect on discrimination performance,

processing is said to be capacity unlimited, reflecting the finding that increases

in stimulus load seem to place minimal demands on the processing of

individual stimuli.  On the other hand, if increases in the number of attended

elements leads to deterioration of discrimination performance (e.g.

discrimination takes longer or is realized with less fidelity), processing is

instead said to be capacity limited.

 In addition to measuring capacity limitation psychophysical research

has sought to discriminate the style of processing employed in the analysis of

multi-element displays.  The organizing question here centers on how

processing resources, independent of capacity limitation, are allocated over
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displays containing more than one relevant element.  Specifically, the goal

has been to determine if a particular discrimination is accomplished in

parallel, such that multiple elements are processed simultaneously over

space, or instead in a serial manner, such that discrimination proceeds on a

one-at-a-time basis (Neisser, 1967). Though many experimental methods have

been used in service of answering these types of questions, the visual search

paradigm is far and away the most popular of extant techniques.

The standard visual search method consists of measuring an observer's

ability to find a specified thing (the “target”) when it is present among some

number of distracting things (“distractors”).  Typically performance is

quantified by measuring either changes in time to respond, or changes in the

accuracy of responding, as distractor number increases. This general class of

experiment dominates much of existing attention research and has remained

a favorite technique for two reasons.  First, the method itself is easy to

implement, and represents an improvement over early attempts to measure

attentional bandwidth in which performance limitations were contaminated

by memory decay (e.g. full report methods; Sperling, 1960).  Second, the data

structures provided by visual search are simple, and have for the most part

afforded straightforward connections to existing theory.
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Despite its relative simplicity and popularity, standard visual search is

known to have a number of methodological flaws. These flaws include a

general inability to distinguish serial processes from parallel, limited capacity

processes, and the confounding of attentional effects with lower level sensory

limitations (Carrasco & Frieder, 1997; Duncan & Humphreys, 1989; Geisler &

Chou, 1995; Palmer, 1995; Palmer, Ames, & Lindsey, 1993; Palmer & McLean,

1995; Townsend, 1972). Moreover, the standard methodology on the whole

provides no clear data-driven means for discriminating processing style at all

(Wolfe, 1998a).  In this dissertation I seek to circumvent these shortcomings

by investigating visual search in the context of a multiple-target search

method (see van der Heijden, La Heij, & Boer, 1983).

Multiple target search is designed to augment standard visual search

methods by including conditions in which more than one target appears in a

stimulus display.  This method is superior to the standard methodology for

three reasons: 1.) it has the power to distinguish serial and capacity limited,

parallel processes, 2.) it attenuates low-level confounds by using a small

number of stimuli presented near the fovea, and 3) it provides a rich set of

response time and accuracy data that can be used to obtain graded measures

of capacity limitation.  Distinctions between processing style during search

become clear in the context of this method because serial and parallel models

make unique predictions for displays containing more than one target.
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Measures of capacity limitation are obtained using a computational model of

search to reproduce empirical data patterns.  The key motivation for

incorporating a computational model in this context is to provide a tool

wherein complex constellations of response time and error data are reduced

to a few simple ideas about attention and decision.

One of the primary goals of the work laid out in this paper is to

investigate attentional limitations during visual search using a novel multiple

target search method.  A significant fraction of this investigation will consist

of simulating response time and accuracy data using a psychologically

motivated model of information processing.  Because I am generally

interested in how attention limits search performance, I have conducted a

large ensemble of redundant-target search experiments in which targets and

distractors are defined along a number of fundamental and representative

stimulus dimensions.  The model parameters that effectively simulate the

average data from each of these experiments will then allow me to generate a

space of varied capacity limitation in which search tasks can for the first time

be quantitatively ordered along a continuum.  Only by extending our

conceptions of search quality beyond  dichotomous notions such as

efficient/inefficient or serial and parallel can we begin the more difficult work of

understanding how it is that stimulus structure determines attentional

limitation.  I begin with a brief review of the standard methods used in most
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visual search experiments before introducing the MTS methodology that

forms the core of this work.

Singleton search

In the standard version of visual search, observers are asked to make

speeded decisions about the presence or absence of a single target element

that may or may not be present among a variable number of distractor

elements. Because only a single target is presented, we will refer to this

general method as singleton search.  In singleton search, the target is present on

some proportion of the trials, usually 50%, and on the remaining trials only

distractors are displayed.  Observers make one of two responses to signal the

target being either present or absent in the display. Target and distractor

stimuli are often differentiated along a single visual dimension such as color,

size, or orientation, or instead, in terms of conjunctions of specific values

along several dimensions.  The dependent variable that is most often used is

response time (RT), which is measured as a function of the number of

elements presented in a given display (i.e. set size).  Dependent measures of

accuracy have also been used in the context of briefly presented displays

(Bergen & Julesz, 1983; Palmer, 1994; Shiffrin & Gardner, 1972; Verghese &

Nakayama, 1994), and much of the logic and theory are similar to methods

using RT.
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In order to determine the style of attentional processing inherent in a

specific target-distractor discrimination, RTs to respond target present and

target absent are compared across variation in set size.  If RT varies little with

increases in set size, the search process is thought to be parallel in nature, in

so far as the addition of distracting information seems to have little effect on

performance.  On the other hand, if there are proportional increases in RT

with set size, the search is thought to be conducted in a serial fashion,

reflecting the idea that search performance deteriorates systematically with

set size because on average more elements must be searched through in order

to find the target.  Graded measurements of capacity limitation based on the

data coming from singleton-search methods have for the most part been of

secondary interest, with researchers instead attempting to categorize a host of

target/distractor discriminations within the dichotomous structure defined

by parallel or serial processing.

The singleton search method has been used primarily to provide

evidence for or against the existence of specialized “feature”  detectors in the

visual system.  The logic of this approach has been quite simple:  IF a given

image feature supports parallel visual search, THEN that feature is assumed

to have privileged representation in the visual system (for a comprehensive

review see Wolfe, 1998a).  In addition to divining those image features that

correspond to “features” of perception, the method has played a prominent
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role in the testing of various theories of search, most notably Treisman's

feature integration theory  (Treisman & Gelade, 1980), and Wolfe's theory of

Guided Search (Wolfe, Cave, & Franzel, 1989).  More recent utilizations of the

method have included work on attentional control and strategy (Pashler,

1988; Theuuwes, 1992), as well as various attempts to understand how

grouping interacts with the search process itself (Humphreys, Quinlan, &

Riddoch, 1989; Rensink & Enns, 1995; Snowden, 1998).

Despite its lasting ubiquity, the singleton search method has not been

beyond reproach.  Recent work over the past decade has made it clear that a

number of confounds exist which dramatically attenuate the power of the

method to reveal underlying processing architecture (Carrasco & Yeshurun,

1998; Duncan & Humphreys, 1989; Geisler & Chou, 1995; Palmer, 1995).

Specifically, discrimination of targets and distractors will necessarily decline

with increases in set size if large displays are used.  This is because larger set

sizes increase the average eccentricity of search elements, and for many

stimulus differences, increases in eccentricity are associated with losses of

information at the sensory level.  In addition, set size is often also confounded

with stimulus spacing.  In general, the more items in a display area, the closer

they will be to one another, thereby allowing nearby stimuli to mask one

another in a way that might degrade performance.  Furthermore, these

masking effects increase dramatically in the periphery, and so have more of
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an effect as larger set sizes increase the average element eccentricity.  To the

extent that low-level effects such as these exist in a search task, it will be

impossible to clearly argue for capacity limitation or an underlying

architecture.  In fact, a large percentage of the variation in search efficiency

across an ensemble of basic stimulus domains can be explained by differential

loss of resolution off the fovea, with no cause to invoke higher level

limitations on processing (see Geisler & Chou, 1995).

Though many of the confounds just mentioned can be eliminated by

carefully generating stimulus displays in which eccentricity and spacing

effects are controlled or counteracted (Palmer, Ames, & Lindsey, 1993;

Carrasco & Yeshurun, 1998), there remains one serious methodological flaw

in the singleton search method that can only be circumvented by a change in

the design.  Since the time of its inception, singleton visual search has been

known to be incapable of making a basic distinction in processing

architecture – namely, the standard method can not distinguish a serial

process from a parallel, limited capacity process (Townsend, 1972).  This is

because at the level of mean RT, these two processing models can effectively

mimic one another, both in target–present and absent RT functions, given

appropriate choices of model parameters (see Townsend, 1974).  The intuition

here is that even when all elements are processed simultaneously and in

parallel, it is still possible to produce RTs equivalent to those produced by a
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classic, serial search if the rate of parallel processing decreases with set size.

The inverse relation between processing speed and set size is but one way to

implement a limit in the capacity of a parallel process, but the point is clear –

if the fidelity of parallel processing decreases with stimulus load, response

times will increase, all else being equal, and the magnitude of this increase

will be some function of processing fidelity and set size.  In addition, it has

been shown that even in the absence of processing limitations, a parallel

model can still yield serial-like response time functions due to the increased

likelihood of “false alarms” as distractor number increases (Palmer &

McLean, 1995).  That the standard, singleton search method can not

discriminate these logically distinct allocation schemes renders the approach

virtually useless, save its ability to make coarse distinctions in search

efficiency (Wolfe, 1998a).

An alternative search method

In recent years, a number of alternative methodologies have been

proposed that bypass some of the shortcomings of singleton visual search

(Townsend, 1990). The multiple target search method (MTS) as pioneered by

van der Heijden, La Heij, & Boer (1983) is one such example.  This method is a

related extension of standard singleton search that has the power to reveal

spatial parallelism in the presence of inefficient processing.  MTS augments

the singleton search design by including trials in which multiple targets are



10

presented.  Specifically, trials are included in which a variable number of

identical targets is factorially combined with a variable number of distractors.

Most importantly though, MTS includes key conditions known as “pure”

target trials, in which every one of n elements in a display is a target.  These

pure target trials turn out to be critical in terms of distinguishing serial and

parallel, limited capacity models. The logic by which this distinction is made

is relatively simple.  The inclusion of pure target conditions allows for an

analysis of how RT changes with increases in target redundancy.  Specifically,

we look for the presence of redundancy gains in RT; namely, a benefit in

target “present” response times the more targets there are in a pure target

display.  The presence of a redundancy gain in RT is diagnostic regarding

search architecture because no serial process can produce such a gain.  The

intuition behind this assertion is as follows:  1) a serial process will terminate

search with a target “present” response as soon as a target is found, 2) in pure

target displays all elements are targets, and 3) the first element visited in the

search will always be a target.  Because of these conditions, the prediction for

an idealized serial process is that RT to respond target “present” should be

invariant over increases in target number. Thus, if we find evidence for a

redundancy gain in the pure target RTs we can rule out serial models of

search.  More importantly, we have evidence in favor of spatially parallel

processing, even when that evidence coexists with sharp RT costs to respond
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target “present” for single-target displays (i.e. the standard stimulus

conditions examined in the singleton search method).

Previous work using multiple targets has been primarily interested in

the mechanism(s) by which target redundancy improves performance

(Diederich & Colonius, 1991; Egeth, Folk, & Mullin, 1988; Fournier & Eriksen,

1990; Miller, 1982; Mordkoff & Yantis, 1991; Schwarz, 1994; Townsend &

Nozawa, 1995).  Specifically, the focus has been on using estimates of single

and double target RT cumulatives to distinguish whether redundancy gains

arise from statistical facilitation (Rabb, 1962), or from coactivation of sensory

channels (Miller, 1982, 1986, 1991).  Because the basic focus has been on the

etiology of the redundancy gain itself, much of the previous research has

used simple target detection tasks, has fixed set size to be no more than two,

and has designated targets arbitrarily (for example, a tone and a simple visual

marker may both be “targets” in a single experiment).  The redundant target

method used here employs a set of different techniques.  First, because I am

primarily interested in measuring capacity limitation, I investigate

discrimination performance as a function of set size.  Second, the MTS

methodology defines a target as a single unique thing – when displays

contain more than one target they always contain multiple repetitions of this

one thing (Egeth & Mordkoff, 1991; Mordkoff, Yantis, & Egeth, 1990; van der

Heijden et al., 1983).
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The MTS method has a number of advantages over standard search

methods in addition to the inclusion of multiple target conditions.  The

specific method I propose is based on a relatively sparse range of set sizes: on

any given trial only 1, 2, or 4 elements are presented.  Though this restricted

range inevitably limits generalization to larger, more dense stimulus arrays, it

provides a number of advantages that give the method leverage in making

claims about attentional processing.  Namely, the use of a small number of

elements allows for all stimuli to be presented near the fovea.  In my

experiments, search displays consist of elements configured along a virtual

circle centered on fixation.  This allows individual element eccentricity to

remain constant across variation in set size, thereby reducing low-level

confounds (Geisler & Chou, 1995).  In addition, small set sizes attenuate

masking effects by maintaining ample, and constant space between

individual elements (Palmer et. al, 1993).  More importantly though, MTS is

an improvement over single-target methods because it provides richer data

sets.  By including conditions in which targets and distractors are displayed

in a variety of combinations, this method simultaneously provides estimates

of costs due to stimulus load, as well as benefits from target redundancy.  The

particular pattern of RT costs and benefits that arise in the use of this method

will for the first time provide a principled means with which to distinguish

serial processes from those that are parallel, but limited in capacity.
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Early work

The initial use of the MTS method arose from efforts to understand

how the sensing of motion sign deteriorates with increases in the number of

attended motion regions (Thornton & Gilden, 2001).  Gilden and I examined

left-right translation, expansion/contraction, and rotary motion in separate

experiments by having observers search for a specific motion sign (i.e.

rightward translation, expansion, clockwise rotation).  One, two, or four

target motion directions were presented among a variable number of

distracting directions, such that the ensemble of displays contained all

possible combinations of target and distractor directions.  The results from

these experiments are shown in figure 1.
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The average median response times for correct trials only are plotted

along with associated error rates.  Points connected by a red line represent

trials in which a single target direction was present in a display.  Increases in

set size for these single target trials thus represent increases in the number of

presented distractors, and as such are the conditions typical to standard

singleton search.  The dashed, green lines represent conditions in which every

element in a display moves with target sign.  These conditions represent the

so called pure target trials that give MTS the power to distinguish search

architecture. Increases in set size here represent increases in the number of

targets.  Points connected by the purple lines are target absent trials in which

displays contain only distractor motion directions – increases in set size

across these lines represent increases in the number of distractor elements

present in a display.

There are several important points to take away from these data.  First,

all three motion experiments show some degree of capacity limitation, in that

response times increase for single target trials as distractor number increases.

Secondly, there is notable variation in the magnitude of redundancy gain

across motion type (benefits in response time for four targets relative to a

single target are inset in green).  For translation, there is a significant

redundancy gain of nearly 30 milliseconds; for expansion/contraction, a

significant gain of 15 milliseconds, and for rotation an insignificant gain of 2



15

milliseconds.  Based on these gains we would conclude at first glance that

translation and expansion/contraction direction are processed in parallel,

while the processing of rotation direction is accomplished via a serial process

(i.e. there are sharp costs in single target RTs with set size, and no

redundancy gains).  However, closer inspection of the target absent response

functions makes a clear interpretation of processing style based solely on the

target–present data questionable.  For all three motion types, the purple

target absent functions appear to “mirror” the green, pure target functions

(the only real difference we see between target present and absent response

times is in terms of a constant absolute offset in RT that is typical of two-

choice decision).  When there are decreases in RT for pure target trials with

set size (translation, expansion/contraction), so too are there similar

decreases for the associated target absent conditions.  When pure target RTs

are invariant with set size (e.g. rotation), then likewise, the slower target

absent RTs are also invariant with set size. This “mirroring”  between

conditions is especially troubling in the case of our target absent conditions

because flat or decreasing RT functions are not predicted by either serial or

parallel models of search.  Both standard serial and parallel models of

processing predict that RT should increase with set size for target absent

trials.  In the case of a serial process, this prediction is rather straightforward.

Target absent responses can only be made after all elements have been

identified as non-targets, and thus increases in set size necessarily lead to
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increases in target absent RTs.  In the case of a parallel process (capacity

unlimited or not), the prediction is also that target absent RTs should increase

with set size due purely to statistical considerations.  Namely, the response to

signal target “absent” can only be made once all elements have been

identified, and thus the composite RT for n distractor elements will be limited

by the slowest of the n processes.

Figure 2 plots the single-target, pure target, and target absent RTs for

additional pilot experiments using targets and distractors drawn from a wide

variety of basic stimulus domains (error rates are not shown in this figure, but

are qualitatively similar to the data shown in figure 1 – the motion sign

experiments in figure 1 have been re-plotted).  The exact details of the various

stimuli utilized in these experiments are not important; this figure is

introduced here simply to highlight the differences and similarities that arise

in the use of the MTS method.  The pattern of mirroring between pure target

and target absent response times made clear in this figure appears to be

universal in the context of multiple target search, and consistently appears in

all my experiments.  This commonality is all the more striking given the

substantial variation in absolute RT and redundancy gain magnitude seen

across experiments (Thornton, & Gilden, 2000).  Though there have been

previous reports of target absent trials manifesting RT-by-set size slopes

comparable to those found for single target trials (e.g. Enns & Rensink, 1990;
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Pashler, 1987), there has been little to no evidence from the literature of flat or

decreasing target absent RTs.  Typically, shallow or flat target absent RT

functions have been taken to indicate configural effects and the strong
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grouping of similar distractors (see Humphreys et al., 1989).  Such an account

runs aground in the case of composite data patterns consisting of flat target

absent RTs, sharp increases in single target RTs with set size, and no

redundancy gains for pure target trials (see rotation, triangle/diamond, and

box-side data in Fig. 2).  This specific pattern of data is in fact more consistent

with serial than parallel processing.  Additional investigations have revealed

that the mirroring we observe remains intact despite manipulations that

attenuate grouping, and is present nonetheless for stimuli in which texture

segmentation experiments provide little evidence of inter-element grouping.

One possible explanation for the ubiquitous mirroring seen in these

data is that observers are systematically scaling response criteria with set size

in such a way so as to reduce RT cost (Zenger & Fahle, 1997).  Any

adjustment of criteria that reduces response time will necessarily increase

error rate.  Examination of the error rate patterns in figure 1 in this context

provides additional evidence for the idea that observers may be able to

reduce target absent RTs by trading error.  For all motion experiments (see

Fig. 1), as well as for the majority of experiments shown in figure 2, there is a

general trend for single target misses to increase with set size, while false-

alarms hold constant or decrease with set size.  This pattern of error is

especially evident in the case of search for rotation direction, where misses for

a single target among three distractors approaches 25%.  Note that a bias to
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say target “absent” that increases with set size will simultaneously reduce the

effect of set size on target absent RTs, and increase the rate of misses.  This

particular pattern of errors, in which miss-rates rise far more sharply with set

size than false-alarms is not peculiar to multiple target search, but appears

generally throughout the use of supra-threshold search methodologies (e.g.

Rensink & Enns, 1995), and may reflect the adoption of a near-optimal

strategy (see Zenger & Fahle, 1997 for a treatment of error patterns in

singleton search).

Clearly, there will be trading of speed for accuracy in any decision task

in which both RT and error are free to vary.  In the typical search experiment

though, because the average error is constrained to be no more than 10%,

considerations of speed/accuracy tradeoffs arise only in so far as they are

necessary to insure that target present RT patterns are not simply accounted

for by associated changes in target miss-rates.  The problem that emerges in

considering a speed/accuracy tradeoff account of these target absent data is

that there is absolutely no reason to limit such trading to specific conditions –

once this Pandora's box has been opened, any clear interpretation of RT data

is going to have to also consider the error data.  The problem of

understanding how trading is expressed across conditions is made all the

worse in the case of multiple target search simply because there are so many
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additional stimulus conditions to consider (9 RT conditions and the 9

associated error rates).

One general approach that has been taken in this context has been to

form speed/accuracy trading functions by measuring both aspects of

performance under varying degrees of incomplete processing (Meyer, Irwin,

Osman, & Kounios, 1988; Pachella, 1974; Wickelgren, 1977).  While this

approach remains a possibility, it involves estimation of separate trading

functions for each condition of interest thereby limiting its feasibility to

simple experimental designs.  Other approaches applicable to visual search

have included methods in which accuracy levels are fixed and RT is not

measured (e.g. Palmer & McLean, 1995), or methods in which stimulus

presentations are kept brief,  and accuracy is instead the dependent measure

(e.g. threshold search methods; Palmer et. al, 1993). What these approaches have

in common is that they either constrain or ignore variation in one

performance variable in order to gain clarity in the interpretation of the other.

The approach I have decided to take does not constrain RT or error, but

rather makes their interaction a point of inquiry.

In order to understand how the specific patterns of RT and error that

arise during multiple target search are linked to limitations in capacity, I

create a process-based model of visual search.  This model jointly simulates
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response times and error rates, and has a number of “tunable” parameters of

key psychological import.  The model is a variant of a random walk model

that has been modified for the search domain (Link, 1975; Ratcliff, 1978).

Specifically, I parametrically manipulate sensory, attentional, and decisional

variables in the context of a multiple random walk model (for related models

see Palmer & McLean, 1995; Ward & McClelland, 1989).  This approach is

relatively novel in terms of visual search models in that the model can

simultaneously account for both RT and error patterns.  By utilizing the entire

pattern of RTs and error rates to constrain the model, performance variables

are integrated and thus provide the necessary power to reveal graded levels

of capacity limitation not realizable by techniques that focus solely on RT or

error.  It is important to emphasize here that the use of a model in this context

is not an end that provides an exhaustive and veridical account of the visual

search process itself, but is rather a means through which the complex

constellation of RT and error patterns seen in the data are ultimately reduced

to a few simple ideas about the stimulus, attentional limitation, and decision.

Overview of the dissertation

There are several primary goals that frame this dissertation.  First, I

seek to implement a multiple target search method that is a relatively

straightforward extension of traditional search methods.  The method

proposed here represents an improvement over existing methods in that it

bypasses the major shortcomings inherent in singleton search, and provides
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measures of costs under divided attention as well as benefits from target

redundancy using a relatively small number of stimuli.  Second, the method

will be used to characterize the processing limitations that exist across a large

ensemble of fundamental stimulus discriminations.  To do so, I introduce a

model of MTS that effectively integrates RT and error data.  The model is

simply a tool that simulates multiple-target search data, and the values of its

parameters provide insight into how much decisional flexibility and capacity

limitation are necessary to account for specific patterns of RT and error.  With

this goal in mind, I will examine a number of alternative ways of instantiating

capacity limitations during search in an attempt to uncover the etiology of the

pattern of decrements and gains in RT and accuracy that occur during the

unconstrained MTS task.  Specifically, I will attempt to account for the search

data using two class of models: the D-type model, in which attention

multiplicatively attenuates perceptual evidence prior to decision [this model

can be shown (see II.A.1.f) to be formally equivalent to an account of search in

which there are no capacity limitations and the only source of variation in

response variables across set size arises from statistical and decisional

limitation]; and the A-type model, which has an additional source of internal

noise that creates limitations above and beyond those that characterize the D-

type model.
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This dissertation is organized around two major phases of work.  In

the initial phase I present the MTS methodology in detail, along with results

from 26 search experiments.  This experimental ensemble was designed to

capture the range of stimulus contrasts typically used in the study of visual

search.  The ensemble is defined by four distinct classes of search experiments

in which targets and distractors differ: 1) along simple featural dimensions, 2)

in terms of emergent form or shape, 3) in terms of relative position, or  4) in terms

of motion direction.

In phase II, I introduce and implement two general models of MTS so

as to extract measurements of capacity limitation from response time and

accuracy data.  The various parameters that give the model flexibility are

motivated and discussed in terms of their psychological relevance, and the

general protocol for finding the parameter values that best account for

particular patterns of RT and error-rate is explained in detail.  I then present

the parameters of the model that best simulate the data from each of the MTS

experiments, and compare how individual search tasks are distinguished in

terms of discriminability, decisional flexibility, capacity limitation, and

internal noise.
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I.  Multiple target search

 The 26 experiments detailed in this section represent the bulk of my

work using the multiple target search method.  As mentioned in the

introduction, some of the pilot experiments were part of a related line of

inquiry that sought to determine attentional limitations in the sensing of

motion direction (Thornton & Gilden, 2001).  The remaining set of

experiments were chosen on the basis of two major criteria.  First, I sought a

set of experiments that would allow me to calibrate the multiple target

method by introducing target/distractor (t/d) discriminations presumed to

vary in the demands they place on attentional resources.  Second, I wanted a

stimulus set that approximated much of the variety of t/d differences seen in

the literature.  The goal here was simply to form a data base that would

sufficiently capture the range and variety of RT and error patterns manifest

under multiple target search.  In

addition, various experiments were

chosen to examine how variations in

discriminability, distractor heterogeneity,

and element assignment manifest

themselves in the MTS data, and

subsequently how they get reflected in

the model parameters.

+

~2 deg

possible element locations

Figure 3
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For all multiple target search experiments, displays contained either

one, two, or four elements.  Individual elements were configured about a

central fixation point along a virtual circle whose radius varied from 1.5 to 2.5

degrees of visual angle.  Elements were drawn at canonical locations along

the virtual circle (+45, -45, +135, -135 deg), and for most experiments the

entire display was randomly rotated about fixation to remove configural

effects by choosing a uniform deviate from the interval +/– 25 deg.  For some

of the experiments additional radial jitter (~.5 deg) was added individually to

each element to remove effects due to element collinearity.  A schematic of

the general protocol for display generation is shown in figure 3.

All search elements were

suprathreshold, in general of high

contrast, and varied in size from .5

to 3 degrees of visual angle at a

viewing distance of 57.3 cm.

Individual trials consisted of

displays containing one, two, or four elements, each of which could be a

target or distractor.  In all, there were nine basic types of stimulus displays;

displays containing three targets were excluded from this design.  Displays

consisted of either all distractors (target absent trials), all targets (pure, target

present trials), or some combination of a variable number of targets and

Table 1

set
size

# of targets

0 1 2 4

1

2

4
3

12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

2
12 ø

ø

ø:not applicable

ø
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distractors (mixed, target present trials).  Table I shows the relative

probabilities of encountering each type of stimulus display.  This particular

design matrix is necessary to insure that across set size the probability of

encountering a target present display is equal to the probability of

encountering a target absent display.

Nine different observers participated in each motion sign experiment

(nine additional observers served in experiments 3, 16, and 17 for a total of 18

observers), and eight to nine observers participated in each of the remaining

experiments.  For all experiments, stimulus displays were preceded by a brief

fixation interval (~500 msec), and were present until response.

I.A. Stimuli

In the following section I present the methodological details of the

individual experiments that form the MTS ensemble.  In all, the ensemble

contained 26 experiments, each of which could be broadly categorized into

one of five basic stimulus regimes:  feature search, form search, search for

motion-sign, search with heterogeneous distractors, or relative position search. For

reference, each experiment description is accompanied by a typical example

of a set size 4 search display (the element assigned as “target” consistently

appears in the upper left quadrant of each figure).
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I.A.1. Search for simple “featural” differences

The following 5 experiments consist of searches based on targets and

distractors that differ along a single feature dimension.  This class of

experiment should make near minimal demands on attention as these

stimulus dimensions 1) are known to have privileged representation in the

early visual system, 2) generally lead to highly efficient patterns of spatially

parallel search, and 3) support vivid texture segmentation.  In the context of

MTS, these types of search provide a strong benchmark for calibrating the

general method.  Accordingly, the expected pattern of data for this class of

experiment is characterized by large redundancy gains in pure target RT,

shallow set size effects for displays containing mixtures of targets and

distractors, and relatively low error rates.  Experiments 1 and 2 examine

search for targets that differ from distractors in terms of size and spatial

frequency.  Experiments 3 and 4 examine search for targets that differ from

distractors solely in terms of orientation.  Experiment 5 examines search based

on color differences.

Experiment 1: size (target=big)

Target and distractor stimuli consisted of Gabor-type elements that

were fixed at an orientation of -45 deg, and had effective bounding envelopes

that were inversely proportional to spatial frequency.  Target elements had a

spatial frequency of 2 cpd and an envelope subtending approximately 1.5
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Experiments 1 & 2
Spatial frequency/size

Figure 4

deg; distractor elements had a spatial frequency

of 4 cpd and an envelope of approximately .75

deg.  Thus, size and spatial frequency were

purposely confounded.  For both the size (exps. 1

& 2), and the orientation (exps. 3 & 4)

experiments below, Gabor stimuli were

presented against a background of low contrast,

static Gaussian noise (the purpose here was

primarily aesthetic–the noise background effectively masked edge artifacts

due to the thresholding of individual Gabor elements).

Experiment 2: size (target=small)

The stimuli for this experiment were identical to those in experiment 1

except that here the roles of target and distractor were interchanged.

Together experiments 1 and 2 probe performance asymmetries during

multiple target search.  A number of previous studies support the notion that

search for big among little is accomplished in a qualitatively distinct, and

more efficient manner than search for little among big (e.g. see Treisman &

Gormican, 1988).  Here we test whether this advantage extends to a MTS

design that minimizes the eccentricity, density, and target uncertainty effects

known to plague singleton search.
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Experiment 4
Orientation (∆θ=15˚)

Figure 6

Experiment 3
Orientation (∆θ=45˚)

Figure 5

Experiment 3: orientation (∆θ=45˚)

The third “feature” search experiment

consists of Gabor-type stimuli of fixed size

and spatial frequency (i.e. 2 cpd, 1.5 deg

envelope).  These were used to create targets

and distractors that differed solely in terms of

element orientation.  Targets were oriented at

-45 deg and distractors at 0 deg (i.e. vertical).

The ∆θ of 45 degrees was chosen to produce a

highly discriminable orientation gradient between targets and distractors.

Experiment 4: orientation(∆θ=15 ˚)

The stimuli for this experiment were

similar to those in experiment 3, except that

here the orientation gradient (∆θ) was

reduced by 1/3 by giving the distractor

Gabors a base orientation of 30 degrees; the

targets remained oriented at 45 degrees.  The

orientation gradient was reduced to examine

how decreases in target/distractor discriminability are manifest in MTS.

More specifically, experiments 3 and 4 will provide a partial test of the

psychological reality and consistency of the model parameters associated
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+

Experiment 5
Color

Figure 7

with element discriminability (section II.A.1.b).  The question here is whether

these parameters will pick up an explicit manipulation of similarity.  The 15

degree gradient seemed a natural choice given previous evidence that it

borders a transition point between efficient and inefficient search slopes (Wolfe,

1998b).

Experiment 5: color

The final feature search experiment

consists of search for reddish target disks

(radius of ~1.33 deg), among blueish distractor

disks. The actual target and distractor disks

were created to be more similar than as

depicted in the adjacent figure (weights

assigned to each monitor gun were as follows –

red: [.75 .65 .65]; blue: [.65 .65 .75]).  The elements were made more similar

here because in earlier pilot work, highly saturated colors were found to

produce extremely fast RTs in which most of the data were compressed near

the floor.  By reducing the color contrast of the elements it should be possible

to move the RTs off the floor, therein revealing the magnitude of both the

redundancy gains, and the effect of distractor number.
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I.A.2. Shape and search for “emergent” form

The 7 experiments in this section consist of search displays in which

targets and distractors are distinguished either in terms of shape (exps. 8, 9, 10,

and 11), or in terms of an “emergent” scene-based property (exps. 6, 7, & 12).

By scene-based, I mean a stimulus property that is not present per se in the

stimulus, but is constructed using assumptions about either grouping, lighting,

or 3D projection and layout.  The subset of experiments employed here are

particularly interesting because they typically lead to efficient patterns of

search in the singleton method, even though in all cases targets and

distractors are physically distinguished only in terms of the relative

arrangement of parts.  Because such findings run counter to results for typical

relative position searches, they provide support for the notion that these sorts

of scene-based representations are available early.  Unfortunately, all the

previous work has been tied to singleton search, a method whose only real

diagnostic has been the single-target slope.  As I have mentioned repeatedly

throughout the introduction, interpreting processing style and/or the

magnitude of capacity limitation using this measure is problematic at best.

Here I reexamine the nature of search for emergent form using the MTS

method.  If search for these types of stimulus differences is truly parallel and

efficient, we should expect to see joint patterns of redundancy gains in the

pure targets and shallow set size effects for mixed element displays.
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Experiment 6
3D cubes

Figure 8

Similarly, the model-based estimates of attentional limitation should be on

par with those for paradigmatic “popout” tasks (e.g. experiments 1 – 5).

The remaining subset of experiments examine the role of shape in

search. In addition to rounding out the MTS ensemble, these experiments are

of special interest given the current debate as to the nature of shape

processing.  It remains an open question as to whether or not shape

information is available early and in parallel during search (see Wolfe, 1998b).

Experiments 8 and 9 test this question using novel target shapes with random

contours that can be parameterically manipulated to be more or less similar to

circular distractor shapes.  Experiments 10 and 11 examine search for familiar

letters that are distinguished by shape and

other uncontrolled for stimulus differences

(e.g. orientation components, curvature,

etc.).  These experiments are also

interesting because it is not entirely clear

how a confluence of stimulus attributes of

the sort that distinguish one letter from

another will affect the search process.

Experiment 6: 3D cubes

In this experiment I examine search for simple line drawings that

support the perception of “cubes” oriented in depth.  Though target stimuli
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consist of the same component pieces as distractor stimuli, they differ from

distractors in terms of their implied orientation in depth.  These stimuli are

similar to the targets and distractors used by Enns and Rensink (1990).  In a

number of studies these stimuli were found to yield relatively shallow RT-by-

set size slopes. Appropriate coloring has been added to the faces of the target

and distractor “cubes” so as to further enhance the perception of 3-

dimensionality.

Experiment 7: closure

This experiment uses search stimuli similar to those originally

investigated by Pomerantz and Pristach (1989).  These sorts of stimulus

difference are appropriate in the present context because the two

arrangements of curved lines lead to distinctions in emergent form (the

arrangements produce either an “oval”-

like shape or an “hourglass”-like shape).

Target and distractor stimuli were

constructed so as to minimize any overall

difference in visual extent.  Again, though

the relation between targets and

distractors make this search formally

equivalent to a relative position search, we

may find moderate to low levels of

Experiment 7
Closure

Figure 9
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capacity limitation if search processes can capitalize on the emergent

distinctions in form.  These types of stimulus differences have previously

produced shallow RT slopes in the context of singleton search.

This type of search also has import for my ongoing investigations into

search for motion sign.  Specifically, these stimuli share a sort of formal

structure with search for the sign of expansion/contraction.  To see this, note

that the sign of a complex motion (e.g. rotation, expansion/contraction) can

be simplified as a particular arrangement of at least 2 motion vectors.  Thus,

expanding motion can be represented by a vector of leftward flow organized

to the left of a vector having rightward flow.  In this scheme, contracting

motion can be similarly represented by simultaneously flipping both flow

vectors about an axis orthogonal to their flow directions (i.e. simultaneously

changing the sign of each component, but preserving their organization).

This type of symmetry relation between expanding and contracting flow is

equivalent to the representations of target and distractor stimuli in the static

search presented here.  It is generally true, at least for static searches, that

when targets and distractors are 1) composed of parts that have directionality

(e.g. arrows), and 2) share a symmetry relation of the sort described above,

they will also differ in emergent form.  One question then, is whether the

previous advantage that was found for searches based on the sign of

expansion/contraction over search for rotation sign (Thornton & Gilden,
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2001) was due to some emergent property associated with the inherent

symmetry relation between stimuli.  If this relation is what makes

expansion/contraction look more like translation, than we should expect

experiment 7 to also produce data with strong redundancy gains and shallow

set size effects.

Experiment 8: random shape (high ∆)

The following two experiments

examine search when targets differ from

distractors solely in terms of shape.  For

these experiments I have created a base

“distractor” shape by forming a closed

random contour.  The random contour is a

sum of a set of 8 sinusoids whose

frequencies are harmonics of the contour

length (the sinusoids have randomly

chosen phases and power that falls with frequency as 1/ƒ2).  The amplitude of

the contour is varied to create shapes that increasingly deviate from

circularity.  In the adjacent figure I show a set size 4 display containing the

random distractor shape (~1 deg) and the circular target used in experiment

8.  For experiment 8 the distractors were created to be highly discriminable

Experiment 8
Random shape (high ∆)

Figure 10
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from the circular target, and were randomly oriented within and across trials

to remove fixed orientation cues.

Experiment 9: random shape (low ∆)

The primary advantage of using

random-contour distractors is that the

amplitude of shape non-circularity can be

easily manipulated.  In this experiment, I use

the same base distractor contour as in

experiment 8, but here I have reduced the

amplitude of deviation from circularity by a

factor of 2.  This was done to provide a

comparison shape experiment in which only target/distractor

discriminability differed.  In this way, experiments 8 and 9 are related to the

previous experiments (3 & 4) examining discriminability in the context of

orientation gradients.  Here I explore how explicit manipulation of the shape

gradient gets reflected in the patterns of MTS data, and subsequently, in the

relevant model parameters.

Experiments 10 & 11: letter search (static, dynamic)

The two following form experiments consist of search for the letter “A”

among “B” distractors.  I chose these letter stimuli because they differed in

Experiment 9
Random shape (low ∆)

Figure 11
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A

B B

B

+

Experiment 10
Letter (static)

+

A

B B

B

Experiment 11
Letter (dynamic)

Figure 12

terms of line orientation and curvature, and were thus easily

discriminable.  In the static version of the experiment, high contrast, black

letters (~1.15 deg) were presented against a white background.  In the

dynamic version of letter search, letter stimuli (~1.3 deg) were ramped up in

luminance from black to white against a black background (the cycle from

minimum to maximum luminance took 1 sec).  Dynamic letter search was

included in the experiment ensemble because I sought to investigate how set

size effects and redundancy gains are affected when information about

stimulus identity is protracted in time.

Experiment 12: implied lighting (up/down)

In the adjacent figure I show the target and distractor stimuli that form

the final investigation into how emergent properties affect MTS. These
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stimuli are shaded so as to appear

phenomenally as “bumps” and “pockets”

within a gray, background surface.  The

perception of surface curvature that

attends these stimuli is thought to arise

from the interaction between stimulus

shading and intrinsic assumptions about

an overhead lighting source

(Ramachandran, 1988; Sun & Perona,

1996).  Thus, by changing the sign of shading from light-on-top to dark-on-

top I can easily effect changes in perceived surface curvature.

For this experiment targets were elements with large central “bumps”,

and distractors were elements with large central “pockets”.  I have added

small, reverse-shaded inducers to the sides of the larger “bumps” and

“pockets” so as to enhance the perceptions of curvature when displays

contain only a single element.  Note that these search stimuli, despite a

striking distinction in  3D curvature, nonetheless are related in the image by a

simple symmetry flip.  At present it is an open question as to whether this

sort of stimulus difference can be used efficiently in search.  Interestingly, the

best evidence in support of the notion that shape and reflectance are

computed early in visual processing has come from texture segmentation

Experiment 12
Implied lighting (up/down)

Figure 13
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demonstrations which reveal strong region formation on the basis of these

sorts of stimulus differences.  However, it is true that segmentation and

search methods do not always agree (Wolfe, 1992), and it remains to be seen

how redundant sources of curvature sign are used in search.

I.A.3. Search for motion-sign

The following 7 experiments investigate the acquisition of motion-sign

during multiple target search.  Experiments 13, 16, 17, & 18 were run as part

of previously published study that formed the beginnings of my

investigations into MTS (Thornton & Gilden, 2001).  These experiments are

included in the ensemble because they extend the method to the motion

domain, and in addition provide a

heterogeneous set of data characterized

by capacity limitation and redundancy

gain magnitudes that differ substantially

across motion type.  The remaining

subset of experiments introduced here

represents a replication of a study (exp.

14), an extension using more naturalistic

objects (exp. 19), and part of an explicit

manipulation of motion-sign

discriminability (exp. 15).

Experiment 13
Translation I

Figure 14
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The majority of the motion experiments (exps. 13-17) consisted of

animated textures moving behind apertures (~3 deg).  Individual animations

consisted of sequences of random texture that were constructed to have the

same power spectra as natural landscapes (power ∝ 1/f2). These animations

supported the percept of continuous and coherent motion, and were

presented for one second against a matched background of uncorrelated

dynamic noise.  In experiments 13, 16, & 17, empty apertures (e.g. set sizes of

1 or 2) were replaced with uncorrelated dynamic noise.  In the remaining

experiments, the moving elements were presented either against a gray

background (exps. 14, 15), or against a static noise field (exps. 18, 19).  Stimuli

were generally equated across motion type for spatial extent, contrast, spatial

frequency content, and perceived speed.

Experiments 14 & 15: translationII (16

frames, 3 frames)

The following two experiments

served as replications of experiment 13,

which formed part of an earlier

investigation.  The stimuli used here

were again moving textures matched in

speed and size to those in the previous

experiment.  However, these stimuli

+

Experiments 14 & 15
Translation II

Figure 15
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differed from those in experiment 13 in that the moving textures were scaled

to have higher contrast, and the motion elements were presented against a

gray background without dynamic noise.

Experiment 14 consisted of a 16-frame motion sequence (total duration

was ~800 msec), thus providing a replication of experiment 13.  Experiment

15 was identical to experiment 14 in every respect, except that the motion

displays were limited to 3 frames of motion  (total duration was ~150 msec).

Duration was shortened so as to provide a simple analogue in the motion-

sign domain of the previous orientation and shape experiments exploring

discriminability effects in MTS.  Presumably, decreasing the overall motion

duration by a factor of 16/3 should lead to targets that are more similar to

distractors.  Again, the question here concerns how such changes in

discriminability will manifest themselves in MTS, and more importantly,

whether the MTS models are correctly specified so as to reveal these

differences in the right parameters.

Experiment 16: expansion/contraction

In the case of expansion/contraction, I ran counterbalanced versions of

the experiment in which 9 separate observers searched for either expansions

among contracting distractors, or contractions among expanding distractors.

I decided to use both directions as target because previous psychophysical
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work suggested some form of anisotropy,

though the sign of the asymmetry differed

across studies (Ball & Sekuler, 1980;

Edwards & Badcock, 1993; Graziano,

Anderson, & Snowden, 1994; Harris,

Morgan, & Still, 1981; Reinhardt-Rutland,

1994; Takeuchi, 1997).  Previous results with

MTS revealed little differences in search

performance as a function of target choice –

and so the data I will analyze here will generally reflect an average over

choice of target.  However, later in section II.C.7 I will use the MTS models to

explicitly look for any performance asymmetry.  The models are extremely

useful in this regard because they permit an integration of response variables

that is not possible by other means.  Thus, it is possible that a true asymmetry

in parameter estimates could exist for the different target assignments, even

in the absence of clear differences in either the pattern of RT or error rates.

Experiment 17: rotation 2D (textures)

Like many of the previously described experiments, this experiment

was part of a previous investigation into the nature of attentional limitations

during search for motion sign (Thornton & Gilden, 2001).  Experiment 17

employs rotating textures matched to those described in experiment 13 and

Experiment 16
expansion/contraction

Figure 16
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14 (visual extent was 3°; 16 frame

sequences lasting ~800 msec).  Eighteen

observers searched for clockwise rotating

targets among counterclockwise rotating

distractors.  Nine observers participated in

the initial study, that was then replicated

with a set of nine additional observers.

The data reported here is based on the

average of these two data sets.

Experiment 18: rotation 2D (pinwheels)

This experiment served as a control experiment that ruled out the

possibility that translation and

expansion/contraction sign were superior

to rotation in MTS because only these

motions had accretion and deletion of

texture at the aperture border.  In this

experiment stimuli were black

“pinwheels” that rotated against a static,

Gaussian noise background.  This type of

rotating stimulus leads to constant

accretion and deletion of texture as the solid wings of the pinwheels move

Experiment 18
Rotation 2D (pinwheels)

Figure 18

Experiment 17
Rotation 2D (textures)

Figure 17
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across the fixed background.  Results using these sorts of rotary stimuli

replicated an earlier study using aperture-bounded, rotating textures (see

experiment 17 above), such that there were no redundancy gains, and large

set size effects in the mixed display RT and error rates.  If anything, rotating

pinwheels appear to produce a more capacity-limited search in that pure

target RTs are seen to reliably increase with set size.

Experiment 19: rotation 3D (coins)

Experiment 19 represents an extension of experiments 17 and 18 –

these experiments examined search

for rotation sign when the rotations

were confined to the fronto-parallel

picture plane.  Here I ask whether the

high levels of capacity limitation

found previously for planar rotation

also exists for more realistic, 3D

objects that rotate in and out of the

picture plane.

Target and distractor stimuli were based on realistic “coin”-like objects

created using a sophisticated rendering program (Cinema4D, Maxon). The

individual objects rotated about oblique axes oriented in depth, and were

Figure 19

Experiment 19
Rotation 3D (coins)
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presented against a smoothed, noise background.  Unlike the previous

motion experiments, these stimuli differed slightly in size within display

owing to perspective projection, contained realistic lighting cues and

specularities that strengthened the 3D percept, and were presented in

continuous motion until response.

I.A.4. Heterogeneous distractors

Here I introduce 3 search experiments that seek to investigate factors

that might affect criterial scaling.  One of the key components that allows the

MTS model of search to account for flat or decreasing target absent RT

functions is the parameter C (see section II.A.1.d).  This parameter controls

the extent to which sub-criterial but consistent sources of evidence guide

decision.  My pilot investigations using the model indicated that it

successfully accounted for RT and error-rate data using a value of C > 2.  This

commonality suggests that observers adopt a general strategy of criterial

relaxation during MTS.  It is of interest to determine whether this tendency is

simply a function of the homogeneity of the target and distractor sets that

form the bulk of the MTS ensemble.  Specifically, the experiments proposed

in this section attempt to answer the following question: will observers

continue to use multiple lines of weak evidence to guide decision when those

lines of evidence arise from a set of heterogeneous elements?  It may be that

the search strategy embodied in the parameter C is only viable when a)
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distractors differ from targets in a single unique way, and b) distractors and

targets form homogeneous sets.

A large body of search experiments consistently implicate stimulus

heterogeneity as a major determinant of increased search difficulty and set

size effects (Duncan & Humphreys, 1989; Humphreys et al., 1989).  If

stimulus heterogeneity has a similar effect in multiple-target search we

should expect redundancy gains to diminish and target absent RTs to

increase with heterogeneity.  If such effects exist in the data, we should

likewise expect to see correspondent change in the parameter C – that is, as

target absent RT by set size slopes increase, the value of C extracted in fitting

the model should be lower, indicating the model's reluctance to move

secondary criteria far from the primary criteria set by T.

Experiment 20: triangle in rotated diamonds

This experiment is based on target/distractor stimuli consisting of

simple polygons.  Targets were designated to be filled triangles, while

distractors were filled diamonds.  In all cases, stimulus displays consisted of

randomly oriented examples of these two base stimuli.   Both elements were

created to be of roughly the same size, and were chosen because they

appeared highly similar.  In pilot work I created multi-element textures with

abutting regions composed of all triangles or all diamonds.  These textural
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regions segmented only weakly, suggesting that in the context of multiple

target search these types of stimulus differences would produce little to no

race gains in the pure target trials, and large increases in single target and

target absent RTs with set size.

I have included this particular experiment in the section examining

search with heterogeneous distractors because pilot work has indicated that

the random orientations imposed on the polygon stimuli cause a sense of

heterogeneity – the mirroring between pure and target absent RTs was

reduced in this type of search.  This breakdown of the symmetry suggests

that observers are less willing to combine multiple sources of sub-criterial

information, and that the MTS model will accordingly use a reduced value of

C in accounting for the data.

Experiment 20
Triangles in rotated diamonds

Experiment 21
Triangles in polygons

Figure 20
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Experiment 21: triangle in polygons

This experiment builds on experiment 20 by increasing the distractor

heterogeneity so that it now includes random variation in shape. Specifically,

a variable number of targets (filled black triangles) were presented among a

variable number of distractors chosen randomly from a heterogeneous set of

filled polygons (either a pentagon, diamond, or hexagon matched in

phenomenal size to the target).  The members of the distractor set were

chosen to be highly similar to the target triangle.  Again, all search elements

were randomly oriented  within and across displays to remove simple cues as

to target presence.

Experiment 22: conjunction (color by orientation)

This experiment consists of a basic conjunction search, so named

because target elements share a single feature with each member of a set of

heterogeneous distractors.  As such, the target can only be distinguished from

the distractor set by virtue of a unique conjunction of features.  This class of

search is interesting for two primary reasons: first, it represents a

heterogeneous distractor search and so in keeping with the previous

arguments allows us to look for correspondent change in the parameter C;

and second, this type of search experiment typically produces sharply

increasing RT by set size functions in singleton search.  Surprisingly, there

have been few studies looking at conjunction search tasks with multiple
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targets.  Ward & McClelland (1989) did investigate conjunction search in the

context of a random walk model similar to the model proposed here.  Their

search data were fit by a model in which target-distractor discriminability

decreased dramatically with set size.

The particular conjunction

experiment I have used utilizes a color x

orientation stimulus set that is known to

consistently yield large set size effects

(Nakayama, Wang, & Kristjansson, 2000;

Wolfe, 1998b).  Stimuli consisted of a

variable number of target elements

(vertical, white) that were presented

among distractors based on random draws

from a 2-element set containing black, vertically oriented rectangles and

white, horizontally oriented rectangles.  In this way, each distractor shared at

most 1 feature with the target, and thus search could only proceed via feature

combination.  Practically, the target absent displays were created so as to

maintain distractor heterogeneity on every trial.  This is an important control

because without it would be possible for observers to reject displays solely on

the basis of all elements being black, or oriented horizontally.

target

Experiment 22
Conjunction (color X orientation)

Figure 21
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I.A.5. Search for relative position

The following set of experiments examine search when targets and

distractors can only be distinguished in terms of the relative position or

configuration of features or parts.  The experiments detailed here are of

particular interest for the following reasons.  First, there is a large body of

search work attesting to the difficulty that discrimination of relative position

imposes on search (Enns & Rensink, 1990; Logan, 1994; Moore, Egeth,

Berglan, & Luck, 1996; Palmer, 1994; Poder, 1999; Saarinen, 1996; Wolfe,

1998b; Wolfe & Bennett, 1996).   In addition, these sorts of stimulus

differences support little to no texture segmentation when targets and

distractors define unique regions (Beck, 1966; Geisler, Stern, Thornton, Kuyel,

& Ghosh, 1998; Malik & Perona, 1990; Renstschler, Hubner, & Caelli, 1988;

Sagi, 1995).  Taken together, the search and texture segmentation findings

suggest that discrimination of relative position will manifest sharp costs in RT

as distractor number increases, and little, if any redundancy gains across pure

target conditions.  My pilot investigations using MTS are in accord with this

work as there is consistently a high degree of capacity limitation when targets

and distractors are distinguished only by a symmetry flip.  In addition,

understanding why certain types of relative position judgements are searched

more efficiently than others will be revealing as to the relation between

stimulus structure and attention.
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Experiment 23: missing side

The stimuli for experiment 23

consisted of a three-sided box (~1.2 deg)–the

target had its right side missing, the

distractor its left side.  These stimuli are a

nice choice in the study of relative position

because ,while they are extremely

discriminable in the psychophysical sense,

they engender very weak segmentation as abutting regions in a visual texture

(Geisler et. al, 1998).  The expectation for MTS is that search will be highly

capacity limited with patterns of data characterized by flat or increasing pure

target RTs, large set size effects , and high miss rates for displays containing

single targets and 3 distractors.

Experiment 24: implied lighting (left/right)

The stimuli for experiment 24 are

identical to those used in experiment 12

except that the entire display has undergone a

90° rotation.  This rotation removes the

percept of curvature that attended the stimuli

of experiment 12, presumably because there is

Experiment 24
Implied lighting (left/right)

Figure 23

Experiment 23
Missing side

Figure 22
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Experiment 25
Broken cube

Figure 24

no internalized assumption about side lighting (Sun & Perona, 1996).  With

this rotation, the target and distractor stimuli are no longer distinguished by

an emergent property, and so they now truly differ only in terms of the

relative polarity of shading.  As the adjacent figure makes clear, search for

left/right polarity is extremely difficult, an intuition that has support from

both singleton search (Heathcote & Mewhort, 1993), and texture

segmentation studies (Julesz, 1981; Rentschler, Hubner, & Caelli, 1988).  In

terms of model-based estimates of attentional limitation, we should expect

then to find a large dissociation among the data from experiment 12 and its

rotated counterpart.

Experiment 25: broken cube

In this experiment I use the same

stimuli created for experiment 6 which

examined search for cubes oriented in

depth, but here have separated the cube

faces in such a way so as to attenuate the

percept of extension in depth.  If this

emergent percept has a role in search, then

we should find a dramatic increase in



53

capacity limitation.  In the context of singleton search this exact manipulation

engendered large increases in the RT-by-set size slopes relative to the slopes

for intact cubes (Enns & Rensink, 1990).

Experiment 26: circle-plus

The final experiment in the MTS

ensemble used target/distractor stimuli

composed of different arrangements of a

plus sign and a circle (each pair

subtended ~1.2 x 2.2 deg).  The target

was arbitrarily chosen to be plus to the

left of circle; the distractor was created

by flipping the target element about its

minor axis (i.e. plus to the right of circle).  Again, these stimuli are highly

discriminable, yet in the context of multi-element displays lead to inefficient

patterns of search characterized by large set size effects (Logan, 1994;  Moore,

Elsinger, & Lleras, 2001).

I.B. Data analysis

For all 26 experiments, observers completed 288 trials of practice,

before providing either 576 trials (motion sign experiments), or 864 trials of

data (the remaining 22 experiments).  In the preparation and analysis of these

Experiment 26
Circle-plus

Figure 25
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data I excluded all trials on which errors occurred, and trials with RTs greater

than 1500 or less than 150 milliseconds.  I then computed both within-

observer medians and standard errors for all MTS conditions (9 RT and 9

error-rate conditions).
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I.C. Results

 A summary of some of the more theoretically important RT patterns

and error rates across the entire ensemble of 26 experiments is shown in the

following three figures (the data from the pilot experiments shown in figure 2

is included these figures).  I have opted for summary figures in order to

highlight variation across the ensemble and to make inter-experiment

comparisons easier.  Complete RT and error-rate data for all 26 experiments

appears in appendix IV.

Figure 26 plots the average error-rate (“misses” and “false-alarms”) in
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deciding that a single target is present in a display, against the average RT for

single target displays (± standard errors are included).  There is considerable

variation in both response measures, with average error rates ranging from 1

to 8%, and average RTs ranging from 350 to 750 msec.  In general, the longest

base RTs are due to experiments defined by dynamic displays (i.e. the various

motion experiments and the dynamic letter experiment).  For these

experiments, target/distractor discrimination depended on an underlying

frame-rate that placed a limit on the minimal amount of time necessary for

decision.  Excluding these dynamically-defined experiments, the ensemble is

characterized by very similar base RTs of approximately 400 msec.   The base

target absent data are not shown, but in general consisted of slightly higher

error rates and RTs about 50-100 msec. slower than those associated with

target present decisions.

The next figure plots the difference in RT for a 1 target/3 distractor

display (tddd) relative to the single target base RT (t) for all 26 experiments.

This RT difference (denoted the 1-target ∆RT) is a measure of the rate that RT

to find a single target increases with set size, and is directly related to the RT-

by-set size functions of singleton search.  Recall, that in the context of the

singleton search method, these so called “set size” effects play a central role in

attempts to distinguish serial from parallel processes, and are indicative of the

underlying search efficiency (Wolfe, 1998b).
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There are three key points regarding the set size effects that emerge in

the use of multiple target search.   First, like the data from singleton search

experiments, the 1-target  ∆RTs are continuously distributed and are thus

inconsistent with a strict division of search into serial and parallel categories

(Wolfe, 1998a).  Second, there is an intuitive ordering of search tasks, such

that experiments based on simple featural differences of the sort known to

have early cortical representations (i.e. spatial frequency, orientation,

translational motion) yield smaller set size effects than searches based on

conjunctions of features or the sensing of relative position.  Finally, the set

size effects are generally larger than those found in corresponding singleton

search experiments.  There are a number of possible explanations concerning

why MTS might yield larger RT costs with set size than standard approaches

(e.g. inclusion of a set size 1 condition, use of a restricted range of set sizes,

etc.).  Later in section II.C.5, I use an idealized Bayesian model of search

containing no attentional limitation to show that adding multiple targets to a

singleton search design naturally leads to larger ∆RTs with set size.



58

0

50

100

150

200

250

color

conjunction

circle+

3Dcube

exp/con

letter dynamic
closure

pinwheel

brokencube

letter static

experiment

∆RT
[RT

tddd
 - RT

t
]

Set size effects for the ensemble

missing side

lighting-UD

orient ∆45˚

rotation 2D
rotation 3D

triangle in polygons
shapeHI∆

spatial freq (t=2cpd)

trans I (16 frames)
triangle in diamonds

lighting-LR

shapeLO∆

spatial freq. (t=4cpd)

orient ∆15˚
trans II (16 frames)trans II (3 frames)

Figure 27

The centerpiece of the multiple target method lies in the use of pure

target trials to signal “redundancy gains” in RT.  These trials give the method

its power in deciding whether search is consistent with a serial process, or

whether instead it indicates a parallel, but capacity-limited process.  In figure

28 I have plotted the magnitude of redundancy gain obtained for each

experiment in the ensemble against the corresponding measure for target

absent displays.  Specifically, the abscissa plots the average benefit in RT that

occurs when displays contain exactly 4 targets (tttt), relative to displays

which contain only a single target; the ordinate plots the average RT

difference for displays containing exactly 4 non-targets (dddd), relative to

displays containing only a single distractor.  For both measures, positive
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values indicate a slowing of response time as more elements are presented,

while negative values indicate a speeding up of response time with element

number.

There are several important points regarding these two measures.

First, as was true for the case of the 1-target ∆RTs, there is continuous

variation in both the pure target and the target absent ∆RTs across

experiments.  For example, some experiments yielded negative pure target

∆RTs (faster) as more nontargets are added to displays (orientation∆45˚,

color, translation), while others had constant (missing side, polygons, random
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shape), or even large positive ∆RTs (lightingLR, pinwheels, circle+).

Similarly, for some experiments the pure target ∆RTs were negative in value,

indicating the presence of “redundancy gains” as more targets are added to

displays, while others were characterized by no such gains, or the even

stranger pattern of slower RTs with increases in target number

(heterogeneous shape, conjunction, rotation).  Increasing RT with set size for

the pure target trials is inconsistent with a serial process, and suggests that

these types of search are highly demanding of attention, such that any

benefits conferred by the addition of multiple targets is outweighed by the

costs associated with an increase in set size.

The second point is that there is general linear covariation between the

pure and the target absent ∆RTs (r=.728).  This relationship provides an

ensemble wide replication of the “mirroring” that was found in the

preliminary uses of  the MTS method (see figure 2).  As mentioned in the

introduction, this covariation represents a pattern of RT that cannot be

accounted for using simple serial or parallel models of search, and thus

provides a major constraint on the modelling of these search data.

Decreasing target absent RTs with set size implicate a trading of speed for

accuracy that is contingent on set size, and any successful model will

therefore have to incorporate considerable decisional flexibility if it is to

account for MTS data.
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The final point to note regarding figures 27 and 28 is that there is a

consistent relationship between the magnitude of an experiment’s set size

effect, and the magnitude and sign of the associated redundancy gain.  Those

experiments with large set size effects tend to have no observable redundancy

gains, while those experiments with smaller set size effects tend to produce

reliable redundancy gains.  In general, the former pattern is consistent with a

serial-like search, while the latter pattern (shallow set size effects +

redundancy gains) suggests a parallel, somewhat capacity-limited search.

However, because of the trading of speed and accuracy indicated by the

target absent data, it is not possible to categorize experiments using any

single response measure.

 In the remainder of this dissertation, I describe a modified random

walk model of search that incorporates sensory, attention, and decision-based

parameters.  I then use the model to simulate the corpus of MTS data.  The

settings of the model that best account for each experiment’s data provide

measures of information quality, attentional limitation, and criterial

flexibility.  These measures are possible only through the use of a model that

takes stock of the joint pattern of RT and error-rate.
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Phase II:  Modelling  multiple-target search

In order to successfully account for multiple target search data we

need a model in which 1) information about element identity accumulates

stochastically over time, 2) the rate at which information accumulates is

adjustable and dependent on attentional limitation, and 3) decision criteria

can be manipulated to examine speed/accuracy tradeoffs.  The sequential

sampling class of models fits these requirements admirably in that these types

of models simultaneously produce both response times and errors, and are

parameterized by stimulus variables that control the rate of information

accumulation, and decisional variables that determine how much information

is required for response.

The core component of the model I use to simulate MTS derives from

the basic random walk model (Laming, 1968; Link, 1975; Stone, 1960;

Townsend & Ashby, 1983).  This specific type of sequential sampling model

has been enormously successful in the modeling of 2-choice decision (Ratcliff

& Rouder, 1998), and versions of it have been previously applied to the visual

search domain (Palmer & McLean, 1995; Ward & McClelland, 1989).  In

addition, this type of model permits decisions to be made on the basis of

partially accumulated information (see Ratcliff, 1988), and represents an

extension of signal detection theory across time.  Moreover, the geometry of

the random walk process itself naturally leads to positively skewed
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distributions of performance variables, a feature common to empirical RT

distributions. However, I in no way wish to imply a commitment to this

particular model, and recognize that other types of sequential sampling

models that possess similar properties represent plausible choices for the

modeling of multiple target visual search  (e.g. the Poisson race model, Pike,

1973; Townsend & Ashby, 1983; Van Zandt, Colonius, & Proctor, 2000).

I extend the random walk model of decision to the visual search

domain by introducing multiple independent “walkers”, one for each

element present in a stimulus display (for related models see Palmer &

McLean, 1995; Ward & McClelland, 1989).  In the standard conception of the

random walk model of search, each walk evolves stochastically over time

through the formation of a running sum based on repeatedly sampling

random deviates (usually Gaussian, though not required).  The walk drifts in

Brownian fashion because at each discrete time step another random deviate

is added to the existing sum (statistically, the sum grows in direct proportion

to the number of deviates, and varies in proportion to the square root of the

number of deviates).  By definition this type of random walk model is a

member of the class of discrete-time, continuous-state, sequential sampling

models.
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In the model, each random walk represents a record of the time-

varying evidence about an individual element's identity.  Target walks are

formed by summing deviates from a distribution of positive mean, and will

on average move toward a positive, target present criterion; likewise

distractor walks are formed by summing deviates from a similar distribution

whose mean is of opposite sign, and will on average drift toward a negative,

target absent criterion (typically the means of the target and distractor

increment distributions are symmetrically placed about zero, and both

distributions have identical variance, though this is by no means required).

In the context of discrimination and decision the deviates drawn from the

“target” and “distractor” increment distributions are construed as varying

amounts of information about stimulus identity obtained per unit time. The

overlap of these distributions can be manipulated to account for variation in

underlying target/distractor confusability. The n walks, one to represent each

element in a display, drift between two primary decision criteria.  A target

“present” decision is made when the first walk crosses a positive criterion, or

a target “absent” decision is made when all walk(s) have crossed a negative

criterion.  Response time arises naturally within this architecture, and is

simply proportional to the number of deviates required for a given sum to

exceed a response criteria.  In general the average number of deviates

required for a walk to reach a criterion is given by the following simple

equation (Smith & Mewhort, 1998):
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(1)

where T is the criterion, e is the error-rate, and S is the mean of deviates

composing the walk.  Errors occur when a walk is absorbed at the wrong

response boundary; for example, one of n “distractor” walks reaches the

target–present criterion prior to all the walks crossing the target absent

criterion – in this instance a “false alarm” would be recorded.   The following

expression  from Karlin and Taylor (1974) can be used to obtain the error-rate

and is based on the probability that a single walk is absorbed at some

criterion B prior to absorption at a criterion A, given an initial starting point x:

(2)

 where S and V2 are the mean and variance of the deviates.  Schematic details

of the standard random walk model of search are summarized in figure 29.

In the figure a single “target” and a “distractor” walk are shown (plotted in

green and red respectively), along with representations of the underlying

increment distributions that give rise to each random walk (note that the

moments of these distributions are exaggerated in the figure).

  p(abs) = e
– 2Sx

V 2 – e
– 2SA

V 2

e
– 2SB

V 2 – e
– 2SA

V 2

  T(1 – 2e)
S
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Figure 29 There are several

key assumptions that

define the particular

random walk model of

search proposed here.

First, I assume that all

search processing is

parallel, and possibly

limited in capacity.

These particular

assumptions are made

primarily because multiple-target search data appear to be wholly

inconsistent with serial classes of search.  In addition, there is growing

evidence for the notion that many simple target/distractor discriminations

make some demand on attentional resources (see Joseph, Chun, & Nakayama,

1997).  Second, I assume that variation in search performance across trials and

stimuli arises through the joint effect of costs due to stimulus load (i.e. set size

effects, either based on decision or decision + perception), and benefits due to

redundant targets (i.e. statistical facilitation or pooling accounts).  Finally, I

assume that the information about each element in a search display can be

represented as an independent random walk.  This assumption, though no
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doubt questionable, is reasonable given that the search elements in all my

stimulus displays are spaced 1-2 degrees apart.

Before continuing, I would like to point out that the random walk

model I am using to explain my visual search data is formally equivalent to a

general class of models that sum likelihood ratios.  In the literature there is a

long history of random walk models that accumulate stimulus likelihoods

over time using the Sequential Probability Ratio Test, so called SPRT models.

These models are well understood and have been shown to be optimal in

terms of minimizing RT for a given error-rate (Stone, 1960; Laming, 1968;

Ashby & Townsend, 1983).  In the SPRT model, the increments to the walk

are themselves log likelihood ratios based on a single sample of evidence

taken at time τ.  Specifically, the SPRT model is based on increments given by

(3)

In the context of deciding any given element’s identity during search, xi

denotes the current sample of evidence drawn from either the target [N(S,V)],

or distractor [N(-S,V)] distribution.  The Lis are summed to form a random

walk in which decisions are made on the basis of the combined likelihood.

Interestingly, the SPRT walk model differs from the class of walk models I am

using only in terms of a single scale factor.  This is because the distribution of

  Li = ln
p(xi|N(+S,V)
p(xi|N(–S,V)
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log likelihoods is related to the distribution of Gaussian-distributed xis by a

constant factor 2S/V2 (for a proof see Appendix I).  Because of this simple

relationship, it is possible to conceptualize the generic Gaussian-increments

model I am using as a SPRT model that categorizes search evidence in an

optimal way.

I begin a detailed exposition of the structure of the quantitative models

used to account for MTS data with the framework that formed the basis of my

early investigations.  This framework instantiates attention as a multiplicative

scalar that attenuates evidence about element identity in a strictly Weberian

fashion  (i.e. attention scales both the average size and variability of evidence

samples in like fashion).  This manner of conceptualizing attention, though

extremely successful in accounting for MTS data, presents a number of

problems that I will discuss in detail later – most notably, multiplicative

scaling of perceptual samples can be recast as a decision–limited model

without attentional limitation in the sense put forth by Marilyn Shaw and

John Palmer (Shaw, 1984; Palmer, Ames, & Lindsey, 1993).  Accordingly, I

denote the random walk model of search that instantiates attention as

multiplicative scaling as a D-type model.  This is not to say that the D-type

model does not embody components of attentional limitation, only that in the

random walk framework it is indistinguishable from a certain class of model

that has no such limitation.  In a later section, I will introduce and simulate a
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general class of A-type models that instantiate attentional limitation in a way

that is not reducible to decisional manipulation.  To anticipate, the majority of

the search experiments reported here are best explained using a D-type

model, while only a small handful of highly capacity-limited searches

required an additional A-type model.

II.A. Model structure

The basic model of MTS is unique among existing models of search in

so far as it incorporates two novel parameters identified with attentional

limitation and decisional flexibility.  First, the model has an attention

parameter to represent varying degrees of capacity limitation.  This

parameter which I denote ε, allows the model to control the rate at which the

random walks drift toward response criteria by multiplicatively scaling the

increment distributions with set size.  The specific assumption here is that

capacity limitation in visual search can be modeled as a decrease in the

amount of information acquired about stimulus identity per unit time.  This

construel of capacity limitation is not new and has often been invoked to

explain how parallel, limited capacity models can produce increasing RT by

set size functions of the sort once thought to uniquely signal a serial process.

Basically, the intuition is that a parallel model that simultaneously processes

all elements in a display can nonetheless yield increasing RTs with set size if

the rate of processing varies inversely with set size (Townsend, 1974; 1990).

This class of model differs from previous approaches in that I do not fix the
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extent to which processing is slowed with stimulus load, but rather allow it to

enter as a free parameter that varies from no effect of set size on

processing(i.e. unlimited capacity), to a perfect inverse relation in which rate

of processing is divided by set size (i.e. highly capacity limited).

The second novel component of the model is the use of a free

parameter to control the extent to which decision criteria are relaxed with set

size.  This additional parameter is motivated by the need to account for the

invariant or decreasing RTs I find for target absent decisions as a function of

set size (i.e. the target absent “mirroring” of pure target RTs seen in figures 1,

2, and 8).  Recall, that both serial and parallel models of search predict that

RTs to respond target absent should necessarily increase with set size.  In

multiple target search this does not happen because observers appear to

routinely adopt a strategy that allows them to respond using incomplete

information.  Thus, flat or decreasing target absent RTs indicate that

observers can take advantage of consistent, but sub-criterial amounts of

evidence.  The logic is as follows: even though no single walk may have

reached the target absent criterion; if all n walks are simultaneously below

some relaxed criterion it becomes increasingly unlikely that a target is present

in the display – therefore respond target “absent”.  The strategy is

implemented in the model via the parameter C which inversely scales the two

primary response criteria as a function of set size.  As set size increases there
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will be two secondary response criteria, one for target present decisions and

one for target absent decisions. These criteria are by definition scaled to be

closer to the origin than the primary criteria, and are therefore less stringent,

allowing decisions to be made prior to any one walk reaching the primary

response criteria.  Later in section II.C.5 I explore the optimality of such a

decisional strategy in the context of a Bayesian model of MTS.

II.A.1 The D-type model

There are five primary parameters that define the Gaussian-increments

random walk models of MTS.  Three of these parameters are generic to a

large class of random walk and diffusion models (Link, 1975; Ratcliff, 1978;

Townsend & Ashby, 1983), while the remaining two are the novel parameters

previously mentioned.

II.A.1.a T  (Primary response criterion)

T represents the amount of evidence necessary to decide an element’s

identity and thus sets the distance of the target present and target absent

response criteria from the walk origin (the target absent criterion is by default

equal to the target present criterion, but of opposite sign; the walk origin is

set to zero). A target present response is initiated as soon as one of the n

independent walks reaches the boundary set by T; a target absent response is

initiated as soon as all of n walks reach the boundary set by -T.  In an earlier
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incarnation of the model, T was free to vary and V, the parameter

representing increment variability was fixed.  Because of simple scaling

relationships among T and the mean (S) and variability (V) of the increment

distributions, one of these parameters can be fixed without loss of generality.

To see this, note that T is really just a distance that can be expressed as a

linear combination  of  S and V [i.e., T= ZV + S, where Z is a normalized

distance ].  For all the modeling work reported here I have chosen to fix T at

15, and to let S and V enter the model as free parameters.  The exact value of

T has no real psychological meaning in and of itself, but produces

appropriate base RTs and error rates in the context of the other parameter

values.

II.A.1.b S & V( increment mean and variability parameters)

The model includes a sensitivity parameter S that corresponds to the

magnitude of the mean of the target (+S) and distractor (-S) increments, and a

variability parameter V that represents the shared standard deviation of those

increments.  For a fixed level of V, as S increases both the time-to-absorption
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(~RT) and the probability of an error will decrease.  For a fixed level of S, as V

increases RT will decrease and the probability of an error will increase.  These

relationships are shown in panels 1 and 2 of figure 30 in which I plot the RT

and error-rate surfaces over the ranges of S and V used in the simulations (the

height of each surface was determined using the simple analytic equations for

absorption time and error-rate given earlier).

Taking a ratio of these two parameters provides a measure of

signal–to–noise that is proportional to the base discriminability of a target

increment from a distractor increment (panel 3).  Due to the  statistics of the

random walk, the signal-to-noise ratio of the accumulated increments grows

with time such that the discriminability goes as the square-root of the number

of increments currently in the running sum.  By allowing both S and V to

vary freely across simulations it is possible to compare the signal-to-noise

ratios of different experiments.  It may be that the experiments in my

ensemble differ in terms of the inherent discriminability of targets and

distractors.  We know that underlying element discriminability plays a

significant role in determining RT-by-set size search functions (Duncan &

Humphreys, 1989; Palmer et al., 1993; Geisler & Chou, 1995).  Interestingly, it

is the case that in fitting the full model simultaneously to all the RT and error-

rate conditions provided by multiple target search, the quantity S/V acts

more like a measure of the confusability of the n-element display, rather than a
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measure of single-element discriminability in the usual psychophysical sense.

This is an important distinction – distractors and targets may be highly

discriminable in a 2AFC paradigm, and yet still be able to effectively mask

each other in a multi-element display.  In section II.C.3 I discuss this

distinction in detail.

II.A.1.c D (present/absent asymmetry parameter)

The parameter D is included so as to introduce an asymmetry into the

target present and target absent response criteria.  D effectively scales the

target absent criterion to be some multiple of the target present criterion (i.e.

target absent criterion = -T x D).  D is constrained to be greater than or equal

to one – this is done primarily to account for the ubiquitous finding that most

target present decisions are generally made faster than associated target

absent decisions.  The finding that positive decisions are made faster than

negative decisions appears to be a universal in cognitive judgement

(Baddeley & Hitch, 1974; Clark & Chase, 1972; Kosslyn, 1975; Lewis &

Anderson, 1976; Sternberg, 1969; Treisman & Gormican, 1988), and may

reflect in part an inertia to respond in the negative.  Here I have modeled this

RT inertia by moving the target absent criterion further from the origin,

thereby requiring that additional evidence accumulates before a “no”

response can be made.
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I have investigated two alternative ways to implement a bias to

respond target “present”, neither of which has proved successful in

accounting for MTS data.  First, I conducted an informal exploration of a

model in which a fixed amount of  increment-bias, b is added to each

increment in the walk (Ashby, 1983) – for  b > 0 the model favors target

“present” responding over target “absent” responding.  This type of model is

equivalent to 1) shifting both increment distribution means by b so that they

are no longer symmetric about the origin, or 2) tilting the decision criteria in

state space such that Tτ = -b x τ (where τ represents some discrete point in

time).  While this type of model can produce asymmetries in RT, it makes two

false predictions: that miss-rates should decrease with set size, and that false-

alarms should increase with set size.  These types of error patterns occur

rarely, and never together in MTS.

I have also modelled the target “present” response bias as a simple

inertia to respond in the negative, possibly arising from the mental set of

“looking for a target”.  The idea here is that it takes slightly longer to respond

target “absent” simply because the observer is primed to hit the target

“present” key, and thus there is a concomitant overhead associated with re-

orienting oneself to hit the “absent” key.  This inertia is modelled as a late RT-

cost (denoted Z) that independently augments only the target absent RTs by

some small, fixed amount.  Again, this type of bias successfully accounts for
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asymmetries in response time because for the most part the actual target

absent RTs differ from the target present RTs only in terms of a constant.

However, this type of bias can not lead to different error rates across

conditions and so can not account for the majority of MTS experiments in

which there is such an asymmetry.

The general approach I have chosen to take regarding modelling the

target “present” response bias is to first let the parameter D attempt to

account for any asymmetries in the RTs and error rates.  Then, I investigate

whether an additional additive RT-cost at the level of response preparation

(i.e. the parameter Z) is necessary to capture the residual asymmetry that

remains in any given experiment.  In principle, the additional parameter Z

will be nonzero whenever the RT asymmetry is larger than the corresponding

asymmetry in the error rates.

II.A.1.d C (criterion scaling parameter)

The parameter C controls secondary response criteria as a function of

display set size.  Specifically, the model has an additional set of criteria that

are available when set size is greater than one – a secondary criterion for

target present responses, and a secondary criterion for target absent

responses. These criteria are by definition less conservative than the two

primary criteria set by T and D because they are closer to the walk-origin
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(because secondary criteria are placed closer to the origin, they permit

responses to be initiated sooner; however, because they are more lax they can

also lead to increased error).  I include secondary criteria in order to give the

model the ability to make decisions on the basis of multiple random walks –

though each walk may be sub-criterial in relation to the primary criteria, the

secondary criteria allow a response to be initiated when walks are consistent

in the magnitude and sign of their displacement from the origin  (i.e. the

model can use a preponderance of weak but consistent evidence in favor of a

particular response).  It is important to make it clear that even though these

criteria are less conservative in terms of the absolute amount of accumulated

information required for any one walk to reach them, a response is initiated

only if all of the n walks simultaneously exceed one of the secondary criteria.

Secondary criteria are implemented in the model in the following

manner.  For C on the interval [1,4], and n = 2 or 4, we define the secondary

target present and target absent criteria to be T x C -n/2 and -T x D x C -n/2

respectively, where n represents display set size.  This relation effectively

places the secondary criteria geometrically closer to the origin as set size

increases.  When C =1, there are no secondary criteria and all responses are

based on the primary criteria – this represents the standard formulation of a

random walk model with invariant decision boundaries (Townsend & Ashby,

1983).  When C is greater than 1, response criteria are appropriately scaled
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with set size depending on the magnitude of C.  A specific example may

prove clarifying here.  If we fix the base target present criterion T to equal 15,

and the criterion scaling parameter C to equal 2, then for a set size of two the

secondary target present criteria will equal 7.5, and for a set size of four the

secondary target present criteria will equal 3.75.

II.A.1.e Decision rules

When C > 1 and set size equals 2 or 4, the model effectively has four

decision criteria, two primary and two secondary.  These criteria map walk

positions into responses using one of two general decision rules.  Responses

can be initiated by either the first walk to reach a primary criterion, or instead

when all n walks exceed a more relaxed secondary criterion.

Primary criteria.  In the case of model responses initiated by

absorption at one of the primary criteria, there are different

decision rules for target present and target absent responses.

The model responds target “present” as soon as the first of n

walks is absorbed at the primary positive criterion.

Alternatively, the model responds target “absent” as soon as all

n walks are absorbed at the primary negative criterion.  These

decision rules reflect the underlying task that defines multiple

target search – namely, target “present” responses are to be
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made any time a display contains at least one target, and target

“absent” responses are to be made only when there is no target

element in a display.

Secondary criteria.  The decision structure is slightly modified

in the case of decisions made at secondary criteria. The positive

and negative secondary criteria allow a preponderance of

evidence to guide decision.  Here, both target present and target

absent responses are initiated using an identical decision rule:

the model responds target “present” as soon as all n walks

exceed the secondary positive criterion and likewise, responds

target “absent” if all n walks are simultaneously below the

secondary negative criterion.  It is this symmetry in the decision

rule that manifests the symmetry between pure target and target

absent RTs seen throughout MTS.

In sum, the addition of secondary criteria allows the model to make

target present responses in one of two ways:  a target “present” response is

initiated as soon as one walk reaches the primary positive criteria, or when all

walks reach the secondary positive criteria. A target “absent” response is

always initiated in a manner consistent with exhaustive processing; that is,

only when all walks exceed the secondary negative criteria.
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II.A.1.f ε (attentional limitation parameter)

The parameter ε determines the extent to which increases in set size

attenuate the processing of multi-element displays.  Specifically, ε determines

how fast any given walk drifts toward the response criteria.  Drift rate is

attenuated simply by multiplicatively scaling each sample of evidence prior

to its accumulation.  Multiplicative scaling of the magnitude of each sample

implies that both the mean and standard deviation of the underlying

increment distribution are scaled identically by the factor n-ε, where n

represents display set size, and ε is defined on the interval [0,1].  This range

for ε was chosen because it parameterizes a large variety of search models.

For example, when ε = 0 there is no attenuation of processing rate with set

size.  At the other extreme, where ε = 1, processing rate is dramatically

attenuated with set size (the walk drift rate is cut by a factor equal to 1/n).  By

allowing ε to take on intermediate values that fall between these two

extremes, I can manipulate the extent to which set size affects processing, the

goal being to discover the values of ε that best account for performance

variation in an ensemble of search experiments.

Scaling perceptual samples

Symmetric scaling of the mean and standard deviation of the walk

increments by n-ε was done for several reasons.  First, it seemed intuitive to
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conceive of attention as having a multiplicative influence on stimulus

information, much as increasing resistivity has a multiplicative influence on

current flow.  Along these lines, it is also true that “turning down”  or

limiting the range of a process (i.e. decreasing the average step size) can yield

a matched decrease in the instantaneous variability of that process depending

on the underlying probability distributions. The second reason I chose to use

this type of scaling is because it preserves the intrinsic discriminability of

target and distractor increments, the aim being to incorporate attentional

effects independently of the underlying stimulus quality.  Finally, and most

importantly, of the various ways of implementing attention that I have

investigated, only multiplicative scaling of the increments can simultaneously

account for both the RT and error-rate patterns typical of MTS.

Scaling criteria

In the context of a random walk between absorbing barriers it is

possible to conceptualize the effect of ε in an altogether different way that has

no relation to attention whatsoever.  It is true, given the linear relationship

between T, S, and V (see section II.A.1.a),  that a model that symmetrically

scales S and V with set size is formally equivalent to a model that scales T

with set size, but leaves S and V unaltered.  Thus, in the context of a random

walk account of decision, comparing a cumulative sum of samples (which

have been attenuated by the scalar quantity n-ε) to a fixed response criterion
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T, is equivalent to comparing an unattenuated accumulation of samples to a

more conservative criterion TC = nεT.  What this means practically, is that

there is a symmetry in the random walk model such that ε can be conceived

of as either an attentional scalar (n-ε), or as a criterion scalar (1/n-ε), such that

there is no difference in the predicted time-to-absorption or the error rates.

Scaling criteria to be more conservative as a function of set size is not a new

idea, and such a strategy will yield set size effects without attentional

limitation as observers attempt to control error in the face of increased

statistical decision noise  (see Palmer, 1994, Pashler, 1998).  In fact, recasting ε

as a criterion scalar rather than an attentional effect makes some sense in that

its effects are synonomous with a speed-accuracy tradeoff – larger values of ε

lead to longer RTs and lower error rates,  while smaller values lead to shorter

RTs and increased error.

One major problem remains though with conceiving of ε as a

decisional scalar:  it dramatically increases the number of criteria assumed to

be under the observer’s control.  Recall that the current model incorporates a

novel decisional parameter C in order to account for the flat or decreasing

target absent RTs that are ubiquitous in MTS.  This parameter creates a set of

additional criteria that are more relaxed relative to the base criterion T

(section II.A.1.d).  If we also conceptualize ε as a decisional parameter, the
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observer now has explicit control over 10 separate criteria!  An obvious

alternative to this growing plethora of criteria is to split up the free

parameters such that ε remains under attentional control, and the observer is

left to manage the 2 primary criteria and a set of secondary criteria.  This

seems more psychologically plausible and is the framework I will adopt from

here on out.  That said, I acknowledge that parsimony is better served by

seeing how much can be explained by a single mechanism of limitation (i.e.

decision), prior to invoking a role for additional mechanisms (e.g. attention).

With the caveat in mind, I will denote the random walk model with

multiplicative scaling as a D-type model in recognition of its equivalence

class, while continuing to construe the parameter ε as an estimator of

attentional limitation.  Whether it makes sense to think of ε as a true

attentional parameter remains at present an open question – we will revisit

this issue later in section II.C.2 where I show that the majority of MTS search

tasks can be reliably and meaningfully ordered along the ε-continuum.

Alternative models of attention
Multiplicative scaling of increments is not the only way that attention

might operate in the context of a sequential sampling model.  In the following

section I introduce and compare the qualitative predictions of models that

implement attentional limitation in a variety of different ways.  The reader

who is less interested in the details relating and distinguishing these various
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conceptions of attention can skip ahead to the final paragraph of this section

(Summary of models).

II.A.2 The A-type model

In addition to the D-type model which conceives attention to have a

multiplicative influence on perceptual samples, here I explore a class of

models that implement attentional limitation via the addition of internal

noise.  This class of models is denoted A-type because the attentional effects

they employ cannot be reduced to decision or a speed/accuracy tradeoff, and

so they serve to break the symmetry that undermines the clear interpretation

of ε as an attentional parameter in the D-type model.  This class of models is

based on the same underlying multiple random walk architecture and shares

all the stimulus and decisional structures that define the D-type model (i.e. S,

V, C, D), differing only in terms of the way that attentional limitation is

implemented.

II.A.2.a Dual noise source model

One potential shortcoming of the D-type model is that it predicts no

difference in the quality of single-element discrimination as a function of set

size. In fact, the D-type model predicts that overall error-rate should decrease

as ε increases, and thus is not relevant to search methods that center around

brief presentations of search displays with accuracy as the DV (e.g. the

threshold–search paradigm, Verghese & Nakayama, 1994; Palmer et. al, 1993).
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To circumvent this shortcoming, and to break the attentional/decisional

symmetry of the D-type model, I introduce a stimulus-invariant source of

additive noise into the standard model.  The use of multiple noise source

models is common in the psychophysics literature, and additive internal

noise is often used to model general inefficiencies in processing due to

unexplained sources of neural/perceptual variability (Burgess, 1985; Pelli,

1990; Dosher & Lu, 1998; Gold, Bennett, & Sekuler, 1999; Weiss, Simoncelli, &

Adelson, 2002).

The additional noise source I introduce into the model consists of a

sequence of zero-mean, Gaussian deviates [i.e. N(0,σΙΝΤ)] that are added to

each of the n perceptual samples at each moment in time.  If we let Wτ,k

represent the current sum of evidence for the kth element in a display at time τ

then we have:

(4)

where xi represents the current perceptual sample drawn from the

appropriate target or distractor increment distribution, and N(0,σINT) is a

deviate from a zero-mean Gaussian.

   Wτ, k = [xi + N(0,σ INT)]Σ
i = 1

τ
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Effectively, the additive noise increases the base variability of the

increment distributions without affecting the average step size.  More

importantly though, there are now two sources of variability in the random

walks, one that can be scaled by attention and one that is invariant.  The

parameter V corresponds to the standard deviation of the walk increments

themselves, and in keeping with the D-type model, both V and S are

attenuated by the factor n-ε.  The quantity σΙΝΤ refers to an internal additive

noise source that does not depend on n or ε.  The key idea behind this so

called dual-noise source model is that attention still operates multiplicatively,

but now only on the stimulus noise.  By allowing V to scale with set size and

attention, while keeping σΙΝΤ constant, the model now predicts a decrement in

single-element discriminability.  The magnitude of this decrement depends

on both n and ε, and implies that the A-type model can no longer be reduced

to a criterion shift.  The prediction for the discriminability of a single random

walk as a function of S, V, σΙΝΤ, n, and ε appears below:

(5)

Note that the current number of accumulated increments, τ does not appear

in the expression and simply serves to augment discriminability by a factor of

the square root of τ.

   d'n ≈
2Sn– ε

(Vn– ε)2 + σ INT
2
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There are several additional advantages to the use of a dual-noise

source model that make it an attractive alternative to the D-type model in

certain contexts.  First, because this model has an invariant additive noise

component, attention now attenuates the mean of the increments (S), more

than the total variability of the increments [let VTOTAL=(V2+σINT
2)1/2].  To see

why, note that S gets attenuated by n-ε, whereas only the component V in

VTOTAL is subject to n and ε (see eq. 5).  In the context of a random walk, this

leads to increased errors with set size.  Thus, a model with internal noise, all

else being equal, predicts higher miss rates than a similar D-type model.

Recall, that several of the MTS experiments were characterized by large

increases in RT with set size, flat or increasing pure target trials, and very high

miss rates that approached 25% for n = 4 (see rotation, circle-plus, and the

implied lighting experiments). The ability of the dual-noise model to produce

long RTs along with high miss rates should allow it to better simulate the

data from this class of experiments.

A second advantage in the use of a dual-noise model is that it is more

general: it contains the basic D-type model as a special case of an A-type model

with zero internal noise.  This relationship is convenient because it means I

can compare the performance of the D-type model to a matched A-type model

simply by changing a single parameter (σINT).  From here on, I will denote

specific versions of the A-type model as A(σINT) to signify the magnitude of
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internal noise injected into each model.  In this notation the D-type model of

section II.A.1 is synonomous with an A(0) model.

Relation to the fixed sample size model

Another advantage of incorporating A(σINT>0)  models into my

investigations is that for high levels of σINT, these models approach the

performance of the fixed sample size model of Shaw and colleagues, especially

when ε is high (Shaw, 1980; Palmer, 1994).  The fixed sample size model figures

prominently in attempts to determine whether increases in difference-

thresholds with set size are the product of statistical limitations, or instead are

large enough to indicate perceptual limitations.  Previous work indicates that

for the case of simple stimulus dimensions (orientation, size, luminance) the

threshold-by-set size functions could be entirely accounted for by decision

noise; that is, the set size related decrements in performance were too shallow

to indicate capacity limitations on perceptual processing.  In stark contrast,

only a handful of experiments, generally characterized by targets and

distractors differing only in terms of configural arrangement, produced

increases in thresholds as a function of set size large enough to match the

predictions of a fixed sample size account of attention.  I can use the A(.5)

model to approximate this sort of limitation, and thus can determine whether

any of the experiments in the MTS ensemble can be accounted for using a

fixed sample size model of attentional capacity.
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One shortcoming of the A(.5) model though is that it cannot produce

false-alarms that decrease with set size.  Recall, that this is the modal pattern

of error across the MTS ensemble, and is easily captured by an A(0) model.

What this means in general is that if we demand a good qualitative account of

the patterns of misses and false alarms, then an A-type model with high

internal noise will fail to account for these data.  In the adjacent figure, I

highlight this fact by plotting the relationship between the slope of the

predicted false-alarms over set size for three A-type models parameterized by

σINT = 0, .25, and .5.  Delta false-alarm surfaces (~slope of the probability of a

false alarm across set size) are plotted as a function of the increment

parameters S and V at an intermediate fixed level of ε = .5 (variation in the

parameter ε had little qualitative effect on the relation among these surfaces –

as ε approached 0 all three surfaces converged on a strictly positive surface

similar to that shown for σINT=.5 ).  The ordinate represents the change in the

proportion of false alarms in going from n=1 to n=4.  All three predicted ∆

false-alarm surfaces were computed analytically using the expression in

equation 2 (sec. II), and the following expression for the probability of at least

one walk being absorbed at the incorrect boundary prior to any single

absorption at the correct boundary:
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(6) Pr(fa,n) = 1 – [1 - Pr(fa,1)ε,n]n

[where Pr(fa,1)ε,n represents the probability of a single false-alarm given

model-appropriate scaling of the increment moments by n-ε].  The validity of

this expression was verified via partial simulation of the actual models.

There are a number of important insights into the models revealed in

this figure.  First, the A(0) model is seen to produce large negative slopes (i.e.

false-alarms that decrease with set size) over a large portion of the S-V space.

This property is due to the way that attention is implemented in the D-type

model (multiplicative scaling).  The figure also reiterates the point that there
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are no combinations of S, V, and ε for which the A(.5) model is able to

produce decreasing false-alarms – in every case this model manifests

invariant or increasing false-alarms with set size (this holds for all ε for

realistic ranges of error).  The A(.25) model is intermediate and, depending on

the choice of parameters, can manifest mildly negative, invariant, or

moderately large and positive false-alarm slopes.

The fact that the A(.5)  model yields only nondecreasing false-alarms

with set size  is diagnostic and offers a preliminary indication of the class of

experiments that

can be fit using

this type of

capacity

limitation:  if an

experiment yields

false-alarms that

reliably decrease

with set size it

cannot be explained using the A(.5) model, and similarly cannot be accounted

for using a fixed sample size model of attention.  However, it is important to

realize that just because a given search task is not fit by a sample size model

does not mean that it is not capacity limited.  In fact, the A(.5) model
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parameterized by ε clearly reveals that the fixed sample size  model of Palmer

and Shaw may represent an extreme level of capacity limitation.  In figure 32,

I plot predictions of the A(.5) model (thin lines, parameterized by ε)  for the

single element signal-to-noise ratio (SNR) as a function of set size.  These

predicted decrements in SNR were computed using average values of S and

V and equation 5.  The inset dashed line represents the prediction of the fixed

sample size model in which the SNR goes as the square root of n (for a more

detailed development see Appendix III).  As the figure makes clear, it is only

at the highest levels of ε that the A(.5) model approaches the performance

decrements associated with a fixed sample size account of limitation.   It is

interesting that implementing capacity limitation as a slowing of the rate at

which information accumulates plus internal noise can yield discriminability

functions considerably shallower than those predicted by a fixed sample size

conception of capacity.  In the context of threshold search there were very

stimulus domains that produced threshold-by-set size functions large enough

to meet the predictions of the fixed sample size model (e.g. see Palmer, 1994;

Poder, 1999).  This may simply reflect the fact that the majority of stimulus

domains are only limited by decision (Palmer et al., 1993; Palmer, 1994).

However, it also possible that the lower limit imposed by a fixed sample

account of capacity limitation is too severe.  The relationship between the

discriminability curves produced by the dual-noise model and the fixed sample

size model show that it is possible to create a range of capacity limited
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predictions less severe than the bound set by a fixed sample size.  A recent

extension of Palmer's work has in fact attempted to quantify capacity

limitation using a conceptualization that is continuous and considerably less

extreme than the fixed sample size framework (see McLean, 1999).  In the

following section I introduce a more general probability-sampling model that

includes the fixed sample size model as a special case.  I then go on to show

how the dual-noise model (i.e. A(.5)) and probability-sampling model are

qualitatively equivalent in their predictions.

II.A.2.b Probability-sampling (time-scaling) models

Another way to conceptualize attention in the context of sequential

sampling models is as a limitation on the sampling rate:  specifically, as

attentional load increases, the probability of including an additional sample

of evidence into any random walk decreases, such that the accumulation of

evidence consists of fewer samples per fixed period of time.   This notion

differs in principle from that of the A-type models for which the probability of

sampling evidence at time τ is always 1, and limitation enters only to scale the

quality/size of the current piece(s) of evidence.  Conceptually, a probability-

sampling model of attention leaves the quality and size of all samples

unaltered, and only attenuates the likelihood of the random walk receiving a

sample at each moment in time.
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For ease of comparison with the general class of A-type models, I let the

probability p of taking a sample be expressed as n-λ, where n is set size and λ

is an attentional parameter in the range [0, 1]. [In this context, λ and ε both

represent attention and are defined similarly as parameterizing power

functions of set size.  For clarity though, I will always use λ to denote

attentional limitation in the probability–sampling model, and ε to denote

attentional limitation in the A-type model].  Defining p in this way is intuitive

because as limitation (i.e., λ) rises, the value of p falls gradually as a power

function eventually reaching a value of 1/n for the case of λ = 1.  When the

probability of receiving a sample is 1/n, the probability–sampling model

reduces to a fixed sample size model of attention.  To see this equivalence, note

that for an n-element display, the fixed sample size model allows only Stot/n

samples per element because by definition there are only Stot total samples

available to be divided among the display elements.  Similarly for the case of

a probability-sampling model, if we assume that at any there are at most Stot

samples available to analysis (up to time τ), then the expected number of

samples accumulated in any single random walk will be pStot, or Stot/n when

λ=1.  Thus, both the probability-sampling model (λ=1) and the fixed sample size

model predict identical effects on the expected number of accumulated

samples at time τ.  However, the  two models differ on a trial-by-trial basis

because the probability-sampling model has a source of variability that the fixed

sample size model does not: the probability-sampling model predicts Stot/n
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samples per element on average, while the fixed sample size model predicts

Stot/n samples on every trial.  Despite this difference the two models yield

identical distributions of walk states as a function of time, and times-to-

absorption and error rates that are basically indistinguishable (see Appendix

III for details).

There are a number of features that favor the probability-sampling

model over a fixed sample size account of capacity limitation.  First, the

probability–sampling model is parameterized by ε, and so like the class of dual-

noise models it can yield predictions that span a range of capacity limitation.

Second, the probability-sampling model reduces to the fixed sample size model as

ε approaches 1.   Finally, the class of probability-sampling models is

conceptually related to a framework that implements attention via time

scaling. The idea here is that capacity limitation alters only the time scale of

processing for the n-element display, such that each individual random walk

has to wait longer to accumulate a sample of evidence.  Thus, increasing ∆τ,

the average time between samples in the context of perfect sampling (i.e.

p(sample)=1), is identical to the probability-sampling approach  in which ∆τ is

fixed and the probability that a sample is received gets reduced.
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II.A.3. Summary of model comparisons

Beyond the core D-type model, there are two distinct approaches to

implementing capacity limitation in a random walk framework, both of

which are not reducible to decisional scaling:

i) the dual-noise or A(σINT > 0)-type models, and

ii) the probability-sampling (time-scaling) models of the previous

section.

Though these two approaches are conceptually quite different in terms of the

manner in which set size effects are presumed to arise (one assumes additive

noise degrades performance, the other that fewer samples are available per

unit time), at present, they cannot be distinguished based solely on fits to

MTS data – both approaches can account equally well for experiments

characterized by sharp increases in RT with set size, high miss-rates, and flat

or increasing false-alarm rates. The important point to realize here is that both

models can be aligned to predict nearly identical effects on the scaling of the

moments of the increment distributions.  Equivalent scaling implies that both

models will yield roughly identical absorption times and errors given that all

remaining parameters are shared in common, and I have verified this via

simulation.
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A-type
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false-alarms

higher miss
rates

multiplicative scaling + internal noise

MTS modelsFigure 33A summary of

the relations between

the various models

outlined in this

section is depicted in

figure 33.  For the

purposes of this

dissertation I will not

be concerned with

deciding which model

of attention is correct.

Moreover, because of

the many equivalences highlighted above, it is somewhat redundant to

investigate fully both the dual-noise model and the probability-sampling

model.  In recognition of this, I have chosen to investigate attentional

limitations during multiple target search using mainly the dual-noise

framework.  Specifically, I will compare MTS data to predictions generated

by a model with no internal noise, that is the D-type or A(0) model, and a

model containing mild to moderate amounts of internal noise [i.e. an A(.25,.5)

model].  Later,  where appropriate, I also explicitly simulate a matched

probability-sampling model to verify that it produces fits similar in quality to

those produced by the dual-noise A(.5) model.
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II.B Details of numerical simulations

The approach I take in modeling multiple target search is two-fold.

First, I explicitly simulate the search process for a large number of unique

combinations of parameter values.  Second, I compare the simulations to

empirical search data in order to find the parameter values that best represent

data from a given search experiment.  In practice the model is simulated over

an entire 5-dimensional parameter space defined by the basic model

parameters (S, V, C, D, ε).  This consists of parameterizing the model using a

single 5-tuple from the space, and then conducting a Monte Carlo simulation

based on 2000 simulated search trials.  This number of simulations was

chosen because it was computationally feasible, and produced relatively

reliable predictions (for typical parameter values, the average standard

deviation of simulated RTs and error rates across repeated simulation of 2000

trials was 1-4 walk steps and 2-5 tenths of a percent respectively).  Each

simulation yields a set of 9 average RTs and 9 error rates. The simulated RTs

and error rates are saved to disk, and another 5-tuple is chosen and

simulated.  In this way I can simulate the model over the entire range of

parameter combinations to form a “prediction” space.  I then search for that

region of the prediction space that best matches a specific set of empirical

data.
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The computational models used here to characterize multiple target

search cannot be approached analytically, primarily because they include a

complex nonlinear decision structure (based on T, C, and D) that is not

amenable to simple analytic decomposition (Laming, 1968).  Running the

model in an explicit simulation is the only way to determine exactly what the

model will do in any given situation, though in simple limiting cases I do

check that the simulations give mathematically correct answers using analytic

formulations for distributions of the “first passage” in a random walk based

on Wald's identity (e.g. eqs. 1 and 2).  What numerical simulation lacks in

elegance, it far makes up for in terms of flexibility – only by foregoing the

world of analytic model fitting is it possible to explore the variety of complex

architectures embodied in the class of A-type models.  For ease of exposition I

will continue to use the term model fitting throughout this dissertation to

represent the joint process of simulation, followed by search for “best” fit

within a prediction space.

In practice, I simulate the model over a discrete 10 x 10 x10 x 10 x 10 x 3

grid of possible parameter values (10 linearly spaced values each of the

parameters S, V, C, D, ε, & 3 levels of σINT), thus giving me 100,000 distinct

parameter 5-tuples at 3 different levels of internal noise.  For each 5-tuple, I

explicitly simulate the random walks 2000 times x 9 stimulus conditions for a

total of 18,000 trials in order to get a stable estimate of the model’s expected
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RT and error-rate for each condition.  I then repeat this process to yield 3

complete five-dimensional prediction spaces for each level of σINT. To

ascertain the reliability of the model fits to data, I then refit the model to the

data from each experiment using a re-sampling procedure (see sec. II.A.6).

II.B.1 The objective function

I define the best simulation of a data set to be that point in the discrete

prediction space that is simultaneously closest to the RT and error-rate data.

The specific objective function I use to determine the distance between

simulation and data is defined to be the combination of the sum of squared-

error between data and model-generated RTs (SSQRT), and the sum of

squared-error between data and model-generated error rates (SSQERR).  In this

way, both the RT and error-rate jointly determine a minimal distance in the

prediction space: distance = SSQRT + SSQERR.  I have explored a number of

alternative ways of combining the SSQs (i.e. euclidian, city-block), and in

general the various choices made little difference – all methods converged on

the same local region in the parameter space.

Because the SSQRT and the SSQERR are based on different scales of

measurement, a decision must be made regarding how to weight each term

prior to forming the total sum of squared-error (SSQTOT).  In general there is

remarkably little guidance provided in the literature on this issue, no doubt a

reflection of the relative paucity of work using objective functions that take
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Figure 34

RT and error-rate residuals as arguments.  One tact that has been adopted in

this regard is to scale the RT and error-rate residuals so as to approximately

give them equal weight

(Maddox & Ashby, 1996;

Van Zandt et al., 2000).  I

adopt a somewhat

different approach and

choose instead an

automatic weighting

procedure in which each

RT and error-rate residual

is weighted by its

associated variability.

Specifically, I scale each of the 18 residuals that comprise the SSQTOT (9 RT

residuals and 9 error-rate residuals) by the inverse of the standard error

associated with each condition (standard errors are based on between-

observer variability).  This type of scaling converts the deviations of model

from data into RT and error χ2s.  The use of chi-square residuals is not

uncommon in the least-squares fitting of descriptive functions and has the

nice property that it approximates maximum-likelihood techniques.
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 One difficulty in using a single-valued objective function comprised of

18 components (9 RT residuals + 9 error residuals) to quantify overall fit is

that often the region of the prediction space that minimizes SSQTOT yields

simulations that fail to capture important aspects of a data set.  For example,

in certain cases the fitting procedure may choose as “best”, a simulation that

has significant redundancy gains when there are in fact no such gains present

in the data.  This arises because the fit to the pure target RTs is being sacrificed

for a better fit to some other aspect of the data.  The problem here is that we

want the model to account for the data in general, but more importantly to

make accurate predictions about those conditions which are the most

theoretically interesting.  I deal with this problem by preferentially weighting

certain components in the SSQTOT.  Specifically, the objective function

preferentially weights the individual χ2 residuals to emphasize the fitting of

the single-target RTs and miss-rates, the pure target RTs (i.e. redundancy

conditions), and the false alarms.  There were thus 11 key residuals  which

were weighted a factor of 10 greater than the remaining 7 components.  In

figure 34 I depict those conditions which received greater weight in the

determination of the SSQTOT using larger symbols.  The weighting procedure

proved successful in that it yielded fits that captured the key qualitative

patterns in the data, while maintaining a good account of the remaining RT

and error conditions (smaller symbols).
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II.B.2 Transforming output to RTs

There is an additional complexity that must be dealt with in forming

the SSQRT component of the objective function:  empirical RTs have units of

seconds, while model RTs have units of number of steps.  In order to

quantitatively compare model to data it is necessary to bring both onto a

common scale.  One common means of placing model RTs on a scale

commensurate with RT data is to assume that each step corresponds to a

millisecond, and then to use an additive constant to bring model and data into

accord.  The key idea behind including an additional RT component is not

new, and reflects a theoretical decomposition of the observable RT into one

component due to perception and decision, and another component due to

response preparation and execution (Luce, 1986).

Bringing the model and RT data onto a common scale is accomplished

via the parameter MR.  This parameter effectively shifts all model values by a

fixed constant amount.  In this way the model and data can be quantitatively

compared and there is no alteration of the simulated relationships between

conditions (i.e. the slopes and relative intercepts).  I attach no psychological

relevance to the absolute value of MR in that it is entirely determined by the

values of T, S, and V.  That is, MR can be pushed around by varying the core

model parameters, and this can be done in such a way so as to preserve the
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qualitative pattern of RT and error-rate.  The value of MR is thus not unique

and serves only as an aid in determining the SSQRT.

In addition to MR, I also include a target absent response cost parameter

Z.  This parameter is used to soak up any additional asymmetry in responding

not accounted for by the decision parameter D.  This constant shifts all the

model target absent output equally and independently of the target present

output. Thus, the value of Z that emerges in fitting the model to data

represents the additional amount of time necessary to initiate a target absent

response, above and beyond any RT asymmetry produced at the level of

decision criteria.  Moreover, allowing a non-zero value of Z insures that the

SSQRT is not dominated by residual error due simply to the model not

adequately accounting for slower target absent responses.  At present, it is

unclear why some experiments produce decrements in target absent responses

too large to be captured by criterial asymmetry.  Incorporating a nonzero

value of Z into the RT-transformation is of practical use in the fitting of these

experiments because it emphasizes good qualitative fits by effectively keeping

the residual target absent response costs from corrupting the SSQs.

It is important to note that the RT transformation is always applied

after the prediction space has been simulated.  Specifically, at each point in

the prediction space I find the values of MR and Z that minimize (in the least
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squares sense) the deviation of model from the RT data.  In this way, the RT

transformation is applied independently to each qualitative model prediction

in the space, and the final residual error after this transformation forms the

SSQRT.

II.B.3 Alternative sources of error

The random walk models that are simulated here differ from high-

threshold models because they assume that errors arise as a result of the

accumulation of noisy perceptual samples.  A high-threshold model (e.g.

Wolfe’s Guided Search model) asserts that errors arise only via guessing after

the search process has “timed out”, and moreover, that distractors are never

confused for targets in the classic signal detection sense.  In addition to noise

and guessing, errors during search could also arise from any number of

alternative sources (e.g. various sensory distractions, fatigue, motor

programming errors, …, etc.).  These sorts of errors are no doubt partly

responsible for the overall levels of error in an MTS experiment. The simplest

way to incorporate these alternative sources of error into the model(s) is to

add on a constant probability of error to all of the error rates predicted by the

model.  Rather than utilize an additional parameter, I assume that a good

estimate for this composite source of unexplained error is each experiment’s

actual four target error-rate.  Thus, prior to forming the SSQERR between

model and data I augment all the error rates in the prediction space by the
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four target error-rate of the experiment that is being fit.  This simply shifts all

the simulated error rates vertically, much as MR shifts the simulated RTs,

leaving all the qualitative patterns and interactions intact.  Though using the

four target error-rate in this way effectively removes a degree-of-freedom

from the data, it has the nice property that it also removes an unexplained

source of variability from the SSQERR.

II.B.4 Re-sampling data

In my earlier work, the model simulations were fit to the observer-

average data from each experiment.  This provided a single estimate of each

of the 5 parameters that characterized performance in any given search

experiment.  It would be nice to know both how reliable these parameter

estimates are so as to make meaningful comparisons across experiments, and

how sensitive particular choices of parameters are to variation in the data.  I

have attempted to address both these problems by using a re-sampling

procedure that allows me to form confidence limits on the parameter

estimates.

For each experiment in the ensemble I form 20 re-sampled sets of RT

and error data.  Specifically, I create data for 9 pseudo-observers by randomly

sampling from a  set of normal distributions with moments defined by the

actual observer-averaged data (9 RT distributions and 9 error-rate
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distributions).  I then average over the RTs and error rates of the pseudo-

observers to yield a single set of re-sampled data.  This process is then

repeated 19 times to yield a complete set of 20 re-sampled versions of each

experiment.

The model fitting procedure described previously is then applied to

each of the re-sampled data sets.  Because some of the model fits will be worse

than others, due to the random nature of re-sampling, I calculate a SSQTOT for

each of the 20 fits.  I then take a weighted-average of each parameter across

fits using the normalized inverses of the SSQTOT of each fit as the weights.

This re-sampling procedure results in a weighted-average and standard error

for each parameter value for each experiment.  Importantly, I have verified

that the re-sampling procedure produces fits that differ very little from those

obtained by fitting just the average data.  In this way, I get the same

parameter values as I would have if I had only fit the average data, but by

virtue of re-sampling I also get confidence limits around each parameter

value.

There are two remaining points to address regarding the re-sampling

procedure.  First, I chose to fit re-sampled data over fitting individual

observer data because single observer data sets were generally too noisy and

often had conditions with zero errors.  I have investigated fits of the model to
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single-observer data for a subset of experiments and find that in general the

observer-average 5-tuple was similar to that obtained under the cleaner re-

sampling procedure.  Second, the manner of re-sampling I have used is

conservative regarding issues of fit reliability because I re-sampled the RTs

independently of the error rates.  The architecture of the random walk model

of decision mandates that RT and error must trade.  Because of this fact, faster

RTs generally occur in the context of higher error rates, and vice-versa.

Unfortunately, there is no quantitative metric to specify the trading of

seconds for percent-correct and so I can only re-sample RT and error

independently.

II.B.5 Determining the magnitude of σINT

At this point, the fitting procedure specifies the “best” set of 5 basic

parameters (S,V,C,D, & ε) given appropriate RT-transformation parameters

MR and Z.  What it does not do is decide whether an experiment is fit better

by the A(0) model with no internal noise, or an A(σINT > 0) model that

includes internal noise.  This is accomplished by finding that level of σINT that

minimizes each experiment’s SSQTOT.

In order to decide what level of internal noise best accounts for a given

data set, I simulate a full 5-parameter model for each level of σINT under

consideration.  This consists of repeating the complete fitting procedure
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outlined above for each of 3 levels of σINT (0, .25, and .5).  In this way, I obtain

the best-fit average 5-tuple for each level of internal noise giving me three 5-

tuples for each experiment in the ensemble.  In order to claim that any given

experiment was fit better by a model with a level of σINT > 0, I use the

following simple statistical procedure.  This procedure is possible because

there is variability associated with evaluating how well the various MTS

models fit each of the 20 re-sampled versions of an experiment.  Because each

model is fit to 20 re-sampled data sets per experiment, there will be a separate

distribution of SSQs associated with each model.  These various distributions

can be compared to look for reliable differences in the average SSQ.

Specifically, I use repeated measures t-tests to look for significant differences

among each model’s SSQERR (the SSQRT differed very little across choice of σINT

and so was uninformative in this context).  Only if a given level of σINT

produced significantly better fits to an experiment’s error data, relative to a

model with no internal noise (i.e. the A(0) model), was that experiment said to

require the addition of internal noise.  Thus, I computed two t-tests: one

between the SSQERR of the A(0) and the A(.25) models; the second between the

SSQERR of the A(0) and the A(.5) models.  For cases in which both tests

revealed significantly better fits (i.e. a lower SSQERR for either the A(.25) or

A(.5) model), I computed a third test between the SSQERR of the A(.25) and the

A(.5) models.
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A summary of the general fitting algorithm is given below:

1.) Form a SSQTOT value for each point in the prediction space.  This

consists of combining the SSQTOT value obtained after applying the

RT-transformation to the model RTs, with the SSQERR value

obtained after augmenting the simulating error rates to reflect

unexplained sources of error.

2.) I then use an automatic procedure to explicitly search through the

entire prediction space to find that 5-tuple associated with the

smallest SSQTOT. The process of searching through the prediction

space for the parameter 5-tuple with the lowest SSQTOT is carried

out separately for each of the 20 re-sampled versions of an

experiment.  These 5-tuples are then averaged across sample fits

using the 20 SSQTOT as weights. In this way I obtain a weighted

average “best” fitting 5-tuple to characterize each search

experiment in the MTS ensemble.

3.) To decide the level of internal noise that best describes a particular

experiment, I repeat steps 1 and 2 for each choice of σΙΝΤ and

conduct paired t-tests using each model’s distribution of SSQERR.
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II.C. Modeling results

The basic model of MTS proved quite successful in accounting for the

RT and error-rate data across the experiment ensemble.  In the upper panel of

the following figure I show the relationship between the entire set of

observed average RTs (i.e. 9 conditions x 26 experiments), and model

predictions.  In the lower

panel I show a similar plot

relating the ensemble error-

rate data to the associated

model predictions.  The

lower panel also includes

upper and lower bounds

(thick black lines) derived

using the standard error of

the proportion (±1.96 x sep).

In general the model

simultaneously accounts for

a large percentage of the RT

data (median ensemble r = .952), and the error-rate data (median r = .933),

though the fits to the error rates are substantially more variable than those for

the RTs.  This general pattern, in which simultaneous fits to RT and error-rate

favor the RT fits, is not uncommon in the use of sequential-sampling models
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(see Van Zandt, et al., 2000 for a similar fitting asymmetry), and may simply

reflect the fact that the model's decision structure is too rigid, or that

empirical error rates are multiply determined.  In addition, a poorer account

of the error rates is to be expected given that the model-generated RTs are

modified by an additional 2-parameter transformation (i.e. MR and Z).  More

importantly though, all the predicted error rates fall within the bounds set by

the intrinsic variability of the data.

In figure 36 I show a

representative example of the

model’s ability to simultaneously

capture the complex interaction

between RT and error typical in the

use of MTS.  This figure plots both

the RT and error data (points), and

the “best” fit model predictions

(lines) for a single experiment and is

typical of the fits produced by the

model.  The complete set of MTS results and model comparisons is included

for reference in appendix IV.
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Although the model was generally quite successful in accounting for

the empirical data, there was a single notable exception. In the following

figure I show the data (solid symbols) and model predictions (lines) for the

orientation (∆θ=45˚) experiment.  While the model does a fine job of

accounting for the pattern of RTs (r = .944), the fit to the errors is abysmal (r

~0). The primary reason for this failure is that there are no regions of the

prediction space for which both misses and false-alarms are seen to

simultaneously decrease with set size.  In fact, there currently appears to be

no parameter combinations that support this pattern of errors, though my

search has by no means been exhaustive.

Further evidence for the

unique status of the orientation

(∆θ=45˚) experiment is that no other

experiment in the MTS ensemble

was found to produce this pattern

of errors.  In fact, search based on a

similar, but less discriminable

target/distractor set (i.e. the

orientation (∆θ=15˚) experiment)

failed to produce such a pattern,

and was accordingly fit better by
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the model.  More to the point, these data are not simply a sampling anomaly,

in so far as I have completely replicated the ∆θ=45˚  experiment using an

additional group of 8 observers.  That this pattern emerges when feature

differences are great, may indicate the adoption of a general strategy based

on local feature gradients (Beck, 1966).  By that account, observers may be less

concerned with looking for a target, instead choosing to make decisions on

the basis of display homogeneity versus display heterogeneity.  This idea is

partially supported by the actual pattern of error rates: the miss-rate for the

set size 4/1 target condition is equal to that of the set size 4/4 target

condition.  If one is in fact “searching” for targets, it is hard to understand

how a display containing 4 targets can be mistakenly rejected as often as a

display with 3 distractors and only 1 target.  In general you expect both speed

and accuracy to increase as more targets are added to displays.  On the other

hand, if one has adopted a strategy based on “searching” for displays that

contain target/distractor mixtures, then it is intuitive that homogeneous

displays (pure and target absent) should be more readily confused.  Aside

from the use of secondary criteria, the current MTS model does not make use

of inter-walk comparisons, and so it may not be too surprising that it fails to

account for these kinds of data.  The question of why search based on large

differences in orientation produces a novel pattern of misses that decrease

with set size is at present open, and may be related to increasing sensitivity to
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orientation discontinuities as element number increases (Nothdurft, 1991;

1993).

The real power of the use of the MTS model is not just to fit data, but

rather to reduce the complex patterns of RT and error into psychologically

tractable entities.  In the following sections, I systematically compare how

model parameters corresponding  to information quality (S and V), decisional

integration (C), and attentional limitation (ε and σINT) vary across the

experimental ensemble.  In this way, I can reveal meaningful differences

among search tasks that are not readily apparent via the independent analysis

of RT or error.  A complete listing of all the average parameter values used to

best account for each search experiment is included in Appendix V.

II.C.1 Variation in σINT

The first major division of search tasks revealed by the modelling is in

terms of σINT.  Recall, that each experiment was simulated using three A-type

models: one containing no additive noise (i.e. an A(0) or D-type model), one

containing a moderate amount of noise (an A(.25) model), and one containing

a higher level of noise (the A(.5) model).  The models were tested using

repeated measures t-tests to compare the SSQerr at each level of internal noise

(all the models were basically indistinguishable in terms of the SSQRT).  For all

comparisons, the “best” fitting model was assumed to be the basic model
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with no internal noise.  In this way, a model with internal noise was deemed

“best” only if it significantly reduced the residual variation relative to the

A(0) null (a subsequent test was performed on the residuals of the A(.25) and

A(.5) models if both provided significantly better fits than the A(0) model).

Results of these tests revealed that only a small subset of the ensemble

required σINT to be greater than 0.  Specifically, the three rotation experiments

[rotation 2D (textures), rotation 2D (pinwheels), and rotation 3D (coins)], and the

implied lighting (left/right) experiment were fit significantly better by a model

with σINT = .5, relative to fits produced by models with lower values of

internal noise.  The  conjunction and circle-plus experiments were fit best by an

A(.25) model with intermediate levels of internal noise.  The remaining group

of 20 experiments were fit best using a model that incorporated no additional

source of internal noise (i.e. the D-type model).

One of the primary advantages of using a model with additive noise is

that it gives the standard D-type model the ability to account for high miss-

rates in the context of sharply increasing RTs.  Accordingly, the subset of

experiments singled out as requiring the addition of internal noise were

exactly those experiments having some of the largest set size effects in terms

of miss-rates and RT.  For example, this subset produced miss-rates close to

25% for displays containing 3 distractors and 1 target, as well as associated

increases in RT of 150 to 200 msec.  In addition, this subset of experiments
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differed from the remainder of the ensemble in that only these experiments

manifested a relatively constant false-alarm rate across set size.  This stands in

contrast to the general ensemble-wide pattern of false-alarms that decrease

with set size.  As pointed out earlier during the comparison of the various

MTS models (see section II.A.2), the class of A-type models having a σINT > 0 is

incapable of producing decreasing false-alarms, though this class can easily

yield invariant or increasing patterns of false-alarms with set size.  With this

limitation in mind, it is really no surprise that the A(σINT > 0) models

outperformed the D-type model on only a small handful of search tasks – the

vast majority of the experiments in the MTS ensemble have decreasing false-

alarms and thus cannot be simulated by a model with high levels of internal

noise.

It is worth reiterating, that though the parameter σINT provides a

qualitative division of search tasks, this division derives entirely from

differences in the SSQerr  (most notably from the residuals associated with the

set size 4/1 target miss-rates, and the overall slope of the false-alarm rates);

the residuals associated with the patterns of RT had no effect in deciding the

appropriate magnitude of σINT, in so far as all the models were basically

indistinguishable in terms of how well they accounted for the RT data.   Thus,

I am somewhat cautious in making strong claims relating variations in the

parameter σINT with qualitative differences in attentional processing.
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Nonetheless, the model comparisons appear to provisionally categorize the

ensemble of search tasks into two distinct classes: those that require the

injection of internal noise, and those that do not.  From here on, I will denote

these two classes of search as the A-class and the D-class, respectively.

Probability sampling models

In section II.A.2.b we saw that there is a near equivalence between the

dual-noise source model parameterized by σINT, and the probability-sampling

model parameterized by λ.  Here, I explicitly show that the data from the

majority of A-class experiments can also be simulated using a matched

probability-sampling model.  I reiterate here, that the probability-sampling

model is not suitable to account for the remaining set of 20 D-class

experiments, for the same reasons that prevented an account based on

internal noise: neither the dual-noise nor the probability-sampling models can

produce a pattern of false-alarms that decrease with set size (recall, that this is

the general pattern associated with the D-class of search tasks).

The general approach for simulating a probability-sampling model of

MTS is quite simple.  First, I use curve-fitting routines (Matlab) to find the

value of λ that comes closest to reproducing the scaling effects of the “best” fit

A-type model.  I then simulate a matched probability-sampling model based

on that λ, and a parameter set  matched to that of the A-type model (i.e. the
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same S, V, C, D, MR, and Z).  Specifically, I find that λ which minimizes the

deviations between: 1) the function governing the attenuation of the

increment means and standard deviations with set size based on the “best” fit

A(σINT) model, and 2) the same function based on the probability-sampling

model parameterized by a particular choice of λ.  For the range of set sizes

used in MTS, it is often possible to find a value of λ that closely mimics the

scaling effects of the appropriate A(σINT) model. In the adjacent figure I show

the results of matching λ to mimic the increment scaling functions of the best

fitting A-type model for a subset of four experiments (the scaling functions for

the step size S, and variability V are plotted in blue and red respectively).  As
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the figure makes clear, the matched probability sampling model comes

remarkably close to replicating the scaling functions of the internal noise

model at these set sizes and levels of σINT.  All else being equal, any model

that identically scales the increment distributions with set size, will produce

identical predictions in RT and error-rate.  This was in fact the case, as the

simulations of the full probability-sampling model based on the values of λ

shown in figure 38 generated RT and error fits that were indistinguishable

from fits of the dual-noise model with a σINT of .5.  That is, the probability-

sampling model provided an excellent account of the joint patterns of RT and

error data for all three rotation experiments, as well as the implied lighting (LR)

experiment [λ = .961 for rotation2D (textures), λ = .886 for rotation2D (pinwheel),

λ = 1.00 for rotation3D (coins), and λ = 1.05 for implied lighting (LR)].  That all

four data sets required a matched probability-sampling model with similarly

high values of λ (avg. λ = .974) , bears further witness to the extreme levels of

capacity limitation inherent in these types of search – at these levels of λ the

probability-sampling framework approaches a fixed sample size model of

attentional limitation in which the probability of sampling an element goes as

the inverse of the set size (Shaw, 1980; Palmer et. al, 1994).

The probability-sampling model was not as successful in accounting

for the patterns of data associated with the two remaining experiments in the

A-class which were fit by a model with σINT = .25 (i.e. the conjunction and
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circle-plus experiments).  This failure arises primarily because the equivalence

between the A(σINT) and probability-sampling models breaks down at lower

levels of internal noise.  Specifically, the A(.25) model can still capture mild

decreases in false-alarms with set size that the probability-model cannot.

There are several important conclusions to be drawn from the results

of these simulations.  First, the A-class of search experiments can be further

divided into those that permit a probability-sampling account of attention

(the various rotation and implied lighting (LR) experiments), and those that do

not (the conjunction and circle-plus).  In general, it appears that any data which

can be fit by an A(.5) model can also be explained in terms of probability-

sampling.  However, the same equivalence does not hold for experiments fit

by an A(.25) model, though the results are based on only two experiments.

Second, there is nothing at the level of these MTS data to decide among an

account of attentional limitation based on increment scaling (the A(σINT)

model), and an account based on probabilistic sampling of unscaled

increments (probability-sampling).  At present, all one can say is that a subset

of the MTS ensemble is best simulated by a model with internal noise, and

that within that subset, only those experiments fit with relatively high levels

of internal noise have a matched model based on probability-sampling.
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Interestingly, there is a common thread that relates all 6 experiments

categorized within the A-class:  in every case, targets and distractors can be

construed as differing in the relative arrangement of component features.  This

relationship is especially clear for the circle-plus, and implied lighting (LR)

experiments.  In these experiments distractor stimuli differed from target

stimuli solely in terms of a mirror-reversal.  For the remaining  variants of the

rotation and conjunction experiments, targets and distractors can be construed

as differing in terms of feature configuration.  For example, searching for a

clockwise rotation among a field of counter-clockwise distractors can be

adequately conceptualized in terms of different arrangements of motion

energy features of the sort represented in V1 (see Sekuler, 1992; Takeuchi, 1997

for an analogous way of conceptualizing complex motion direction).

Similarly, elements in the conjunction experiment can be defined as

configurations of orientation and color.

However, it is important to realize that not every member of the class

of relative position experiments required an internal noise model.  For

example, the missing side and broken cube experiments are paradigmatic

examples of search for relative position, yet both were fit best by a D-type

model without additive noise. Nonetheless, it is striking that every member

categorized as A-class requires a configural analysis to distinguish targets

from distractors.  This class homogeneity is all the more interesting because
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there is a growing body of visual search results to highlight the especially

demanding nature of these sorts of discriminations (Logan, 1994; Pashler,

1998; Wolfe, 1998b).  For example, in the context of measurements of search

accuracy during briefly presented displays, only stimuli differing in the

relative arrangement of features produced increases in threshold large

enough to invoke perceptual limitations (Palmer, 1994; Poder, 1999).   If we

take seriously the distinctions between the D-type and A-type models as being

decisionally and attentionally limited respectively (see section II.A.1.f), then we

have here an account of supra-threshold search that is in agreement with the

basic findings for search defined at threshold – namely, that the majority of

visual search effects can be accounted for in terms of decision (i.e. the D-class),

with true perceptual limitations arising only for discriminations of relative

position (the A-class).  Despite the apparent simplicity of this summary of the

MTS results, it requires a D-type model of search burdened with an

implausible number of criteria.  Moreover, as will become evident in the

following section, an ensemble analysis based solely on σINT ignores the

undeniable fact that the D-class of search experiments can be meaningfully

ordered in terms of ε.
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II.C.2 Variation in ε

The ultimate goal in the modelling of MTS is to extract attentional

limitations using a model that simultaneously accounts for both set size

effects in RT and accuracy.  In the adjacent figure I show the values of ε

required to simulate the data from all 26 experiments in the ensemble.

Specifically, figure 39 plots the average best-fit value of ε against a measure of

target/distractor discriminability [basically, a signal-to-noise ratio (SNR) =

2S/V].  Note that the 6 smaller points within the scatterplot denote the subset

of experiments discussed previously that were fit best by an A(σINT>0) model

(i.e. a model with additive internal noise).  The fits clearly reveal that the
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entire MTS ensemble can be reliably distinguished using a parallel model and

a continuum of capacity limitation.  The reality of this continuum argues

against the categorization of search tasks using simple-minded dichotomies

such as serial/parallel, or efficient/inefficient (Wolfe, 1998a,b).

The figure also reveals that a substantial amount of variation in ε was

necessary in order to capture the entire ensemble.  Specifically, some data sets

were accounted for by relatively low levels of ε of around .3, indicating that

for this class of experiments there was very little effect of set size on the

acquisition of stimulus information.  At the other extreme, were experiments

that required near maximal levels of capacity limitation (i.e. ε ~ .9).  For this

class of search, the rate at which stimulus information was accumulated in

each random walk was effectively reduced by a factor approaching the

inverse set size.  Intermediate to these two extremes were those experiments

that required moderate values of attentional limitation.  It is noteworthy that

in the context of MTS, every task in the ensemble was simulated using some

degree of capacity limitation.  This is consistent with recent evidence that

there are no discriminations that can truly be termed “preattentive” in that

even the simplest stimulus discriminations (e.g. orientation) appear to make

some demand on attentional resources (Joseph, Chun, & Nakayama, 1997).
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 In addition, figure 39 shows that the observed variation in ε is

theoretically well-ordered, in that it segregates and groups experiments in a

psychologically intuitive way.   For example, searches based on differences

along primary featural dimensions tend to inhabit regions of the space

characterized by mild limitations, such that ε is typically less than .4 (e.g.

spatial frequency, orientation, color, translation, and expansion/contraction).  At

more moderate levels of  limitation (.4 < ε < .7), are those search tasks based

on either shape discrimination, or the discrimination of emergent form (e.g.

letter dynamic/static, closure, implied lighting (up/down), triangles in polygons,

etc.).  Finally, the highest levels of ε are reserved for the most difficult class of

search tasks based on discriminations of relative position or rotation

direction.  In general, these tasks appear to be doubly limited in that they are

simulated using high levels of both ε and σINT.

There is also evidence that the local ordering of experiments by ε is

theoretically consistent.  For example, consider the relative difference in

attentional limitation found for the two implied lighting experiments.  Recall,

that the up/down version of this experiment consists of apparent differences in

surface curvature (bumps or indentations) that emerge by virtue of shading and

the visual system’s presumed bias to assume an overhead lighting source

(Ramachandran, 1988).  This experiment is contrasted with the right/left

version (identical target/distractor stimuli rotated by 90˚) for which there is
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no emergent distinction in curvature, and hence the search task here reduces

to a strict discrimination of relative position.  The stimuli from these two

experiments are known to qualitatively dissociate when they are embedded

in textures; the up/down stimuli produce vivid intra-region groupings and

inter-region segmentations, whereas the left/right stimuli lead to camouflage.

Results based on the extraction of ε via the model provides a similar

dissociation among these stimulus sets in that the up/down task is found to be

moderately limited in capacity (avg. ε= .568), while the left/right task was

found to suffer extreme limitations on par with the most difficult types of

search (avg. ε= .85, σINT = .5).

Other evidence that ε is meaningful in terms of the small-scale

ordering of search tasks it provides comes from a comparison of the 3Dcube

and broken cube experiments.  Recall, that these experiments are based on

experiments by Enns and Rensink (1990) that examined the role of perceived

orientation in depth during search.  The two experiments differ as follows:

the 3Dcube experiment consists of simple, 2D rendered “cubes” that appear to

have an orientation in depth, whereas the broken cube experiment takes these

same cube-like stimuli, but separates the faces of each cube so as to effectively

eliminate perceptions of depth.  Results from a series of studies based on

singleton search revealed that the broken cubes were much less efficient

relative to search for intact cubes (Enns & Rensink, 1990).  Again, the relative
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values of ε extracted using MTS are consistent with these results.  Search for

intact “cubes” was significantly less capacity-limited (avg. ε= .647), than

search based on a set of identical, but broken stimuli (ε= .721).  Later, in section

II.C.6 I will show that ε can also reliably pick up explicit manipulations in

target/distractor similarity that are expected to make search more difficult

(Duncan & Humphreys, 1989).

On the whole, both the global and local ordering of experiments via ε

provides strong evidence that the multiple target search method and model

are well-calibrated: stimulus differences that lead to targets that “pop-out” in

a field of distractors and produce vivid textural segmentations have near

minimal levels of ε, while those differences that support camouflage have

higher levels of ε.  Furthermore, the subset of search tasks requiring an

analysis of relative position were found to require the highest levels of ε.  This

result agrees with the qualitative categorization of experiments via the noise

parameter σINT, and provides additional evidence that these sorts of

discrimination are singularly demanding of attention (Palmer et. al, 1993;

Pashler, 1998; Poder, 1999).

As alluded to earlier (section II.A.1.f), there are two possible

explanations concerning why ε should vary across experiments.  These two

explanations arise because there exists an inherent symmetry in the random
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walk framework between the scaling of increments and the scaling of criteria.

The first explanation is attentional in nature, and holds that ε controls the rate

at which information is accumulated via a multiplicative scaling of the

perceptual samples as a function of set size and capacity limitation.  By this

account, the variation seen in figure 39 arises because search stimuli differ in

terms of the demands they make on attentional resources.

The second explanation is decisional in nature and holds that ε controls

the magnitude of the primary and secondary response criteria as a function of

set size.  By this account, the variation in ε arises because search stimuli have

intrinsic differences in single-element discriminability (i.e. the

discriminability of a single target from a single distractor).  Experiments with

lower single-element discriminabilities will necessarily have higher error

rates for a fixed criterion (T) – to control for differences in the intrinsic error, ε

multiplicatively adjusts the magnitudes of the response criteria as a function

of set size.  Though this account places ε at the level of decision, it is still true

that the magnitude of criterial scaling has to be a function of set size.  In a

sense then, even this account is attentional in that the value of ε is ultimately

determined by interactions in the multi-element data.  The real question then

that remains, is not whether the parameter ε operates via scaling the criteria

or the perceptual samples, but rather why this scaling varies in a

psychologically sensible way across the ensemble.  In the next section I argue
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that the observed variation in ε across the ensemble is not determined by

intrinsic differences in stimulus discriminability, but rather by attentional

limitations.

II.C.3 n-element confusability

A central issue in the comparison of visual search results across

disparate stimulus domains concerns whether observed differences in

patterns of RT and/or accuracy are due solely to limitations at the level of

attention, or rather arise from lower level differences in the intrinsic

discriminability of target elements from distractor elements.  It is well

documented, all else being equal, that basic differences in the discriminability

of single elements is sufficient to explain much of the variability in set size

effects on RT and accuracy during singleton search (Duncan & Humphreys,

1989; Palmer, 1994; Geisler & Chou, 1995).   The MTS model(s) employed here

contain parameters presumed to relate to single-element discriminability and

attentional limitation, and so it is possible to explore how the values of these

parameters covary within experimental fits.

Returning to figure 39,  we see that there is in fact a slight relationship

(r2 = .139) between the magnitude of each experiment’s estimated SNR (the

ratio of S to V) and its associated value of ε – low SNRs tend to be associated

with high levels of attentional limitation, while higher SNRs are seen to co-
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occur with decreased levels of attentional limitation.  This relationship is in

fact quite weak, being driven primarily by a cluster of experiments having

near minimal levels of ε (e.g. spatial frequency, orientation).  Assuming that the

model-generated estimates of these SNRs are veridical, the relationship in the

figure suggests that the parameter ε may be partly a measure of intrinsic

information quality, rather than a pure measure of attentional limitation.  To

the contrary, I will present evidence that the covariation between these

measures results not because ε is a function of target/distractor d’, but

instead because the model-extracted SNRs, like ε, are reflections of the

confusability of the n-element display.

There are a number of important points that argue for the

psychological reality of ε as a measure of attentional limitation, independent

of any intrinsic variation in discriminability.  First, the apparent relationship

shown in figure 39 is for the most part illusory.  If we exclude the spatial

frequency and orientation experiments from consideration, the relationship

between SNR and ε virtually disappears (r2 = .016), indicating the high

leverage of these extreme data points.  Furthermore,  the observed covariation

between SNR and ε arises as a direct consequence of the architecture of the

model.  To see this one must realize that the upper right quadrant of the SNR-

ε space produces data simulations that have no errors.  This is a result of the

value of the primary criterion T, and the ranges of S and V employed in these
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simulations.  Because the experiments in the MTS ensemble have a 5% error-

rate on average, they cannot be fit using the combinations of S, V, and ε that

define that quadrant.  Moreover, because of the way attention is conceived in

the MTS model, increases in ε generally lead to slightly lower errors and

longer RTs (though this relation can be somewhat reduced by the addition of

large amounts of internal noise, see section II.A.2.a).  In attempting to account

for both the error-rate and the RT data, the model emphasizes those

parameter combinations that do in fact lead to errors.  In practice, the model

negotiates the tradeoff by increasing V (increment variability) to offset

increases in ε (V and ε are correlated across experiments .6, while S and ε are

uncorrelated).  A similar relationship holds for the extreme lower left

quadrant of the SNR-ε space.  There is a paucity of fits in this region precisely

because the parameter values there lead to patterns of data that are

nonexistent in the use of MTS (either very low error rates, extreme false-alarm

rates, or the absence of pure target/target absent mirroring).

The second point that argues against ε as a correlate of sensory

limitation arises from an explicit assessment of target/distractor

discriminability.   I have conducted a series of informal psychophysical

calibrations on a subset of the target/distractor pairs used in MTS, and the

results contradict any clear relationship between empirically-measured d’

and ε.  For example, using a procedure drawn from Geisler and Chou (1995),
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the rot2D and translationI stimuli were found to be equally discriminable

across a large range of stimulus eccentricities (eye movements were

controlled, contrast was minimal, and presentations were kept brief, ~120

msec.).  That these two target/distractor sets proved equally discriminable,

while at the same time yielding polar opposite values of attentional limitation

(rot2D, avg. ε=.86; translationI, avg. ε=.38), provides strong evidence that

intrinsic stimulus quality is dissociated from attentional limitation in the

context of MTS.

In a similar series of psychophysical investigations based on single-

element discrimination, I found that the stimuli in the missing side and circle+

experiments were much more discriminable than those in the spatial frequency,

color, or orientation experiments (all stimulus presentations were brief and

were preceded and followed by a high contrast pattern mask; complete

psychometric functions were measured as a function of presentation time).

These results are all the more striking given that the highly discriminable

missing side and circle+ stimuli manifested extreme levels of confusability in the

context of multi-element search (avg. ε was .88, compared to an avg. ε of .275

for spatial frequency, color,  and orientation).

Finally, I fit a modified random walk model to the single-element RTs

and error rates for all 26 experiments using simple analytic expressions for
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the time-to-absorption and the probability of an error absorption (eqs. 1 & 2).

These fits produced SNRs that were entirely uncorrelated from the SNRs

produced by the full model fits to the 18 RT and error-rate conditions.

Furthermore, the single-element fits were highly dependent on the

magnitude of MR (the additive constant reflecting motoric and unexplained

factors in the RT), yielding SNRs that were roughly invariant across

experiments.  This similarity is really not too surprising, given that with few

exceptions, there was little variation in the single-element RTs and error rates

across the experiment ensemble.

To summarize, the convergence of the previous arguments makes a

strong case that ε is a measure of attentional limitation.  When data are

accounted for by a simulation based on higher levels of V and ε , it is not

because a single target element is less discriminable than a single distractor

element, but rather because the n-element target present displays are less

discriminable than the corresponding n-element absent displays.  For

example, attentionally demanding search tasks generally yield high miss-

rates and sharply increasing RTs as a function of set size.  The model accounts

for the RTs by increasing ε and fits the associated high level of misses by

increasing V, which in turn decreases the apparent discriminability.  By this

account, the apparent relationship between ε and the SNR arises simply



135

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

ε

Criterial relaxation across the ensemble
missing side
lighting-UD

color
conjunction
circle+
3Dcube

exp/con
letter dynamic

orient ∆45˚

closure
pinwheel
rotation 2D
rotation 3D
triangle in polygons
random shapeHI∆

spatial freq. (t=2cpd)

trans  I  (16 frames)

triangle in diamonds

lighting-LR

brokencube

letter static

random shapeLO∆

spatial freq. (t=4cpd)

orient ∆15˚

trans II (16 frames)
trans II (3 frames)

Figure 40

because processing costs and n-element confusability are dual concomitants of

attentional limitation.

II.C.4 Variation in C

The MTS models I use here are novel within the visual search literature

in that they utilize a set of secondary criteria by which responses can be made

on the basis of multiple lines of incomplete, but consistent evidence.  Recall,

that these criteria are implemented via the decisional parameter C which in

principle, “relaxes” the amount of information necessary to initiate a response
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when displays contain more than one element.  For values of C greater than 1,

set size effects on target absent RTs will be reduced in such a way that these

conditions will “mirror” the pure target conditions.  In addition, increasing C

naturally leads to higher miss rates as it becomes more likely for the single

target-generated random walk to exceed the more liberal secondary criterion

associated with an “absent” response. In the following figure, I show the

average value of C along with the associated value of e necessary for the

model to simulate the 26 experiments in the ensemble.

First, note that though there is a substantial amount of variation in C

across the ensemble fits, there appears to be no discernable correlation

between this parameter and the model’s estimates of attentional limitation: in

general, the best fit value of C is independent of the value of ε.  Second, there

appears to be a clear logic governing some of the inter-experiment variation

in C.  For example, some of the variability seen in figure 40 may be explained

by the twin notions of distractor heterogeneity and search difficulty.

Consider the three experiments enclosed in the dashed circular region

(conjunction, triangles among diamonds, triangles among polygons).  This subset is

distinguished from the majority of remaining experiments in the ensemble in

that for these experiments non-targets were drawn from a heterogeneous set

(due to differences in orientation, identity, or feature conjunction).

Heterogeneity in non-targets appears to attenuate the integration of
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information, in that the average value of C for these three experiments is

nearly minimal (M=2.156±.074sem), and reliably less than the remainder of

the experiments (M=2.686±..022sem).  That experiments with heterogeneous

distractor sets are fit by lower levels of C argues for the theoretical

consistency of this parameter, and suggests that observers may have a harder

time integrating information when elements are not easily alignable.

Specifically, it appears that the random orientation of a single distractor

shape (triangles among diamonds) engenders a sense of heterogeneity on par

with that produced by distractor sets consisting of multiple unique elements

(the triangles among polygons and conjunction experiments).  In this regard, one

could also speculate about the findings for the implied lighting (LR) and

rotation2D (pinwheels) experiments: both data sets required minimal levels of

C near 2.  This result could reflect a perceived sense of heterogeneity in these

distractor sets, such that observers become less willing to combine evidence

from multiple sources of rotation or luminance phase.  Though this is an

intriguing conjecture, and one that has support from studies indicating very

little region segmentation for these sorts of differences (Beck, 1966; Gilden &

Kaiser, 1992; Julesz & Hesse, 1970; Malik & Perona, 1990; Renstschler,

Hubner, & Caelli, 1988; Sagi, 1995), two other related experiments yielded

average values of C that were reliably higher and more consistent with the

ensemble average (see rotation2D (textures) and rotation3D).
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Variation in C also appears to be partially related to the attentional

demands of the search task.  Specifically, the magnitude of C is reliably lower

for searches based on simple psychological differences of the sort that lead to

strong texture segmentation and spatial grouping (e.g. spatial frequency,

orientation, translation, and color), relative to more attentionally demanding

searches based on form, or relative position of features.  One possible reason

that C appears to be somewhat modulated by search difficulty may simply be

that featural differences lead to low-level groupings that diminish the need

for additional integration at the level of decision.

Regardless of the exact cause of these local variations in criterial

relaxation, the most important psychological finding that emerges from these

analyses is that every single experiment in the ensemble was fit using a value

of C in the range 2 and 3.  This is a testament to the psychological reality of

the idea embodied in this parameter – that observers routinely reduce their

criteria in a systematic way with set size so as to integrate information across

independent walks.  In the next section I argue that one reason this

integration is ubiquitous in MTS, is because it reflects an optimal-like decision

strategy.
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II.C.5 The optimality of using partial evidence to guide decision

On the whole, there is one hallmark pattern in the data that

distinguishes MTS from other search paradigms: target absent RTs are

consistently either invariant, or decreasing with set size.  Nowhere in the use

of MTS do I find target absent RTs that increase with set size in the 2:1 ratio

predicted by a serial, self-terminating process.  In fact, as noted throughout this

paper, the MTS target absent data are entirely inconsistent with both serial

and parallel classes of search.  Moreover, there is no model that posits

complete identification before a response is initiated that can predict target

absent RTs that decrease with set size.

To successfully account for the error and RT data, the MTS model(s)

necessarily incorporate secondary response criteria so that decisions can be

made on the basis of multiple lines of incomplete evidence about element

identity.  This addition by its very definition embodies a speed/accuracy

tradeoff – one can use multiple sources of partial evidence to decrease the

cost associated with target absent responding, but only at the cost of

increasing the miss rate.  Given this state of affairs, it is natural to ask whether

this sort of decisional opportunism represents an optimal strategy?

To answer this question I have formulated a random walk model of

MTS that makes decisions using a Bayesian observer.  The Bayesian observer
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is optimal because its decisions are made by choosing whichever response

alternative maximizes the likelihood of the current stimulus information (for

a detailed derivation see Appendix II).  In the context of MTS, the Bayesian

observer achieves optimal performance because it embodies perfect

knowledge regarding the distribution of target and distractor increments, the

statistical properties of a general random walk, and the exact prior

probabilities of the various trial types.  With this information, the Bayesian

decision-maker can be used to a formulate the optimal accuracy for

distinguishing target present from target absent displays at a fixed moment in

time.  Specifically, I implement a Bayesian framework for multiple target

search in the following manner:

i. Each element in a search display is represented as an

independent random walk with increments drawn from a

Gaussian distribution (i.e. N(±S,V)).  For all cases, the

parameters S and V were fixed to average values based on the

model fits (altering these values had no qualitative effect on the

results).

ii. The distribution of walk states, in the absence of absorbing

barriers can be modelled as asymptotically Gaussian, such that

at time τ the walk states are distributed as N(±Sτ, Vτ1/2).
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iii. There is no attentional limitation, and hence all processing is

capacity unlimited and independent of set size (note that

attentional limitation can easily be incorporated within the

front-end of the model).

In the following two figures I plot the results of using the Bayesian

model of MTS.  Figure 41 shows a representation of the 2D probability

density functions (i.e. n = 2) of possible walk states after 50 time steps have

elapsed for both the target present (upper-right), and the target absent case

(lower-left).  In this figure the densities are depicted as a series of two-
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dimensional level curves each representing the iso-probability of the joint

position of two independent random walks in the state space. Note that the

target present density is formed by taking a weighted average of the densities

for the three types of target present trials given a set size of two (i.e.

walk1=target & walk2=distractor;  walk1=distractor & walk2= target;

walk1=target & walk2=target).  Similarly, the target absent density is the

probability of the joint position of two distractor-generated walks.  The thick

black line represents the optimal decision bound assuming no bias for

distinguishing target present from target absent, and is simply that region of

the space for which the difference between the target present and target

absent densities is zero.  The optimal classifier will respond target “present”

whenever the joint state of the two random walks is above or to the right of

the decision bound, else it will respond target “absent”.

There are two important points concerning the shape of this decision

bound.  First, it is non-linear in the state space, and is in fact remarkably

similar to the structure of the secondary criteria implemented in the standard

model via the parameter C.  Second, the n = 2 bound is shifted closer to the

target present density relative to the decision bound for a set size of 1 [the n=1

bounds are the dashed gray lines in the figure and are included for

comparison – they are centered at zero and represent the standard un-biased

criteria of signal detection for the case of overlapping 1D Gaussians].  All else
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being equal, this shift in the 2D bound means that small positive

accumulations in one of the walks will be outweighed by large negative

accumulations in the other.  This is the first indication that an optimal

classifier will make target “absent” decisions without exhaustive processing.

In the next figure I use the optimal 2D bounds to show how accuracy

grows with time for all the n=1 and n=2 conditions of MTS.  Specifically, the

optimal percent correct (PCopt) is plotted as a function of the number of time

steps (τ), for single-target, single-distractor, mixed (i.e. 1 target + 1 distractor),

dual-target (i.e. puren=2), and dual-distractor trials (i.e. 2 distractors).  The

accuracy curves were formed by calculating PCopt across a range of  linearly-

spaced values of τ using the expressions in Appendix II.

There are a number of important points contained in these curves.

First, all the accuracy-by-time functions grow with τ in an approximately

square-root fashion.  This is because the signal/noise ratio of any random

walk grows as τ1/2.  Second, the curves are well ordered with time such that

the same ordinal relationships between the accuracy of various conditions are

preserved with time.  For example, the accuracy for single element trials is

always greater than for mixed trials.  Because the relation between τ and

PCopt is monotonic, it is also the case that the single element trials will reach a
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criterion level of accuracy sooner than the mixed trials.  Thus, it is clear that

even for a capacity-unlimited model with an optimal decision structure, there

will be set size effects in visual search.  This cost in RT has been termed

decisional limitation in the literature, and arises from the fact that larger set

sizes lead to an increase in statistical uncertainty that exists prior to any

influence of attention (Palmer & McLean, 1995, Palmer, 1994, Eckstein, 1998).

Now, consider the single and dual target curves.  For all τ, the dual-

target curve (n=2) lies above the single-target curve (n=1) implying a

redundancy gain in accuracy (and therefore, in time as well) for displays with
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two targets, relative to displays with one.  The magnitude of this redundancy

gain is seen to grow slightly with τ, and reflects a benefit in response due

entirely to the statistics of the minima of independent processes (for a

discussion of these so called “race” gains see Raab, 1962; Miller, 1982).  More

importantly, a similar relationship is seen to hold for the case of dual

distractors relative to a single distractor.  As for the case of redundant targets,

the two distractor curve lies above the single-distractor curve for nearly all τ,

thus implying higher accuracy and faster responding relative to the single

distractor condition.  This relationship clearly indicates that an optimal

classifier will generate target “absent” responses that decrease with set size in

the context of a multiple target search design.

For comparison, I have also used the Bayesian classifier in a singleton

search design and here the results are strikingly different.  In singleton search

there are no multiple target trials and increases in set size simply reflect the

addition of distractors.  For this type of design, the optimal classifier predicts

that target absent RT do increase with set size.  This is the intuitive result

assuming exhaustive processing in which target absent responses are limited

by the slowest of n processes.  Thus, it is clear that the ubiquitous “mirroring”

between target absent RTs and pure target RTs in MTS is due in part to the

addition of pure target trials in the experimental design – this addition alters
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the overall target present density and thus the structure of the optimal

decision bound.

In addition to revealing a difference in the sign of the target absent

slope, the Bayesian framework also predicts that the slope of the single-target

function should differ across experimental designs.  Specifically, the Bayesian

model predicts a larger set size effect on RT in a multiple target design than in

a matched singleton design.  To see why, note that the optimal decision

bound for MTS is shifted towards the target present density (Fig. 41).  As

mentioned earlier, this shift leads to faster target absent responding relative

to the set size = 1 condition.  The displacement of the decision bound also

leads to an increase in single-target misses that in turn amplifies the single-

target RTs relative to the predictions for singleton search.  This difference

across designs is informative in so far as I always find larger set size effects in

my MTS experiments than expected on the basis of the corpus of singleton

search results.  Most singleton search experiments that have used highly

discriminable target and distractor elements indicate that featurally-based

searches (i.e. size, color, orientation, translation) produce very shallow slopes

on the order of milliseconds.  For comparison, my feature experiments with

equivalent stimuli yield substantially larger set size effects that are on average

about two to three times greater than expectation.  Though multiple target

search differs in a number of important ways from the standard singleton
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search experiment, the Bayesian predictions indicate that the addition of

multiple-target trials is at least partly responsible for the general

augmentation of set size effects that arise in the use of this method.

In figure 43 I summarize these relationships by using the accuracy-by-

time functions in figure 42 to interpolate expected RTs across conditions and

search designs assuming a fixed level of error.  In the left panel, I plot the

pattern of predicted RTs for a fixed 5% error-rate for a multiple target search

design.  In the right panel I show the predicted RTs for a matched singleton

search design.  Summarizing the previous discussion, the target absent slopes

are seen to differ in sign and magnitude across experimental designs, and the

single-target set size effects are clearly larger for a MTS design.
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II.C.6. Explicit manipulation of the signal-to-noise ratio

In preliminary fits to MTS data I found very little variation in the SNR

(i.e. 2S/V) across a pilot ensemble of ten or so experiments.  Moreover, the

ensemble-wide homogeneity in apparent discriminability was found to

coexist with large and significant differences in the attentional limitation

parameter ε.  There are two possible explanations concerning why the SNR

was found to vary so little across that ensemble:  1) the various search stimuli

in those experiments were in fact equally discriminable, or 2) the model was

failing to pick up actual differences among experiments, possibly due to the

structure and implementation of that particular MTS model (the value of the

primary criterion T was free to vary, the increment variability, V was fixed at

1, and the parameter S had only two potential values in the simulation space).

It is quite possible that real differences in discriminability were obscured by

the coarse structure of the space and/or by variation in the decisional

parameter T.  In my current work I have attempted to deal with this problem

as follows.  First , I have substantially altered the structure of the model: now

T is fixed and the parameters S and V are free to take on 10 potential values

each.  Thus, I let the increment parameters vary freely and then calculate the

SNR from their best-fit values.  Recasting the MTS models in this manner

proved successful in that now the model fits reveal substantial, and reliable

variation in the SNR across the 26 experiments in the ensemble (e.g. see figure

39 ).  Second, and more importantly, I have included experiments in the
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current ensemble that are designed to explicitly test whether the MTS model

can pick up manipulations of target/distractor (t/d) discriminability. The key

idea here is to look for measurement consistency in the model –  if two

experiments differ in terms of t/d discriminability, then the model should

accordingly reveal that difference in the estimates of each SNR.

There are three specific search domains included in the ensemble that

are relevant here (for each domain 2 matched experiments were run in which

t/d similarity was explicitly manipulated for a total of 6 experiments).  The

first 2 experiments are based on shape discrimination in which observers

search for a target circle(s) among non-circular, random contour distractors.

The extent to which the distractors deviate from circularity is manipulated

across experiments, such that in the first experiment the distractors are

highly, non-circular (experiment 8), and in the second experiment the

amplitude of this non-circularity is reduced by half (experiment 9).  The

second set of experiments are based on orientation discrimination in which

observers search for highly tilted Gabor targets (45°) among either vertical

distractors in experiment 3 (i.e. ∆45°), or moderately tilted distractors (30°) in

experiment 4 (i.e. ∆15°).   I chose to contrast the 45 degree difference in

orientation with search based on a 15 degree gradient because several studies

have implicated a qualitative change in search efficiency around that

boundary (see Wolfe, 1998b). The final set of experiments is based on the
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discrimination of translation direction.  In the first version of the experiment

(exp. 14) observers searched for rightward drifting textures among leftward

drifting distractors; the motion stimuli consisted of 16-frame sequences of

perceptually continuous motion (~800 msec of motion).  In the comparison

experiment (exp. 15), observers conducted the same task, but now with 3-

frame sequences of motion (~150 msec of motion).  For both experiments the

various motion sequences were 100% coherent, and only the total number of

frames in a motion sequence was manipulated.  The idea was to hopefully

introduce t/d discriminability differences by limiting the duration of the

stimulus.  Overall sequence length was chosen as a potential means of

controlling discriminability here because it was easy to implement, did not

alter overall stimulus visibility, and in the limit of a single frame sequence

(i.e. static) insured that the t/d discriminability went to 0.

Both comparison experiments in each stimulus domain were analyzed

separately using the D-type model (there were no cases in which an A-type

model produced significantly better fits).  In the adjacent figure, I show the

average values of the 5 primary model parameters that best simulated the

data from each experiment, along with the SNRs computed as twice the ratio

of S to V (the 95% confidence limits for each parameter are included for

reference).  As the figure makes clear, all 3 stimulus domains revealed reliable

differences in the model-based estimates of the SNR that were in direct
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Figure 44
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agreement with expectation given the experimental manipulations.

Specifically, for each member of the experiment pair in which the t/d

discriminability had been explicitly reduced, the model-extracted estimate of

the SNR was significantly lower.  This is an important finding because it

indicates that the model can pull out small differences in t/d discriminability

when they are known to exist.
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Closer inspection of figure 44 reveals that the causes of the observed

changes in the SNR differ across the stimulus domains depending on whether

S or V are altered.  For the shape and translation experiments the effective

differences in the SNR are the result of associated differences in the increment

variability parameter V (there were no significant differences in S for these

experiments).  In contrast, the discriminability manipulation engendered a

significant change in the average value of S, but not V for the orientation

domain.  Thus, for the translation and shape experiments, decreases in t/d

discriminability via reductions in presentation time or contour non-circularity

appear to be associated with higher levels of noise, while attenuations of the

t/d orientation difference are revealed in the model by reductions in the

increment signal.

Interestingly, there are also differences in the estimates of ε as a

function of the various t/d discriminability manipulations.  For all 3 domains,

decrements in discriminability were associated with higher values of ε,

though only for the orientation experiments was this difference significant.

Though it would be nice if manipulations of t/d discriminability were entirely

independent of variation in the other model parameters, in the case of ε it is

somewhat expected – there are  both strong intuitions and empirical evidence

to suggest that visual search becomes less efficient as target and distractors

are made more similar (Duncan & Humphreys, 1989).
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The overall picture that emerges then is that the MTS model is able to

reliably distinguish explicit variation in t/d discriminability primarily via

changes in the random walk increment parameters S and V, and less so in the

attentional limitation parameter ε.  That these explicit manipulations of single

element similarity have a consistent effect on the model estimates of

attentional limitation are somewhat troublesome, and suggest that at least

some of the variability in ε across the ensemble may be due to inter-

experiment differences in discriminability.  While these sorts of uncontrolled

differences across the ensemble may explain some of the local variation in ε,

they are surely insufficient to explain the large-scale differences that separate

featural types of search (avg. ε = .35), from searches based on the analysis of

relative position or feature configuration (avg. ε = .8).  In fact, many of the

most limited types of search have t/d discriminabilities equal to or exceeding

those in the feature class.  For example, consider search based on the sign of

translating and rotating textures (exps. 13-19) – we know from the

psychophysical calibrations ( sec. II.C.3, p. 118) that these experiments are

approximately matched in discriminability, yet the two occupy qualitatively

distinct categories of attentional process.  Moreover, virtually all the relative

position experiments contained maximally discriminable t/d pairs that

nonetheless engendered highly confusable search displays.
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II.C.7 Search asymmetries?

There is a long history of search asymmetries using singleton designs

(Treisman & Souther, 1985; Treisman & Gormican, 1988), and there remains

continued interest in whether reversing the roles of targets and distractors

alters search performance in an interesting way.  These types of experiments

typically look for dissociations in search efficiency depending on which of

two base stimuli is designated as “target”.  More generally, a search

asymmetry exists whenever there is a performance difference (e.g. speed,

accuracy, efficiency, etc.) between search for an A among Bs, relative to search

for a B among As (where A and B denote arbitrary search elements).  For

example, in the context of single-target search with extensive set size

manipulations, search for a large item among small items is efficient and

produces flat RT x set size slopes, while search for a small item among large

items is relatively inefficient, producing much steeper slopes.  Similar

findings of asymmetrical search performance depending on choice of target

have been reported for stimulus pairs distinguished by spatial frequency,

orientation, and closure (Treisman & Gormican, 1988; Carrasco, McLean,

Katz, & Frieder, 1998), and more recently for  letter inversion (Wang,

Cavanaugh, & Green, 1994), and discontinuities in contour curvature

(Kristjansson & Tse, 2001).  While early theorizing posited an explanation of

the basic phenomenon in terms of either signal-to-noise ratios, or search for

the presence/absence of canonical features (Treisman & Gormican, 1988),



155

recent work has begun to question the ubiquity of such asymmetries once

low-level confounds have been adequately accounted for (Carrasco & Frieder,

1997; Geisler & Chou, 1995).

Interestingly, there appears to be some weak evidence for

corresponding asymmetries in the context of these MTS experiments.  I

discuss two experiments in the ensemble that are relevant here:

expansion/contraction and spatial frequency/size.  These two stimulus domains

are pertinent in this context precisely because there is previous evidence for

performance asymmetries in the context of singleton search (Treisman &

Gormican, 1988; Takeuchi, 1997).  In the case of expansion/contraction,

Takeuchi (1997) has argued that search for an expanding target among

contracting distractors is parallel, while the converse assignment appears to be

accomplished serially.  For search based on size there are a number of studies

to indicate that large items are more readily sensed among small than the

converse assignment (Beck, 1982; Carrasco, McLean, Katz, & Frieder, 1998;

Gurnsey & Browse, 1987; Treisman & Gormican, 1988).

To explore the role of target assignment in MTS two independent

versions of expansion/contraction and size search were run so that each member

in a set of 2 basic search elements had the chance to play the role of “target”.

Figure 45 shows the RT and error-rate data for the two search experiments
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based on size.  The data on the left represent search performance when targets

are “large”, 2 cpd Gabors among “small”, 4 cpd distractors; the data on the

right represent performance for the converse assignment.  Clearly, there is a

noticeable difference in the overall pattern of responding depending on target

assignment.  Search with “large” targets yields larger redundancy gains, and

smaller set size effects for both RT and error-rate relative to search with

“small” targets.  Though this qualitative inspection suggests an asymmetry

favoring “large” targets, the complexity of the interactions between the

various RT and error-rate conditions undermines drawing any firm

conclusions.  For example, how do the larger benefits in target absent RT with
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set size, in addition to the lower pure target error-rates for “small” target

search figure into comparisons of search efficiency?  These sorts of questions

reiterate the importance of using a model-centered analysis by which the

dimensionality of the data can be reduced.

In figure 46 I show a comparison plot for the case of two search

experiments based on the expansion/contraction of visual texture.  Relative to

the previous figure, there appears to be little qualitative difference between

search with expanding targets and contracting distractors, and the converse

assignment of contracting targets and expanding distractors.  In a previously

published paper, this apparent similarity motivated a subsequent pooling
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across target assignment, and the model fits to the expansion/contraction data

reported here derive from this pooled data.  Despite such qualitative equality,

closer inspection  reveals that there are in fact a number of small differences

across the two experiments, most notably in the target absent RTs and miss-

rates.  Specifically, search with expanding targets produced larger misses with

set size, while search for contracting targets manifested steeper target absent

slopes.  Again, we can use the MTS model to ask whether there are reliable

differences in attention limitation (i.e. ε) or information quality (the ratio of S

to V) to suggest a search asymmetry.

In the upper panel of figure 47 I show the results of using the D-type

model to re-fit the two versions of the expansion/contraction experiment

separately.  The blue points represent the average values of 5 key parameters
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required to account for search with expanding targets, the red points represent

the values required to account for search with a contracting targets, and the

green points represent the parameter values that fit the data averaged over

target assignment (the errorbars in the figure are the 95% confidence limits

based on data re-sampling). A comparison of the various parameter values

reveals two significant differences in the model fits across choice of target:

search for contracting targets required a reliably lower value of ε, and a higher

value of the SNR (due to a significant increase in S) relative to search for

expansion.  Taken together, these differences seem to suggest that search for

contraction is superior attentionally to search for expansion.  Though this

finding runs counter to an earlier related investigation based on singleton

search which found an apparent advantage for expansion at the level of the

RT-by-set size slope (Takeuchi, 1997), there are other psychophysical studies

to indicate either an advantage for either expanding motion (Ball & Sekuler,

1980), or contracting motion (Edwards & Badcock, 1993).  Thus, without more

work it seems suspect to draw any firm conclusions regarding the direction, if

any, of a search asymmetry in the analysis of expanding/contracting motion.

In the second explicit investigation into potential search asymmetries ,

two versions of a spatial frequency/size based search were run.  The 5 basic

model parameters necessary to best simulate each data set appear separately

in the lower panel of figure 47.  Again there are asymmetries apparent in ε
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and the SNR, such that search for large targets requires lower values of ε and

higher values of the SNR relative to the comparison search with small targets

(here the change in the SNR arises via significant differences in V).  This joint

effect in the parameters implies that search for large among small may be

attentionally privileged, a finding that has consistent support from a number

of other studies (Beck, 1982; Carrasco, McLean, Katz, & Frieder, 1998;

Gurnsey & Browse, 1987; Treisman & Gormican, 1988).

In addition to speaking to issues of asymmetry, these results also have

bearing on the nature of the psychological referent of the SNRs that come out

of the model fits.  The question here is whether the SNR extracted by the

model reflects the single-element t/d discriminability in the usual

psychophysical sense (i.e. d’), or instead is a reflection of the discriminability

of target present displays from target absent displays.  If the latter situation

holds, than we should expect the SNR to covary with ε in that both are

sensitive to how set size affects performance.  Recall, that in section II.C.3 I

argued that the SNR primarily reflects n-element confusability.  The matched

comparisons documented here offer perhaps the strongest piece of evidence

in support of that argument.  The MTS model reveals apparent differences

both in attentional limitation and in the SNR as a function of target

assignment, despite the fact that the search elements in these experiments do

not change, and hence neither does the single-element discriminability.  This
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constraint implies that the observed variation in parameters is not the result

of intrinsic differences in element discriminability.  A more plausible

interpretation is that together, S and V get pushed around in accounting for

MTS data so that they come to reflect the quality of information available for

categorizing the average multi-element display.

Though the explicit investigation of the role that target assignment

plays during MTS reported here has revealed statistically reliable

anisotropies, two important caveats are in order.  First, it is important to keep

in mind that these differences in attentional limitation are relatively small,

especially when placed in context with the larger variation in ε across the

experiment ensemble.  For both experiments examined here, changing target

assignment failed to produce the large qualitative change in processing of the

sort previously reported using singleton search designs (Takeuchi, 1997;

Treisman & Gormican, 1988).  Another problem with these results is that for

the expansion/contraction comparison, the MTS analysis provides evidence

of an asymmetry that is entirely juxtaposed to earlier claims (Takeuchi, 1997).

Finally, it is difficult to make a strong case for search asymmetries in the

absence of a within-observer design.  For both sets of experiments reported

here different observers were used in each experiment.   Though the MTS

method with an n of 8 or more typically leads to reliably indistinguishable

replications within experiment, it remains uncertain how much of the



162

difference across these manipulations of target identity are due to different

sets of observers.  Clearly, an important area of future work will consist of the

application of a repeated measures design in MTS to determine whether the

asymmetries at the level of the best-fit model parameters documented here

are reliably signaling veridical differences in search performance.
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II.C.8 Summary: attentional limitation and stimulus structure

Section C has primarily focused on comparing the 26 experiments in

the MTS ensemble in terms of their variation along the more theoretically

interesting parameter dimensions.  These comparisons have provided

important insights into the way that information quality, attentional

limitation, and decisional flexibility conspire to produce the complex pattern

of RTs and errors that emerges during MTS.  The ultimate goal guiding this

research has always been to first measure how attentional limitation varies

across a large number of important stimulus dimensions, and second, to

explain this variation at the level of the stimulus structure.  While this

dissertation represents a significant stride towards a careful measurement of

attentional limitations during search, I can only offer a tentative, first attempt

at explaining the structural etiology of these limitations.

In the adjacent figure I have provided a summary of the ensemble

variation in ε and σINT.  This summary relates the model-based measurements

of attentional limitation to intrinsic stimulus structure by grouping the

ensemble into broad categories of search.  This organization of the

experimental results provides evidence for three global regimes of attentional

limitation in search:
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1. A featural regime, characterized by relatively minor attentional

limitations (ε < .5).  This regime is populated by the class of so called

preattentive stimulus differences of the sort known to have early cortical

representations; for example, searches based on differences in spatial

frequency, orientation, color, etc.  Search in this regime generally leads to

a pattern of data consisting of mild set size effects on RT, low miss-rates,

and redundancy benefits in both pure and target absent responding.

2. A form regime, characterized by intermediate amounts of attentional

limitation (.5 < ε <.7). This regime contains searches based on simple

shape differences and discriminations of emergent form.  The pattern of

data for search in this regime consists of moderate set size effects on RT,

low miss-rates, and no redundancy benefits in the pure target trials

(occasionally there are small benefits associated with set size for the

target absent RTs).

3. A relative position regime, characterized by the highest levels of

attentional limitation (ε > .7, σINT > 0). This regime consists of those

experiments that require a configural analysis based on the relative

arrangement of features (e.g. mirror reversals, part-whole organization,

and direction of rotary flow). As such, these experiments are the most

demanding of attentional resources, often require nontrivial amounts of
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additive noise (i.e. σINT > 0), and generally manifest a pattern of data in

which high miss-rates coexist with large RT costs for all mixed, pure, and

target absent conditions.

Beyond these global distinctions, ε also appears to have sufficient

structure as a metric to support the local ordering of experiments within

regimes.  For example, in several cases I have found that increasing

target/distractor confusability leads to a consistent and reliable increase in ε

(the shape, translation, and orientation experiments).  Similarly, I find that small

changes to search stimuli that remove or attenuate differences in emergent
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structure (e.g. the sign of surface curvature, or implied orientation in depth)

lead to significant increases in attentional limitation as estimated by ε.

In contrast to the notion that attention is ordered along a continuum,

there is another analysis of the MTS results that arises by considering

variation in the internal noise parameter, σINT.  Recall, that the data from only

a small handful of experiments was simulated using an A-type model having

additive internal noise.  This general model of attentional limitation is distinct

from the D-type model that successfully simulated the large majority of MTS

search data.  In the random walk framework, the D-type model is equivalent

to a decision-limited model that has no perceptual limitations, while the A-type

model cannot be so reduced, and hence represents a framework that

incorporates true perceptual limitations arising from either 1) the injection of

additive noise, or 2) via a reduction in the probability of stimulus sampling

(see section II.A.2 for details).  This distinction in terms of decisional (D-type)

versus perceptual (A-type) limitation offers another way to categorize the MTS

ensemble:  experiments fit best by the D-type model can be explained without

invoking any limitations in perception, whereas experiments requiring an A-

type model cannot.

The picture then that emerges from this level of analysis, and one that

is consistent with previous results using threshold search (Palmer et. al, 1993;
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Verghese & Nakayama, 1994; Poder, 1999), is that most search tasks are not

perceptually limited; additional perceptual limitations are necessary only for

those tasks that require some form of configural analysis (see Pashler, 1998

for a similar account).  As compelling as this view is, there are good empirical

reasons to question a parsing of visual search data into two qualitative

categories (see sections II.C.2 and II.C.3).  Most notably, partitioning the

ensemble into decision-limited and perception-limited classes of search ignores

the reliable ordering of D-class experiments in terms of ε.  To assert that this

ordering simply reflects differences in criterial scaling begs the question of

why some experiments require much larger increases in criteria with set size

than other.  The interpretation I favor is that in the context of supra-threshold

stimulus differences, visual search tasks are in fact ordered along a

continuum of attentional limitation, with a special population of the most

highly limited searches having additional source(s) of internal noise.

Conclusions

In closing I would like to summarize some of the more general

implications that follow from my work with the multiple target search

method and model.

I. Simple search is always conducted in parallel.

The MTS methodology as laid out in this work concerns simple visual

search, that is search for supra-threshold targets in sparse, controlled displays
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that minimize the need for multiple fixations.  For the 26 experiments

contained in this dissertation, a model of search based on parallel, capacity-

limited processing was able to account for all the joint patterns of RT and

error.  Moreover, in no case could the data be adequately explained using a

serial model of search.  Though serial models can explain isolated aspects of

the search data, they are incapable of simultaneously accounting for joint

patterns of decreasing false alarms, increasing misses, and shallow target

absent RTs that mirror the pure target RTs.  The obvious implication of this

failure over such a broad and various ensemble is that there are effectively no

serial processes in visual search.  As such, this work can be added to a

growing body of research that has called into question the reality of seriality

in simple visual processing (Eckstein, 1998; Palmer, 1994; Pashler, 1987;

Wolfe, 1998a).  The consistent point that emerges in modelling these MTS

data is that variation in capacity limitation, in conjunction with a complex

decisional structure is sufficient to reproduce patterns of inefficient search

once touted as the best evidence for fast, sequential deployments of attention.

Of course, this implication applies only to simple visual searches of the sort

examined here, and surely does not hold for more complex types of search in

which sequences of multiple fixations impose seriality via a scan path.

II. Parallel search can be distinguished at 2 levels.
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The previous claim, that parallellism is universal in simple search, is

not new and has in fact been made previously by Pashler and others who

provided evidence that the processing of small “clumps” of elements (e.g. n <

4 –8) was accomplished in parallel, with serial processing emerging only

when search displays contained multiple clumps (Grossberg, Mingolla, &

Ross, 1994; Humphreys, Quinlan, & Riddoch, 1989; Pashler, 1987).  This is

exactly the distinction laid out previously between simple and complex visual

search.  However, my work extends Pashler’s by making it clear that though

all search is parallel at small set sizes, there are nonetheless, reliable and

important distinctions that remain.  The results reported here indicate that

even within a relatively limited range of set sizes, the MTS models can

distinguish search tasks in terms of two levels of limitation.

First, search tasks can be reliably ordered along a continuum of

attentional limitation in terms of the parameter ε.  Tasks low in this measure

tend to have large redundancy gains in pure target RTs, decreasing target

absent RTs, and generally shallow set size effects in RT and miss rate.  Tasks

high in this measure manifest little redundancy gains, and produce patterns

of RT historically associated with serial-like processing.  As I mentioned in the

previous sections, the ordinal structure contained in the ensemble estimates

of ε provides a global categorization of search tasks that is psychologically

meaningful.
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Second, the MTS models also provide a level of description that singles

out those tasks which are limited by additional sources of additive noise.  The

results derived from the current ensemble isolate a small handful of

experiments as being additionally limited in this way.  This special class

appears to be reserved for two specific types of search experiment: 1) those

that involve targets and distractors that differ in the relative position of parts,

and 2) those that involve the sensing of rotation sign.  In the use of MTS there

appears to be a general association between configurally-based search and

internal noise, such that when target elements can only be distinguished from

distractors via a configural analysis, the resultant data requires an internal

noise model (or equivalently some form of sampling limitation).

III. Attention operates multiplicatively on the evidence available to

decision.

Twenty of the 26 experiments in the MTS ensemble were best

simulated by a D-type model with no internal noise.  Recall, that the D-type

model instantiates attentional limitation by multiplicatively scaling the

perceptual evidence (i.e. the walk increments) based on a power-law relation

between set size and ε.  Scaling the increments in this way amounts to a

Weberian account of attentional limitation in that attention does not alter the

intrinsic discriminability of perceptual samples from targets and distractors
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(this is because multiplying a random deviate by some factor scales both the

mean and standard deviation identically).  Other manner of implementing

capacity limits in search were investigated extensively (see section II.A.2),

and in general these implementations could not reproduce the patterns of RT

and error typical of multiple target search, though they did prove successful

in a limited regime. The general success of Weberian scaling in the context of

random walk models of search has two interpretations.  The first is that

attention has its effects on RT and error as a form of resistance, that constrains

the flow of perceptual evidence to higher decisional processes.  In this

conception, attention acts late in the sense that it does not change the quality

of the perceptual information, but only scales the evidence available to the

decision maker.  In appendix I., I show that the type of random walk model

used here is formally equivalent to a SPRT model that sums stimulus

likelihoods (Laming, 1968).  Thus, the D-type way of implementing attention

is consistent with a multiplicative attenuation at the level of the incoming

sequence of likelihoods.

The second possible interpretation is that there is no attention in the D-

type model, and that the Weberian scaling is really the result of set size

dependent adjustments to decision criteria (see section II.A.1.f for a detailed

exposition of this point).  Multiplicative scaling of the random walk

increments is entirely consistent with a tightening of response criteria
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(criteria = Tnε).  If this interpretation is correct, it implies that the 20

experiments fit best by the D-type model are not limited by attention – all

response variation derives from decisional sources.  Though this way of

conceptualizing the D-type model brings the experimental results into line

with the previous work of Palmer and colleagues (Palmer et. al, 1993;

Palmer, 1994; Poder, 1998; Eckstein, Thomas, Palmer, & Shimozaki, 2000), it

does not explain the range and consistency of the ordering provided by ε.

There were 5 experiments in the MTS ensemble whose data were best

simulated by an A-type model.  This class of model augments the Weberian

scaling of the D-type model by including an additional source of invariant

noise.  Because only the samples of perceptual evidence, and not the noise

deviates get scaled by n-ε, this model does predict changes in single-element

discriminability with set size.  As such, the A-type model breaks the

symmetry that plagues the D-type model and accordingly its effects cannot be

mimicked by criterial variation.  It is intriguing that the A-type model, with its

irreducible source of attentional limitation, proved to be generally incapable

of accounting for the majority of the MTS data.

Now, if we focus just on the A-type model, it becomes increasingly

difficult to decide how attention limits search performance.  This is because,

in the context of a sequential-sampling model of the sort used here, the A-type
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model with its dual noise sources is nearly equivalent to a number of other

ways of instantiating attention (section II.A.2.b).  For example, the type of

limitation imposed by Weberian scaling plus noise can also arise from a

sampling scheme in which attention serves to modulate the probability of

integrating a perceptual sample (or likelihood) into the running accumulation

of evidence.  Moreover, when the sampling probability goes as the inverse set

size, the probability sampling model is nearly identical to the fixed sample size

model of Shaw and colleagues (Shaw, 1984).  Similarly, it is easy to show that

a sampling approach can be recast in terms of time-scaling, in which the

probability of integrating a sample is fixed, and now attention is conceived to

scale the time between samples (see section II.A.2.b for details).

Clearly, the data and models as described are inadequate to decide

among these various alternatives.  One potentially fruitful area for future

work centers around investigating model predictions at larger set sizes where

many of the near-equivalences between the various conceptualizations of

attention break down (i.e. for n >> 4).  Another possibility is to use the

Bayesian model of search described in section II.C.5 and appendix II.  The

different ways of implementing attention could each be incorporated within

the Bayesian framework to see which model generates predictions that square

with intuition.  For example, as attentional limitation grows, either via an

increase in ε, σINT, or λ, even an optimal decision maker will manifest set size
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effects that are meaningfully related to the parameters.  It remains to be seen

whether the equivalence between the A-type model and the sampling models

will hold in the context of the Bayesian decision framework.

IV. Observers are “optimal”-like in their integration of information.

The final major implication that emerges from this work is that in the

context of MTS, observers appear to be near-optimal in their decision making.

The most striking feature of search with multiple targets is that target absent

RTs are often found to decrease with set size, a pattern that is not predicted

by any basic model of search.  In the Bayesian context, this pattern arises

naturally as a direct consequence of an optimal decision maker integrating all

the available information in order to rationally arrive at target “present” and

target “absent” decisions (see II.C.5).  Observers in the MTS experiments also

seem to use partial evidence to guide their decisions.  The best evidence for

this is that the complex patterns of RT and error characteristic of MTS can

only be simulated by a model that allows response criteria to relax with set

size.  This optimal-like strategy is embodied in the MTS models via the

parameter C, and evidence for its psychological reality exists in so far as

every experiment in the ensemble required C to take on a value somewhere

between 2 and 3 (see Fig. 40, section II.C.4).  The specific interpretation of this

commonality is that observers effectively reduce their criteria by a factor of

about 2 in order to exploit the information available via the MTS design.
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Presumably, the fact that the MTS design includes both multiple targets and

multiple distractors leads observers to adopt a decision structure that

emphasizes the potential information available in the joint state of n walks.  In

contrast, the strategy embodied in C is surely nonoptimal for a singleton

search design that inherently emphasizes an “oddball” search strategy (see

Zenger & Fahle, 1997 for a treatment of optimality in singleton search).  In

MTS, the relaxation of criteria with set size has two important data

signatures.  First, there is the ubiquitous mirroring evident between the target

absent and pure target RTs – this symmetry is a direct result of the symmetry

in present and absent decisions afforded by the introduction of secondary

criteria (sec. II.A.1.e).  Second, there is an apparent magnification of set size

effects in MTS, such that single target RTs increase more sharply with n,

relative to the functions reported for comparable search tasks within a

singleton design (see Fig 43).

In general, it is the subtle tradeoffs between speed and accuracy that

have revealed the parameter C to be a necessary component in the successful

modelling of decision in multiple target search.  These tradeoffs are an

unavoidable part of any unconstrained search experiment, and if nothing

else, they highlight the importance of always conditionalizing patterns of RT

on the underlying error.  In the context of the work reported here, this



176

conditionalization was possible only via the structure provided by the

computational models.
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Appendix I.

Relation between a SPRT walk model and the standard Gaussian-increments model

For a Gaussian-increments random walk, let each xi be a random

deviate drawn from a Gaussian distribution N(S, V); define Wτ as the

cumulative sum of τ of these deviates.  For the class of SPRT models, the

random walk consists of a sequential sum of probability ratios defined on

these increments.  Specifically, we define Zτ to be the sum of the log of the

ratio of likelihoods that an increment xi was drawn from either the target or

distractor increment distribution.  Thus, the likelihood ratio for the ith step is

 (I.1)
  

ri = Pr (xi|target)
Pr (xi|distractor)

and

(I.2)
   Zτ = ln (ri)Σ

i = 1

τ

Let St, Vt, Sd, and Vd represent the first two moments of the target and

distractor evidence distributions respectively.  We can then re-express the

likelihoods as follows:

 (I.3a)
   

Pr(xi|target) = 1
2πVt

2
exp

– xi – St
2

2Vt
2
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 (I.3b)
   

Pr(xi|distractor) = 1
2πVd

2
exp

– xi – Sd
2

2Vd
2

Substituting equations I.3a and I.3b into I.1 and taking the natural logarithm

yields

 (I.4)

For the standard case in which the target and distractor distributions are

assumed to have means symmetric about the origin and equal variances, the

expression above simplifies further such that .  This simple

relationship reveals that a random walk based on the sum of increment log-

likelihood ratios differs from a random walk based on the raw increments

themselves only by the scale factor .

It is also easy to show that summing the log-likelihood ratios at each time

step in a random walk is equivalent to computing the log-likelihood ratio of

the current random walk state Wτ:

 (I.5) 

Because of this equivalence, the Gaussian-increments random walk can be

construed as a model in which decisions about element identity are made in

an optimal way using the likelihoods of the current accumulated evidence.

  ln (ri) = xi2S
V 2

  2S
V 2

    
Zτ = ln (ri)Σ

i = 1

τ

= ln Pr (Wτ|target)
Pr (Wτ|distractor)

  ln (ri) = (xi – Sd)
2

2Vd
2 – (xi – St)

2

2Vt
2
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Appendix II.  MTS using a Bayesian observer

Here I describe in detail a random walk model of multiple-target

search that is based on Bayesian estimation. This search model is optimal in

the following sense:  it knows the prior probabilities of the search stimuli, and

incorporates knowledge of the respective distributions of target and

distractor evidence at time zero, and the statistics relating how a general

random walk evolves in time.  With this knowledge the model makes target

present or absent decisions based on the likelihood of the current state vector

of the n random walks.

To begin, consider performance in a general classification task in

which there are two response alternatives, c1 and c2 and an observer must

correctly choose among them given a particular amount of perceptual

evidence S.  In the case of stimulus noise or substantially overlapping

categories errors are unavoidable and the optimal classifier will choose

among the two alternatives using the following decision rule

(II.1)

In the case of MTS we formulate the available stimulus information in

terms of independent random walks that diffuse in time.  Thus, we can

replace S with the n–dimensional random variable Z (for simplicity, the

following derivations will all be for n=2, but are easily extended to larger set

   if Pr (c1|S) > Pr (c2|S) then choose c1, else choose c2
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sizes).  The random variable Z represents the vector of current accumulated

evidence about the identity of each element in a search display, and thus is

comprised of the joint state of two random-walks at time τ (I drop tau in the

remainder of this derivation for simplicity).

(II.2)
    Let Z = z1,z2 , zk = xi,kΣ

i = 1

τ

, such that xi,k ∈ N( ± S,V)

where N(S,V) represents the appropriate Gaussian distribution of walk

increments, and the sign of S depends on the actual identity of the kth element

in the display (recall that the mean of the distribution of target and distractor

increments is +S and –S respectively).  Given the two possible outcomes in

MTS, target-present (Tp) or target–absent (Ta), then the decision rule in

equation 1 becomes

(II.3)

This equation can be equivalently re-expressed such that decisions are based

on whether the ratio of the two posterior probabilities exceeds some criterion

(when there is no bias and the priors are equal this criterion will be 1).

(II.4)
   Pr Tp|Z

Pr Ta|Z
> 1

   if Pr Tp|Z > Pr Ta|Z respond "target present"
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Using Bayes formula we can formulate the posterior probabilities in

terms of the likelihoods and the priors,

(II.5)

Because the prior probability of the evidence vector Z is common to both

posteriors, the optimal decision rule given by equation II.4 can be re-

expressed as

(II.6) respond target “present” if

In words, equation II.6 says that the optimal decision strategy is to respond

target “present” whenever the likelihood of the vector of walk-positions

given Tp is greater than the likelihood of the vector given Ta.

For set size n = 2, the probability of the vector given a target-present

display must include the combined probability of the vector for all stimulus

configurations in which one or two targets is present, i.e. the set {td, dt, and

tt}, where td represents a configuration in which display elements 1 and 2 are

a target and distractor respectively, etc.  Thus, the combined probability of Z,

given a target-present stimulus, is the sum of the individual probabilities of

    Pr Z|Tp

Pr Z|Ta
> 1

    
Pr Tp|Z =

Pr Z|Tp Pr Tp

Pr Z
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the vector given each stimulus configuration, weighted by the probabilities of

each stimulus configuration:

(II.7)

Incorporating the actual priors, and the assumption that the current

information about each element is represented by an independent random

walk, equation II.7 is equal to

(II.8)

where z1 and z2 represent the accumulated evidence about each element’s

identity as per equation II.2.

Given a fixed moment in time τ, the distribution of possible walk-

positions for a single element without absorbing barriers follows a Gaussian

density and is distributed as N(Sτ,Vτ 1/2) for a target element, and

N(-Sτ,Vτ 1/2) for a distractor element.  Thus, we can explicitly write down the

probabilities in equation II.8

(II.9.a)

    Pr Z|Tpn = 2 =

Pr Z|t1d2 Pr t1d2 + Pr Z|d1t2 Pr Z|d1t2 + Pr Z|t1t2 Pr t1t2

  Pr z1|t Pr z2|d 1
8 + Pr z1|d Pr z2|t 1

8 + Pr z1|t Pr z2|t 1
4

   
Pr z1|t Pr z2|d = 1

2πτV2e
– (z1 – Sτ)2

– (z2 + Sτ)2

2τV 2
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(II.9.b)

(II.9.c)

In similar fashion we can also explicitly write down the probability of Z given

Ta for n=2

(II.9d)

To calculate optimal performance for distinguishing target-present

displays from target-absent displays we define L to be the natural log of

equation II.6 and integrate equation II.8 over the region of two-dimensional

walk-positions for which L is greater than 0.  In practice this space is

discretized and the optimal percent correct at a given time τ is based on

summing over that region.  Once we have the optimal criterion (i.e. L=0), we

can then calculate the optimal percent corrects for each specific stimulus

configuration. For example, below we express the optimal percent correct for

both a 2-target display (eq. II.10.a), and a 1 target/1distractor display (eq.

II.10.b):

   
Pr z1|d Pr z2|t = 1

2πτV2e
– (z1 + Sτ)2

– (z2 – Sτ)2

2τV 2

   
Pr z1|t Pr z2|t = 1

2πτV2e
– (z1– Sτ)2

– (z2 – Sτ)2

2τV 2

     
Pr Z|Tan = 2 = Pr z1|d Pr z2|d = 1

2πτV 2e
– (z1 + Sτ)2

– (z2 + Sτ)2

2τV 2
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(II.10.a)

(II.10.b)

Equations of this sort express the optimal percent correct at a fixed

moment in time.  Alternatively, we can ask at what time do different stimulus

configurations reach a common level of accuracy.  To do this I first calculate

PCopt for a range of τ’s, and then invert the relationship to find that τ that

yields the desired level of accuracy.

1
4πτv2 e

– (z1 – sτ)2
– (z2 + sτ)2

2τv2 e
– (z1 + sτ) 2

– (z2 – sτ)2

2τv2+ [[ dz2dz1
PCopt( τ,1target/1distractor) =

L > 0

PCopt( τ,tt) = 1
2πτv2 e

– (z1– sτ)2
– (z2 – sτ)2

2τv2 dz2dz1

L > 0
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Appendix III.  Sampling models

In this appendix I show that a probability-sampling model of attention

is equivalent to a model that scales the increment parameters S and V

independently.  Despite a formal equivalence, these two models are quite

different conceptually.  The increment-scaling model is an extension of the

basic D-type model of attention in which attention scales both the size (S) and

variability (V) of the evidence samples that feed the random walks.  The

scaling of both increment parameters in the D-type model is implemented

identically as a function of set size and attention (both parameters are

multiplicatively scaled by the factor n-ε).  The increment-scaling model

detailed here extends the D-type model by letting S scale as n-ε, and V as n-ε/2.

Thus, V gets scaled with set size by cutting ε in half (given the power law

relation, this is identical to scaling V by the square-root of the scale factor that

is used to scale S).  In contrast, consider the probability-sampling model that

is introduced in section II.A.2.b.  This model conceives of attention as

modulating the probability that a sample is received and integrated into

decision, but does not alter S or V with set size.  Instead, it is now the

probability of receiving a sample of evidence that is jointly determined by

attention and set size (p = n-λ, where λ is an attention parameter on the

interval [0,1]).
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The equivalence of these two distinct conceptualizations of attention

can be seen in the context of each model’s predictions regarding the

distribution of random walk positions at an arbitrary time k.  The comparison

predictions are derived below for n > 1, and for simplicity both the attentional

parameters ε and λ will be set to 1, though the equivalences hold throughout.

I point out here that for λ = 1, the probability-sampling model reduces to the

fixed sample size model which has figured predominantly in attempts to decide

the nature of limitation for visual search at threshold (e.g. Shaw, 1984; Palmer

et. al, 1993).  The fixed sample size model assumes that a finite number of

perceptual samples gets divided equally among the n stimuli that comprise a

search display, such that the number of samples available per element goes as

1/n.  This also describes the proportion of samples available to each random

walk under probability sampling with a λ of 1.  Thus, any equivalence

between the increment-scaling and probability sampling models of attention

implies a similar equivalence with the class of fixed sample size models.

Increment-scaling

I begin by defining wk  to be a random variable representing the total

evidence accumulated in a random walk with k increments.  For the

increment scaling model, the random walks will always accumulate k

samples in k time steps.  This is because sampling is perfect and only the size

and variability of the samples is affected by attention and set size.  Note that
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for k > 10 or so, the distribution of wk without absorbing barriers is

approximately Gaussian (i.e. N(µ,σ)):

(III.1)
  wk = N kS, kV

For the increment-scaling model the predicted distribution of walk positions

as a function of n and ε can similarly be represented by the variable wn,k,ε:

 (III.2a)
   wn,k,ε = N kSn – ε, kVn – ε/2

such that for ε = 1
(III.2b)

  wn,k,1 = N kS
n , V k

n

Probability-sampling

In the context of a probability-sampling model, I define a new random

variable yk to represent accumulated evidence as a function of time step.  In

the context of this model there are k time steps, but only some proportion of

these provide a sample for accumulation.  This proportion, denoted p, is a

function of attention and set size:

(III.3)

   p = n – λ
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Thus, on average there will be kp samples available in k time steps.

Accordingly, I define the random variable k* to be the actual number of

samples accumulated in any single random walk given k time steps and a

sampling probability of p.  The variable k* is binomially distributed:

(III.4)

  k* = B(k,p)

where the quantity B(k,p) represents a random deviate from a binomial

distribution with parameters k and p.  For the probability sampling model the

predicted distribution of the yk’s as a function of p are

 (III.5)

  yn,k*,p = N Sk*, V k*

Combining the two previous equations gives an expression for the

distribution of walk positions at time step k:

 (III.6)

   yn,k,p=N S⋅B(k,p), V⋅ B(k,p)

This equation  reveals that the probability-sampling model expresses the

position of a random walk after k time steps as a Gaussian random variable

whose parameters are scaled by a binomial random variable representing the

actual number of samples k*.  Thus, the probability-sampling model has a

source of variability that the increment scaling model does not.  Despite this
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addition, the probability sampling model can be equivalently expressed as

increment scaling with perfect sampling.  A brief proof of this equivalence is

given in the next section for the case when there are no absorbing barriers (i.e.

T = ∞).  For now, I simply assert the fact that the distribution of walk

positions for k time steps under probability-sampling (eq. III.6) can be

simplified as follows:

(III.7)

  yn,k,p= N kpS, V kp

Substituting for p this becomes

(III.8)

   yn,k,λ= N kSn– λ, V kn– λ

And setting λ = 1

(III.9)

  yn,k,1 = N kS
n , V k

n

which is equivalent to equation III.2b for the increment-scaling model with ε

= 1.  Thus, both the increment-scaling and probability-sampling models

predict identical effects on the distribution  of random walk positions in k

time steps (i.e. wn,k,ε = yn,k,λ | ε = λ).
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. . .. . .
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k
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Distributions of random walk
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Each of these distributions
contributes to a weighted
sumthat gives the total
variability in walk position
expected at time k.

j

Figure 49

Proof of the equality of equations III.6 and III.7

Here I show that variability on the number of samples makes no

difference in the distribution of walk positions – the random variable k* can

thus be completely replaced by the exact quantity, kp.  For reference, the

adjacent figure shows the relationship between the important quantities

comprising this proof.

The probability of j samples in k time steps is denoted φ(j,k).  This

probability derives from the expression for the discrete binomial density

function:
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(III.10)

   φ(j ,k) = j
k p j (1 – p)k – j

I now define the variability in walk positions associated with j samples in k

time steps as σj = Vj1/2.  This is the variability in walk position at time k for

the subset of random walks having exactly j samples in their sums.  Similarly,

I define the quantity σk to be the combined variability across all the random

walk positions at k time steps.  This is effectively the width of the envelope of

random walks given variation in j and it is obtained by taking a weighted

sum of the σjs over j:

(III.11)

   σk
2 = V 2j φ(j , k)Σ

j = 1

∞

[Note that this equation is expressed as a sum and not an integral because the

number of samples is always integer-valued].  By factoring out V2, the

remaining sum is simply equal to the expectation of j:

 (III.12)

   E(j ) = j ⋅ φ(j , k)Σ
j = 1

∞

= kp
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and by combining this result with eq. III.11 and taking the square root it then

follows that

   σ k = V kp

In words, I have shown that the variability in walk position at k time steps is

determined by a weighted sum of the variabilities associated with each j.

Because φ(kp-1,k) equals φ(kp+1,k), the variability gets averaged over, as if

all the walks had exactly kp samples.  Thus, the binomial variability in the

actual number of samples (eq. III.6) can be replaced by an exact quantity

given by the expected number of samples in k steps (kp).  This substitution

yields equation III.7 and completes the proof.  The equivalence was also

verified via an explicit simulation of the increment-scaling and probability-

sampling models (n = 1e7).

Walks with absorbing barriers

It is important to reiterate that the equivalence of the increment-scaling

and probability-sampling models holds exactly only when the random walks

are unconstrained, without absorbing barriers.  This case is appropriate for

modelling threshold search performance in which displays are necessarily brief

and accuracy is the sole dependent variable of interest (e.g. Palmer et. al,

1993).  The unconstrained random walk is also relevant in the simulations of

the Bayesian model which provides accuracy by time-step functions reflective

of optimal response selection (see Appendix II).
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Unfortunately, the equivalence I have just shown is broken when

absorbing barriers are introduced.  Recall, that the random walk between two

absorbing barriers forms the primary architecture for generating both

accuracy and RT functions in the MTS models I use to explain my data.  To

see why the equivalence breaks down when absorbing barriers are

introduced into the architecture, consider that in this case the distribution of

random walk positions after k time steps is no longer Gaussian.  Instead we

have a distribution of random walk positions with the previously absorbed

walks removed (i.e. walks that first reached the barrier for times < k).  There

are expressions for the distribution of non-terminated walks (Ratcliff, 1988),

and in general it becomes highly non-Gaussian with time because the

processes yet to “finish” cluster near the barrier.  The non-Gaussian nature of

this distribution has the consequence that equation III.6 can no longer be

replaced by the simpler expression in equation III.7.  This is because the

average variability in walk position at time k (see equation III.11) is now

biased to be slightly lower.  This decrease in the width of the distribution of

walk positions is a direct result of the fact that those random walks

containing an above-average number of samples (and hence higher variability

in accumulated position) are more likely to have terminated, and accordingly

are no longer part of the average at time k.  This small decrease in the

variance of the distribution of walk positions under probability-sampling

predicts that 1) the times-to-absorption will be slightly longer, and 2) the
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Figure 50

error rates will be slightly lower.  As will be shown below, this is in fact what

happens and it implies that probability-sampling is no longer exactly the

same as increment scaling.

The good news is that even though the distribution of walk positions

becomes non-Gaussian with the addition of absorbing barriers, the two

models are near-equivalent, such that their predicted RTs and error rates are

virtually indistinguishable.  The only way to show this is via explicit

simulation with matched parameters which I have done.  In the adjacent



195

figure I show the distributions of time-to-absorption (RT) for the increment-

scaling (blue) and probability-sampling (red) models.  These results are based

on simulating each model of attention to generate predicted RTs (number of

trials = 250,000) for the set size=2 condition (attentional limitation is maximal

and equal to 1 for both models).  The resultant curves are estimates of the

density functions and are typical of random walk models in that they are

positively skewed by virtue of the geometry of the diffusion process.  More

importantly, the two functions are seen to lie almost completely on top of

each other implying that the models are virtually identical at the level of RT.

The major difference between the models is most evident near the mode of

each density function, such that the increment-scaling model is slightly more

likely to produce fast RTs relative to probability-sampling.  Direct

comparison of the primary moments and median-statistics [median, median-

absolute-deviation (MAD)] from each distribution of simulated RT reveals a

consistent, but small 2-3 millisecond advantage for increment-scaling (scaling

model: µ=138.03, σ=100.22, median=110, MAD=50; sampling model: µ=141.60,

σ=102.84, median=113, MAD=52).  A small speed-accuracy tradeoff was also

observed such that the faster increment-scaling model had a slightly higher

error-rate (p(e)=.059), relative to the probability-sampling model (p(e)=.057).

The direction of these differences in speed and accuracy is consistent with the

intuition that the probability-sampling model generates a distribution of non-

terminated walks at time k whose mean and variability are slightly lower.
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I have compared the performance of each model via simulation across

the relevant range of parameters and nowhere do I find discrepancies larger

than those reported for these simulations.  In fact, as attentional limitation is

decreased from its maximum, the increment-scaling and probability-

sampling models converge.  This is because decreasing limitation means a

higher sampling probability, which in turn implies a reduction in the

additional source of binomial variability associated with random sampling.  It

is precisely the magnitude of variability in the number of samples at time k

that generates the model differences seen in the previous figure.

In section II.B.3 I show that the probability-sampling model accounts

equally well for patterns of data fit best by an A-type model with internal

noise.  Because of the near equivalence between sampling and scaling models,

I chose to generate the predicted RTs and error rates used in that analysis by

simulating an increment-scaling model.  I used increment-scaling for the

simulations instead of a sampling process because 1) it was relatively easier to

implement in the context of the existing models, and 2) was computationally

cheaper.  As this appendix hopefully makes clear, it matters little as to which

of these two models is implemented.
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Appendix  IV  Ensemble data and model fits
[solid points are data, lines are model fits]
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 Appendix IV. continued
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Appendix IV. continued
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Experiment S V D C ε MR Z σINT
RT
r

Err
r

spatial frequency
(t=2cpd)

.293
±.004

1.47
±.026

1.09
±.036

2.10
±.040

.270
±.016

365
±1.6

3.2
±1.0

0 .925 .863

spatial frequency
(t=4cpd)

.277
±.010

1.63
±.053

1.58
±.095

2.52
±.129

.369
±.037

368
±4.2

4.5
±1.8

0 .891 .907

orientation (∆θ=45˚) .290
±.004

1.43
±.033

1.34
±.052

2.35
±.061

.271
±.016

356
± 1.8

7.1
±1.7

0 .944 ~0

orientation (∆θ=15˚) .256
±.014

1.49
±.052

1.76
±.118

2.71
±.136

.504
±.039

429
±.7.9

39.5
±.7.2

0 .933 .398

color .268
±.01

1.64
±.042

1.53
±.081

2.40
±.078

.424
±.024

309
± 4.0

18.7
± 3.2

0 .973 .939

3D cubes .281
±.009

1.65
±.04

1.78
±.095

3.04
±.094

.647
±.039

372
±2.9

11.1
± 3.0

0 .971 .952

closure .289
±.008

1.64
±.040

1.46
±.052

2.72
±.137

.568
±.029

357
±3.2

14.7
±3.6

0 .953 .985

random shape
(high t/d∆)

.289
±.007

1.56
±.048

1.68
±.094

2.99
±.093

.614
±.026

334
±2.9

17.4
±3.8

0 .972 .869

random shape (low t/d∆) .298
±.002

1.75
±.031

1.40
±.078

2.44
±.085

.657
±.021

384
±2.7

36.7
±4.1

0 .962 .918

letter static .293
±.004

1.60
±.034

1.40
±.051

3.20
±.086

.603
±.021

323
± 1.2

11.1
± 1.9

0 .979 .981

letter dynamic .256
±.012

1.64
±.049

1.45
±.049

2.70
±.075

.501
±.024

463
± 3.3

21.4
± 2.6

0 .972 .944

implied lighting
(up/down)

.252
±.013

1.67
±.059

1.34
±.068

2.67
±.097

.568
±.035

368
± 4.5

6.0
 ± 1.8

0 .955 .964

translation I .173
±.016

1.29
±.066

1.38
±.070

2.77
±.150

.437
±.039

482
±8.2

10.1
±3.5

0 .859 .866

translation II (16 frames) .237
±.017

1.33
±.075

1.38
±.100

2.42
±.097

.370
±.031

364
±6.6

44.8
±4.8

0 .924 .622

translation II (3 frames) .244
±.012

1.84
±.058

1.84
±.083

2.43
±.097

.436
±.027

376
±3.5

44.1
±6.2

0 .955 .881

expansion/contraction .269
±.012

1.35
±.058

1.45
±.115

2.71
±.119

.372
±.028

487
±4.4

22.9
± 4.2

0 .911 .927

rotation 2D (textures) .149
±.007

1.07
±.041

1.36
±.054

2.92
±.088

.862
±.019

462
±5.3

78
±7.5

.5 .950 .912

rotation 2D (pinwheels) .156
±.010

.99
±.044

1.19
±.057

2.16
±.062

.868
±.014

420
±6.6

35.5
±5.7

.5 .921 .938

rotation 3D (coins) .194
±.007

1.16
±.065

1.42
±.084

2.69
±.084

.818
±.034

655
±5.8

20.8
±5.9

.5 .840 .971

triangle in rotated
diamonds

.288
±.004

1.69
±.043

1.31
±.061

2.22
±.066

.587
±.036

375
±3.5

29.0
±4.3

0 .930 .617

triangle in random
polygons

.277
±.006

1.53
±.046

1.03
±.021

2.08
±.060

.582
±.032

364
±3.5

12.0
±2.7

0 .924 .846

Conjunction
(color-by-orientation)

.184
±.013

1.33
±.05

1.10
±.025

2.11
±.041

.528
±.032

337
± 6.9

20.4
± 3.9

.25 .962 .962

missing side .270
±.007

1.76
±.027

1.68
±.066

2.90
±.075

.823
±.017

323
±2.1

21.8
± 3.7

0 .962 .972

implied
lighting(left/right)

.230
±.014

1.21
±.057

1.08
±.029

2.07
±.043

.837
± .02

451
± 6.4

38.6
± 5.1

.5 .899 .951

broken cube .254
±.03

1.51
±.053

1.77
±.085

3.53
±.09

.721
±.03

351
±6.2

12.2
± 4.1

0 .959 .942

circle-plus .118
±.007

1.09
±.038

1.30
±.039

2.50
±.113

.723
±.032

366
± 8.0

43.6
± 5.2

.25 .967 .945

Appendix V.  Parameters used to account for the MTS ensemble
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