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Human performance in the domain of signal detection is analyzed with respect
to the formation of streaks. Streakiness was found to be a general property of
auditory and visual discrimination in the sense that correct and incorrect re-
sponses have a positive sequential dependency. Success tends to follow success
and failure tends to follow failure. Level of streakiness was discovered to be a
function of the attentional demand required by the discrimination. Discrimina-
tions that make the least demand on attentional resources produce the highest
level of streakiness. Monte-Carlo simulations of the observed data sequences
suggest that streaky performance is a residue of wave-like variations in perceptual
and attentional resources. © 1995 Academic Press, Inc.

There are potentially two levels of information that are present in a
response to a stimulus. At a nominal level, there is the identity of the
response; what the response was. In some domains of judgment the re-
sponse may be evaluated as an assertion about a matter of fact, and if so,
it may or may not be correct. Different traditions within psychology have
focused on one or the other level of information. In magnitude estimation
and category judgment, for example, the response per se is the only
datum as the immanent experience of a stimulus can be neither right nor
wrong. In signal detection methodologies, however, there is a concept of
error, and both levels of information are required to develop the theory of
receiver sensitivity. In correspondence with the two levels of information
that are present in a response, there are two kinds of biases that inform
the interpretation of data: response bias in the sense of identity and re-
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sponse bias in the sense of correctness. In signal detection both types of
response bias are potentially present.

Response bias generally refers to the identity of a response and typi-
cally appears in two forms, as unequal representation and as nonstation-
arity. For example, unequal representation in a yes/no methodology may
appear as a tendency for the subject to say ‘‘yes’’ rather than “‘no.’” This
form of response bias is well understood and is handled by the theory of
receiver operator characteristics (ROC) which disentangles response rep-
resentation from response correctness. Nonstationarity in response iden-
tity, however, is not handled by any general theory and can create prob-
lems of interpretation in situations where there is no external criterion of
correctness. It usually manifests itself as a positive sequential depen-
dency known as response assimilation. In this regard, several studies
have demonstrated that a categorized ‘‘yes’’ or “‘no’’ response to the
presence of dim test light depended on the history of previous responses
(Verplanck, Collier, & Cotton, 1952; Verplanck, Cotton, & Collier, 1953;
Verplanck & Blough, 1958) such that if a subject has just responded
“‘yes,”” they are biased to respond ‘‘yes’’ again. Consequently runs of
“‘yeses’’ and ‘‘noes’’ were longer than expected under the null hypothesis
of response independence. Similar assimilation effects have also been
found in magnitude estimation (Luce, Nosofsky, Green, & Smith, 1982;
Staddon, King, & Lockhead, 1980); i.e., if a subject has just said ‘‘very
loud,” they are biased to say something similar to “‘very loud’’ on the
subsequent trial. Early work on the nonindependence of successive
threshold measurements (Wertheimer, 1953) was later shown to be ac-
counted for by runs of like responses (Howarth & Bulmer, 1956), consis-
tent with the general result that responses are assimilatively biased. It
should be noted that negative sequential dependency in response has also
been reported. Fernberger (1920) found a contrast effect in perceived
weight. Near threshold, subjects are biased to judge a comparison weight
as heavier than a standard weight if the weight on the previous trial was
judged to be lighter and vice versa.

In the context of signal detection, we can also inquire into the existence
of response bias in the sense of outcome, whether there is nonstationarity
in correct and incorrect responses across trials. This type of bias has not
been well studied and is generally presumed not to occur. Trial indepen-
dence in correctness of response is in fact assumed by ROC theory (Fal-
magne, 1985) which is designed to give a bias-free estimate of discrimi-
nability. This type of nonstationarity, were it to occur, would indicate that
receiver sensitivity is not constant in time and would necessitate a revi-
sion in the way threshold measurement is conceived. In other contexts,
especially in sports, there is a related type of nonstationarity that is re-
ferred to as streakiness. Streakiness is characterized by extreme nonsta-
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tionarity in hit rate and is widely perceived to be a real aspect of skilled
performance. In this article we investigate the nature of streakiness in
signal detection.

Atkinson (1963), in an isolated effort, developed a semi-analytic theory
of signal detection based upon the notion that momentary sensitivity to
threshold stimuli is dynamic and conditionalized upon both the stimuli
received on earlier trials and the responses made to them. While the
theory is difficult to evaluate, primarily because the formality of its axi-
omatic structure is compromised by a surfeit of free parameters, Atkinson
does report the results from a tone detection study in which streaks in
outcome were distinguished from streaks in response identity. As will be
discussed in greater detail below, Atkinson found that there was positive
sequential dependency in both response identity and response correct-
ness, although the dependency in correctness was rather small in ampli-
tude. In this article we continue Atkinson’s work by generalizing the
discrimination tasks, by clarifying the circumstances that promote streak-
iness, and by developing a different theoretical focus that is based on
attention.

Our experiments differ from typical signal detection experiments in that
we are not interested in threshold measurement per se but rather in the
fluctuations that occur at a single point on the psychometric curve relating
hit rate to stimulus contrast. The data from these experiments are se-
guences of binary numbers that reflect the production of correct and
incorrect responses (hits and misses) as a discrimination task is iterated at
fixed stimulus parameters. These sequences provide an opportunity to
examine receiver nonstationarity in a context that is free from the addi-
tional complexity associated with stimulus uncertainty and variation in
task difficulty. The primary statistical problem is to discern whether out-
come sequences are consistent with the output of a Bernoulli process.
That is, determining whether the instantaneous hit rate is stationary such
that the outcome of a given trial is independent of outcomes on previous
trials.

Gilovich, Vallone, and Tversky (1985) describe a number of statistical
tests that can be used in assessing departures from a Bernoulli process.
We shall employ several of these in our analyses in order to test the null
hypothesis that outcome sequences derive from a Bernoulli process.
However, it must be recognized that tests of this null do not provide
explanations of why sequences might exhibit trial dependency, and there
are several ways in which successive outcomes could become correlated.
A first-order Markov process, for example, will induce local trial depen-
dence by virtue of making the probability of a hit on a given trial contin-
gent upon performance on the previous trial. In this case the marginal
probability would be stationary, but individual trial probabilities would
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fluctuate. The hit rate might also vary secularly as would be the case if
fatigue or learning effects influenced performance. Secular trends in hit
rate might also be a signature of the existence of underlying mechanisms
controlling attention and perception that fluctuate over time. In these
latter cases, the outcome of a given trial might depend upon its position
within the trial sequence rather than explicitly on the outcomes of earlier
trials. Discovering the source of nonstationarity in observed sequences is
a much subtler endeavor than demonstrating the existence of nonstation-
arity. In this article we shall attempt to develop explanatory constructs
for the etiology of streaky performance, and we present a theoretical
analysis based upon Monte-Carlo simulation that provides some insight
into the mechanisms of streak production.

PRELIMINARY STUDIES

The basic designs in signal detection (two-alternative forced choice,
two-interval forced choice, yes/no) all explicitly incorporate the notion of
correctness of response. It is this feature that allows any signal detection
task to be a candidate for assessing streakiness in outcome. Outside of
this observation, there was initially no theoretical motivation or obvious
reason to study any particular discrimination task with respect to the
formation of streaks. The tasks that form the preliminary set of studies
were chosen not on the basis of a prior theory, but only because they
required different kinds of judgments. We repeat the Atkinson (1963)
experiment for detection of a tone embedded within noise. Also included
are judgments of shape defined by motion (structure-from-motion also
known as kinetic depth), judgments of relative line length, and detection
of a brief flash.

Subjects

Four subjects participated in each of the vision studies. Nine subjects participated in the
audition study. Subjects were recruited through advertisement and were paid $5 per session.

Stimuli

All visual stimuli were displayed on a 13" Apple Maciatosh color monitor. Viewing con-
ditions in all experiments were mesopic. In all of these experiments the correct choices were
randomized and counterbalanced.

Flash detection. Two uniformly illuminated squares subtending 4 degrees were placed
horizontally 1 degree apart. The luminance of the squares was a gray near the midpoint of
the gray scale. The squares were shown on a uniform black field. On each trial, one square
would brighten for 16 ms. The subject’s task was to indicate which of the two squares
brightened. The level of brightening was adjusted individually for each subject to achieve hit
rates near 60, 75, and 90%. Stimuli were presented in blocks of 500 trials without feedback.

Ovateness detection. Shapes were depicted as random dot kinetic depth forms. The forms
were composed by placing 1000 dots over the bounding surface. The forms subtended 4
degrees and oscillated back and forth through 40 degrees in smooth motion for 2 s. On each
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trial either a sphere or a slightly prolate ellipsoid was shown. The subject’s task was to
indicate whether a sphere or prolate ellipsoid was displayed. The deviation from sphericity
was adjusted individually for each subject to achieve hit rates near 60, 75, and 90%. Stimuli
were presented in blocks of 200 trials with feedback.

Distance ratio detection. The stimuli consisted of two sets of three vertical tick marks.
The set on the left was defined as a reference and the distance between the outer tick marks
was always the same. The middle tick mark varied in its horizontal position and divided the
space into two regions of size r, and r,. The set of tick marks on the right was defined as a
test set. In this set, there were seven different distances between the outer tick marks, none
of which equaled the distance in the reference set. The middle tick mark in the test set
divided the space into regions of size 7, and t,. The subjects task was to indicate whether
rfry > ty/t, or rlry < t,/t,. The ratio r,/r, varied randomly on each trial. The hit rate was
controlled by the placement of the middle tick mark in the test set. The absolute values of
1,/1, were adjusted for each subject individually to achieve hit rates near 60, 75, and 90%.
Stimuli were presented in blocks of 210 trials without feedback.

Tone detection. Sinusoidal signals were generated digitally and were produced ata 20 kHz
sampling rate. The masker was a continuous 8 kHz low pass filtered noise that was present
throughout all of the trials. The noise level was 75 dB SPL. Signals had a rise and decay time
of 10 ms and a total duration of 300 ms. The frequency of the amplified tone that was to be
detected was 1000 Hz. The tone detection task was designed as a two-interval forced
detection task. In one interval, the masker alone was presented, while in the other the
masker was accompanied by the target 1000 Hz tone. The two intervals were separated by
500 ms. Lights were used to define the observation intervals and to provide correct-answer
feedback. A 300 ms warning light and a 300 ms delay preceded each trial. The subject’s task
was to indicate which of the two intervals contained the tone. The amplitude of the tone was
adjusted for each subject individuaily to achieve hit rates near 60, 79, and 87%. Stimuli were
presented in blocks of 300 trials.

Procedure

In the vision studies (flash, distance ratio, and ovateness detection), each subject partic-
ipated in three blocks of trials at each level of difficulty for a total of nine blocks. In the
audition study, each subject participated in one block of trials at each difficulty level. At the
beginning of each trial block, the subject was calibrated in order to determine what stimulus
parameters were required to achieve the desired hit rate. In the vision studies calibration
was accomplished by the method of constant stimuli. In the audition study calibration was
determined by an interleaved staircase. The 60, 79, and 87% percentage correct points were
estimated using the appropriate up—down rules. In the flash detection experiment, subjects
were dark adapted for 10 min before calibration took place. Trials were self-paced in all
experiments except for ovateness detection. The presentation program for displaying kinetic
depth required 7 s to compute the individual animation sequences.

Analysis

The data from this experiment consist of sequences of zeros (misses) and ones (hits).
There are a number of statistical measures that may be defined on such binary sequences
that measure deviation from the output of a Bernoulli process. Gilovich et al. (1985) used
conditional probabilities, run counts, and serial correlations to characterize the basketball
sequences in their studies. These measures are all related to some extent. For a given hit
rate, sequences with fewer runs than expected under the null hypothesis of a Bernoulli
process must have more internal repetition than expected and consequently a positive serial
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correlation. In addition, for such sequences p(/|h) > p(h)—the probability of a hit following
a hit is greater than the probability of a hit.

Unlike the serial correlation between successive trials, denoted here as r,,, and the
contingent probability difference, Ap = p(hlh) — p(h), the number of expected runs is
influenced by the hit rate. In order to develop a useful statistic from run counts it is
necessary to refer each sequence to the ensemble formed from all of its permutations. The
sampling distribution of run counts is approximately normal with mean 2Np(1 — p) + 1,
where N is the number of trials and p is the probability of a hit. Deviations from normality
are sufficiently large for p # .5 that we use the exact hypergeometric distribution (Hays,
1988) to compute the probability of observing R or fewer runs for given numbers of hits and
misses. R here refers to the number of runs that were actually observed in the sequence
under consideration. It is convenient to convert this probability to a z score by inverting the
cumulative Gaussian distribution—a quantity that will be referred to throughout as the runs
z score. The runs z score is a measure of outcome clustering that is not biased by either
sequence length or hit rate.

Although r,,, Ap, and the runs z score are related measures of sequence structure, they are
not identical. It is the case that the Fisher Z associated with r, and the runs z score are
virtually identical, they cannot be distinguished to three significant digits. Ap, however, is
not a function of the runs z score. Simple regressions of these two variables captures only
about 50% of the variance for the sequences discussed in this article. The reason for this is
that the first order transition probability p(h|k) is not as sensitive to global structure as the
serial correlation or run count. It is necessary to look at the first, second, and third order
transition probabilities to begin to adequately characterize a sequence. Often it is the case
that sequences that are easily discriminated in terms of runs z score are distinguished by
subtle differences in the relative amplitudes of the higher order transition probabilities.
Transition probabilities are more useful as measures of local sequence structure, and for this
reason we shall use the runs z score to characterize the departure from a Bernoulli process.

The statistical tests that will be presented in this article are of two kinds, depending on the
type of null hypothesis that is being considered. In every experiment reported here we shall
ask the question whether the sequences of hits and misses can be distinguished from a
Bernoulli process. The null hypothesis that the sequences cannot be so distinguished entails
both that (1) each sequence is independent (as are parts of sequences) from all others and (2)
the ensemble of runs z scores form a normal distribution with unit variance and zero mean.
In testing this null we simply form the distribution of runs z scores and ascertain the
significance of the deviation of the mean from zero. Each sequence in such an analysis forms
a separate degree of freedom by virtue of their mutual independence required by the null. In
other cases we shall ask whether the results from one or more experiments can be distin-
guished, i.e. whether different tasks have different levels of streakiness. Here the null
hypothesis has nothing to do with whether the sequences are Bernoulli or not, and we shall
resort to more traditional repeated measure analyses where the different subjects constitute
the degrees of freedom.

Results

The distributions of runs z scores from the four preliminary signal de-
tection experiments are shown in Fig. 1. The results from the flash de-
tection task were particularly striking. The distribution of runs z scores
across subjects had a mean of —1.18 and a median of —1.33. Twenty-
eight of 36 sequences had fewer runs than expected (p < .0006). Individ-
ual sequences were often significantly anomalous and could be distin-
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FiG. 1. Box plots of runs z score for the initial set of signal detection tasks.

guished from a Bernoulli process at constant hit rate. Forty-two percent
of the sequences had z < —1.65 while 28% had z < —2. The expected
percentages from a Bernoulli process are 5 and 2.3%, respectively. The
magnitude of the streakiness was so large in this study that we performed
a replication with two additional subjects who participated in nine blocks
of 500 trials each. The mean runs z score for these additional subjects was
—.96, 33% of the sequences had z < —1.65, and 22% had z < -2. It is
evident that performance in this task is streaky.

In contrast, there was no evidence for streaky performance in ovate-
ness discrimination. Both the ensemble of sequences as well as individual
sequences conformed to the expectation from a Bernoulli process. The
distribution of runs z scores had a mean of —.021 and a median of — .016.
Eighteen of 36 sequences had fewer runs than expected (p < .57). The
distribution of runs z scores could not be distinguished from a normal
distribution with mean of zero.

The sequences from the two remaining tasks were intermediate in their
level of streakiness. The distance ratio discrimination task generated a
distribution of sequences that was overall biased toward negative z scores
and produced a relatively large number of sequences that were individu-
ally anomalous. The distribution of runs z scores had a mean of — .24 (this
is a marginal result as #(35) = ~1.38, p < .089) and a median of —.29.
Fifteen percent of the sequences had z < —1.65, while 6% (two se-
quences) had z < —2. The evidence for streaky performance in the con-
text of tone detection was somewhat weaker. The distribution of runs z
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scores had a mean of —.32 (#(26) = —1.72, p < .048) and a median of
—.46. Nineteen of 27 sequences had fewer runs than expected (p < .026).
However, there was not a preponderance of anomalous sequences as was
observed in the other tasks. Only 7% (two) of the sequences had z <
~—1.65 and there were none with z < —2. This is roughly the tail distri-
bution you would expect from 27 Bernoulli sequences. Thus, although the
ensemble of sequences could be distinguished from the output of a Ber-
noulli process at constant hit rate, the individual sequences could not.
The runs z score distributions of sequences from the ratio and tone studies
could not be distinguished from each other.

In the design of the initial signal detection tasks, we calibrated subjects
to perform at three distinguishable levels of hit rate. This was motivated
by an earlier finding in the domain of motor skills that streakiness is
related to level of difficulty (Gilden, Gray, & MacDonald, 1990). Golf
putting and dart throwing tend to generate Bernoulli-like outcome se-
quences at low and high hit rates and streaky sequences at an intermedi-
ate hit rate. There was no evidence for quadratic trends in the runs z score
in signal detection sequences, although those sequences with the most
negative z scores occurred in the hit rate interval (.6, .85).

Discussion

It is instructive to analyze Atkinson’s (1963) results for two-interval
forced choice (2IFC) tone detection in the dual contexts of response
assimilation and positive sequential dependency in response correctness.
Atkinson provides data on the probability of a response contingent upon
both the current stimulus as well as upon the response and stimulus on the
previous trial. Atkinson uses the following notation for conditional prob-
abilities which we shall also adopt; letting A refer to responses and S to
stimuli presented, Pr(AS;A,S) is the probability that the subject re-
sponded that the tone was in the ith interval given that the tone was in the
Jth interval and on the preceding trial the subject responded that the tone
was in the kth interval when it was in fact in the /th interval. The sub-
scripts i, j, k, and I range over the set (1, 2). In Atkinson’s theory and in
the data he presented, there was no response bias for preferring one
interval over another. Therefore the data are invariant under the global
substitution of 1 for 2 and 2 for 1. The average hit rate in this experiment
was Pr(A,,S,) = .73. This value is not of interest in itself and indicates
only the relative amplitude of the tone.

In reviewing Atkinson’s data it may appear at first that there was sub-
stantial positive sequential dependency because Pr(A4,|S,4,5,) = .80. In
this case Pr(A,|S,A,S,) is the probability of a hit given that the signal was
in the same interval on the previous trial and that trial was also a hit. This
is a large increase and if it generalized to trial pairs where the tone was in
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a different interval on the previous trial would correspond to an average
z score much less than —1. However, Pr(4,|5,A,S,) = .67, indicating
that hits tend to follow hits only if the same response can be given. The
two conditionals are nearly symmetrically placed around the basal hit rate
of .73. On average, the probability of a hit following a hit was .735,
evidence that there was little (although significant) sequential dependency
in correctness of response. From Atkinson’s results we would conclude
that to the extent that streaks exist, they primarily result from the bias of
response assimilation, a result that has been continuously reiterated since
it was noticed that people tend to repeat themselves.

Atkinson’s (1963) results appear to be weaker than ours. In our tone
detection experiment the probability of a hit following a hit was 2% larger
than the probability of a hit, while in Atkinson’s experiment the increment
was only ¥2%. It is difficult to say how Anderson’s results would compare
if streakiness were measured by the runs z score. As we have discussed
above, when the runs z score was introduced, global sequence structure
is not well characterized by the first order conditional probabilities. For
example, it is necessary to look at probabilities that are conditionalized
upon the previous two and three trials to distinguish flash sequences
which were highly streaky from tone sequences which generally were not.
Atkinson (1963) does not report the higher moments.

THE ROLE OF ATTENTION IN STREAK PRODUCTION

In attempting to understand the results from the psychophysical studies
we must confront the fact that the tasks were very different from one
another and varied across a myriad of dimensions. The data indicate that
the tasks divide into three separate groups; extremely streaky (flash de-
tection/average runs z score ~ — 1), moderately streaky (distance ratio
and tone detection/average runs z score ~ —.3), and not streaky (ovate-
ness detection/average runs z score ~ 0). In order to account for the
existence of these groups we have focused on two distinctions; the atten-
tional allocation required to process the stimuli within a task, and the time
delay between presentation. We will consider the effect of attention first.

Our initial studies suggest that the level of attentional demand required
for stimulus identification is an important variable in the production of
streaks. The streakiest outcome sequences were associated with a stim-
ulus that under some circumstances may be discriminated preattentively;
a brief flash. The perceptual processing of a superthreshold flash is pre-
attentive in the sense that detection of a flash does not depend on the
number of distractors; things that flash pop out. It is not necessary to
conduct detailed experiments to validate this notion. A blinking light in
the night sky will pop out even against the backdrop of rich star fields. On
the other hand, neither distance ratio discriminations nor kinetic depth
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shape judgments led to a high level of streakiness. It is also the case that
both of these tasks require focused attention—even for superthreshold
differences and errorless performance. In the case of distance ratios, a
target that has the larger interval on the right will not pop out from a field
of distractors that have the larger interval on the left. Left-right reversals
do not pop out primarily because the power spectrum is not changed by
such a transformation (Julesz, 1975, 1981). The shapes of random-dot
kinetic depth stimuli do not pop out for different reasons. Such stimuli
create an impression of depth that is labile (it reverses in parallel projec-
tion) and builds up over time as the animation unfolds. It is necessary to
focus attention on random-dot animations in order to perceive their struc-
ture.

Having made this distinction among our stimuli for superthreshold dif-
ferences, it must be recognized that all of our experiments were carried
out at threshold. Had we used superthreshold differences, discrimination
performance would have been virtually errorless. It is not possible to
study outcome sequence structure when there are no errors. In our stud-
ies it was necessary to induce error and this can only be done when the
discriminations are conducted near threshold. We are thus led to consider
the nature of visual search for barely discriminable differences. In par-
ticular, we are interested in differences that would be preattentively iden-
tified at superthreshold. While the existence of a distinction at su-
perthreshold is sufficient for the purpose of understanding our empirical
results, the theoretical analysis given below will attempt to interpret se-
quence structure in terms of attentional demand. Consequently, the issue
of processing at threshold is not one that can be finessed.

The nature of attentional limitations at threshold has not been system-
atically studied. As Shiffrin (1988) remarks, this is an intricate question
that touches on a number of difficult issues in signal detection, ideal
observer theory, and decision modeling. Bergen and Julesz (1983) have
argued that search processes which are parallel at superthreshold become
increasingly serial as threshold is approached. The basic idea here is that
attention is intrinsically limited in capacity and that it may be allocated
broadly in space if it is not needed to resolve small stimulus differences.
At threshold, the spatial field covered by attention is conceived to
“‘zoom’’ in to provide greater local resolving power. This conception of
attention as having variable coverage and resolution is certainly consis-
tent with naive experience and is supported by a number of independent
studies (Jonides, 1980, 1983; Eriksen & Yeh, 1985). However, empirically
distinguishing a parallel process from one that is serial is problematic
because there are often limited-capacity parallel models of serial searches
and vice versa (Townsend & Ashby, 1983; Townsend, 1990). In fact, the
Bergen and Julesz (1983) studies do not adequately address the distinction
between serial and limited-capacity parallel processing.
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Assessment of the nature of visual attention at threshold difference
levels requires a methodology that incorporates an analysis of error.
Palmer, Ames, and Lindsey (1993) have recently developed a method
based on error rate that provides evidence that stimulus differences that
pop out at superthreshold are also processed in parallel at threshold. In
their methodology, difference magnitudes at fixed error rate are measured
as a function of set size. Set size effects are conceived to arise from
decision phenomena (opportunity for false alarm increases with number
of distractors) in addition to sensory limitations. Palmer et al. consistently
found that for simple visual search, search that would be manifestly par-
allel at superthreshold, the increases in difference magnitudes with set
size that are required to maintain a constant rate of error could be com-
pletely accounted for in terms of decision processes. There was no evi-
dence for attentional limitations in the extraction of information about the
various stimuli. The model that best fit the data was one in which noisy
percepts were presented to a decision maker such that the variance of the
noise distributions was invariant with set size. This latter invariance is the
hallmark of parallel processing that has unlimited attentional capacity. In
what follows we shall make the conservative conjecture that stimulus
differences that pop out at superthreshold values also make minimal
claims on attentional resources at threshold when stimulus sets do not
exceed two in number; 1.e., in 2AFC designs.

Processing style at superthreshold permits a distinction that allows the
flash discrimination task to be separated from the other visual tasks in the
initial group of studies. The flash discrimination task was unique in two
senses; it generated the sequences with the largest sequential dependen-
cies, and it was the only task in the initial group that was preattentive at
superthreshold. These observations lead to the following conjecture:

A. Superthreshold stimulus differences that are preattentively identified will create
a higher level of streakiness in threshold discriminations than differences that
require focused attention.

This condition on the magnitude of streak production may be further
refined. All parallel unlimited-capacity processes are naturally on the
same logical footing with regard to their usage of attentional resources—
they essentially do not use any. Thus, there is no reason to distinguish
between any stimuli that pop out at superthreshold in the production of
sequences of hits and misses in threshold discrimination. The level of
streakiness that was observed for flash discrimination may have been
maximal and should be representative of all stimulus differences that
support pop out. This is a second conjecture:

B. All stimulus differences that are preattentively identified at superthreshold will
produce a maximal level of streakiness (mean runs z score ~ — 1.0) in threshold
discrimination.
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These two conjectures make nontrivial predictions about streak for-
mation as a function of attentional resource usage. They have been
framed so as to be falsifiable and were tested in the following five studies.

Generalization beyond the flash detection experiment required addi-
tional tasks incorporating stimulus differences that pop-out at su-
perthreshold. Two suitable candidates are orientation and brightness dis-
crimination. A tilted line is known to pop out in a field of vertical lines, as
will one bright object among a number of faint ones. These feature dif-
ferences support flat reaction time functions in singleton search (Treis-
man & Gelade, 1980; Treisman, 1982), and they can be incorporated into
segmenting textures (Julesz, 1975, 1981; Bergen & Julesz, 1983). For a
third task we chose an extremely elementary discrimination; whether a
contour is present on the left or right of two parallel lines. The stimulus
looks like a square with a missing side and we shall refer to it in this way.
The evidence that all these differences are processed preattentively—in
parallel and with unlimited capacity—is well established. If the second
conjecture is true, then brightness, orientation, and missing side discrim-
ination at threshold will yield runs z scores near — I, the value found for
flash discrimination.

In order to provide further evidence for the first conjecture, that su-
perthreshold stimulus differences that require focused attention are only
moderately streaky at threshold, we required a task that mandated refined
positional judgment—such as discriminating ratios of length. In another
context, Gilden, Schmuckler, and Clayton (1993) had been assessing peo-
ple’s abilities to discriminate between fractal contours. The contours em-
ployed in these studies are known as fractional Brownian noises and are
examples of random fractals. Fractional Brownian noises are defined by
having power-law power spectra; power ~ (spatial frequency) ®. The
exponent of the power law, B, determines the fractional dimension of the
curve and its roughness; the larger the value of g, the smoother the fractal
contour. Although these fractals are not familiar stimuli in the psycho-
logical literature, they served our purpose here quite well.! Such discrim-
inations manifestly demand focused attention even when contour differ-
ences are sufficiently large that performance is errorless.

The distinctions that we are drawing here between different types of

! Several experiments in which 2AFC comparisons of fractional Brownian noises were
made (Gilden et al., 1993) have shown that people possess an intuitive and immediate
understanding of the degree of roughness in a noisy contour. These noises are of interest in
their own right as they provide a useful geometric description of natural forms (Mandelbrot,
1983). Contours such as tree lines are characterized by B ~ 2 (Keller, Crownover, & Chen,
1987). Mathematicians have also had reasonable success in rendering natural scenes using
fractional Brownian noises (Voss, 1985, 1988).



STREAKY PERFORMANCE 29

stimuli are not subtle. For illustrative purposes we show in Fig. 2 how
examples of superthreshold differences vary in their ability to create per-
ceptually segmenting regions. Segmentation and boundary formation are
naturally allied with preattention; a boundary forms as a result of a global
percept of stimulus difference. In all four panels the middle column is
distinguished from the remaining columns by a large difference in the
individual elements. In Panels A and B the middle column is clearly
segmented showing the perceptual signature of parallelism and unlimited
capacity for differences in brightness and orientation. In Panels C and D
we illustrate that length ratios and contour roughness (represented here as
fluctuations in brightness) do not lead to segmentation. Note that seg-
mentation does not occur in Panels C and D even though elements in the
middle column would not be confused with elements in the other columns
(Gilden & Schmuckler (1989) have shown this forthe g = land B = 2
fractals represented exactly as in the figure).
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F1G. 2. lllustration of the formation of boundaries and groups on the basis of a preatten-
tive difference. Orientation and brightness differences are processed preattentively and
groups segment. Distance ratios and fractal power law differences do not generate bound-
aries even when groups would not be confused.
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Streak Formation and Preattention

Subjects

Four subjects participated in the brightness and fractal discrimination experiments. Five
subjects participated in the orientation discrimination experiment. These subjects were
recruited through advertisement and were paid $5 per session. Fourteen subjects drawn
from a course in experimental design participated in the missing side experiment. These
subjects received course credit in hieu of payment. One subject failed to follow directions,
evidenced by a hit rate that did not exceed chance guessing, and so was dropped from the
study.

Stimuli

All visual stimuli were displayed on a 13" Apple Macintosh color monitor. Viewing con-
ditions in all experiments were mesopic. In these two alternative forced choice (2AFC)
experiments, the correct choices were randomized and counterbalanced.

Brightness discrimination. Two uniformly illuminated squares subtending 4 degrees were
placed horizontally | degree apart. The luminance of the squares was a gray near the
midpoint of the gray scale, with one being slightly brighter. The squares were shown on a
uniform black field. The subject’s task was to indicate which square was brighter. Each
subject was calibrated to achieve hit rates in an intermediate range of hit rate, on the order
of .75. The stimulus was displayed for 500 ms. Stimuli were presented in blocks of 500 trials.

Orientation discrimination. Two lines subtending 2 degrees were placed horizontally 4
degrees apart. One line was tilted 4 degrees in a clockwise direction, the other was vertical.
The contrast of the lines against the background was calibrated for individual subjects to a
value that ensured hit rates on the order of .75. The subject’s task was to indicate which of
the two lines was tilted from vertical. The stimulus was displayed for 16 ms. Stimuli were
presented in blocks of 500 trials.

Missing side discrimination. A single square was presented that subtended about 3° on a
side. Either the left or right side was missing. The contrast between the square and the
background was set so that a 68 ms stimulus duration would yield a hit rate of .75. The
subject’s task was to indicate whether the left or right side was missing. Stimuli were
presented in blocks of 300 trials.

Fractal discrimination. Two versions of this experiment were conducted. In the first
version, two stimuli appeared simultaneously, side by side in a 2AFC design. Here the
subject’s task was to indicate which of the two noises was rougher. In the second version,
stimuli were presented sequentially. Here the subject’s task was to categorize each stimulus
as being in the rougher or smoother class. In either case, half of the contours had a power
law exponent B = 2. We chose this value on the basis of earlier experiments (Gilden et al.,
1993) which demonstrated that people’s discrimination sensitivity to fractal structure is
maximal near this point. The exponent of the other noise was calibrated separately for each
subject to achieve a hit rate near .75. Fractals were represented as line drawings as in Gilden
et al. (1993). This was a choice based primarily on convenience as Gilden and Schmuckler
(1989) have shown that fractals are roughly equally discriminable independent of the me-
dium of presentation; i.e. whether they are represented as fluctuations in height or as
fluctuations in brightness. Stimuli were presented in blocks of 500 trials.

Procedure

Each subject in the brightness, orientation, and fractal discrimination experiments par-
ticipated in 10 blocks of trials. Subjects in the missing side experiment completed 5 blocks
of trials. At the beginning of each trial block, subjects were calibrated in order to determine
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what stimulus parameters were required to achieve the desired hit rate. In the brightness
detection experiment, subjects were dark adapted for 10 minutes before calibration took
place. Trials were self-paced in all experiments.

Results

The results from these three experiments are shown in Fig. 3. We have
also replotted the results from the flash and distance ratio discrimination
studies in order to make it clear that the attention variable cleanly sepa-
rates our studies into two discrete groups and that runs z scores from
different studies are distributed alike within the same group. A repeated
measures analysis of variance (with attentional demand as a between
variable) verified that preattentive tasks were streakier than tasks requir-
ing focused attention (F(1,38) = 16.0, p < .001). However, a main effect
for the attention manipulation is not sufficient for our purposes; the data
must indicate that outcome sequences from the flash, brightness, orien-
tation, and missing side experiments have equivalent levels of streaki-
ness. The satisfaction of this additional requirement is evident in the
figure; all four runs z score distributions overlap. A repeated measures
analysis (with task as a between variable) showed that none of the studies
in the preattentive group could be distinguished in terms of their level of
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Fi1G. 3. Box plots of runs z score for tasks requiring preattention and focused attention
respectively. The attentional difference cleanly separates the z score distributions into two
groups. Within a group, the distributions are indistinguishable. Data from the flash and
distance ratio study are replotted here for comparison.
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streakiness (F(3,24) = .05, p < .98). The means and negative tails of the
runs z score distributions are also quite similar within the preattentive
group. In the brightness experiment, the average runs z score was —1.15
which is quite close to the value of —1.18 obtained in the flash experi-
ment. The brightness experiment also generated a large number of anom-
alous sequences; 15% had z < —2 and 28% had z < — 1.65. In the ori-
entation study the average runs z score was — 1.04, 20% had z < —2, and
30% had z < —1.65. Finally, in the missing side experiment, the average
runs z score was — 1.08, 23% of sequences had z scores less than — 2, and
34% had z scores less than —1.5. In all four preattentive discrimination
tasks the mean runs z score is quite close to —1, and all showed a large
number of individually anomalous sequences.

It is also clear from Fig. 3 that the ratio and the fractal discrimination
studies produced comparable levels of streakiness. Both fractal studies
showed significant departures from a Bernoulli process. The mean runs z
score for 2AFC fractal discrimination was — .30 which is significantly less
than zero (1(39) = —1.73, p < .046). Thirteen percent of the sequences in
this experiment had z < — 1.65, which compares well with the 15% found
in the ratio study. The mean runs z score for fractal categorization was
slightly more negative than that for 2AFC discrimination, — .67 versus
—.30, but this mean was influenced by two large negative outliers (z <
—3.6). With these two outliers removed, the mean was - .50. The medi-
ans for the distance ratio, fractal categorization, and 2AFC fractal dis-
crimination experiments were —.30, —.37, and — .43, respectively. A
repeated-measures analysis (with task as a between variable) showed that
none of the studies in the focused attention group could be distinguished
in terms of their level of streakiness (F(2,9) = .9, p < .44). The differ-
ences between these medians is small compared with those from the four
tasks that incorporated pop-out stimuli. We thus have two coherent
groupings that are distinguished by a single attention variable.

These results support the conjectures relating attention and streaki-
ness. Not only are the tasks involving preattentive discriminations streak-
ier but also they all share a limiting mean runs z score of — 1. The em-
pirical situation appears to be quite straightforward: Sequences deriving
from tasks requiring focused attention are not very streaky although they
can be distinguished from a Bernoulli process. Sequences deriving from
tasks permitting preattentive discrimination are all of one kind and are
maximally streaky.

There appears to be an underlying coherence between preattention and
streakiness that permits a definite number to be attached to the runs z
score. The lower limit of resource allocation that is represented by pre-
attention is apparently reflected as a ceiling in streaky performance. In
this situation we are able to make a much stronger claim than is usually
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found in psychological research—we are able to make a point prediction,
a prediction that goes beyond ordinal comparison. This is the strongest
form of prediction that can be made; falsification arises if the average runs
z score in a preattentive task is found to be different than —1.

Streak Formation with Extended Practice: Automaticity

The experiments so far presented have developed the conjecture that
attentional demand makes a difference in the amount of streakiness that
characterizes the hits and misses in signal detection. Tasks that require
attention have been found to be less streaky than tasks that do not. This
observation suggests that extended practice in a task might lead to streak-
ier outcome sequences because practice tends to make execution more
automatic and less demanding of attentional resources. The validity of
this hypothesis is relatively easy to test and there is a highly developed
literature at hand that may be used for the assessment.

Schneider and Shiffrin (1977) and Shiffrin and Schneider (1977) have
developed a methodology that offers a potential context for studying
streak formation as a function of practice. In principle, almost any task
that can be fruitfully practiced would serve our purposes here, but these
authors have established a particular form of visual search as a test-bed
for the development of automaticity. In the consistent mapping condition
where target and distractor identities remain constant over trials, they
argue that an initially effortful and serial process is replaced by an auto-
matic and parallel process (see also Shiffrin, 1988) during extended prac-
tice. We shall use their paradigm to assess whether runs z scores become
more negative as the consistent mapping search task becomes increas-
ingly practiced.

A distinction that we wish to make clear at the outset of this section is
that there are two ways that practice can influence the statistic that we are
using to analyze streakiness; run production. The first way is the sense in
which practice effects are manifest across blocks of trials. Here later
blocks are associated with increased skill in the task and the issue of
automaticity and attention arises. This is the sense that is pursued in this
section. A second way that practice can influence the runs z score is by
a palpable increase of hit rate within a given block of trials. Since the unit
of analysis in our studies is the trial block, a secular trend in hit rate will
not be resolved, and such trends will cause run counts to appear low for
the average hit rate in the block. This sense of practice effect offers an
account for why individual runs z scores are negative; that is, as an
artifact of learning. We will address practice effects within blocks in the
theoretical section where we consider generally what forms of hit rate
nonstationarity cause run deficits.
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Subjects

Five undergraduates at Vanderbilt University participated. Subjects were recruited
through advertisement and were paid $5 per session.

Stimuli

Each trial consisted of the presentation of 20 card images. Card images contained four
stimuli at the corners of a square region subtending 5.4 degrees. At two corners there were
letters subtending .86 degrees. In the remaining corners a square random dot field subtend-
ing .86 degrees was shown. Individual cards were displayed for 17 ms with a 50 ms inter-
stimulus interval. Corners containing letters were randomly selected for each card image.

Design

Twelve letters were divided into a group of 4 that were designated targets and a group of
8 that were distractors. For 3 subjects MNOP were targets and RSTUVWXY were distrac-
tors. For 2 subjects HIJK were targets and QRSTUVWX were distractors. Letters from the
distractor set were selected at random for the 20 card images that comprised a trial. On half
of the trials a randomly selected letter from the target group was displayed on a single
(randomly selected) card image. Only cards in the positions 4-17 were permitted to carry
targets. Blocks consisted of 250 trials. Subjects generally completed 2 blocks each day and
participated on as many consecutive days as required to finish the number of blocks required
of them. Three subjects completed 15 blocks and 2 subjects completed 8 blocks.

Results

The results from this experiment are shown in Fig. 4. The two columns
depict respectively graphs of hit rate and runs z score as a function of
block number. All subjects showed virtually monotonic improvement in
discrimination accuracy over the first 8 trial blocks (2000 trials). Initial
learning of the task was assessed by comparing performance in blocks 14
with performance in blocks 5-8. A repeated measures analysis revealed
that the hit rate in blocks 5-8 was significantly larger (F(1,4) = 24.3,p <
.008). The three subjects that continued for another 7 blocks did not show
any substantial further improvement. This is evident from the lack of
secular trend in the hit rate oscillations that appear following block 8. The
results for the runs z scores are quite different. It is evident that practice
has no systematic effect on the development of sequential dependence.
There was no significant difference in runs z score between the first four
blocks and the second four for the 5 subjects examined (F(1,4) = 4.6, p
< .10). In fact the sign of the effect was opposite to what might be
expected; runs z scores were on average more positive (Az = .24) in
blocks 5-8. A simple regression of runs z score and hit rate confirmed the
impression that z scores were uninfluenced by practice; the percentage of
variance accounted for was only .03%. However, there was evidence for
a level of streakiness consistent with tasks that require attention. The
average runs z score was — .27 which is significantly less than zero (#(60)
= —1.96, p < .027). The similarity with the fractal and distance ratio
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FiG. 4. Hit rates and runs z scores are depicted as a function of trial block for five subjects
in the consistent mapping letter search experiment. Learning and increased automaticity, to
the extent that it exists, is uncorrelated with streakiness as measured by the runs z score.

studies extended to the filling of the negative tail of the z score distribu-
tion; 13% of the sequences had z < —1.65.

Discussion

In this experiment we have manifestly failed to find any evidence that
extended practice in the Shiffrin/Schneider consistent mapping detection
task leads to streakier performance. Rather, the distribution of runs z
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scores indicated that attention was required independent of hit rate and
experience with the task. These results admit of several interpretations.
First, we may have failed to sufficiently practice our subjects so that they
did not reach an automatic processing regime. In our experiment subjects
did not exceed hit rates of 70-75%, while those in Experiment 1 of Shiffrin
and Schneider (1977) achieved hit rates of 90%. This difference may be
critical, but our subjects completed as many trials as those in Experiment
1 of Shiffrin and Schneider (1977) and did show nearly monotonic im-
provement over the first 2000 trials. Shiffrin and Schneider explicitly
claimed that following 2100 trials their subjects were utilizing automatic
detection. Furthermore, the 3 subjects that received extended training in
our experiment clearly saturated in discrimination performance after
about 2000 trials. It therefore appears that our subjects had ample oppor-
tunity to realize any benefits that practice might bring.

A second interpretation is that the consistent mapping task never be-
comes completely automatic and that it requires attention at all levels of
experience. There is ample evidence for this point of view in that curvi-
linear reaction time—set size functions in visual search persist even after
asymptotic training in consistent mapping (Fisher, 1982, 1984). Shiffrin
{1988) argues for an interpretation of load effects wherein consistent map-
ping involves a hybrid process with parallel and automatic detection oc-
curring within a moving and controlled focus of attention. Evidence that
attention consists of two concurrent processes—one effortless and auto-
matic and one effortful and controlled—has also been reported by Weich-
selgartner and Sperling (1987).

Other researchers have questioned more generally the equation of au-
tomaticity and preattention. Logan (1992) argues that the two terms
should be kept distinct because they refer to different psychological struc-
tures. Following Ullman (1984), Logan identifies preattention with a form
of processing that is locally parallel. Automaticity, Logan suggests, is
single-step direct-access memory retrieval (Logan, 1988)——an entirely dif-
ferent kind of process than preattention. In this sense, automaticity can
be learned to the extent that such memories may be created through
repeated exposure. Preattention, however, cannot be learned because it is
allied with basic neural architecture. Treisman, Vieira, and Hayes (1992)
present a concordant view in their analysis of what takes place as per-
formance in a visual search task improves with practice. They suggest
that extended practice does not result in the formation of a new preat-
tentively detectable features, but rather in the accumulation of specific
memories for individual stimuli.

The moderate level of streakiness that was found in our letter-search
study is only consistent with our earlier results if practice does not pro-
duce preattention. Otherwise, the failure to find a relationship between
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practice and runs z score is a counterexample to the major empirical
claims made in this article. However, the lack of correlation between trial
block and runs z score, as well as the z score distribution itself, is pre-
dicted by our conjectures on the production of streaks if the consistent
mapping task always requires focused attention. And it is apparent that
the current thinking about attention and automaticity is that Shiffrin and
Schneider’s original claims were mistaken and that practice does not
produce preattention.

TIME DELAY AND STREAK SUPPRESSION

Ovateness detection was the single task that generated runs sequences
that were indistinguishable from Bernoulli trials. If some level of streak-
iness is normative, as appears to be the case, then the absence of streak-
iness in ovateness discrimination becomes problematic. This task was
also distinguished by the large amount of time that elapsed between trials.
The presentation program required about 7 s to prepare each animation
sequence before it could be shown. In all other tasks the trials were
self-paced. In the initial construction of this experiment, this delay was
considered to be a nuisance, but not necessarily a relevant variable in
streak formation. However, it seemed plausible after reviewing the re-
sults, that a long waiting period between trials could generate indepen-
dence of trials. The qualitative difference in generation time could not a
priori be ruled out as the cause of the differences in run structure that
were found.

Delayed Flash Trials and Minimization of Delay in Ovateness Trials

In order to determine the effect of timing empirically, we artificially
imposed a 7 s delay between trials in flash detection, and found a way of
generating kinetic depth shapes that required only a 1 s delay. The flash
detection task is an appropriate foil for estimating the effect of time delay
as it generated sequences with the greatest run deficits.

Subjects

Two subjects were recruited by advertisement. Subjects were paid $5 per session.

Stimuli

The same stimuli were used as in the first ovateness and flash detection studies. Presen-
tation was identical except that a 7 s delay was imposed between flash trials and the delay
between ovateness trials was minimized to 1 s.

Design and Procedure

Each subject completed 9 blocks of 200 trials in each discrimination task; 3 blocks at each
of 3 levels of hit rate (.6, .75, .9). In all other respects the procedure was as in the earlier
experiments.
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Results

Box plots of runs z scores are shown in Fig. 5 together with the original
ovateness and flash data. It is evident from this figure that ovateness
discrimination was not influenced by reducing the delay in presentation
time from 7 s to 1 s; the mean runs z score for fast presentation could not
be distinguished from zero (#(17) = .719, p < .24). However, the 7 s delay
had manifest consequences for streakiness in flash detection where the
mean runs z score increased from —1.18 (no delay) to —.54 (delayed
trials). A repeated measures analysis (with presentation speed as a be-
tween variable) showed that this increase was significant (F(1,6) = 8.0, p
< .03). The delayed trial sequences in flash detection were still distin-
guishable from a Bernoulli process (#(17) = —3.17, p < .0028).

Discussion

The observation that ovateness detection was not streaky, even when
the time between trials was significantly decreased, admits of two inter-
pretations. The first is that there is a latent variable that is present in
ovateness detection that is causing the generation of independent trials,
regardless of timing delay. This variable may not be influencing flash
detection so that the timing effect is visible. In other words, there may be
something intrinsic about the ovateness stimuli per se that is unrelated to
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F16. 5. Box plots of runs z score depicting the effect of delayed presentation in the flash,
distance ratio and ovateness discrimination studies. Also shown are box plots for the 2IFC
and two-ear tone detection studies. Data from the initial set of psychophysical studies are
replotted here for comparison.
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time that makes flash detection hot and ovateness detection cold. Atten-
tional demand is not the latent variable as we found streakiness in several
tasks that required effortful attention.

A second possibility is that reducing the time delay in computing the
ovateness animation sequence from 7 s to 1 s was not sufficient. There is,
in fact, no way to remove time as a variable from ovateness detection
because the stimulus exists only as an extended event in time. Kinetic
depth shapes are perceptual entities only when they are moving, and it
takes at least one period of oscillation to perceive the shape. Now time
clearly is an important component in streak formation as the flash detec-
tion part of this study makes clear, and ovateness detection is not ex-
pected to be streakier than other tasks which require effortful attention. It
may be that the few seconds that elapse during the computation of the
animation sequence and the necessary viewing of the stimulus, coupled
with the fact that the task is not likely to be very streaky anyway, is
sufficient to bring the mean runs z score to zero.

Delayed Distance Ratio Trials

We have tested the importance of time delay in an effortful attention
task drawn from the first group of signal detection studies—distance ratio
discrimination. The level of streakiness in a task requiring effortful atten-
tion is moderate when not delayed and it may be entirely suppressed
when delay between trials is introduced. If so, then an account would be
provided for the absence of streaks in kinetic depth shape discrimination.
In this experiment we chose a delay commensurate with the amount of
time consumed in creating and viewing a kinetic depth shape—3 s.

Subjects

Four subjects were recruited by advertisement. Subjects were paid $5 per session.

Stimuli

The distance ratio task was repeated with the imposition of a 3 s time delay between trials.
In all other respects the task was unchanged.
Design and Procedure

In all respects the design and procedure were identical to the earlier distance ratio study.

Results

The effect of time delay was pronounced as is shown in Fig. 5. The
mean runs z score was brought to — .04, indistinguishable from the output
of a Bernoulli process. Thus it is possible to render a task that requires
effortful attention to resemble a Bernoulli process by imposing a time
interval between trials. This result suggests that the absence of streaks in
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the ovateness task was caused by the intrinsic time delay coupled with the
attentional demands required for discrimination.

Discussion

These results indicate that delays of even a few seconds can induce
independence in the outcomes between successive trials. This observa-
tion may be relevant not only to the ovateness study but also to the tone
detection experiment. The nature of a two-interval forced choice para-
digm requires that a decision be delayed until both stimuli have been
presented. The inevitable elapse of time associated with the two interval
design may account for the relatively weak level of streakiness that was
found in tone discrimination. A second and equally plausible accounting
for the level of streakiness in tone detection concerns the role of memory.
In this one experiment, it was necessary for the subjects to rate their
impressions of the existence of a signal in stimuli that were not ongoing.
The level of streakiness found in this study may be indicative of the
attention required for memorial comparisons. We note that this task gen-
erated the fewest sequences with anomalously few runs (only 7% had z <
—1.65), and it is possible that both timing and attention variables are rele-
vant here.

Two-Ear versus Two-interval Choice in Tone Detection

We created a version of the tone detection experiment that minimized
usage of memory and minimized the time consumed by the presentation
of stimuli. The design in our first study was a two-interval forced choice
(2IFC). The duration of a trial was 1100 ms (300 ms for each interval of
sound and a 500 ms interstimulus interval) which we have shown is sub-
stantial in the context of suppressing streaks in signal detection. Further-
more, the two-interval design raises the issue of memory in a way that is
not present when the stimuli to be discriminated are presented simulta-
neously. A two-ear discrimination where a pure tone + noise is presented
to one ear and noise to the other allowed a design where the trial con-
sumed only 300 ms (the time to present the sounds) and where memory
usage was equated to that of the visual discriminations.

Subjects

Four subjects were recruited by advertisement. Subjects were paid $5 per session.

Stimuli

The equipment used and the generation of stimuli were identical to the previous audition
study.
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Design and Procedure

The two types of stimuli (pure tone + noise, just noise) were presented to different ears.
The subjects’ task was to identify which ear contained the tone. The ear to which tone was
presented was randomized over trials. Subjects were individually calibrated to determine
the amplitude of the tone for a 75% hit rate prior to each trial block. Subjects completed 10
blocks of 300 trials.

Results and Discussion

As illustrated in Fig. 5, sequences generated by two-ear presentation
were generally streakier than those generated by two-interval presenta-
tion. The average runs z scores for the two methods was — .57 and — .32,
respectively. This difference, however, failed to reach significance (#(11)
= —.64, p < .27). However, whereas only 7% of two-interval sequences
had z < —1.65, 18% of two-ear sequences had z < —1.65. Furthermore,
no two-interval sequences had z < —2 while 8% of two-ear sequences had
z < —2. The negative tail of the runs z score distribution from the two-ear
experiment is similar to that encountered in the distance ratio and fractal
discrimination experiments. We conclude that audition is not inherently a
weak modality for producing anomalous sequences. Rather, a two-
interval design tends to suppress streak formation. It is important to note
that even simultaneous presentation of auditory stimuli failed to produce
the level of streakiness observed in sequences derived from preattentively
discriminated visual stimuli.

RUN LENGTHS OF HITS AND MISSES

In the common parlance regarding streaky performance there is a spe-
cial role assigned to success. Streaks are, cognitively at least, related to
intermittent but unusually long runs of successful trials. It is not clear that
the characterization of streaky performance that has been presented here
tallies with this notion. A deficit in the number of runs does not imply that
hits are preferentially segregated into longer runs than misses. Determin-
ing whether or not hits and misses are on an equal footing with respect to
run length is an empirical matter that can be decided by computing the
respective run length distributions for hits and misses within the se-
quences observed in the various studies.

The issue of whether runs of hits have a different length distribution
than runs of misses has to be approached with some care. The two length
distributions deriving from a given sequence cannot be directly compared
except in the degenerate case when the sequence has a hit rate exactly
equal to .5. If the hit rate is greater than .5, as is generally the case in
2AFC designs, the hit distribution will naturally have a greater mean and
variance than the miss distribution. A meaningful comparison of the two
distributions must take the hit rate into account.
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The appropriate question to ask in this context is whether runs of hits
have a more deviant length distribution than runs of misses. In order to
address the issue of deviance, it is necessary to characterize the respec-
tive length distributions in terms of specific statistical quantities, and to
refer the observed values of these statistics to the relevant sampling dis-
tributions. Here we characterize the distributions of run lengths in terms
of their lower order moments; mean, variance, skew, and kurtosis. The z
scores for these four quantities are calculated for both hits and misses by
constructing their sampling distributions from sequences that share a
common hit rate. We would assert that hits cluster into longer runs than
misses within in a given sequence only if the mean of the observed run
length distribution of hits was at a larger z score than the mean of the
observed run length distribution of misses.

The following procedure formed the basis of an algorithm that calcu-
lated z scores for the first four moments of the hit and miss run length
distributions. For a given sequence of N observed trials:

1. Compute the hit rate and the frequency distribution of run length for
hits and misses separately. Compute the moments for both distributions.

2. Form the ensemble of all sequences of N trials with the given hit
rate. In practice, we created ensembles that contained 1000 sequences.

3. For each sequence in the ensemble compute the moments of the hit
and miss run length distributions separately. Thus each moment has its
own sampling distribution and there are separate sampling distributions
for hits and misses.

4. Compute the z scores for the observed moments from their positions
in the appropriate sampling distributions.

This procedure was followed for all sequences obtained in the various
studies. The results were quite straightforward. In none of the four mo-
ments were there any systematic differences in z score between hits and
misses. In particular, while the means of the observed hit and miss run
length distributions tended to be located in the positive tails of their
respective sampling distributions, their z scores did not differ, The equal-
ity in z score over the first four moments makes it quite clear that hits and
misses cluster in an identical fashion relative to the frequency of their
occurrence. Consequently, while our results demonstrate the existence of
streaky performance, they do not provide evidence for flow states, ‘‘be-
ing in the zone,”’ or any assessment of performance that focuses on hits.

The cognitive assessment that performance is ‘*hot’’ usually follows an
extended period of hits in the context of observer knowledge of the back-
ground hit rate. In our studies, a subject could be hot in this sense without
it being detected. There are two reasons for this. First, each sequence is
analyzed by comparing it only with other sequences that share its hit rate.
A sequence of trials where there are an excessive number of hits is re-
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ferred to the ensemble defined by that hit rate, and the question that is
posed is: Relative to the number of hits in this sequence, are the runs
unusually long and sparse? This question is relevant to streakiness in the
context of the sequence taken in isolation, but ignores the possibility that
this sequence is unusual in itself by virtue of its hit rate. Secondly, in our
studies we have essentially precluded the possibility of unusual perfor-
mance by calibrating subjects to perform at a specific hit rate. If a subject
is having a good day for signal detection, the task presented to them will
be correspondingly more difficult. In this way a subject could be streaky
in the sense of having a few days of unusual sensitivity, but this sensitivity
would not necessarily be manifest in sequence structure nor in their cal-
ibrated hit rate.

THEORETICAL ANALYSIS

The formation of streaks appears to be a natural outcome of making
discriminations in signal detection. The implication of this finding is that
the processes governing basic perceptual sensitivities are nonstationary.
The probability of a hit or miss on a given trial is in some way related to
(1) the outcome on earlier trials or to (2) where the trial is located in the
overall context of the activity. These two modes of nonstationarity are
distinct. Although the statistical signature of streakiness is positive se-
quential dependency in hits (and misses), this does not imply that hits
cause hits. Hits could induce hits if the subject is aware of when a hit
occurred and if this awareness led to enhanced performance. However, it
may be that positive sequential dependency arises from nonstationarity in
the operator that is unrelated to prior outcome. Learning is a candidate in
this regard. If the subject learns as much from successful trials as from
failures, then outcome per se is not the relevant variable. Rather the
sequential dependency would be related to trial number; in early stages
misses would generally follow misses, and in the latter stages hits would
generally follow hits. Intermittent episodes of boredom or fatigue could
also cause nonstationary performance that would not necessarily be
linked to outcome. In this section we differentiate between these two
forms of nonstationarity and attempt to characterize the underlying cause
that is creating the clustering of outcome that pervades our data.

We have considered four models of nonstationarity in hit rate that could
plausibly account for streaky performance. Briefly, these are:

Learning

A secular improvement (or worsening) over the course of a trial block
can create clustering of hits and misses. For example, a sequence of trials
where there is secular improvement will initially have relatively long runs
of misses followed by relatively long runs of hits. Such a sequence could
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appear to have anomalously few runs if the expectation is derived from
the average hit rate.

Wave Modulation

Streaks may arise if hit rate is modulated by wave-like fluctuations in
attention, ability, or effort. In such a model, runs of hits will preferentially
occur in wave crests, and runs of misses will preferentially occur in wave
troughs.

Intermittent Effort

This is a discretized and stochastic version of the wave modulation
model. In this model, there are two states of effort or ability that are
distinguished by hit rate. Transitions between the two states are con-
ceived to be probabilistic. This model is intended to capture the notion
that boredom or ennui may influence run structure. Hits will tend to
concentrate when the subject is paying attention relative to moments
when the subject is off-task. An equivalent interpretation is that mundane
performance is punctuated by periods of inspiration.

Markov Process

Part of the folklore of the hot hand is that increased confidence plays an
important role in shooting performance. In informal conversations with a
number of basketball coaches and varsity athletes, the notion that success
breeds success was often used as an explanation of the hot hand phenom-
enon. We have therefore created a model where performance is presumed
to be conditional: people try harder, have more confidence, or pay more
attention following successful trials. This model naturally generates pos-
itive sequential dependency by building in correlation between successful
trials. The Markov model may be thought of as a multi-state model where
transitions between the states is a random variable depending on out-
come.

The manner in which the different models were evaluated depended on
the role of chance. The learning and wave modulation models are deter-
ministic in that the hit rate can be specified exactly for all trials once the
parameters of the model are fixed. This feature permits a regression anal-
ysis where the serial correlation in outcome between trials may be eval-
uated with the model factored out. In contrast, the intermittent effort and
Markov models are inherently stochastic because it is not possible to
predict what the hit rate will be on any given trial, even for specified
model parameters. Evaluation of these models is less straightforward and
requires that they be rendered through Monte-Carlo simulation. In what
follows we describe the procedures that were developed to ascertain
which model provided the best fit to the data.
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Analysis by Part Serial Correlation: Learning and Wave Modulation

In this section we will use the serial correlation between successive
trials as a statistical measure of streakiness. The serial correlation is
absolutely equivalent to the runs z score that has been used as a measure
of clustering in the analysis of our data. Calculation of the Fisher Z score
for serial correlation and the z score for runs within all sequences and in
all experiments has shown that these two measures of structure have
nearly unit correlation.

In the learning and wave modulation models, where the hit rate can be
specified in advance for all trials, it is possible to compute the part serial
correlation with the model explicitly factored out. To the extent that the
model is a correct description of what is causing nonstationarity in hit
rate, the part serial correlation will be smaller than the serial correlation.
In the limit that the model is a complete description of the hit rate struc-
ture, the distribution of Fisher Z scores for the part serial correlation will
be normal with zero mean (this was explicitly checked by Monte-Carlo
simulation of sequences with hit rate specified by learning and wave
models). The goal of this analysis is therefore to ascertain how much
smaller the part correlations are than the raw serial correlations. We will
illustrate this technique with a simple example and then generalize it to
allow for the fitting of model parameters.

A natural way to evaluate the role of learning is to factor out trial
number from the serial correlations. The correlation coefficient between
trial number and outcome is a measure of the difference between the
average trial number for hits and the average trial number for misses. If
learning is occurring during trial blocks, then the average triai number for
hits should be larger than that for misses, leading to a positive correlation
between the sequence of outcomes and trial number. We refer to this type
of learning as linear because hit rate is conceived to be proportional to
trial number. Let r;, = the serial correlation, r,,, = the correlation be-
tween the sequence and the model, and r,,, = the correlation between the
sequence lagged by one trial and the model. Then the part correlation is

ra — nunum
[ A
part .

\/ 1 - r%M

If learning is occurring then both r,,, and r,,, > 0, and ry,, < ry,.

We have computed the part serial correlations for those studies where
the greatest streakiness was observed; discriminations of flash, bright-
ness, orientation, and missing side. The average serial correlations for
those sequences with negative runs z scores in the four studies are shown
in the second column of Table 1. Although the magnitudes of these cor-
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TABLE 1

Serial R [
Experiment correlation Learning/linear Learning/power law Wave
Flash .078 .070 .067 .061
Brightness .058 051 047 .043
Orientation .064 .056 .054 .047
Missing side 085 .074 070 .060

<Decrement>

12% 17% 26%

relations may not appear large, it should be noted that in this context,
serial correlations of order .10 correspond to runs z scores more negative
than —2.0. Column 3 shows the average part correlations with trial num-
ber (linear learning) factored out. The reductions in correlation achieved
by factoring out trial number are of order 10% and are certainly not large
enough to be conclusive. In order to place these magnitudes into context,
we have generalized the learning model and compared it with a general
wave modulation model.

The linear learning model just described is but one possible form of
monotone increase in hit rate. A generalized learning model can be con-
structed by considering the family of power functions of hit rate:

hit rate = (trial number)?, g > 0.

This class of learning models spans the range of learning curves that are
everywhere convex or concave. In Table 1 we refer to these models
collectively as power law learning models. For each sequence with pos-
itive serial correlation in each of the four relevant studies, we have de-
termined the optimum { for the smallest part serial correlation in absolute
value. Average part correlations for power law learning models with op-
timum B are shown in Column 4. The difference between the optimum
model and the linear model considered above is not expected to be large
because of the high correlation between power laws and a linear function.

This analysis was repeated with a wave modulation model. In this
model, the hit rate is conceived to vary as

hit rate « sin2wk/L. + 0),

where £ is the trial number, L is the wave period, and 0 is the phase. Here
both L and 6 entered as free parameters in fitting to a minimum part
correlation. Part correlations for optimized wave models are shown in
Column 5. The key point to be derived from Table 1 is that the wave
modulation model makes greater reductions in the serial correlations than
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do the learning models. In further analyses, the learning models were
abandoned in favor of the wave modulation model.

Analysis by Monte-Carlo Simulation: Wave Modulation, Intermittent
Effort, and Markov Chains

Models that conceive of performance in terms of stochastic occupation
of discrete levels of hit rate states require an indirect procedure of eval-
uation. It is not possible to factor the model out of the serial correlations
in those cases where the model is only a recipe for constructing an en-
semble of realizations. Analysis must proceed by actually simulating the
ensemble of sequences that can arise in the model and then comparing
these sequences with data. This procedure can also be adopted for deter-
ministic models since the hit rate on a given trial, even if it can be spec-
ified exactly, only determines the probability of hit—not the exact loca-
tions of hits within a sequence. In this section we develop criteria for
evaluating models of nonstationarity within the framework of Monte-
Carlo simulation.

Models and Associated Algorithms

The wave modulation, intermittent effort, and Markov models were
simulated in order to create ensembles of sequences consistent with their
respective logics and then to create sampling distributions of statistical
variables that could be compared with data. The rules describing the
algorithms are given below and summarized in Table 2.

Intermittent effort. In this model there are two states of effort that have
corresponding hit rates b, and b,. If the algorithm is in the low effort state,
then with probability py;,,, there is a transition to the high effort state.
Alternatively, if the algorithm is in the high effort state, then with prob-
ability p,... there is a transition to the low effort state. The hit rate in the
high effort state is b, = by(l + A). Trials were simulated by picking a
uniform random deviate r on the interval (0,1). In the high effort state the
trial is a success if r < b,. In the low effort state the trial is a success if
r < b,. After each trial, the algorithm then decides which state it is going
to be in on the next trial.

Markov process. We have constructed a gain function that takes into
account whether there have been successes on the previous one or two
trials. In these second order Markov models, the algorithm looks back
two trials and there is a gain G = A if only the previous trial was suc-
cessful, and a gain of G = A(1 + 3) if both trials were successful. If the
previous trial was a miss, then G = 0. On any given trial the instanta-
neous hit rate is bg(1 + G). It would be possible to elaborate this model
still further by allowing a graded gain function that took into account the
previous N trials, or by discriminating failure on the two previous trials
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TABLE 2
Theoretical Models
Model Hit rate function Parameters
Intermittent effort with probability p,,,, make transition Plow’ Phigh' &

into low state: b = b,
with probability py;,,, make transition
into high state: » = b,

Increment rule: by = by(1 + A)
Markov 2nd order [si_y = 1 &s4 2 = 1] Dby = by) A,
Ise .y = 1 & s, =01 D1b = by}
51 = 01 D 1B = by)
Increment rule: b, = byl + AUl + &),
b, = b1 + A)
Wave continuous b = bl + Asin(2mwk/L + 6)] AL
Wave two-state b, = by(l + 4A)
0<2mk/L + 8] (mod 2w) < =
by = bo(l — A)

7T < [2nk/L + 6] (mod 2m) < 27

Note. b, is the nominal hit rate; b, is the probability of success on trial ; s, is the outcome
of trial k: 1 if success, 0 if failure; 9 is a constant uniform random deviate on the interval
{0,27]; and L is measured as number of trials.

from failure on only the previous trial. Either of these elaborations re-
quires the addition of free parameters which is not justified at this explor-
atory stage of analysis. Note that this class of models essentially regards
performance as arising from three states; a low state with hit rate b, and
two high states where there is a gain depending on the outcome of the
previous two trials. It is not necessary in these models therefore to have
specific rules for trials on which the previous one was a failure. Failure
breeds failure by virtue of maintaining the algorithm in the low state.
Trials were simulated as above, with success if a random uniform deviate
r < b,, where b, is the hit rate for the state appropriate to the kth trial.

Wave modulation. Two forms of wave modulation were simulated;
continuous sinusoidal variation and a telegraph signal based on transitions
between two states. Conceived as a continuous wave, the hit rate on trial
kis

b, = by(1 + AsinQwk/L + 9)).

Alternatively, a discretized wave has the form

b, = byl + A)0 < [2mk/L + 8)(mod 2m) <
b, = byl — A) m < [2wk/L + 6)(mod 2m) < 2.

In these expressions L is the period of the wave and A is the amplitude.
These two parameters are constant and are regarded as fixed properties of

il
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the task. 0 determines the initial phase of the wave and is also constant.
8 varies randomly across an ensemble of sequences. Trials were simu-
lated as above with success if r < b,.

Window Structure in Observed Sequences

Evaluation of the models requires the development of a sensitive mea-
sure of the way in which hits and misses are distributed in the data
sequences. We adopt here a local measure of sequence structure that was
used by Gilovich et al. (1985) in tests of nonstationarity. The motivation
for the introduction of this measure in Gilovich et al. was that one signa-
ture of streakiness might be an excessive number of time intervals that are
dominated by successful trials. One way to formalize the degree of dom-
ination is to take a window of size N and to count the number of such
windows containing all hits. The null hypothesis of independent trials
gives a predicted frequency of such pure windows, and the difference
between the observed and predicted frequencies is a measure of streak-
iness.

We have used window counts not as an index of streakiness, but as a
measure of local sequence structure. Specifically, we take non-
overlapping windows of size N and count all instances where there were

K =0,1,2,3,..., N hits within a window. Following Gilovich et al.,
we perform this sum over each sequence N times; the first window com-
mences at either s,, §,, 53, . . . Or sp, Where s; is the ith member of the

sequence. From the average hit rate of the sequence, b, we compute the
expected number of windows of size N that contain K hits using the
binomial distribution. The difference between the expected number and
the observed number is the frequency excess for each hit number K.
Finally, we transform the frequency excess to a probability excess by
normalizing by the number of windows. The probability excess is positive
or negative depending on whether the number of windows of size N with
K hits was more or less numerous than expected by chance.

Models were fit to the data from all experiments that showed a large
excess of individually anomalous sequences. This set includes the flash,
brightness, orientation, missing side, distance ratio, and fractal studies
(we present results only for the left/right 2AFC method of presentation as
the sequential presentation generated similar models). As examples of the
window statistics that will be used to assess models, Fig. 6 illustrates the
excess probabilities for encountering K hits in windows of sizes 4, 6, and
8 in the flash detection experiment. Each data point is an ensemble av-
erage over the entire collection of sequences observed in the experiment.

There are several features in the patterns of excess probability that are
of interest. The structure of the window pattern is driven by the large
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Fi1G. 6. The probability excess of encountering K hits in windows sizes 4, 6, and 8 in
sequences generated by flash detection. The probability excess is computed relative to the
expected probability under the nuil hypothesis of Bernoulli trials.

excess of windows with N hits. Since the total number of windows is
fixed, excesses must come at the expense of other windows. The N-hit
windows are drawing primarily from windows that would have had N-1 or
N-2 hits. On the other hand, there is very little excess at windows with 0
hits and this creates a large asymmetry. In signal detection, this pattern is
enforced by the placement of a hit rate floor at .5. For hit rates in excess
of .5, permutations of hits and misses will naturally tend to preferentially
make larger aggregates of hits; the failures tend to be too sparse to gen-
erate many windows of N misses.

It must be emphasized that the magnitudes of the probabilities are
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computed as excesses relative to the expectation under the null hypoth-
esis of statistical independence. A sequence with a large hit rate does not
make a positive contribution to the excess probability unless more win-
dows of a given type are encountered than expected. In testing the codes
for computing these statistics it was necessary to ascertain that the excess
probabilities were zero for random Bernoulli trials independent of hit rate.

Independence of Local and Global Measures of Structure

The runs z score is a global measure of streakiness that imposes few
constraints on the local sequence structure. There are many ways of
assembling strings of hits and misses that will have a single value of run
number but will vary in the number of windows of size N with K hits. For
example, consider the following two sequences:

A 001100110011
B 000011110101

Both sequences have the same hit rate (.5) and the same number of runs
(6). Limiting the comparison to windows of size 4, sequence A has 9
windows with 2 hits and no window has 0, 1, 3, or 4 hits (remember that
windows are counted in 4 passes through the sequence, each pass stag-
gers the initial window position by 1). Sequence B has 1 window with 0
hits, 1 window with 1 hit, 3 windows with 2 hits, 3 windows with 3 hits,
and 1 window with 4 hits. The lack of correlation between runs z score
and the window counts was also observed in our data. As an example
consider a window of size 4 in the flash detection experiment, For this
study the correlations were r = .26, .17, .05, .29, and .54 for 0, 1, 2, 3,
and 4 hits, respectively. Substantial correlations existed only with the
probability of encountering windows with all hits. This lack of correlation
will be further demonstrated below when we compare different models in
their ability to reproduce the window structure.

The window probabilities are also fairly independent of each other. In
general, substantial correlations (r > .85) existed only between the prob-
ability of encountering a window with N hits and a window with N-1 hits.
The average level of unsigned correlation between windows was of order
[rl ~ 0.3. We will consider the sequences from the flash experiment for
N = 8 in detail as an example. For this study, the maximum correlation
existed between K = 8 and K = 7 and was r = —.87. The next largest
correlation existed between K = 4 and K = 2 and was r = —.67. 32 of
the 36 possible correlations between the 9 window types (K = 0,1, .. .,
8) had |r| < .54. The mean unsigned correlation was .3 and the median was
.28. These results are typical of the other experiments. Although the
window probabilities are not strictly independent of each other, only 1 or
2 degrees of freedom are lost in fitting models to the window statistics. In
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any case, the nonindependence of the window probabilities exists equally
for all models, and does not affect the basic strategy of using these prob-
abilities to differentiate between models.

The relative independence of the different statistical measures can be
capitalized upon to provide rigorous tests of the theoretical models. Mod-
els are constructed by selecting parameters that yield ensembles with runs
z scores that are similar to the data. These restricted models are then
evaluated in terms of the observed window probabilities. In our analyses
we have used windows of size N = 4, 5, 6, 7, and 8. This range was
sufficient to distinguish between the performances of the theoretical mod-
els. These models have only 2 (wave, Markov) or 3 (intermittent effort)
degrees of freedom. The statistical measures together have of order N-1
degrees of freedom. The disparity between the number of free parameters
in the models and the number of statistical measures they are required to
fit, makes these tests challenging. As will be shown, it is a trivial exercise
to fit the runs z score distributions, but models rarely produce window
statistics that resemble the data.

Ensemble Construction

The three algorithms under consideration each have a number of free
parameters in addition to requiring specification of the nominal hit rate by,
Definition of these parameters is given in Table 2. For each choice of
parameters and hit rate there is an associated ensemble of sequences.
Denote these ensembles as E(P:by), where P is the set of parameters. The
experimental data does not have sufficient resolution in hit rate to support
detailed comparisons as a function of hit rate. The experiments were
designed, however, to have uniform coverage of hit rate within specific
limits. These limits are given in Table 3. The ensembles of sequences that
were collected in the experiments are modeled by collapsing over b, in
E(P:bg) to generate the collections E(P:l < by < u), where [ is the lower
limit in observed hit rate, and u is the observed upper limit.

Each simulated ensemble E(P:{ < by < u) consisted of 500 sequences of
500 trials that uniformly sampled the appropriate hit rate interval. The
number of sequences and their length were chosen to generate probabil-
ities for simulated window counts that had a minimum of noise for a
reasonable amount of computation time. Extended computations using
1000 sequences did not show significant differences. Each algorithm has
its own idiosyncrasies that required further specification. For concrete-
ness we spell these out in detail.

Intermittent Effort: select py,,,, Phign, and A. The simulation is initial-
ized in the low state with b = b,.

Markov second order: select A, 8. The simulation is initialized in the
low state with b = by,
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TABLE 3
Monte-Carlo Simulations

Model parameters

Intermittent

) Wave* Markov? effort”
<runs z Hit rate
Experiment score> range L A 8 A Prigh  Prow A
Flash -1.18 S0<bhb< 90 21 20 .12 .07 .10 22 40
Brightness - 1.15 65<bhb<.85 21 19 .10 .07 .08 220 .33
Orientation -1.04 65<bhb< 8 24 16 .10 .07 10 24 35
Missing side —1.08 S0<bhb< 90 20 20 .14 05 .16 .28 45
Distance ratio —~.24 S0<b< 9 17 10 12 .02 42 .18 15

Fractal: 2AFC -.30 60 <b< 80 20 .12 .10 .03 .08 22 2

“ L = wave period in units of number of trials, A = wave amplitude.

# A = gain for hit on previous trial, A(I + 8) = gain for hits on two previous trials.

“ Prign = transition probability into high state, p,,, = transition probability into low state,
A = difference in hit rate between the high and low states.

Wave: select L, A. Each sequence is assigned a random phase
0 € [0,27].

Evaluation of Theoretical Models

Ensembles of sequences were constructed using the wave, intermittent
effort, and Markov algorithms. Parameters were initially varied to con-
struct ensembles that yielded the same average runs z scores that were
found in the flash, brightness, orientation, missing side, distance ratio,
and fractal discrimination tasks. In all cases it was found that there were
many sets of parameters, P, that yielded the same average runs z score.
Further search was required to find parameter values that also optimally
reproduced the window statistics in the individual experiments. Optimal
parameter values are shown in Table 3.

The three models were evaluated in terms of a coefficient of fit that
reflected how accurately they reproduced the excess probabilities for K
hits in windows of size N. This measure of goodness-of-fit is given by

1 b
(pllr(lode _ ptl)( 5)2

(p?(bs _ (p>ob5)2

>obs

where py is the probability excess. The average excess, (p)°”°, is neces-
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sarily identically equal to zero by virtue of the fact that the sum over the
number of windows with K hits must equal the total number of windows.
The results for the seven experiments that were modeled are shown in
Figs. 7, 8,9, and 10. Figures 7 and 8 depict the behavior of the coefficient
of fit as a function of the window size for the preattentive (flash, bright-
ness, orientation, missing side) and effortful attention (distance ratio,
fractal) tasks respectively. Figures 9 and 10 give detailed comparisons of
the fits for windows of size 8 for both sets of tasks. We found that for
matched (L,A) parameters, the two-state and continuous forms of wave
modulation were virtually indistinguishable in terms of fits to the window
probabilities. Results are shown for the continuous variation models.
The most salient result from the Monte-Carlo simulations is that the
wave model performed unexpectedly well in the preattentive regime: the
coefficient of fit exceeded .95 for all window sizes in the flash, brightness,
and missing side studies and exceeded .90 for all window sizes in the
orientation study. This is a strong result and should be placed into per-
spective. First, we stress that the window statistics are relatively inde-
pendent of the runs z score as a measure of sequence structure and pro-
vide a separate assessment of model performance. As the graphs of the
other models and the fits displayed in Figs. 9 and 10 make amply clear,
there is absolutely no reason to expect that the window statistics could
ever be fit simultaneously with the mean runs z score. Second, it is not
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FiG. 7. The window statistics coefficient of fit for three theoretical models is shown as a
function of window size. Results are given for the four preattentive tasks. The coefficient of
fit is defined in the text. The wave process provides a nearly perfect fit in each case.
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Fi1G. 8. The window statistics coefficient of fit for three theoretical models is shown as a
function of wipdow size. Results are given for two focused attention tasks. The coefficient
of fit is defined in the text.

obvious that patterns of hits and misses in human performance could be
modeled by a simple algorithm. If we had found that human performance
was like independent Bernoulli trials, then it could have been trivially
modeled. However, the empirical studies make it manifestly clear that
human performance is not Bernoulli-like and there is no a priori expec-
tation that the algorithmic instantiation of a simple notion would generate
anything that looks like data. The degree of fit to the window statistics
produced by the wave modulation algorithm is unexpected, especially in
a context where the model does not specify outcome but only the prob-
ability of an outcome. Despite the rhetorical advantage that might be
gained by inventing a rationale for the inclusion of wave modulation as a
model for consideration, it is nevertheless the case that its inclusion was
a serendipity.

The intermittent effort model also performed well in the flash experi-
ment, but progressively failed with increasing window size in the bright-
ness, orientation, and missing side experiments. It is not surprising that
the intermittent effort model should have some success. For the transition
probabilities that were simulated, the model behaves as an incoherent
wave with a period of about 10 trials. Despite the fact that this model has
an additional degree of freedom, it still does not perform as well as the
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wave model. The relatively poorer performance of the intermittent effort
model is also evident in models of tasks requiring focused attention. The
decrement is particularly large for the fractal discrimination experiment.

The Markov model generates the same pattern of failure across the four
preattentive experiments. As window size increases, the coefficient of fit
decreases. The failure of this model is not unexpected as none of these
experiments incorporated feedback. However, the fits were no better for
the ovateness discrimination study which did contain feedback. Further-
more, if the Markov model is correct in its motivation that success breeds
success, then we should have observed a greater tendency for streaks in
ovateness detection than in flash detection. Yet ovateness detection gen-
erated sequences that conformed to the expectation of a Bernoulli pro-
cess. The Markov process is evidently not a viable model.

We have attempted to find converging evidence for wave modulation
by submitting the outcome sequences to Fourier analysis. Ideally, the
existence of a wave train would be evident by enhanced power at the
frequency (inverse period) at which the part correlations were minimized;
1.e. at that frequency where the wave model fits optimally to the data.
This effort was frustrated by the fact that we are dealing with a rather
small effect. The level of streakiness that we have observed in our studies
is sufficiently large to isolate statistically, but the serial correlations at
best account for only about 4% of the sequence variability. The wave
model gives the best accounting for hit rate nonstationarity, but the ab-
solute magnitude of the wave amplitude is too small to isolate through
Fourier techniques.

The Origin of Streaky Performance

There are four resuits that have been obtained in these studies that
together provide some insight into what causes streaky performance; two
empirical, and two derived from numerical simulation. The empirical re-
sults are that streakiness is graded by the amount of attention that is
brought to the task, and that preattentive discriminations form a special
class defined by maximal streak production. The first analytic result is
that the local sequence structure derived from tasks that are associated
with preattentive discrimination are naturally fit by a wave modulation of
hit rate. The second analytic result is that the fits are poorer when the task
clearly requires effortful attention.

These results point to theory of performance that isolates two different
systems with distinctive time histories. The first system is independent of

Fig. 9. Probability excesses in windows of size 8 produced by simulations of theoretical
models are compared with data derived from the flash, brightness, orientation, and missing
side experiments.
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the controlled aspects of attention and appears to be associated with early
sensory and perceptual processing. In this system we posit small wave-
like variations. The second system is logically central and is associated
with controlled attention. Controlled attention is conceived here as a filter
that does not have invariant fidelity over time, but rather fluctuates ran-
domly depending on a myriad of cognitive and somatic factors. These two
systems are capable of accounting for both the empirical and analytic
results reported in this article.

In this two-system model, streaks are most clearly seen in tasks incor-
porating preattentive stimuli because it is in this regime that there is a
minimal level of activity in the usage of attentional resources. Essentially,
the stochastic filter is bypassed in preattentive discrimination, and the
intrinsic wave-like modulation impressed by sensory/perceptual systems
is visible as nonstationarity in hit rate. In discriminations requiring fo-
cused attention, random fluctuations in attentional resources mask the
background wave variations at the level of response. Note that mask here
does not mean eliminate; wave-like variations are present albeit at rela-
tively reduced amplitude and residual streakiness is observed.

A formalization of this theory is given by the expression:

hit rate(r) = F(attention,f) + msin(2nt/A) + c,

where F is the attentional filter and is a monotonically increasing function
of attentional demand, c is a constant that characterizes the distal level of
task difficulty, and  is time. The sine component reflects the contribution
from sensory/perceptual processes not under direction of controlied at-
tention. The wave amplitude, m, and its period, A, are considered to be
constants that are set by intrinsic operator characteristics and are inde-
pendent of task. As a function of time, F is considered to have stochastic
fluctuations which are on the order of its mean magnitude. Where atten-
tion must be focused, F is large and consequently the wave component
adds into a background that is varying on scales larger than its intrinsic
amplitude. In the regime of preattention, F is small, and the wave com-
ponent is manifest.

The intrinsic wave parameters (n,A) are distinguished from the derived
model parameters (A,L). Only in the case when F is small, and the wave
part of the hit rate function alone modulates performance, are A and L
measures of nj and A. This condition is met for all preattentive discrimi-
nations, and for this account to be meaningful, it is necessary that the
simulated wave parameters be invariant over experiments in this class. In
this regard it is significant that the flash, brightness, missing side, and
orientation discrimination studies were all fit by similar model parame-
ters; L ~ 20, A ~ .2. The interpretation of A and L is different when F is
large and the hit rate fluctuates around a constant value of ¢ on top of a
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small wave variation. As the wave model does not have algorithmic in-
structions that take into account intermittent and large scale fluctuations,
it treats the entire variation as if it were wave-like, and can only respond
to a reduction in streakiness by decreasing A. The values of A and L are
simply artifacts of the model in the simulations of tasks requiring effortful
attention.

The existence of a definite wave amplitude in this theory has important
consequences for streak production. v sets the limit of streakiness that
can be produced. Tasks which permit the use of preattentive discrimina-
tion express the full amplitude of the wave. This theory makes the im-
portant prediction that tasks will not be found that have a level of streak-
iness greater than that found in the preattentive signal detection experi-
ments. A corollary prediction is that all preattentively performed tasks
will be fit by a wave model with A ~ .2.

This work is hardly the first to suggest that there are oscillations in
early sensory and perceptual systems. Psychologists in the late 19th and
early 20th centuries (Urbantschitsch, Lange, Miinsterberg, Eckener are a
few) were concerned with issues that bear a remarkable resemblance to
those raised here. In the early days of sensory psychophysics a number of
investigators were puzzling over the fact that faint sounds, gentle
touches, and dim lights appeared to wax and wane in intensity over time.
Although the language, theories, and stimuli that derive from this epoch
are somewhat foreign, these early findings are quite relevant to our ac-
count of streaks in threshold signal detection. In particular, the oscilla-
tions in perceived intensity exist primarily at threshold and their periods
are of order a few tens of seconds—the period implicated by our theoret-
ical models. The issue at the turn of the century was whether the oscil-
lations were associated with fluctuations in attention or with peripheral
sensory characteristics such as adaptation. Guilford (1927) presents an
overview to this field and a number of experiments which point to a
peripheral etiology; eye movements and retinal adaptation are argued to
cause the oscillations in vision. This observation suggests that streaks
may be also be explained as artifacts of adaptation.

There are a number of reasons to reject retinal adaptation as an ade-
quate account for the existence of streaks. In the first place, the stimuli in
the earlier vision studies were all presented continuously, and the phe-
nomenal experience is a waxing and waning of intensity when fixation is
maintained over several seconds. Our stimuli were not presented contin-
uously (for only a few tens of milliseconds in the preattentive studies) and
fixation was constantly changing. Second, we also find streaks in the
complex tasks of judging relative length ratio and contour roughness. It is
not obvious how retinal mechanisms or eye movements could influence
the outcomes of such judgments to produce sequential dependencies.
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In spite of the fact that retinal adaptation does not appear to be the
relevant construct for the origin of streaks, we still argue for a sensory/
perceptual locus of fluctuation that is logically and possibly physiologi-
cally distinct from mechanisms associated with focused attention. The
motivations for this claim are the paired results (1) that the preattentive
tasks were the streakiest, and (2) that extended practice had no influence
on streak formation. On the other hand, the universality of the streak
phenomenon is evidence for a central origin. If virtually all discrimination
activity is streaky, then it is arguable that streaks arise in a mechanism
that is globally accessed. Attention is a construct that is conceived to be
global and our results may simply point to the existence of two attentional
systems; one that generates coherent oscillations and is accessed in pre-
attention, and one that generates white noise and is controlled. The iden-
tification of two types of attention, one associated with preattention and
one controlled and effortful, has been made by Shiffrin (1988) and by
Weichseigartner and Sperling (1987) on more general grounds. The issue
of whether streaks arise centrally as an aspect of attention, or more pe-
ripherally in sensory/perceptual systems will not be decided here. In fact
we note with some concern that Guilford remarks that the central/
peripheral issue had been settled and unsettled four times in the four
generations prior to his review.

SUMMARY AND CONCLUSION

In this article we have presented experimental evidence that iterated
trials in signal detection generally results in sequences of outcomes that
are streaky when compared to the expectation of a stationary Bernoulli
process. Using time delays and a range of stimuli we were able to con-
struct tasks that generated sequences that were highly streaky (flash,
brightness, orientation, and missing side discrimination), that were inter-
mediate in streakiness (distance ratio discrimination, fractal discrimina-
tion, tone detection, and consistent mapping in letter search) as well as
one that was indistinguishable from a stationary Bernoulli process (ovate-
ness discrimination). Our experiments suggest that the magnitude of the
runs deficit is a decreasing function of the attentional resources demanded
by the task. We found that it was possible to predict the level of streak-
iness in a given task by evaluation of the attentional demands.

The demonstration that discrimination performance does not derive
from a stationary Bernoulli process raised the issue of what makes per-
formance streaky. We considered four processes; learning, wave modu-
lation, intermittent variations in effort, and conditionalization upon prior
outcome. All processes were able to yield sequences that had the ob-
served run deficits, but they differed in their ability to generate sequences
that had the observed window statistics. Only the wave process was able
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to simultaneously produce the observed runs deficits and the window
statistics for a class of experiments. The wave process simulated the data
in the preattentive experiments with such precision that it motivated a
theory of streak formation.

The conjecture that there is a wave-like entrainment of hit rate arises
from Monte-Carlo simulations of data and so is extremely model depen-
dent. However, the clear distinction between preattention and effortful
attention that was found in both simulation and in the empirical studies
suggests that this theory is on the right track. Wave-like structures have
not been reported as a property of vigilance (see reviews by Davies &
Parasuraman, 1982; Parasuraman, 1985), especially on the short times-
cales {(20-100 s) that are relevant here. However, such variations might
not be seen except in experiments such as we have conducted and would
not have been recognized without the power of analysis that Monte-Carlo
simulation affords.
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