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INTRODUCTION AND SCOPE

Diagnostic problems abound for individuals, organization

and society. The stakes are high, often life and death.

problems are prominent in the fields of health care, pu Iﬁ

safety, business, environment, justice, education, manufa
ing, information processing, the military, and government.
Particular diagnostic questions are raised repetitively,
time calling for a positive or negative decision about the p
ence of a given condition or the occurrence (often in the fut
of a given event. Consider the following illustrations: Is

cancer present? Will this individual commit violence? Ar
there explosives in this luggage? Is this aircraft fit to fly? Wi

the stock market advance today? Is this assembly-line

flawed? Will an impending storm strike? Is there oil in t
ground here? Is there an unsafe radiation level in my hous
this person lying? Is this person using drugs? Will this ap

cant succeed? Will this book have the information | needf

that plane intending to attack this ship? Is this applicant leg
disabled? Does this tax return justify an audit? Each time s
a question is raised, the available evidence is assessed
person or a device or a combination of the two, and a choic
then made between the two alternatives, yes or no. The

dence may be a x-ray, a score on a psychiatric test, a chemm

analysis, and so on.

In considering just yes—no alternatives, such diagnose
not exhaust the types of diagnostic questions that exist. G
guestions, for example, a differential diagnosis in medic
may require considering a half dozen or more possible a
natives. Decisions of the yes—no type, however, are preva
and important, as the foregoing examples suggest, and the
the focus of our analysis. We suggest that diagnoses of
type rest on a general process with common characteri
across fields, and that the process warrants scientific ana
as a discipline in its own right (Swets, 1988, 1992).

The main purpose of this article is to describe two ways,
obvious and one less obvious, in which diagnostic performa
can be improved. The more obvious way to improve diagn
is to improve its accuracy, that is, its ability to distingui
between the two diagnostic alternatives and to select the
rect one. The less obvious way to improve diagnosis i
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increase the utility of the diagnostic decisions that are made.
That is, apart from improving accuracy, there is a need to
roduce decisions that are in tune both with the situatignal
babilities of the alternative diagnostic conditions and with
e benefits and costs, respectively, of correct and incofrect
Heisions.

Methods exist to achieve both goals. These methods de
agH a measurement technique that separately and independ
eg’ antifies the two aspects of diagnostic performance, nan
r S accuracy and the balance it provides among the var
ossible types of decision outcomes. We propose that toge
e method for measuring diagnostic performance and
ethods for improving it constitute the fundamentals of a ¢
Hhce of diagnosis. We develop the idea that this incipient
:féi line has been demonstrated to improve diagnosis in se
‘fi&ds, but is nonetheless virtually unknown and unused
p! thers. We consider some possible reasons for the disp
Btween the general usefulness of the methods and their
general use, and we advance some ideas for reducing
u§ arity.
bY $o anticipate, we develop two successful examples of th
Si&thods in some detail: the prognosis of violent behavior
e diagnosis of breast and prostate cancer. We treat br
Ier successful examples, such as weather forecasting
admission to a selective school. We also develop in detail
amples of fields that would markedly benefit from apq
tl&%‘iion of the methods, namely the detection of cracks in
NBlane wings and the detection of the virus of AIDS. Briefly
t feated are diagnoses of dangerous conditions for in-flight|air-
lI%Pgn‘t and of behavioral impairments that qualify as disabilities
B{m;%dividums.
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bne As implied, there are four possible decision outcomes in
n@eo-alternative diagnostic task under consideration: two (
Dsisct and two incorrect. In one kind of correct outcome,
sltondition of interest is present, or “positive,” and the decis
creorrespondingly positive. Such an outcome is termed a “t
positive” outcome. For example, cancer is present and the
diologist says it is. In the other kind of correct outcome,
rse@ndition is absent, or “negative,” and the decision is props
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negative. It is called a “true-negative” outcome. For example,
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cancer is not present and the radiologist says it is not. S
larly, of the two incorrect outcomes, one is “false-positiy
(condition absent, decision positive) and the other is “fa
negative” (condition present, decision negative). Accur
may be increased by increasing the relative frequency of on
the other of the two types of correct decisions, or equivaler
by decreasing the relative frequency of one or the other of
two types of errors.

Let us be explicit about why both correct and errone
decisions occur. The reason is that the evidence available
decision is usually ambiguous. According to a well-establis

as being represented by a value along a single dimension,
high values tending to be associated with the positive diag

negative alternative. For example, a high pressure in the e
usually associated with glaucoma, and a low one not. But
tendencies are merely that; low values of evidence can n
the negative alternative. The distribution of the degrees of
dence produced by the positive condition overlaps the di
amount of overlap between the two distributions—that is,

noses are not certain; errors will occur.

ally in Figure 1. Concretely in the figure, the problem is
distinguish eyes with glaucoma from normal eyes and the

NORMAL ’/ DISEASED

Frequency or Probability

P(TP)

t f
20 30
Amount of Pressure

pressure as measured in the eye) for the negative (normal) and
continuum occurs for the negative and positive diagnostic alterna

An illustrative decision threshold is shown at 30 on the evidence s

efigure shows the pressure values to vary along the evid
seontinuum from O to 50. The two distribution curves show
a@robability (the height of the curve) that each value will ocq

pieoma vary from 10 to 50. Hence, the two distributions
foradues overlap between 10 and 40. Those values are inher,
heroblematic; they can arise from either a diseased or normal
model of the process, we may think of the degree of evidg

n@sddence—distributions with less overlap—by developing
tic alternative and low values tending to be associated with
yeakevant diagnostic data. Calledtuarial techniquespr statis-

pigcases with known outcomes to determine which pieces o
ragnostic information, or which “predictor variables,” are r
e@vant to a given diagnostic decision and to what extent (n
stdiagnoses depend on more than one variable as in our

theless arise from the positive alternative and high values f

bution of the degrees produced by the negative condit]
Hence, the accuracy of a series of diagnoses depends onrtbges, a SPR accepts case-based values of the variable
trembines them, with appropriate weight given to each, to ¢
inherent confusability of the two alternatives. In sum, diaghe best possible assessment or summary of the available

This conception of the diagnostic process is shown pictpgvidence as an estimate of the probability that the diagng

evi-

Fig. 1. Probability distributions of amounts of evidence (here, units
tive (diseased) diagnostic alternatives. Each value on the eviden
with a probability equal to the height of the curve for that alternati

meaning that values of 30 or greater will elicit a positive decisi
That threshold yields the false-positive and true-positive probabilifi
P(FP) and P(TP), as indicated by hatch marks. The two probabili
are equal, respectively, to the proportions of area under the curves
lie to the right of the decision threshold. They vary together when

ndience is the amount of pressure measured in the eye

drorconnection with each of the diagnostic alternatives. 7
tifigure reflects (only for our illustrative purposes) a distributi
tbépressure values at the left, observed for normal eyes, ran

from 0 to 40. Meanwhile, pressure values associated with gl

nceWe describe a class of computer-based decision-sup
witbthods that increase accuracy by providing a better qualit

ttree diagnostician statistical combinations and implicationg

ttieal prediction rules(SPRs), they use statistical analyses

aroma example). As applied to each case in subsequent

dence. Many SPRs are programmed to evaluate and expre

t@ondition of interest is present.

Enhancing the Utility of Decisions

Even though the accuracy of a given type of diagnosis
particular setting may be constant, depending on the qualit
evidence available and the ability of the diagnostician,
utility of the decisions can vary. In some situations, posit|
decisions should be more frequent than negative decis
perhaps (1) because the probability of the positive diagng
alternative is high (for example, most patients at a certain cl
will have glaucoma), or perhaps (2) because the value of b
correct when the positive alternative is present is very h
(treating glaucoma immediately may be very efficacious).
ternatively, some situations will favor negative decisions (gl

not turn up many instances of the disease). We assume,
@ver, that the diagnostician will not achieve more decision
epBC?éé or the other kind when more are indicated simply by m
iyog more of them on randomly chosen trials, irrespective of
valegree of evidence on a trial. Rather, the diagnostician
addrive for consistency, making the same decision each time
Prany given evidence value, and hence vary deliberately
'ﬁxgrgount of positive evidence that will be required to issu
ggitive decision.
the Given the picture in Figure 1, the decision maker can m

threshold is varied.

decisions most consistently by setting a cutpoint on the ¢
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tinuum of evidence values, such that values above the cutpdinb probabilities, they offer only redundant information ahd

lead always to a positive decision and values below it |
always to a negative decision. The cutpoint is calleteision
threshold.A decision threshold is illustrated in Figure 1 by t
dashed vertical line, at 30 pressure units. That cutpoint ca|
adjusted up or down to produce more or fewer positive d
sions in a rational way, e.g., to make additional positive d¢
sions in connection with higher amounts of positive eviden
In the preferred diagnostic procedure, adjustments of the
cision threshold are made to produce the best ratio of pos
to negative decisions and ultimately to produce the best
ance among the four possible decision outcomes for the
ation at hand, and hence to maximize the utility of the se
decisions made over time.

We must make a fine distinction, but a critical one. We haveccurs, the more lenient the decision threshold should be

spoken of events called “decision outcomes,” which janet

occurrences of a particular diagnostic alternative and a par
lar decision—for example, a positive alternative and a posi
decision occur together. In addition, we need the concept
conditionalevent, which (for our purposes) is a particular @
cision made when, or given that, a particular diagnostic al
native occurs (past or future). Both joint and conditional eve
will occur in four ways, depending on the combination

positive and negative alternatives and decisions; each way/
have a probability associated with it. There are two cen
probabilities for us, as will be seen shortly: the conditio
probability that a decision is positive given that the posit
diagnostic alternative occurs, which we call simply the “try
positive probability,” and denote P(TP); and the conditio

alternative occurs, which we call the “false-positive proba
ity,” and denote P(FP).

It is now widely recognized, for a diagnostic process
constant accuracy, that adjusting the decision threshold
exhibit a fundamental correlation between P(FP) and P(TPH
the threshold is made more “lenient” (requiring less evide
for a positive decision to be made) to increase P(TP),
P(FP) will also inevitably increase. More “yes” decisions
be correct/true with the more lenient threshold, but more

more “strict” to decrease P(FP), then P(TP) will necessaril
down.

cack shall generally not attend to them.
We describe later a formula that shows where the decision
neéhreshold should be set to maximize the utility of a decisjon
nrecess, to maximize a decision’s benefits, on average, relative
e¢o its costs. The formula takes into account the relative prob-
>@bilities that the positive and negative diagnostic alterna-
ceves will occur in the situation at hand, independent of the
alecision process. In general, the higher the probability of
tithee positive alternative, the more lenient the best setting ofl the
bdkcision threshold (and alternatively). The formula also takes
sitoto account the benefits of being correct (in both ways) and
I tie costs of being incorrect (in both ways). In general, the more
important it is to be correct when the positive alternat|ve
and
alternatively).
licu-Although several experimental uses and some routine
livé statistical prediction rules exist to demonstrate increase
otlmgnostic accuracy, there have been relatively few attemp
eevaluate methods for choosing the best decision thresk
tedtowever, analyses of certain diagnostic tasks described in
naésticle make clear the large potential gain to be provided
ofhreshold-setting methods.
will
tral Scope of Our Discussion
nal We begin by further identifying the two particular diagng
vec tasks that will be presented in detail to illustrate impro
lenents in accuracy and also the two tasks chosen to sug
haiprovements in decision utility that can stem from appro

uses
sin
ts to
old.
this
by

nceeasures are based on the now-common “ROC” techniqu
tarm abbreviated from “receiver operating characteristic”
ilused in signal detection theory, a theory developed for

g8wets, 1996).
We proceed to describe the functioning of SPRs: first,

sion threshold (as hatched) and P(FP) is equal to the propaortsatond, how SPRs combine case-specific values of the yari-
of the area under the negative (left) distribution to the right @bles to estimate a diagnostic probability for any given case.
the threshold (cross hatched). It is clear that those proportiofte then discuss optimal ways to set a decision threshold.
ate areas will increase or decrease together as the thresliilgnostic illustrations follow. Our concluding sections, |as
point moves. The conditional probabilities of the other tiweuggested earlier, present possible reasons for the limited use
decision outcomes, true-negative and false-negative, are tiichese decision-support methods and possible ways to extend
complements of P(TP) and P(FP), respectively, and equal their use.
proportionate areas under the distributions to the left of |the Our intent is to promote a national awareness among| the
threshold. Hence, they will also vary when the threshold public and its policy makers of the potential for these decisipn-
moved. However, because they are complements of the mairpport methods in many important areas. Our orientatio

3
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htbifications” (sand-like grains); or (c) a change from a previgus
brmammogram. Objective variables include demographic, clini-
ysial, and biological data, such as: (d) patient’s age, (e) having a
apickvious biopsy or not, and (f) presence of a malfunctioning
cancer-suppressing gene. Clearly, all relevant pieces of infor-
mation must be combined in a constructive way to make their
appropriate contributions to the sum of evidence.

toward affecting policy and practice. We do not treat inheret
statistical or psychological topics, so we do not make a c
parative analysis of different types of SPRs nor an anal
of various techniques people use in making inferences
decisions.

Four lllustrative Diagnostic Tasks

Merging information into a diagnostic probability

The sum of evidence often, and with the SPRs of interest to
4is, boils down to an estimate of a probability: the probability
SHat a given condition exists (e.g., breast cancer) or that a
Ple¥ent will occur (e.g., a violent act). Statistical procedures may
dpe used to ensure that each piece of evidence contributes to the
"Sver-all probability estimate in proportion to its diagnostic
pméight or predictive power. These procedures also ensure| that

' oranE e : 38 item of data contributes to the degree that its information is
netic resonance (MR) imaging is used to determine the extgiiependent of that in other items, because including the same

to which prostate cancer has advanced. Although these g mation twice would artificially double its impact and o
amples may illustrate improvements in setting decision thresh

- el : *Slstort the final estimate of probability.
olds as well as improvements in diagnostic accuracy, they are
focused here on experimental demonstrations of mcreasedSetting a decision threshold on the probability continuu
accuracy. A probability estimate, of course, is merely that. It is| a
continuous variable that must be converted into a decision
Increasing utility about the case at hand, usually a choice between two diagnostic
Two other diagnostic tasks will provide analyses of thalternatives, such as cancer present or cancer absent. A thresh-
benefits of optimizing the placement of the decision thresholdid probability of .05 that cancer is present may be deemed
(1) A blood test is used to screen individuals for the presgnappropriate in diagnosing breast cancer. A higher probahility
of the human immunodeficiency virus (HIV) of the acquireaf cancer will then lead to some action or actions, such as

Increasing accuracy

Two diagnostic tasks will illustrate in some detail the ¢
pability of SPRs to increase diagnostic accuracy: (1) A p
chiatrist or clinical psychologist seeks to determine wheth
particular patient in a mental health facility will, if discharge
engage in violent behavior; (2) A radiologist must determ
whether or not a woman being examined with mammogral
has breast cancer. A parallel task is considered in which n

immunodeficiency syndrome (AIDS); (2) An imaging testadditional imaging examinations (perhaps enlarged X-rays or
cidtrasound), earlier than usual re-examination by routine mam-
mography, or biopsy. A more lenient threshold, such as a pfob-
ability of cancer of .02, will find more cancers but at the
expense of telling more women who do not have cancer fthat
they might have cancer, which will cause duress and likely
require further costly examinations. This vignette illustrates
our point that adjusting the decision threshold will affect both
P(FP) and P(TP) while a constant accuracy is maintained| By
way of example, those two probabilities may be .20 and |80,
respectively, for the stricter threshold@t= .05; and .50 and
h&5 for the more lenient threshold@at= .02. The more lenien
vénreshold therefore detects correctly an additional 15 of
suyiresent cancers (from 80 to 95) at the price of “detecti
aimcorrectly an additional 30 of 100 cancers not there (from
exe 50). The question of which threshold is better calls for
aanalysis of costs and benefits of the sort we discuss later

e.g., an ultrasound display, is used by an electronics techn
to detect cracks in airplane wings.

COMPONENTS OF DIAGNOSTIC
DECISION MAKING

Characteristics of Diagnostic Tasks

Several or many pieces of relevant information

A fundamental characteristic of most diagnostic tasks is
several variables enter the evidence for a decision. Some
ables are “objective,” i.e., demonstrable facts; others are “
jective,” i.e., include at least an element of a hum
diagnostician’s judgment. In the prognosis of violence, for
ample, objective items with predictive power include (a) pr

relevant to violence diagnosis include clinical judgments ab
(d) psychopathy, (e) schizophrenia, and (f) substance abu

Similarly for breast cancer, roughly 20 variables may we
in a radiologist’s diagnosis. Again, some are subjective, §
as the interpretation from visual impressions of the mam
gram of features that may seem to be present. Example

arrests, (b) employment status, and (c) age. Subjective itemsAs a refinement of the foregoing point, note that the di

100
.]g"
20
an

nQ-
cified
the

onibstic question may be framed as a choice between a spe
saction and no action, rather than as the choice betweer
gbresence and absence of a condition. Also, there may be more
utthan one action available, perhaps a set of graded actiong cor-
meelated with the size of the probability estimate. In such a
ssefting, one might simultaneously set two or three decision

such features include (a) a “mass” (tumor or a cyst); (b) “

4

alhresholds on the probability variable.
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Merging Objective Data and Subjective Judgments

Objective data

For several decades in certain diagnostic fields, rele
items of objective data (numerical or categorical) have b
combined by statistical methods to provide an estimate
diagnostic probability. In some cases, the method of comb
tion is relatively simple; such a method might consist simply
counting how many of a set of listed symptoms of a disease
present, for example. In other cases, multivariate statis
analysis may merge predictor variables in a more sophistic
way, taking quantitatively into account their predictive pow
and the degree to which they provide predictive power in
pendent of the other variables considered.

Subjective judgments

For several decades, the validity of a SPR’s probab
estimates, or the accuracy of its diagnoses, as based sole
objective data has been compared and contrasted to the
mates or accuracy of decisions based largely on subje
judgment. In some settings, principally in psychiatry and cli
cal psychology, actuarial instruments have been shown rej
edly to be more accurate than clinical judgment (Meehl, 19
Dawes and Corrigan, 1974; Dawes et al., 1989), leading s
investigators to recommend that the clinician’s judgme
diagnosis be totally supplanted by the statistical device (¢
Grove and Meehl, 1996; Quinsey et al., 1998). In other
tings, such as clinical medicine or weather forecasting, th
has been less of a tendency to consider objective methods
human judgments as competing alternatives. In such sett
the prevailing practice is to supply the objective metho
output to the human diagnostician who then makes the f
decision.

Subjective data

In a parallel to the procedure of calculating a probabi
based on objective data, one can merge judgments about
jective variables by using the same statistical apparatus

with objective data. This procedure might begin with the | Y

man suggesting as relevant certain items of evidence,
perceptual features of a medical image, that may turn ou

analysis of outcomes in proven cases to be of diagnostic|im
portance. Diagnosticians and methodologists can then V ey

together to devise apt names and rating scales for the i
retained. Finally, the human diagnostician supplies the rat
for each item for a given case under diagnosis that are
merged statistically into a probability estimate (e.g., Getty
al., 1988; Seltzer et al., 1997). A similar approach has b
taken to decisions about prison parole (Gottfredson et
1978).

Combining objective and subjective data statistically
Still a third possibility is to combine both objective ar

probability estimate it provides or supply the estimate to
human diagnostician for final judgment (Getty et al., 1997)
the latter event, the SPR’s result can be considered by
acﬂ‘tslgnostician as a kind of “second opinion.” The exact nat
EBF what the human can or should add at that point may noj
Pt@ally clear. However, the human might opt for a higher
NBiver probability than the rule estimates, depending on w
e or she knows about the composition of the rule and
Y&ticulars of the case at hand. We will return to this qu
1%@8n, with specifics developed in our illustration of violen
A6 gnosis.
€' The diagnosis of breast cancer by mammography seen
dB'e consistent with constructing an SPR on the basis of all o
evidence while leaving the human in control. The human
this instance, is often essential to supply perceptual data t
SPR that is beyond the capability of machines to gene
IIB(bjectively; humans continue to see certain critical feature
WrRitical images that computers fail to see. But humans
%ﬂhcede to computers superior ability to see and assess ¢
3tb/t?1er features in an image and further, superior persisten
Nkall exhaustively for examination of every relevant feature
Dedlary case, without succumbing to “satisfaction of search”
Stbr a few salient features are noticed. Computers, of cou
CPe€ain more precisely the numerical values assigned to the
Néral items of information that are considered for each ¢
*-fheluding those assigned by the human. And the comput
S@ftatistical algorithm exceeds by far the human’s capability
& 8lculate weights and to merge the calculated values optim
5 fiEontrast to the position sometimes taken that the SPR sh
N&Fpplant the clinician, however, such as in the prediction
Ej'\ﬁolence, we sense little sentiment to replace the radiologis
iN2ISPR or to suppress any further, final opinions he or she
have after the SPR has had its say.

Balancing objective and subjective contributions
< The view governing this article is that the appropriate r
o%?{_he SPR vis a vis the diagnostician will vary from o
f%% text to another, and will be disputed in some. Nonethel
he ability of SPR techniques to increase diagnostic accu
stiould be ascertained in diagnostic settings for which ft
em to have promise and their enhanced accuracy shou
vu%ed wherever it can be supplied in a cost-effective man
e roles and interactions of human and computer that
st appropriate can be determined for each diagnostic se
t naccordance with the accumulated evidence about W
r\eﬁtorks best.
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Diagnosis, as we have seen, is intrinsically probabilistig
statistical. We describe next the probability theory and sta
dical tools that are used to measure and to enhance diagn

subjective evidence in a single SPR and either use directly
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article’s theme, an appendix presents basic probability ¢
cepts in somewhat greater depth for the interested reader.

o
7

9 -
Measures of Accuracy and the Decision Threshold 8 |
The two independent aspects of diagnostic performaneg‘ 7

accuracy and decision threshold, should of course be reflgcte§

in separate, independent measures. Two such measurgs @e_e 4

provided by a ROC graph where “ROC,” as mentioned, stgnde-

for “receiver operating characteristic.” The ROC’s origin (in € ST
J

the half dozen or so measures developed in various diagn
fields are intended to be measures of accuracy; however they
vary in a predictable, but unappreciated, way with changes|in g
the decision threshold. Because the decision thresholdisnot o 1 2 3 4 5 6 7 8 9 10
assessed in connection with these accuracy measures, the) False-Positive Probabilit

confounded by changes in the threshold and are unreliablg to y
that extent. Their lack of a companion measure of decision

threshold ignores an important aspect of performance_ Fig. 2. lllustrative ROC (receiver operating characteristic), for a par-
ticular accuracy. True-positive probability, or P(TP), is plotted agajnst
false-positive probability, or P(FP). The curve extends from the loywer
The ROC graph ) ) o left corner in an arc of decreasing slope to the upper right cornef, as
The ROC graph is a plot of the two basic probabilities e decision threshold is varied from strict to lenient. Two selegted
have emphasized in the previous discussion—the probabilitigsnts on the curve, where the curve has slopes of 2 and 1/2, respec-
that the decision is positive when the condition of interest fyely, are identified to indicate how the slope of the curve at any
present, or positive, and that the decision is positive when (ANt symbolized a5 may be used as a measure of the decision
" . . feshold that produced the point.
condition is absent, or negative—denoted P(TP) and P(FP).
They are calculated from proportions of observed frequencie . .
as displayed in a two-by-two table of data, as described in tﬁfZP(FP) and P(TP.) represent the same or different accuracies.
Appendix. or example, earlier we exemplified in the context of mam-

. . _\nography one pair of these values as .20 and .80 and anpther
The ROC graph, specifically, is a plot of P(TP) on the y-a S ir as .50 and .95. Do those two pairs represent diffefent

and P(FP) on the x-axis, and shows how the two quantities . I diff t decision threshold |
together as the decision threshold is varied for a given a geuracies @S. We'l as ditterent decision thresho s) or only
Ifferent decision thresholds with the same accuracy? [The

racy. An example of a ROC is shown in Figure 2. The t OC is needed to show if they lie on the same ROC, fdr a

probabilities vary together from the lower left corner of the. : . .
graph in the form of a curved arc to the upper right corner, Jjven accuracy, or on different curves, representing higher|and

the far lower left both probabilities are near 0, as they woul 6%wer accuracy as described shortly.
for a very strict decision threshold, under which the diagnos-
tician rarely makes a positive decision. At the far upper right Measure of the decision threshold, S
both probabilities are near 1.0, as they would be for a very Because the ROC’s curve rises with smoothly decreasing
lenient decision threshold, under which the diagnostician| alope, the slope of the curve at any point along the curve
most always makes a positive decision. In between the cuserve as a measure of the decision threshold that produces that
rises smoothly, with a smoothly decreasing slope, to represenint. This measure is denot&dThe slope approaches infinit
all of the possible decision thresholds (for a given accuracyt the strictest threshold, or lower left corner, and 0 at the most
Hence, the position of the curve (in the square) is independéstient threshold, or upper right corner. Practically obseryved
of whatever decision threshold is chosen in a particular taskdicision thresholds, however, are well within the graph and yary
should be noted that the curve shown in the figure is idealizeicom about 5 for a relatively strict threshold to 1/5 for a relatively
Actual, empirical ROCs will vary somewhat in form, thougHenient threshold. lllustrative thresholds at valueSequal to 2
usually not by much (Swets, 1996, chapter 2; Hanley, 198&nd 1/2 are shown in Figure 2. It can be seen that the threghold
Note, fundamentally, that if an empirical ROC is not avdilatS = 2 is relatively strict; the positive decision is made rarely
able, one would not know whether two different observed paiesd both ROC probabilities are relatively small (see dashed

electronic signal detection theory, its wide use in psychologyz 4.
for sensory and cognitive processes, and its wide and grown§ :
use in diagnostic fields are described elsewhere; described i§ 3 | |
h me publication are the inadequacies of measures |nét ! S=SLOPE AT
the same p quacies : . OPERATING POINT
derived from a ROC (Swets, 1996). Suffice it to say here that 2 1 [ (Two lllustrative Values)
|
|
|
|
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lines). A threshold a§ = 1/2, on the other hand, is lenient ahdhe accuracy. That is, the accuracy is greater when P(TP) is

produces fairly large probabilities of a positive decision.

Note that any value o8 can be referred back to a cutpoi
on the evidence or decision variable, however that variab
expressed, e.g., as an observer’s rating, a probability, or s
physical quantity. Indeed, the value ®fs identical to a value
of a point along the evidence continuum when the continy
is quantified as the so-called “likelihood ratio.” This is the ra
of the probability that a given degree of evidence will ar
when the diagnostic alternative is positive to the probabi
that the degree of evidence will arise when the diagno
alternative is negative. It is thus a ratio of the heights of the
overlapping distributions of degrees of evidence as show|
Figure 1. (Notice in the figure that the positive distribution
roughly twice the height of the negative distribution at 30
the pressure variable, and So= 2 corresponds to a thresho
set at 30. The height of the positive distribution is roug
one-half that of the negative distribution at 20 on the press
variable, and s& = 1/2 corresponds to a threshold at 2
Other measures of the decision threshold are sometimes
ferred toS but it, as will be seen, lends itself to calculation
the optimal threshold.

Measure of accuracy, A
Figure 3 shows several illustrative ROCs, which repres
different levels of accuracy. The higher the curve, the gre

True-Positive Probability

3
False-Positive Probability

4 5 6 7

Fig. 3. lllustrative ROCs (receiver operating characteristics), for f

levels of accuracy. Each curve is labeled by its area measuneflq;m “
accuracyA. The measurd is defined as the proportion of the graph's .

area that lies below a given curve. Valuesfofange from .50, at the

higher for a given P(FP). Referring to Figure 1, the curve

ntoe higher and the accuracy greater when the overlap betyeen
etie two probability distributions is less, when the diagnostic

oafternatives are less confusable. Hence, the accuracy of
nosis is conveniently represented by the proportion of [the
ugnaph’s area that lies beneath a given curve. This area medsure,

tidlenotedA, ranges from .50 for accuracy equal to chance, up to

s&.0 for perfect accuracy. Specificallf, = .50 for a ROC lying
iglong the diagonal that runs from lower left to upper right,

stichich is a ROC signifying accuracy no better than chance

waerformance; that is, P(TP) is no higher anywhere than P(FP).

nAn= 1.0 for a ROC that follows the left and upper axes, which

iss a curve that signifies perfect accuracy; that is, P(TP) is|1.0
ofor all values of P(FP), including 0. Some intermediate valties
dof A are shown in Figure 3. (The reader can determine visually

hiwhether the two pairs of ROC probabilities mentioned earljer,
5Ur20, .80) and (.50, .95), lie on the same curve or different
D.gurves.)

preAnother way to think ofA may subjectively help to calibrat
oifts various values. Consider a series of trials in which a fan-
domly selected pair of diagnostic alternatives is presented on
each trial—one alternative always positive and the other| al-

useful ROC programs can be accessed via the website:
www.radiology.arizona.eduimo-/rocprog.atm.

Constructing an empirical ROC
The simplest and most efficient way to construct a ROC to
represent the accuracy of a given diagnostic system is to work
directly with the graded or continuous output of the system.
Thus, a radiologist may give a rating of confidence th
PUesion/disease is present, say, on a 5-category scale ranging
highly confident positive” to “highly confident nega-
tive.” Or the radiologist, or SPR, may give an estimate of the
peobability of a positive condition (effectively a 100-categ

(solid) diagonal line that corresponds to chance accuracy, up to
for perfect accuracy.

VOL. 1, NO. 1, MAY 2000

scale). Most diagnostic systems give such a continuous |out-

7



PSYCHOLOGICAL SCIENCE IN THE PUBLIC INTEREST

Improving Diagnostic Decisions

categories, approximates the simultaneous setting of a rangéoiexA as defined in preceding paragraphs. In general, there is
thresholds. One can picture several thresholds set simulitile to choose among the several methods as to the goodness
neously and spread along the evidence variable in Figure| with which they select variables and weights, and hence their
In analysis, the investigator can adopt the multiple decisi@etcuracy as a decision maker or aid, so the choice among them
thresholds afforded by the categories used by the diagnosticiaften devolves to their relative effectiveness in different prpb-
or taken from the categories defined just for purposes of analgm settings and the convenience with which they are handled
sis. So, if the variable is probability, the investigator can [s€Gish, 1990; Richard & Lippman, 1991).
thresholds for analysis, say,@at=.90,p =.80,p =.70, and so
forth, and compute the ROC coordinates P(FP) and P(TP) forValidating statistical prediction rules
outputs that exceed each successive threshold: the strict ane athe accuracy or predictive validity of SPRs can be assessed

diagnostic system or task at hand.

How Statistical Prediction Rules (SPRs) are Develope

A SPR is constructed by means of statistical analysi
quantify the power of candidate predictive variables to
criminate between the positive and negative instances of thygerate and the reliability with which it can be assessed, [and
diagnostic alternatives under study. Though not true of| alivestigators can often only obtain smaller samples than they
methods, variables may be added to a SPR and assigned twveinld like. Under “statistical” validation, modern computer
respective weights in a stepwise fashion; that is, a particutechniques are used to permit all 200 cases (in this example) to
candidate variable is selected next for the mix if it adds trenter both training and testing of the SPR, whereas apptoxi-
largest increment to the power of the variables already|gmating the results of cross validation. These techniques include
lected, and then it is weighted according to the size of thatresampling method called “bootstrapping,” which is con-
increment. In this way inter-correlations among variables [adeicted to estimate the standard deviation or confidence interval
neutralized; each subsequent variable is assessed accordingf ® SPR’s accuracy (Efron, 1982; Gong, 1986). In our
its independent, additional predictive power. The stepwise prample, 50 to 200 random samples of size 200 would be taken,
cedure is repeated until the investigator decides that additiomath replacement of each item before another draw, from|the
variables are adding little of practical value and then the [eget of 200 cases.
isting set can be regarded as necessary and sufficient. An alternative to a sampling procedure is to be systematic

The SPR, as a set of variables and weights, is able to furazxd exhaustive in varying the cases that enter training |and
tion as an aid to diagnosticians because for each new [césgting. In the method called “leave-one-out,” for example, 200
submitted to it, essentially as a collection of values for thdifferent SPRs would be constructed, each SPR based on 199
SPR’s variables, it gives an estimate of the probability of pcases and leaving out a different, single case. Each SPR ig then
currence of the positive instance of the two diagnostic alternapplied to give a diagnostic probability for the single case |eft
tives. (This is an “inverse” or “Bayesian” probability asout of its own construction. In our experience with medical
defined in the Appendix.) The SPR can function directly asimages, the SPRs developed and tested on twice the number of

decision maker if supplied a decision threshold. (Note
some computer programs for developing an SPR supply or
categorical decision, rather than a probability, that is base
some often unexplained decision threshold, perhaps one
maximizes the number of correct decisions. Such progr
show an insensitivity to the need to set different threshg
appropriate to different settings.)

Alternative methods

Several statistical methods have been used to develop S
including “discriminant analysis” (e.g., Lachenbruch, 197
“logistic regression” (e.g., Hosmer & Lemeshow, 1989), 3

hatises (not saving half for testing) are appreciably more ropust
lypa several statistical dimensions. The attrition in the inde
d stemming from a statistical validation procedure has been
thbout two or three percent. (One should remember, how-
ameger, that application of an SPR to samples differing in sub-
Idsantial respects from the original sample will produce lowered
accuracy.)

Determination of truth
PR<learly, a valid and accurate SPR will rely on adequately
byalid assessments of the occurrence, or not, of the conditi
nidterest on each diagnostic trial. The adequacy of thes

“artificial neural nets” (e.g., Hertz et al., 1991). They can

8

bealled “truth data” will also affect the validity of evaluations
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diagnostic accuracy. That is to say, ideally one should ki
with certainty for every case whether it is positive or negati
otherwise the score assigned to a diagnosis, right or wrong,
not always be correct. Incorrectly classifying cases in

racy in general. However, diagnostic settings vary a good
in the validity of the truth determinations they can supp
ranging from good to poor.

Medical diagnosis gives truth determinations generally
garded as quite good. The “gold standard” is surgery or
topsy followed by analysis of tissue. Still, surgery a
pathology are not perfectly matched in space or time:
image interpreter and the pathologist may look at differ
locations and a pathological result observed might not h
been present when the image was taken. Moreover, the
thologist’s code or language for describing lesions differs fr
the radiologist’s. Further, this pathology standard is app
primarily to positive cases (the cases that tend to reach

végr setting can be specified by computing the optimal valug

trkefined, decision goal. Computing the optimal valuesa$ a
sample will depress a SPR’s accuracy and measures of acmncept that should advise diagnostic decision making in ¢

Thkeons, without regard to the balance of true-positive and t

dvest decision threshold for a given diagnostic task in a parf

vll “Optimal” means the best threshold for a given, we

deabl, but is little known or used.
ly,

Alternative decision goals
re- Several different decision goals can be defined, all see
a¢r maximize some quantity or other. One simple goal is
Néhaximize the over-all percentage of correct diagnostic d

BRkgative decisions (not a very useful goal for having igno
aMfat balance). Another simple goal is to maximize P(TP) fd

ARed P(FP); this goal may be used when it is possible to s
Ofat P(FP) of some value, e.g., .10, is acceptable and tk

ieffeater value is intolerable.
that

point); negative truth is often based necessarily not on pa
ogy but rather on years of follow-up without related sympto
Aptitude testing also gives reasonably good truth: One

determine reliably whether the student graduates or whet

the employee stays on the job. In weather forecasting, on
measure amount of precipitation in limited areas, but not k
if the weather event occurred throughout the area of the f
cast. Panel judgments of the relevance of documents retri
by a library query system may be generally adequate, but

validity may depend somewhat on how technical the language

is in the field of the query. Truth in the field of polygraph |
detection is surely problematic: Judicial outcomes may cat
rize incorrectly and even confessions may not be true.
We mention some other issues related to truth determin
to indicate further the need for care. Truth determinat
should not be affected by the diagnostic system under te
for example, results of MR imaging help determine the posi

or negative statuses of medical cases when MR is under e %{

ation, because one wishes to use all available evidence i
effort get the best truth estimates, then the MR result for
case will be scored against itself, in effect, and its meas
accuracy will be inflated. Also, procedures used to estah
truth should not affect the selection of cases for training
testing SPRs; if pathology is the sole standard for selec
medical cases, then the case sample will tend to be made

cases that reach that advanced stage (quite possibly case I'—tB
show lesions relatively clearly on diagnostic imagery), wh ne

will tend to be the easier cases. More detail on issues conc
ing the definition of truth data, and the improperly select
sampling of cases, is given elsewhere (Swets, 1988).

Methods for Optimizing the Decision Threshold

We discussed earlier how the slofat any point along an
empirical ROC can be taken as a measure of the deci

hOI'A general decision goal
S- The most general decision goal is defined in terms of {
C@Ruational variables: (1) the prior probabilities of positive a
[dgative diagnostic alternatives, and (2) the benefits of the
es of correct decision outcomes and the costs of the

q pes of incorrect outcomes. This decision goal attempt
r

aximize the “expected value” of a decision, i.e., to maxim
Ytpsdpayoff in the currency of the benefits and costs. It can
J{pressed in a formula, as seen below.

To develop needed notation, we speak of the presence g
of the diagnostic condition of interest as the “truth” about
% Wndition and designate the two truth states as T+ (condi
present) and T— (condition absent). The prior probabilities
Udse truth states, i.e., probabilities before a decision or “I
Yites,” are denoted P(T+) and P(T-). The positive and nege
decisions are symbolized as D+ and D-.
V€ | et us denote benefits of decision outcomes as B, and g
4°C. Now, for the benefits and costs associated with the |
Nd¥lurrence of a particular truth state and a particular decis

=y
L)

e

(0

_rﬁﬁd decision agree, and C(T- & D+) and C(T+ & D-) f
I'ﬁlasts, when they differ.

O The formula to specify the optimal decision threshold
URgs general goal of maximizing expected value was derive
J‘i’h%fcontext of signal detection theory by Peterson, Birdsall,
SHBRY1954). They showed (with more algebra than we wan
6 peat) that the value & that maximizes expected value
eéQbressed as the product of (1) the ratio of prior probabili
Vénd (2) a ratio of benefits and costs, as follows:

__P(T-)_B(T-&D-)+C(T-&D+)
Sloptimal = 5 5 X B T g D4y + C(T+ & D)

have B(T+ & D+) and B(T- & D-) for benefits, when truth
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threshold that produced that point. Here we observe that
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hence the optimal decision threshold, can be determined. W
lacking the ability or desire to estimate individual benefits g
costs, one can settle for taking their ratio. Note that the
merator of the equation refers to negative diagnostic alte
tives, T-, and the denominator to positive diagnos
alternatives, T+. So it is possible, for example, that we wo
twice as rather be right when a positive alternative occur
when a negative one does, perhaps in predicting se
weather. Then the ratio of benefits and costs is 1/2. For e
probabilities in this cases(optimal) = 1/2 (and the decisior]
threshold is rather lenient). In equation form:

50 1
—x=-=1/2.

Soptimal) = 50%3

1.0 and the prior probabilities alone determine the opti
threshold; for example, if P(T+H .33 and P(T-}.67, then

values ofSfall on a ROC.

EXAMPLES OF ENHANCED DECISION MAKING

We proceed now to two prominent examples of how ac
racy in diagnosis has been increased by application of st
tical decision rules: first prognosis of violence committed
individuals, and then image-based diagnosis of breast and
tate cancer. Also in this section, we analyze for two diagno
fields how decision utility could be increased by quantitat
consideration of the decision threshold: first in the detectiof
the virus of AIDS, and then in the detection of flaws in me
structures, especially cracks in airplane wings.

Increased Accuracy

Predicting violence

Violence risk assessment is a critical and expanding pa
the practice of psychiatry and clinical psychology. “Dang
ousness to others” replaced “need for treatment” as a piy
criterion for involuntary hospitalization of people with ment
disorders in the 1960s. Tort liability was first imposed on ¢
nicians who negligently failed to predict their patients’ vi
lence in the 1970s. Statutes authorizing involuntary treatn
in the community for otherwise “dangerous” patients were
acted in many states in the 1980s. Risk assessments of vio
were explicitly mandated during the 1990s in the Americ
with Disabilities Act, which protects the employment rights
people with disabilities unless those disabilities result in
employee becoming a “direct threat” of violence to co-work
or customers.

Despite the pervasiveness of violence risk assessmen
research literature on the validity of clinical prediction h

ingessments, for example, found them to be modestly

5 ssssment and in recent years a number of relevant SPRs
véieen developed. We take two of them to illustrate this actue
giadn in the field of violence risk assessment.

If all benefits and costs are considered equal, then their raﬂi‘(]) IS

S(optimal) =2. Figure 2 shows where these last-mentionelf:

hmmisticated study of clinicians’ unstructured violence risk as-
ore
naecurate than chance among male patients and no more accu-

rmate than chance among female patients (Lidz et al., 1993). It

tiwas in response to such findings of low validity that many have
ulthlled for the use of statistical prediction in violence risk as-
have
rial

Violence Risk Appraisal Guiddhe most studied SPR fo
risk appraisal among criminal patients is the Violence
Appraisal Guide (VRAG) (Harris et al., 1993; Quinsey et
1998; Rice & Harris, 1995). A sample of over 600 men from
a maximum-security hospital in Canada served as subjects. All
had been charged with a serious criminal offense. Approxi-
nal
mi-
for
jed
vise
the
st-
is of
ores
e
da
he
on

r
isk

g,ately 50 predictor variables were coded from institutio
lles. The criterion variable to be predicted was any new cri
| charge for a violent offense, or return to the institution
a similar act, over a time at risk in the community that avera
approximately 7 years after discharge. A series of stepy
regression models identified 12 variables for inclusion in
final SPR, including the Hare Psychopathy Checkli
Revised, elementary school maladjustment, and a diagnos
C¥ehizophrenia (which had a negative weight). When the sc
AWSr this SPR were dichotomized into “high” and “low,” th
bYesults were that 55% of the group scoring high committe
PIR&W violent offense (115/209), compared with 19% of {
SE;‘Foup scoring low (76/409). Using a wide range of decis
Vfhresholds to calculate a ROC gavA mdex of .76, well above

' Ghance.
tal

Iterative Classification TreeMore recently, a SPR for as
sessing risk of violence among persons being discharged
acute psychiatric facilities has been developed by a g
sponsored by the MacArthur Foundation (Steadman et
2000), in a project that included one of this article’s auth
rt@M). A sample of over 900 men and women from three ¢
eihospitals in the United States served as subjects. None |
otaiminal charge pending. Based on a review of the patie
afiles as well as interviews with the patients, 134 risk fact
liwere coded. The criterion variable of violence was meast
oby arrest records, hospitalization records, patient self-repo
nehe report of a collateral informant, over a time at risk in ;I
enommunity of 20 weeks after hospital discharge.
encd variant of a “classification-tree” approach, which the
arMacArthur group called an Iterative Classification Tree (ICT),
ofvas used to construct their SPR. A classification tree reflects
am interactive and contingent model of violence, in that |di-
eishotomous (or trichotomous) classifications are made on indi-

vidual predictive variables in a conditional sequence, with epch
, thessification determining the variable considered next. This
aprocedure serves to tailor the scoring to the case at hand: it

rom
oup
al.,
ors
vil
ad a
nts’
Ors
Ired
t, or
he

been disconcerting for decades and remains so. The mos
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tatmws many different combinations of risk factors to classify
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a person as high or low risk, unlike a “main effects” lindat994) and now believe it hurts (Quinsey et al., 1998). OtHers
regression analysis, which applies the same risk factors tp ladllieve adjustment by the clinician is desirable (Hanson, 1998).
persons being assessed. Two factors are adduced to support the clinician’s option of
Risk factors identified for the ICT for given groups of paimaking an adjustment. One is “questionable validity general-
tients included a screening version of the Hare Psychopgatiagtion,” an issue that arises when using a SPR based on one
Checklist, serious abuse as a child, and whether the patient ywapulation to predict for another—for example, using the

gave aA index of .82. Figure 4 shows the paired values|dhe research—or vice versa. Although some evidence indigates
P(TP) and P(FP) that may be attained with=.82. that risk factors found in both the VRAG and the MacArthur
Such an accuracy level is relatively high for predicting hdCT are predictive of violence in diverse groups (see a review
havior and it suggests that any information loss that might Halsg Hemphill et al., 1998), attempts to generalize the validity of
resulted from the classification-tree approach of adoptingsame other SPRs for violence have not found success (Klassen
decision threshold (or two) for each individual predictive vgriand O’Connor, 1990).
able, rather than just for a final, combined variable, is not very The second factor used to support a clinician’s option to
large. This suggestion of small loss is consistent with anothedjust the actuarial prediction has been termed “broken|leg
study that compared classification-tree and logistic-regresgsicountervailings” (Grove and Meehl, 1996, following Meehl,
techniques in the emergency-room diagnosis of myocardi&d54). The story is simple: a SPR predicts with great accuracy
infarction; both methods gawk =.94 (Tsien et al., 1998). | when people will go to the movies and yields an estimate of
probability .84 that Professor X will go to the movies tomor-
Clinical vs. actuarial predictionThe question of whether of row. But the clinician has learned that Professor X has just
not a clinician’s making adjustments in the SPR’s probabilityroken his leg and is immobilized in a cast. The story could be
estimate (or categorization) helps or hurts the accuracy of pragken to be an analogue, for example, of the situation where a
nosis has been debated actively in the violence field. Tl&ect threat of violence by a patient to a named victim occurs,
VRAG developers once thought it might help (Webster et ahjthough such threats do not occur frequently enough to appear
as a variable in the VRAG or the MacArthur ICT. As to t
aptness of the analogy, interested parties have disagreed

1 O | 1 1 ! ! ! 1 } 1®-
. T T T T T T Tt g

9 4 Diagnosing cancer
The potentially beneficial use of SPRs in the diagnosig of
8 T breast and prostate cancer has been shown during the past 15

years in studies by a research team in which an author of|this
article (JAS) participates, as well as by several other investi-
gators. These studies focused on image-based diagnoses: on
mammography for the detection and/or the malignant-benign
T classification of breast abnormalities and on magnetic reso-
nance (MR) imaging for staging the extent of prostate cancer.

True-Positive Probability
[$,]

4 T In each instance the relevant perceptual features of the image

3 ICT Model 1 were determined for inclusion as variables in the SPR and, in
- some instances, demographic and laboratory data were|also

2 T utilized in the same SPR. A general discussion of approagh is
A=0.82 o ;

] i followed here by some specific results of the studies. Some

: 1 earlier work on SPRs in medical diagnosis and a few other

0 S S S contemporary examples in medicine are cited briefly at {the

0 1 o2 83 4 5 6 7 8 9 10 conclusion of this section.

False-Positive Probability

General approachThe initial step in constructing a SPR for
an image-based diagnosis is to obtain an exhaustive list of
(statistical prediction rule) of the Iterative Classification Tree (IG SSInyI.rT:e\éam pelrciptﬁl ! fef\tures "? the Imda?ﬁ ) Th'ﬁ’ stlep IS
for predicting violence. A computer program for fitting ROC dat ccomplished mainly by literature review an rough cipse

sorted the nearly continuous output of the rule into categories to yigdpservation of, and interviews with, radiologists who specjal-
10 decision thresholds and their corresponding ROC data points. ize in interpreting the kind of image in question. Secondly,

Fig. 4. Empirical ROC (receiver operating characteristic) for the SP
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perceptual tests analyzed bynalltidimensional scalingMDS)

1987) may supply other features that are not verbalized by
radiologists, but are nonetheless used or usable in diagna

between the various pairs of images in a conceptual geom
space of several dimensions, wherein ratings of greater

dimensions of the space (or the axes of its representation
calculated in a manner to rationalize the total set of rati
and thereby to reveal the various aspects of appearance

which the images vary, or the perceptual dimensions
herent in the structure of the images. (To imagine how

analysis is accomplished, think of rating the straight-line ¢
tances between all pairs of state capitals to solve for a mg
the U.S. showing its two dimensions, or measuring the

tances between selected pairs of stars to give a space of
dimensions.)

The dimensions calculated by MDS are candidate feat
for the SPR. To determine which ones might actually be
evant features, the investigator successively arrays all the
ages along each dimension according to their respec
coordinate values on that axis and asks the experts each
what perceptual feature is varying along that array. For s

and express the belief that the feature is indeed diagnostic
candidate features for a particular type of image and diseas
determined by interview alone or by interview plus MDS, ha
numbered between 30 and 70 in the studies discussed he

Some paring of the set of candidate features may take g
in discussion among radiologists and investigators; for
ample, it may be evident that a given feature is present tv
because different radiologists gave it different names, or
two distinct features are highly correlated in occurrence. F
ing scales are designed for the features remaining, on whi
rating may signify the observer’s confidence that the featur
present, a measurement of the size or extent of the featu
a judgment of grade or degree or clarity. A consensus grou
radiologists gives names to the features and selects parti
images to represent points along the scale (particularly ang
at the endpoints).

In the next step, several radiologists view a set of a hunc
or more “known” images, whose truth (presence or abseng
cancer) has been established by pathology examinations
possibly long-term, negative follow-up), and they rate e
candidate feature for each case. At this point, one or ang
multivariate statistical analysis or pattern recognition techni
(as described above in the section on SPRs) is applied tg
termine quantitatively how diagnostic or predictive each f

In brief, in such perceptual tests, radiologists are invited
rate (on a ten-point scale) the degree of similarity betwge
members of pairs of images; various representative images
presented successively in all possible pair-wise combinatip
MDS analysis converts those similarity ratings into distanc

similarity correspond to greater inter-image distances. T

some criterion of diagnosticity or predictive power are se-

technique (e.g., Shiffman et al., 1981; Young and Hamédected. The result is converted to a SPR that takes ratings of all

tleatures for any given case and issues an estimate of the prob-
sability that cancer is present in that case. A typical number of
ferceptual features contained in a SPR is about a dozen; this set
&ndeemed necessary and sufficient for the required diagnpsis.
are
ns.Breast cancerThe first SPR for breast cancer in our series
ef studies (Getty et al., 1988) was developed with six mam-
etriography specialists of a university hospital and used to aug-
disent the diagnostic performance of six general radiologists in
ltemmunity hospitals. The task was to determine whether cases
aith evident focal abnormalities were malignant or benign.
n@pecifically, the specialists helped with the choice of a master

ability estimate for each case before making their own judg-
uneent, on a five-category scale, of the likelihood that cancer
relras present. The second reading by the generalists provided a
ioness-validation of the SPR based on the specialists.
tiveThe ROCs for the generalists’ baseline and augmented read-
tinges are shown in Figure 5. Each curve is based on four thresh-
prakels (and hence four points) corresponding to the internal

arrays, expert radiologists will give consistent feature nambeundaries of the five categories of the rating scale. The curve

Toethe augmented readings is uniformly higher, having
eimmex of .87, compared to .81 for the baseline reading.
vepecialists, aided by the master checklist of features, and
ra.different set of cases, produced a ROC (not shown) with
lazemeA index as the augmented generalists, .87. The SPR
eitself, with the generalists’ feature ratings, yield&d=.85. All
viokthe differences are statistically significant, so the results
titaat the generalists given the SPR probability estimate v
Ramore accurate than the SPR alone (which used their fea
chatings), and the SPR enabled the generalists to reach the
eo$ the specialists.
e, oifo see the clinical significance of these results, a decis
ptbfeshold for the baseline ROC was chosen that approxim
cules thresholds obtained in four clinical studies of mammog
hphy accuracy that were comparable and available at the
(as described by Getty et al., 1988). This threshold point
IrB®OC coordinates P(FP).20 and P(TP¥.67. The threshold
epdfint for the augmented ROC at the same P(FP) ha
(&{@P)=.80, i.e., .13 higher than the baseline performance
aclertical dashed line in Figure 5). So, if one chose to take
tle@curacy gain in additional TPs, there would be 13 more ¢
geers found in 100 cases of malignancy. If it were desireg
dalize the accuracy gain to reduce P(FP) rather than to incr
e&(TP), one can read the graph of Figure 5 in the horizo

The

with
the
, by

are
ere
iture
level

sion
ated
ra-
fime
has

s a
see
the
an-
to
base
ntal

ture is in combination with others, and the features mee
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timlrection: The augmented curve has a false-positive probability
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1.0 } ] , , 1 . . \ . hand if the SPR is used only for difficult cases, which may|be
N a practical way to use it, then the typical threshold may again
9 4 . 1 be near the middle of the graph, as in Figure 5, and the pagten-
tial gains shown there may continue to be a good estimate.
8 T Standard T The second study in this series (Swets et al., 1991) shqwed

0 1 2 3 4 5 6 7 8 9
False-Positive Probability

Fig. 5. Empirical ROCs (receiver operating characteristics) for g

eral radiologists reading mammograms to distinguish malignant fro

benign lesions. The lower curve represents a baseline accurac

Another study showed the potential for determining relev
perceptual features not verbalized by image experts by m
of multidimensional scaling (MDS) analyses of percept
tests, as described above. Working with the experimental,
E3"L‘r|;ri]ed image modality of diaphanography (light scanning), 9

for

,[TOT

g‘ 7 1 that the amount of increased accuracy provided by a SPR de-
e - pends on the difficulty of the cases in the test set, with langer
‘93 6 - 1 accuracy improvement for more difficult cases. Whereas|for
o AN the full set (of 146 cases) the increased true-positive or|de-
Q 5T > T creased false-positive proportions were about .05, for the most
= 4 difficult (56) cases, the changes in these proportions wer¢ on
£ 7 T 1| the order of .16. Their ROCs are seen in Figure 6. The differ-
g 3 1 ence between the top two curves (all cases) irthelex is .02
[ and for the bottom two curves (difficult cases) the difference is
2 T .12, from .60 to .72. Note particularly that the SPR had a
.1 1 beneficial effect even when the baseline performance was ¢lose
' to the chance level (the dashed diagonal running from lower
0 — left to upper right).

ant
cans
Lal

un-
of

readings in the usual manner. The upper curve shows the acclijacy 1.0
obtained when the radiologists gave feature ratings and receive
probability estimate of the statistical prediction rule (SPR). Curves
based on the pooled ratings of five radiologists who used a fi
category rating scale for likelihood of malignancy. Two possible
alizations of the gain in accuracy are indicated: an increase of .1
the true-positive probability, P(TP), and a decrease of .12 in the fa
positive probability, P(FP).

.12 less than the baseline curve, with P(FP) dropping from|.
to .08 (see horizontal dashed line in Figure 5). These p
abilities can be translated into numbers of (additional) c3
correctly diagnosed. Assuming a succession of 1000 case$
referral hospital with a base rate of cancer of .32, the
procedure could find an additional 42 malignancies preser

ute the accuracy gain between increased TPs and decr
FPs could be achieved by adjusting the decision threshold,
We note, however, that although these calculations

ins .0 1 2 3

4

5

.6

7

False-Positive Probability

biopsy technique, with relatively low morbidity, has served t
reduce the cost of a false-positive diagnosis, with the resultt

t
6. Empirical ROCs (receiver operating characteristics) showi

the decision threshold in practice may have shifted to a q{ee?atlve enhancement effects of a SPR (statistical prediction fule)

lenient setting (to the right along the ROC). We do not havgyplied to an easy and a difficult case set, with a larger gain
data to enable estimating just where this current setting maydiicult cases. The curves are based on the pooled data of six
and hence can not estimate the size of currently available g @i@?lStS Pl(DTOg)ed |lnesfln|dlcate l”UStrath% ggllns lnpt(rllig )POS]:tlvlespr
but we point out that the gains may be smaller than tho&gilty: at a false-positive probability, 0

. p . ) 9 y . . ernatlvely, decreases in P(FP) at P(¥P85. These differences ar
previously attainable: The relevant comparison of aided

. . . - . and .17, respectively, for the difficult cases. Dotted lines neat
unaided decision making may be at a point where their R

ing

for
adi-
Db-
DI,
e
the
base

Eénter of the graph indicate the possibility of a simultaneous incrg¢
are closer together, especially on the TP axis. On the atheP(TP) and decrease in P(FP), of about .08 for difficult cases.
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a total of 17 features supplied by multivariate analysis for
SPR were provided by the MDS analysis (Getty & Swe
1991). The diaphanography study also showed the import
of enhancing a new imaging modality by feature analysis
SPR methods before conducting an evaluation study to
mate its potential. Whereas unaided readers yieldédralex
near .60, a SPR based on their ratings of the full feature
gave aA near .80. The implications of such a difference @
range from likely rejection to possible further consideration
a new technique.

Prostate cancerMagnetic resonance (MR) imaging is us
to determine the extent of biopsy-proven prostate cancer,
marily to determine whether the cancer is contained within
gland and is therefore likely to be curable, or has spread
yond the gland and hence can be treated only palliatively.
first study employed five radiologists who specialized in pr
tate MR and four radiologists who typically read MR of t
body generally, each group reading one of two sets of
cases (Seltzer et al., 1997). Figure 7 shows ROCs obtd
from the specialists, the lower curve when they gave rating
the master set of features for each case to provide dat
construction of a SPR, as well as giving their own estimat

tren the SPR calculated from their ratings. Thandexes are .7

arspEecialists could be improved.
and Figure 8 shows the ROCs from the generalists, the lower

bd A second study showed the improvement of accurac

estof.74 to .81 to .86. In a subset of difficult cases for which

;

the probability of extended cancer, and the higher curve bade8A value and Gleason score were in an intermediate, in

tfor the lower curve and .87 for the higher curve. Even the

of a technique from rejection to acceptance.

[prostate staging that could be achieved by constructing suc-
tleessively more inclusive SPRs (Getty et al., 1997). The objec-
liere variables of patient age, PSA (prostate specific antigen)

Qesst value, and the biopsy Gleason score (based on a patholo-
Dgrist's evaluation of tissue specimens) were considered a
navith a SPR based just on the perceptual features of the
1068age. SPRs were constructed based on age only, on age

ong
MR
plus
hose
s of

imre8A, on those two variables plus Gleason score, and on t
sttwee variables plus MR features. Figure 9 shows the ROC
tloe four prediction rules, witlh indexes progressing from .5
he

con-
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Fig. 7. Empirical ROCs (receiver operating characteristics) for s

cialists’ readings of magnetic resonance (MR) images to determifiem general body radiologists reading magnetic resonance (MR

the extent of prostate cancer. Pooled data from five radiologists.

lower curve was obtained when the readers were making feature kai-the pooled data of four radiologists. The lower curve represe

ings as well as an estimate of the probability of advanced cancer.

ned
im-
based
ts a
Theseline reading and the upper curve represents the performance of a

p&ig. 8. Empirical ROCs (receiver operating characteristics) obtai

Tages to determine the extent of prostate cancer. The curves are

upper curve shows the performance of a SPR (statistical predictiBRR (statistical prediction rule) developed from the radiologists’ fea-
rule) based on those feature ratings. For both curves, a computee ratings in a second reading. A computer curve-fitting progfram
curve-fitting program placed the probability estimates in categoriesptaced the probability estimates, of both radiologists and the SPR, in

yield 19 decision thresholds and data points.

14

categories to yield 19 decision thresholds and data points.
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Fig. 9. Empirical ROCs (receiver operating characteristics) for de|
mining the extent of prostate cancer, based on SPRs (statistical
diction rules) using one, two, three, or four predictor variabl
Additional variables were added in the order in which they becg
available in the clinic. PSA is the test value of prostate specific
tigen; BGS is the biopsy Gleason score; MR represents the
developed for readings of magnetic resonance images. For each
probability estimates of advanced cancer were categorized to yie
decision thresholds and data points. The accuracy meaAurethe
inset show the more inclusive SPRs to be increasingly more accy

clusive range, thé index for the SPR based on age, PSA, 3

Gleason score was .69; adding MR data to that SPR gaye

=.79. In terms of the conditional probabilities: at P(ER10,
the value of P(TP) was increased by enhanced MR from
to .47.

Successful application of a SPR for prostate canddre
staging of the extent of prostate cancer has provided an
standing example of a highly useful SPR widely used in cl
cal practice (Partin et al., 1997). Data from three major med
centers were combined to predict the pathological stag
cancer, for men with clinically localized cancer, from the v
ables of PSA, clinical stage, and biopsy Gleason score.
pathological stages considered were organ-confined dis|
and three levels of invasion beyond the organ. Charts v
constructed so that for any combination of the predictive v
ables one can read the probability of cancer at the var
pathological stages (along with 95% confidence intervals).
for example, a patient having cancer of clinical grade T
(cancer discovered only by biopsy following a PSA test)
PSA value between 4 and 10, and a Gleason score of 6, |
probabilityp =.67 of organ-confined disease,= .30 of cap-

sed
hke
to a
ts.
ment
cer

p =.01 of pelvic lymph-node involvement. The charts are u
productively to counsel patients having a choice to m
among alternative therapies. The authors give references
dozen other studies providing confirmation of their resu
Such data are the basis for the decision trees of the Treat
Guidelines for Patients published by the American Can
Society.

Other work. Work on SPRs in medicine from the ear
1960s, including some of his own on bone diseases, wa
viewed by Lodwick (1986). Current studies of breast can
include some using an artificial neural network as the basis
a SPR (e.g., Jiang et al., 1996; Lo et al., 1997). Another re
study used automated computer analysis of the mammaog
image without human viewing, along with a linear discrimina
SPR, and found\ =.87 without the SPR ané =.91 with it
(Chan et al., 1999). Other MR prostate studies include tha
Yu et al. (1997).

5 re-
cer
for
cent
jram
ANt

t of

Increased Utility: Setting the Best Decision Threshold

ter- Concern for setting an appropriate decision threshold
maerged early in medicine. The cost-benefit formula presented
E®arlier in this article was promoted, for example, in influential
gf_mks by Lusted (1968) and Weinstein et al. (1980), who were
sBRong the founders of the Society for Medical Decision Mak-
nng; The following examples show how diagnostic decisjon
S.

drb@king can be enhanced by optimizing decision threshold

IraLte'Screening for the HIV of AIDS
Prominent screening tests for the virus (HIV) of AIDS cqg

nd . .

sSist of blood analyses that yield a continuous scale of a phy

n
sical
old
:ed_
ere
best

quantity (optical density). The selection of a decision thresh
any of the several tests available, as approved by the
"eral Drug Administration, was made by its manufacturer. Th
is some suggestion that these thresholds were chosen tg
discriminate between positive and negative cases (maximize
olipe percent correct decisions of either kind), but there seen to
nike no published rationales for the particular thresholds chosen.
idqoreover, they vary considerably from one manufacturer’s fest
» tgfanother. Informal and published recommendations that some
riformula for setting an optimal threshold be used for such medi-
- G@l tests (e.g., Lusted, 1968, and Weinstein et al., 1980) have
Rk been heeded. An offer made to a drug company, of soft-
sevare that physicians might use to define an appropriate deci-
h§ion threshold for the company’s test in any particular
otituation, was not accepted (A. G. Mulley, personal commu-
Jycation, 1990).
[1c
, a ROC data for the HIVThree widely used HIV tests wer
na&valuated by Nishanian et al. (1987) and the data were sub-
jected to ROC analysis by Schwartz et al. (1988), as shown in

sular penetratiory =.02 of seminal-vesicle involvement, arn
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dFigure 10. They are seen to yield values of the threshold mea-
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True-Positive Probability

.3

False-Positive Probability

Fig. 10. Empirical ROCs (receiver operating characteristics) for th

tests are called enzyme-linked immunoassays, abbreviated EIA;
three tests are numbered. The curve for each test is based on the

circles, squares or triangles. The open data points with the t
identifying numbers indicate the threshold used for each test in g
tice. The inset gives the meas8#éor each of these thresholds and tl
corresponding values of the false-positive probability P(FP) and
true-positive probability P(TP). (Note that this graph includes only
upper left quadrant of the usual ROC graph.)

sureSof .40, 1.20, and 1.15. That is, one threshold is on
lenient side of neutral and two are on the strict side. Their p)
of P(FP) and P(TP) values were (.17, .95), (.05, .92), and
.79) , respectively. Consider the first and second tests lis

to .95) at the expense of issuing three times as many FPs
per hundred versus 5 per hundred. It is difficult to imagin
good reason for both tests to be approved for use in the s
settings with their diverse thresholds. Incidentally, those
tests were substantially more accurate=97) than the other
(A =.92) for the case sample tested.

Fixed vs. changing threshol@f further concern is the fac
that the thresholds for these tests were originally chosen v

screening tests for the human immunodeficiency virus (HIV). T

of five decision thresholds; curves for a given test are symbolized by Screenlng low-risk population€onsider another instang

the first test picks up a few more TPs than the second (from .

across low-risk blood donors, high-risk blood donors, milit
recruits, and methadone-clinic visitors, for which the numb
of infected individuals per 100,000 were estimated to ra
from 30, through 95, through 150, to 45,000, respectiv
(Schwartz et al., 1998). Assuming for the moment cons
benefits and costs of decisions, that amount of variation in
base rates would move the optimal threshold valug ofer a
large range, from 3,000 to near 1, i.e., from a point very n
the lower left corner of the ROC graph to a point near
center. The corresponding variation in P(FP) and in P(
would be very large, on the order of .50.

Other cost-benefit factors that might affect the placem
of the decision threshold include whether the test is volun
or mandatory, and mandatory for what group of persons,
whose good. For example, testing is done in connection

positive decisions can have significant lifetime costs to in
viduals. There are other mandatory tests, such as thos
certain international travelers, for which the benefits of det
tion are small. Still other factors that might affect the thresh
setting are whether the results are confidential or anonyn
reend how effective the therapy may be (Meyer & Pauker, 19
hweiss & Thier, 1988).

poi

=s:o£ screening low-probability populations, namely a compan
ramployees, for whom the prior probability of HIV is about .0
9Bloom & Glied, 1991). Ordinarily in such settings, a positi
m fitcome on a typical screening test is followed by a m
conclusive (and expensive) confirmatory test to reduce
number of false-positives (Schwartz et al, 1988). The Coll
t¢d American Pathologists’ estimates of P(TP) and P(FP) for|
afpest screening and confirmatory tests lead to the result
_pfter a positive result on both tests, the probability of HIV|
te?j3 (Bloom & Glied, 1991). Hence, six of seven individug
g@gnosed as positive in this manner would be told they h
| the HIV when in fact they do not (Swets, 1992).
e a
amdetecting cracks in airplane wings
wo The principal techniques for nondestructive testing of mg
structures provide a visual pattern for interpretation by tec
cians, for example, ultrasound and eddy current. In both cg
the basis for a decision is the judged weight of the percep
t evidence and so the observer acquires a degree of confid
hamprobability estimate, that a flaw is present. The two-val

—

the tests were used to screen donated blood and then le
changed when the tests became used to diagnose peopl

pint of uncontaminated blood, on the one hand, and for

16

prior probabilities, of the disease. Thresholds remained fixed
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dizgnosis of flaw present or not, usually a crack caused by
.nhaeal fatigue, requires that a decision threshold be set along the

difference between the costs of an FP decision for discardingeale.

ur- In looking for cracks in airplane wings, the costs of incor-
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suing further tests for an uninfected person, on the other, wpuitt decisions are large and obvious. A false-negative decision,
seem large enough to call for some shift in threshold. Similarlgnissing a crack actually there, can jeopardize the lives of
thresholds were not reconsidered when the tests were appf@dsengers. On the other hand, a false-positive decision takes a
to different populations characterized by very different rates, plane out of service unnecessarily, possibly at great inconve-

any
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nience and large dollar cost. On the face of it, the benefits
costs point toward a lenient threshold for declaring a fla
lives versus dollars. Still, the prior probability of a flaw is ve
low and such low prior probabilities, even with moderate
strict thresholds, tend to produce an unworkable numbe
false-positive decisions. Setting the best decision thres
again, must involve probabilities as well as benefits and c
There are a few tentative references to the problem an
solution in the nondestructive-testing literature, e.g.,
(1979), Rummel (1988), and Sweeting (1995), but no insta
of experimental, let alone systematic, use of reasoned th
olds seem to have been made.

Test data in this field are hard to come by: A reliable
termination of “truth” for flaw present or not in each specim
requires destructive testing of the entire test set of speci
which then, of course, are not available for comparative ev.
ation of the next diagnostic technique or the next grou
technicians to come along. A classic, atypically ambiti
study was mounted by the U. S. Air Force in the 1970s. It
characterized as “Have Cracks, Will Travel” because it bro
149 metal specimens to 17 bases where they were inspect
121 technicians using ultrasound and 133 technicians u
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ing
Fig. 12. Single, empirical ROC (receiver operating characteris

i IC
eddy-current displays. points for each of 133 technicians inspecting 149 metal specimens f)or
. i . L cracks with an eddy-current image.
ROC data.As reviewed in earlier publications (Swets,
1983, 1992), the study asked the technicians for only a bingf¥apie ROC space, for both imaging techniques. The spread
response and hence obtained just a single ROC point i 4ata points from P(FP)= 0 to almost 1.0 demonstrates
each. The data, however, are highly revealing. Figures 111aggh) jnconsistency among, and no control over, the techni-
12 show that the ROC points obtained cover almost the entigns' decision thresholds. No publication, either in the report
or open literature on materials testing, has appeared to Us to
1.0 A suggest that there has been an adaptive response to this state of
g 1D ° | || affairs.
' e oo .
8 b "N o ‘e - * A . A note on accuracyA break down by air-force base of the
> R data points in Figures 11 and 12 (not shown) indicates fhat
BT T e o '’ . 1 accuracy varied extensively from one base to another, with
3 . .o o o o o technicians at a given base being quite consistent, and with the
E B T% % . N o* 1 average accuracies of the bases varying uniformly across the
051 "fead™ s 1 || full range of possible accuracies. Roughly, bases had an aver-
2 So, T2 TS age ranging fromA =.95 to .55 (see Figure 3). Ehstrong
8 4 foe w . J . suggestion is that the perceptual features and weights used by
% L . y technicians at the highly accurate bases could be analyzed in
E 3 . s * i the manner used for mammography experts as described above
P I ULTRASOUND | || and the result carried to the under-performing bases. Thus,
. N=121 Figures 11 and 12 point up the potential of an SPR to increase
14 1 accuracy as well as the potential for threshold analysis tq in-
0 crease utility.
0 1 2 3 4 5 6 7 8 9 10 A confirming studyA study of a commonly used eddy-
False-Positive Probability current display for examining steam generators showed Wide
variation among technicians to persist in non-destructive ma-

Fig. 11. Single, empirical ROC (receiver operating characteris

i(Barials testing (Harris, 1991). For one representative fault,| for
sexyample, the observed variation in P(TP) across technigians

points for each of 121 technicians inspecting 149 metal specimen
cracks with an ultrasound image.
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was nearly .40. The (plus and minus) one-standard-deviation
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range was from .69 to .93, indicating that one-third of t{
technicians fell outside of that range.

Other Examples in Brief

Weather forecasting

The National Weather Service estimates the risk of cer|
hazards, such as tornadoes, hurricanes, and heavy rains,
pose a threat to life or property. To assist in assessing
information is routinely collected on variables (e.g., barome
pressure, wind speeds, cloud formation) known to be predic
of one or another of these hazards. This information is 3
lyzed by regression-based computer programs that incorp
models of the association between patterns of these predi
and the occurrence of given hazards in the past. These
grams yield objective predictions of various weather eve
These objective predictions are given at regular period
meteorologists in local areas. These local meteorologists

they believe were not adequately accounted for in the comg
model, or in response to new information that has becq
available since the objective prediction was formulated. ]

ance, not gospel” by the local meteorologists. A subjec
prediction is then publicly issued, and this risk message
referred to as the forecast. Weather forecasting is one ar
which the “clinical” adjustment of a SPR’s output actua
increases, rather than decreases, predictive accuracy. The
jectively adjusted SPR predictions of temperature and pre
tation are consistently more valid than the unadjusted objec
SPR predictions (Carter & Polger, 1986).

practice of setting optimal decision thresholds, indeed us
the formula presented earlier in this article, more than 25y
ago (Miller & Thompson, 1975).

Law school admissions
Decisions about whom to admit to universities and to gra

then modify the objective predictions in light of predictors that,

objective predictions, the SPR’s, are often referred to as “glig;

Weather forecasting for commercial interests adopted| tj

hevork of extraordinary quality) being found elsewhere on
application.

sumed admit and presumed reject, with the more selec
schools setting the thresholds higher than the less sele
schools. Applicants scoring between these two thresholds
their applications reviewed more intensively by members
t"’ﬂﬁ‘e admissions committee who can, in effect, adjust the
",’Pdf&t.’éions Index by taking into account additional variables
§the SPR, such as the quality of the undergraduate instity
I'Sttended and the stringency of its grading standards (anc
95%ther apart the two decision thresholds are set, the larger
"Riddle group will be). These adjustments are made “cl
Pralfly,” by members of the admissions committee.
COr$t is interesting to note, in light of issues raised earlier in t
Pifticle, that at least some of these “subjective” variables ca
mﬁuantified and incorporated into the SPR. For example, at
p LtR]iversity of Virginia School of Law, where one of us (JN
M@¥ches, a new and expanded Admissions Index is being
s a tool in selecting the class of 2003. This index includes
UlRfditional variables: the mean LSAT score achieved by
"Bfudents from the applicant's college who took the LSAT
r?ﬁoxy for the quality of the undergraduate institution) and
Hifiean GPA achieved by students from the applicant’s coll
fho applied to law school (a proxy for the extent of gra
? iflation, and having a negative weight in the SPR). This n
*3dllr-variable SPR predicts first-year law school grades (co
Wation r = .48) significantly better than the old two-variab
* EBR (correlation r=.41) (P. Mahoney, personal communic
RN, 1999). Note that the results of this expanded SPR are
t'é{ﬁjusted by the admissions committee to take into acc

other, harder-to-quantify variables, such as unusual bur
BBrne or achievements experienced during college, to pro
'tk final decision to admit or reject. The degree of adjustn]
"39ess than it was previously, however, because two form

“subjective” variables have become “objective” and now ¢
tribute to the SPR itself.
For the related problem of making personnel decisi

dbased on aptitude tests, an approach akin to the formula g

ate and professional schools have for many years been

predicts first-year grades at that particular law school.

with the help of a SPR. In the case of law schools, for exampler many years (Cronbach & Gleser, 1965).
the admissions committee is typically presented with an “Ad-
missions Index,” which is the applicant’'s score on a SPR that Aircraft cockpit warnings

abeve for setting the optimal decision threshold has been in

wo Based on specialized sensing devices, warnings are giv

variables usually go into the SPR: undergraduate grade paaintorne pilots that another plane is too close or is threate
average (GPA) and Law School Admissions Test (LSATD be, that they are getting too close to the ground, ther
score. If an applicant scores above a certain decision threshefdjine failure, or wind shear is present in the landing are:
on the Admissions Index, he or she is presumed to be problem gaining recognition, for example, by the Natio
“admit.” That is, it would take a flaw elsewhere in the appliAeronautics and Space Administration, is how the various
cation (e.g., the impressive GPA was achieved by enrolling é@ision thresholds should be set to avoid missing a dange
very weak courses) to deny the applicant admission. Likewismndition while not crying wolf so often that the pilot comes
schools set a decision threshold for “presumed rejegignore or respond slowly to the warning signal. Unfortunate
whereby any applicant with an Admissions Index below ththe moderate diagnostic accuracies of the sensing de

he

Each law school sets its own decision thresholds for pre-
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score will be rejected absent unusual factors’ (e.g., gradualeng with the low prior probabilities of the dangers consp
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to produce many false alarms (Getty et al., 1995)—so miaajlowed at the second level; award rates at the appeals levél are

that officials have asked whether just one true alarm among 2@re than twice those at the initial level (General Account
total alarms is enough to maintain the pilot’s rapid respong@ffice, 1997; Social Security Advisory Board, 1998). Inde¢

Indeed, a few years ago the Federal Aviation Administratianclass-action suit by a Florida legal association was broug

ordered a shutdown of collision-warning devices on com
cial airliners because of the serious distractions they prese
both to pilots and air traffic controllers. As a particular €
ample, just one aircraft responding to a wind-shear alarm
circling the field before landing can put air-traffic control at
busy field under additional strain for several hours. It is g
common practice, however, for purchasers of cockpit warn
systems to set specifications for the product that require o
high P(TP), without mentioning the P(FP), and manufactu
have been willing to comply.

That the typically low prior probabilities in some settin

can lead to extreme results is exemplified by the calcula
performance of a detector of plastic explosives in luggagg

considered by the Federal Aviation Administration. With
apparently passable accuracy of P(FP95 and P(FP3- .05, it

aeemedy the plight of initially denied applicants who are 1

néedhre of the potential of making a formal appeal.
X-

by Quality of sound in opera houses
a To take some respite from ousturm und Drang(and

titrashes and diseases), consider the objective and subije

ng
od,
ht to
ot

pctive

imyaluation of 23 opera houses in Europe, Japan, and the Ameri-

Iyas (Hidaka & Beranek, 2000). Twenty-two conductors ra

eitse several opera houses for acoustical quality on a f
category scale, and the average ratings of the respective h
gsvere related to several physically measured acoustical

design of new opera houses.

was estimated to produce in standard operation 5 million false- Five important, independent, objective acoustical varia

positives for each true-positive result (Speer, 1989).

Disability determination

Applicants for disability status under the Social Secu
Administration presently undergo a five-step sequential ev
ation. A binary (positive-negative) determination is made

these variables in turn: (1) whether the applicant is engagin

substantial gainful activity; (2) whether the impairment is

vere; (3) whether the impairment is on a list of qualifyi
impairments; (4) whether the applicant is able to do work d
previously by the applicant; and (5) whether the applican
able to do other work. At each step, the application is den
accepted, or forwarded to the next step.

Four of these variables (excepting number 3) are essentiallyThe four opera houses that received average ratings of

continuous and hence require a “judgment call” for a bin
decision: substantiality of gainful activity, severity of impa

ment, residual functional capacity for past work, or for angnd Tokyo. The Tokyo opera house rates high despite just

work. The assessment of each variable could be made
rating scale, and so the question arises if accuracy of disa

determination might be increased by rating them for each casaly in mind.
and entering them as continuous variables in a SPR, which
would give them proper weights and then issue what is essen-‘It's laptop vs. nose”

ityspaciousness”); the time delay between the direct sound
aline stage and its first wall reflection (related to “intimacy”); t

gahles thought to be important, but difficult to measure phy
sesally, are “texture,” having to do with the number and qual
ngpf early, lateral reflections, and “diffusion,” resulting fro
Dit@rge irregularities on the walls and ceiling where reverbe
t $ound is formed (e.g., niches and coffers) and small irregu
eties on the lower side walls and balcony fronts that give “
tina” to the early sound reflections.

atyigher on the conductors’ 5-point scale, and were highly ev
rated objectively, are those in Buenos Aires, Dresden, Mi

ogears of service; it is the one that was explicitly designed
iljdaka and Beranek with the above-mentioned variables

tatlles. The purposes of the evaluation were to establiskh
> @ffect, a SPR as a framework for evaluating existing op
ahouses and for suggesting guidelines for use in the acous

fatrength of the sound; and the bass ratio. Two additional v

tially a “disability score.” In principle, accuracy might be en- This section heading is quoted fromNew York Times
hanced because then the information loss that may come |watticle under the byline of Peter Passell (1990), entitled “W
dichotomizing continuous variables would not be at risk fowgquation puts some noses out of joint,” and introduces a se
times, but would be confined to the final decision variable, thtepic in our small foray into aesthetics.
score. (There would probably be, under this scheme, differentAmong the most interesting uses of a SPR is Ashenfe
SPRs for mental and physical disability.) Ashmore, and Lalonde’s (1995) successful attempt to pre
Perhaps more important, given a disability score, the pladbe quality of the vintage for red Bordeaux wines. Taking
ment of a decision threshold for allowance could be discusserrket price at auction of mature Bordeaux wines as t
precisely, and given “sensitivity” testing for its best locatianindex of “quality,” Ashenfelter et al. show how the vintage
At present, the effective threshold changes dramatically fromwine strongly determines its quality. Some vintages are
the initial level of a claim evaluation to an appeals levebood, some very bad, and most in between. By the tim
roughly two-thirds of cases first denied and then appealed &erdeaux wine is mature and drinkable, there is usually @
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siderable agreement among wine drinkers as to the qualitysi$ and development of a SPR can motivate fast and wide
its vintage. The trick is how to predict this quality (i.e., auctiprollection of a proven case set and reveal in a matter of mo
price) decades in advance, when the wine is young and| unfairly complete set of features and their relative weights
drinkable. The typical way this is done is “clinically,” by hay-well. (The follow-up of normal cases needs to be purs
ing wine experts swirl, smell, and taste the young windonger as a refinement.) The distribution channel may be p
Ashenfelter et al., however, observed that the weather durimgdia, but it could also be interactive over whatever comp

the growing season is a key determinant of the quality of
fruit, including grapes. More specifically, “great vintages
Bordeaux wines correspond to the years in which August

September are dry, the growing season is warm, and the|p

vious winter has been wet.” They developed a multi
regression SPR, which they refer to as the “Borde
equation,” that consists of the age of the vintage and ind
that reflect the above-mentioned temperature and precipita
variables (e.g., millimeters of rain in the Bordeaux region d

ing certain months of the vintage year). This SPR accounts {g
fully 83% of the variance in the price that mature Bordeaux red

wine commands at auction. Moreover, the SPR produce
predictions as soon as the growing season is complete an
grapes are picked—before any “expert” has even sipped

young wine. As might be imagined, the reaction of the win

tasting industry to the Ashenfelter et al. SPR has been “sg
where between violent and hysterical” (Passell, 1990).
drinkers of, and investors in, red Bordeaux wine have reasad
be grateful to the developers of this SPR.

CONCLUSIONS AND DISCUSSION

It seems fair to conclude from the examples provided ab)
that SPRs can bring substantial improvements in the accu
of repetitive diagnostic decisions and that decision analysis
improve the utility of such decisions. We mention a few ot
benefits that may accrue from these methods, just from ha
the right set of features or variables specified.

Additional Benefits of a Systematic Approach to
Predictor Variables

Speeding the specification of diagnostic features
Consider the manner in which visual features of med

metwork is appropriate.
or

and Facilitating communication among diagnosticians

'®Even when the radiological SPR is not put into wide use,
Ieradiologists who have become acquainted with the techn
Yenerally agree that the sets of features and weights it
Cfefentified can be very useful in facilitating communicatia
e8atures have clear advantages over a holistic approac
Ulhage interpretation in this regard. Mammogram features ic
fed in the work described above contributed to a standard

I€€porting system, for reports from the radiologist to the ref
S|‘ﬁ§g physician and surgeon, developed by the American (
dlglf'e of Radiology (Kopans & D’Orsi, 1992, 1993). Th
sibility that the radiologist's quantitative ratings of t
fhammogram’s features can be translated automatically
M@mputer-based linguistic techniques, into a useful repor]
BHﬁdings has received support (Swets, 1998).
N1OAnother result of SPR-based feature analysis could b
facilitate discussion between radiologists holding differ
opinions about a given medical image. Still another use
well-defined feature set would be for teaching purposes, €
for highly experienced radiologists in continuing educati
oloreover, as shown above, a feature analysis has the poté
ré@ypromote general radiologists to the level of specialists f
cgiyen organ or type of image. It may bring novices mg
Zéquickly to the approximate level of experts. Because the
viegptual-feature approach does not depend on knowledg
underlying anatomy or pathology, we consider the possib
that it may help to teach paramedics to read images, w
might have special value in countries or regions where r
ologists are in short supply.

Why Are These Methods Relatively Little Used?
cal

images of a new modality are identified in typical practi
Ordinarily, depending on their own initiative or that of t

te. There are several hindrances, if not roadblocks, that im[
grogress on the decision-support front. Grove and Me

equipment manufacturer, individual radiologists propose sor(t996) list 17 reasons that clinicians have given for not ad
features depending on their own (and possibly close cahg SPRs for psychiatric prognoses. They focus on attitud

data
nths
as
ed
rint
Lter

the
que
has
n.

h to
en-
zed
er-
Col-
e
he

by

t of

e to
ent
of a
ven
DN.
2ntial
DI a
re
Der-
e of
lity
hich
adi-

ede
ehl
Dpt-
nal

leagues’) experience, and present them in seminars, teacHangors in a climate in which the SPR is viewed as replacing or

files, or journal articles. The accumulation of data is slow, idegrading the clinician. Other fields have more benign iss
part because radiologists do not always have systematic fe@ék imagine that the weather forecaster has no problem re
back on the pathology results of their own patients, let aloneiofy a SPR contribution to the forecast (for example, that th
other patients. Then, perhaps a few years later, a synthesissad 31% chance that Hurricane Floyd will hit the Cape an
features may appear in a manual or textbook. Such a lais8820 chance that it will hit the Islands). We consider bel
faire approach is unnecessarily slow and quite out of synchrosgme purely attitudinal factors, but treat mainly logistic a
with the pace of modern development in equipment for mediaather practical matters.

les.
ceiv-
ere
da
DW
nd

imaging. In contrast, application of multivariate feature analy- Maybe the main attitudinal factor is that diagnosticia
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perhaps especially those with patients awaiting the result, Hateentation worthwhile. One can assemble a useful SPR for|MR
rally want to feel that they “understand” their diagnoses andhaging of some disease/organ only to have a modification of
recommendations; they want to know why they arrived at sonwR technique come along in months, and by virtue of rear-
point and they want to be able to give a narrative account i@nging the physics and perception of the image, call far a
their thought process. Such a plot line may be difficult to findeanalysis of the SPR’s image features as well as their weights.
in a SPR’s results, perhaps with some of its statistically jntA this case, automatic adaptation is not possible. Creative,
portant predictor variables’ not being self evident to anygneuman intervention is required to ascertain what new percep-
and with other seemingly obvious variables not present in|theal features are necessarily added to the existing SPR. Oh the

SPR (“your father's drug use matters, your mother’s doesher hand, as assumed in the preceding paragraph, the

rob-

not”). Producing the largest area under the ROC is technickdm is less severe in fields in which the predictor variables|are
may seem like dust-bowl empiricism at best, and is simply |nlatrgely objective. Thus, discovery of a new risk factor related
satisfying to diagnostician or client. to violence can be accommodated by an SPR geared to adapt

weights for a given set of variables.

These methods are little known Several methods for updating SPRs have recently been

To be sure these methods are part of our culture; literate

people know they exist, perhaps in weather models or insur-iSSiOnS (Dawes et al., 1992). However, there are apparé
ance models of life expectancy. Still, “SPR” (or any synonym:y " i '

is not a household word. The concept is not very clear. Mag%m. Fortunately, the rate at which computer databases

people know of isolated examples, but have not integrated pver.

enough of them to “have the concept,” to see SPRs as formin
a significant class, much less as a phenomenon that can_be
studied and exploited. Similarly, making decisions base
odds and the costs/benefits of outcomes is something

human does. Yet, the idea that diagnostic decision thres ol%s. .
. ; . apility should not be used as a reason for abandoning a SK
can be set deliberately and perhaps optimally is often not there

When handling data is not a problem.

Indeed, the existence of a very broad class of problems |tha . ) .
. s . in an unsystematic way not open to scrutiny. An adaptive $
may be called “diagnostic” is not a common idea, much less
that there may be a science of diagnostics. These are hur efs .
- i ; v idity can consequently be evaluated.
for decision-support enthusiasts when trying to persuade ad-
ministrators that their agencies need a science of diagnostics,
for examples, the Federal Aviation Agency and the Food and Accountability

Drug Administration.

The need for adaptive SPRs features of an image), then each small piece of the diagnos

In the context of our violence example we raised the issue’ " . - .
. an not in a legal sense, the diagnostician may well feel likely
of whether an SPR based on one population of cases VE)H : .
. . . e called on to be responsible (by an employer or patient
generalize well enough to another. That question arise
many, perhaps most, diagnostic fields. In medicine, for
ample, the characteristics of patients undergoing mammagra- . o .
. . . X . merely for written notes of one’s impressions.
phy will vary from university to community hospitals and
across regions of the country. Again, optimal weather models
will vary with locale. SPRs for cracks in airplane wings may Inconvenience
differ from large commercial planes to small private planes. The “inconvenience” of using SPRs covers a multitude

ryAlthough flexibility is desirable in many settings, its desjr-

e ultimate validity of that entire, detailed, quantitative recqrd.
more comfortable position would be to be responsible

so that a new predictor variable is as easily handled as are| new

re-

viewed along with a successful application to law school pd-

ntly

ot many such adaptive SPRs in routine, practical use at |pre-

are

eing assembled and shared over networks suggests thatcom-
n use of self-tuning SPRs need not be far off. All of |us
concerned with diagnostics should be anticipating the day

Rin

ayor of human intuition. The latter is indeed flexible, but often

PR

an be flexible as well, but in a systematic manner whpse

When a human contributes subjective estimates of the val-
ues of a SPR’s predictor variables (e.qg., ratings of perceptual

isis

objectified and placed indelibly on the record. Whether liaple

to
for

of

Hence, it is desirable to build SPRs that can adapt their vasins, beginning perhaps with computer issues: the sheer need to
ables and variables’ weights automatically to case samples face a computer, and perhaps to have a computer selected,
which different ones will be optimal. As the sample of (proverpurchased, installed, maintained, and upgraded. Other igsues

cases grows in any particular setting, the SPR in use thém@ve to do with efficiency and workflow; for example, mus

a

should change, at whatever convenient interval, so that it bradiologist lay aside the microphone used for dictation to enter

data via a keyboard? Such questions may have answers

comes tuned or tailored to that setting.

; for

Not only does the world vary from one location to anotheexample, speech-recognition systems will allow the radiologist

but it changes dynamically and thereby creates a larger
lem for some fixed SPRs. For example, a fixed SPR in mediaddta entry take more time? Perhaps, but it may also proI
imaging may not be current for long enough to make its impleutomatically the “report of findings” from radiologist to r
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ferring physician and end up saving time. In short, the “hum
factors” problems may be soluble.

The ideas are technical

Probabilities. We claim in the Appendix that probabilitie
are useful and straightforward. But that does not help pe
who are put off immediately and completely by their impre
sion that a major effort will be involved in gaining an unde
standing. On the other hand, having read this far, we hope
the reader will find it difficult to imagine diagnoses undertak
competently without some fundamental acquaintance \
probabilities.

Forging agreement on threshold probabilities will often
difficult. Either a lack of understanding of probabilities, or|
lack of consensus if such understanding exists, can bedev

an- Defining benefits and costs
Assessing benefits and costs can be problematic; publ
ing them can leave the decision maker vulnerable to critici
How many safe people should be hospitalized as “danger
sto prevent discharging one patient who turns out to be viole
p#e court has ever answered that question with a num
sgludges are notoriously reluctant to set decision thresholds
yrdepend on overt cost-benefit consideration, as are many
tRspfessionals and officials. The decision analyst’s positiol
ethat making consistent decisions requires a stable thres
vithat any threshold implies some cost-benefit structure; and
an explicit consideration of benefits and costs may
pareferable, for some purposes, to sweeping them under the
ghe decision maker who is explicit does indeed invite cr
| ghgm, but such vulnerability to criticism in itself may be

process. lllustrative data on threshold probabilities obtaine

dRRsitive source of improvement. In contrast, an appeal to

a survey of medical directors of AIDS counseling and tes ir@fable intuition ends with the appeal itself (because there i
centers revealed that whereas 25% of the respondents woly of disputing it); hence it precludes critical evaluation g
initiate a discussion of decreased life expectancy with patief@nsequently precludes productive modification of the y
having a probability of infection greater than .15, fully 50%|of? Which th_e .deC|S|on was made. The“’j‘ are (?erta|nly fie
them would require a probability of infection of .95 or high where, realistically, benefits and costs will continue to be
before having that discussion. Further, whereas 43% of| thague. To some they may suggest boundary conditions fo

directors would advise against pregnancy for patients wi
probability of infection above .15, another 30% would requ
a probability of .95 to do so (Mulley & Barry, 1986).

The tools are cumbersome

A recent proposal is that complex SPRs and decision ar
sis be replaced by “fast and frugal” versions (Gigerenzer et
1999). In such simplifications, a SPR may use just one pre
tor variable, for example, or treat all variables as having
same weight (following Dawes and Corrigan, 1974; Daw
1979). We think that such simple heuristics bear study for
day-to-day ad lib decisions of individuals. However, we do
expect them to help generally in repetitive problems of
same form, largely for professionals, as we have considere

psqrt of decision analysis advanced here; to others they wi
ird challenge.

More complex computer-based systems have not

done well
aly-It may be that computer-based systems for two-alterna
aliagnoses suffer by inappropriate generalization from exp
dence with medical systems built to contend with more comg
tlibagnoses, in which the diagnostician describes a patig
esymptoms and looks for a listing of all diseases that shoulg
teensidered. Such systems have been based on artificial
ndigence (expert systems), probabilistic reasoning, a comb
théeon of the two, or on other methods. Performance deficien
2cbinfour prominent examples were reviewed by Berner et

this article. For our type of problem, possibly excepting such é5994). An accompanying editorial ithe New England Jour

the hospital emergency room, speed and simplicity are n
issue. So the law school admissions office can set up an
and decision threshold(s) and apply them cost-effectively
its thousands of applicants in a given year; using one vari
rather than four saves nothing of consequence. Likewise
weather forecaster is not tempted to discard the fifth or te
highest rated predictor variable if it contributes to accurg
The radiologist should be led to rate the dozen or so percej
features that make a difference and the SPR might as wel
all available ratings. Predicting violence may need to be fas
outpatient treatment, but not in a forensic facility where 1
body is going anywhere soon. Also in these cases, the sele
of a decision threshold is usually an important societal ma
warranting a good deal of time and effort. The speed-accu
tradeoff is a cost-benefit question and, generally, even s
increments in accuracy or utility are to be preferred to savi

ntretl of Medicinegave these examples a grade of “C” (Kassir
SPF04).

to
ableWhat do these hindrances add up to?

thelt may well be that one particular hindrance just mentior]
nhsufficient to preclude use of a SPR or an analysis of deci
cytility in a given situation. Together, they may seem ov|
ntuddelming. Yet, SPRs and decision analysis have been regs
@sepractical and have been in routine use in some setting
tdlecades, weather forecasting perhaps being the main “
ndence proof” among the examples of this article.
ctiorMaking sense of the historical pattern of use of the decis
taypport methods is not easy. On the one hand, one n

maibuld become acquainted with the methods before adm
ngsitors of broad national health programs, such as HIV scr
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tests. On the other hand, it is not evident (to us) why me

rologists have shown for decades a sophistication not mir

by materials scientists who provide the science for n

destructive testing programs.

The Importance of Public Awareness of
Decision-Support Methods

This article is published iPsychological Science in th

Public Interestfeatured in an accompanying press conferer
and rewritten in shorter form fdcientific Americanprecisely
because these mechanisms were created to bring such
mation to the public and its decision makers. An earlier eff
to reach decision makers wasSzxience and Public Policy
Seminarfor government officials and congressional stg

sponsored by the Federation of Behavioral, Psychological

Cognitive Sciences (Swets, 1991). That presentation led t

line of work being selected as the illustration of practical bens
efits of basic research in the behavioral sciences in a White “of attention in a new imaging modalitfEechner Day 91 International
House science policy report (co-signed by Clinton and G

1994). In the longer run, a national awareness may help to

inroads in the procedures and regulations of policy maker
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APPENDIX: SOME CONCEPTS OF PROBABILITY

Though they are not all used formally in the body of thislitional probability. In the present context, we focus predo

article, certain concepts of probability are fundamental to
ideas and analyses presented there. These concepts a
necessary to appreciate the gist of the article, but a brief re
of them may promote a more sophisticated view. As it happ
the same concepts are quite generally useful in human aff

Seemingly intricate or technical at first glance, and indeed thpyobabilities in diagnostics. Still, here, where we are prima

are often misunderstood and confused, they can be seen
straightforward and likely to repay some attention.

Recall our focus on the two elements of a diagnostic ta
(1) the presence or absence of a condition of interest, an
a decision that the condition is or is not present. We spok
the actual presence or not of the condition as the “truth” al
the condition and designated the two truth states as T+ (
dition present) and T- (condition absent). Similarly, we d
ignated the positive and negative decision as D+ and D-.

Joint probabilities
We wish to make probability statements about two ways

which T and D values may combine. One is the co-occurre
or joint occurrence,foa T value ad a D value (say, the value

T- and D+, which together represent a false-positive outcom&how the prior probability of a condition or event: of canc

An expression such as P(T— & D+) denotes a joint probabil
the other three possible coincidences of T and D values
have associated joint probabilities. In words, one speaks,
of the probability of a cancer being absent and the diagn
being positive.

Conditional probabilities

The second way in which T and D values may combing
in a conditional relationship. We may ask about the probab
of D+ occurring conditional on, or given, the occurrence of T
Here, the notation is P(D+ | T-). In this example, note that
are conditioning D on T. That is, the quantity of interest in t
example is the probability of a positive cancer diagnosis gi
the actual absence of cancer. Another possibility is to condi
in the other direction, on the decision D. For example, P(1
D+) expresses the probability of there being cancer in tf
given that the decision made is positive for cancer. It may
noted that the direction from decision to truth gives the pr
ability that usually interests the patient and the doctor; it r
resents what is termed the “predictive value” of the diagno
For some purposes, it interests evaluators of diagnostic pe
mance. However, probabilities proceeding from truth to di
nosis are of principal utility in the present context: As seer
our discussion of ROC analysis, they are the basis for v
measures of diagnostic accuracy and the diagnostic dec

Strictly, one should be careful to qualify any probabil
referring to combinations of T and D as either a joint or cg

tmantly on conditional probabilities and have not carried

requalifier along when no confusion is likely. Also, it is partic
ikarly important to be clear about the direction of a conditio
emspbability: from truth to decision or the reverse. Confusion
atfss respect is widespread and plagues communication g

tctecerned about probabilities of decisions given the truth,
also drop that qualifier when permissible. So here, a “fa
\gBositive probability,” for example, is a conditional probabili
j g2 it is P(D+ | T-), or conditioned on the truth.

e of

out Prior probabilities

con-

es- The third and final kind of probability required here is t
prior probability of the condition or event of interest, “prior” {
a decision, which is denoted either P(T+) or P(T-). One m
know, for example, whether the probability of breast cance
a given diagnostic setting is relatively low, .03, as it might
in broad-based mammography screening, or relatively h
5183, as it might be in a referral hospital for symptomatic cas
ndes discussed, this variable affects the decision threshold th
sselected for making a positive diagnosis. So there is a nee

ityjolence, or severe weather, say, in any population or lo
alswder study.
say,
0Sis . -

Relation among the three probabilities

The joint, conditional, and prior probabilities are simp
related; the joint probability is the product of the other tw
Considering just positive quantities, for example: P(T+ & D
= P(D+ | T+) xP(T+).
2 is
_Ify Calculation of probabilities from a frequency table

we The computation of the three types of probabilities is bal
hien frequency data in a two-by-two contingency table. Sug
veéable has two columns, headed by T+ and T-, and two rg
titabeled D+ and D—, as shown in Table A-I. The frequencies
[tchses that fall in each of the four cells are denateld, ¢ and
uth respectively. Thusa is the number of cases for which T|
lamd D+ co-occur, and so forth. The margins give cell tot
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Dle-g., a+c is the total number of times T+ occurs, wheth
epssociated with a positive decisioa) (or a negative decisio

gample’s table are taken as estimates of corresponding
atdbilities in the population from which the sample is drawn

threshold.
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si). Likewise, a+b is the number of times that the positive
rfdecision D+ is made, whether to T+ or T-. The total sample
agize is N= a+b+c+d. Various proportions calculated from ja

rob-

siorNote that dividing the column sums by the sample size gives
the proportions of times that T+ and T- occur—which are taken
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T-). These are the two conditional probabilities of a positjve
decision, given T+ or T-. Their notation may be simplified jas
P(TP) and P(FP).

These two probabilities are independent of the prior prpb-
abilities (by virtue of using the priors in the denominators|of

Table A-l. Two-by-two table of truth and decision; b, c, d
are the frequencies of the four possible decision outcomes.
The important proportions, or probabilities, are defined.

— Truth - their defining ratios). The significance of this fact is that RQC

Positive Negative measures do not depend on the proportions of positive |and
a b negative instances in any test sample, and hence, generalize

Decision Positive | True positive | False positive a+b across samples made up of different proportions. All other

c d existing measures of accuracy vary with the test sample’s pro-

Negative| False negative True negative c +d portions and are specific to the proportions of the sample from

a+c b+d a+thb+ which they are taken.
c+d=N

Prior probabilities: Joint probabilities: Inverse probabilities and Bayes® theorem

(@+c)/N=P(T+) a/N=P(T+&D+) c/N=P(T+&D-)
(b+d)/N=P(T-) b/IN=P(T-&D+) d/N=P(T-&D-)
Conditional probabilities (of decision conditional on truth):
alla+c)=P (D+ IT+) clla+c)=P (D-1T+)

bib +d)=P (D- I T-) di(b+d)=P (D | T-) est. However, the concept of inverse probabilities is centrally

important to our developments when applied not to the deci-
sion, but to the data or evidence that underlie the decision.
i-Whereas the construction of a SPR is based on probabilities of
items of information (data, symptoms, pieces of evidence) that
are dependent (conditional) upon known positive and negative

as theprior probabilities, respectively, of T+ and T-. Speci
cally, the proportiond+c) / (a+b+c+d) is equal to P(T+) and
the proportion(b+d) / (a+b+c+d) is equal to P(T-).

Dividing a cell frequency by a column or row total gives
conditionalprobability. For example, the proportiga) / (a+c)
is the conditional probability of a true-positive decision cg
ditioned on T+, namely, P(D+ | T+). The proportita) / (a+b)

dnstances of truth, the use of the SPR as a decision aid is hased
on the inverse probability: the probability of the positive trth
rstate given the (collective) data. It is this latter probability that
the SPR supplies for diagnosis and forms the continuum of

lyevidence along which a decision threshold is set to pernjit a
binary, positive or negative, decision.

s a Inverse probabilities are often called “Bayesian” probab
ties because they may be calculated by means of the clergy
Thomas Bayes’ (1763) theorem from the truth-conditio
probabilities along with the prior probabilities. Specificall
using the symbol “e” to denote the evidence for a decision,
theorem (stated here for just the positive alternative) is:

is the true-positive probability conditioned on D+, name
P(T+ | D+).

Lastly, dividing a cell frequency by the sample size give
joint probability. So, e.g.,d) / (a+b+c+d) is the joint prob-
ability of a true-negative outcome, P(T—- & D-).

ili-
man
nal
Y,
the
Two basic probabilities

Two conditional probabilities based on the frequencies in
Table A-1 suffice to provide all of the information contained|in
the four conditional probabilities just described. Provided they
are truth-conditional probabilities, two will do, because the
other two are their complements. That &/ (a+c) andc / | where P(e)= [P(e | T+) xP(T+)] + [P(e | T-) xP(T-)], that ig,
(a+c)—namely, the two proportions derived from the left colthe sum of the values of P(e) under the two possible alternatjves.
umn—add to 1.0 (when T+ holds, the decision is either D+ or The theorem illustrates that the quantity produced for |the
D-). Similarly, their probabilities, P(D+ | T+) and P(D- | TH),decision maker by a SPR incorporates the prior probability.
add to one. Also, the two conditional probabilities of the righthough that fact is sometimes forgotten, the decision maker
column are complements. The two probabilities often used should be consistently aware of it and resist the tendency to
summarize the data are the true-positive and false-positiveke a further adjustment for the prior probability, or base
probabilities:a / (a+c) or P(D+ | T+) andb / (b+d) or P(D+ | | rate, that characterizes the situation at hand.

Ple|T+) x P(T+)

P(T+|e) = Pe ,
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