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A long-standing issue in the study of how people acquire visual information centers around the
scheduling and deployment of attentional resources: Is the process serial, or is it parallel? A substantial
empirical effort has been dedicated to resolving this issue (e.g., J. M. Wolfe, 1998a, 1998b). However,
the results remain largely inconclusive because the methodologies that have historically been used cannot
make the necessary distinctions (J. Palmer, 1995; J. T. Townsend, 1972, 1974, 1990). In this article, the
authors develop a rigorous procedure for deciding the scheduling problem in visual search by making
improvements in both search methodology and data interpretation. The search method, originally used by
A. H. C. van der Heijden (1975), generalizes the traditional single-target methodology by permitting
multiple targets. Reaction times and error rates from 29 representative search studies were analyzed using
Monte Carlo simulation. Parallel and serial models of attention were defined by coupling the appropriate
sequential sampling algorithms to realistic constraints on decision making. The authors found that
although most searches are conducted by a parallel limited-capacity process, there is a distinguishable
search class that is serial.
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How does the mind open up to acquire information? Arguably, this
remains one of the central unresolved issues in modern psychology.
With the rise of the information-processing paradigm in the social
sciences, the issue of acquisition was reframed in terms of a one
versus many distinction. Accordingly, the central problem of attention
research became developing principled accounts of serial and parallel
processing (Sternberg, 1966, 1975). For well over 2 decades, this
dichotomy captivated much of the relevant psychophysical research
and figured predominantly in numerous attempts to understand how
attention operated during search (e.g., feature-integration theory:
Treisman & Gelade, 1980; guided search: Wolfe, Cave, & Franzel,
1989). Although not always made explicit, the search problem was
formulated in terms of single foveations and how attentional resourc-
es—and not the eyes per se—are directed. Unfortunately, it was soon
realized (and slowly accepted) that the visual search method on which
the early theories were built is inherently flawed—in short, the meth-
ods in use simply did not allow the serial–parallel distinction to be
made (Townsend, 1972, 1974, 1990), provided that it existed in the

first place (Eckstein, 1998; Geisler & Chou, 1995; Pashler, 1987;
Palmer, 1995).

In the absence of a technology for deciding if a particular data
set is produced by a serial or a parallel process, the distinction has
slowly been abandoned as not being theoretically important or as
being simply irrelevant to what an active visual system actually
does. As it is obvious that the eyes do move around in search
through natural scenes, the problem of what is learned in a glance
is being displaced by investigations into eye movement strategies
(Eckstein, Beutter, & Stone, 2001; Najemnik & Geisler, 2005;
Rajashekar, Cormack, & Bovik, 2002; Rao, Zelinsky, Hayhoe, &
Ballard, 2002; Tavassoli, van der Linde, Cormack, & Bovik, in
press; Zelinsky, Rao, & Hayhoe, 1997). It is often the case in
cognitive psychology that questions tied to a particular methodol-
ogy are discarded as new perspectives and approaches arise, but
here, the discarding of the serial–parallel distinction is premature
and unwarranted. The distinction ought never to have been at-
tached to the methods used in Treisman’s (Treisman & Gelade,
1980) articulation of feature-integration theory. The basic ques-
tions concerning the deployment of attention in single fixations
appear to be well posed and therefore should not be dismissed
unless it can be shown that the construal of attention required by
the serial–parallel distinction is either wrong or inconsistent.

Our approach to the serial–parallel decision problem involves
extensive brute-force simulation of a multiple-target search (MTS)
method (van der Heijden, 1975). This method was mentioned by
Townsend (1990) as one possible resolution to the pitfalls of
single-target search (STS). We have found that many search tasks
once presumed to be serial are in fact better explained as capacity-
limited, parallel processes. However, we have also found that
contrary to popular belief, not all small set-size searches are
parallel (Grossberg, Mingolla, & Ross, 1994; Humphreys & Mul-
ler, 1993; Humphreys, Quinlan, & Riddoch, 1989; Pashler, 1987)
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and that it is in fact possible to reliably resolve a class of search
problems with serial element scheduling. We begin our discussion
with a brief review of the search method that has historically been
used to decide issues of processing style and, more lately, issues of
processing efficiency (Wolfe, 1998a, 1998b).

Single-Target Visual Search

Despite its many problems, the standard visual search method-
ology continues to be the preferred tool for investigating the
character of attentional limitation. It is simple to implement em-
pirically, and the data patterns it generates have always had con-
crete theoretical meaning (Treisman, 1988; Treisman & Gelade,
1980) even if motivating theories turned out to be wrong or
incomplete. In what is by far the most common version of the
experiment, observers conduct speeded searches to determine
whether a single target element is or is not present in a display of
distractor elements. Typically, the average response time (RT) to
make this decision is plotted as a function of the number of total
elements (set size � 1 � number of distractors). Though errors are
recorded, they are rare in most implementations and are usually
examined only to insure that there is no simple trading of speed for
accuracy. Throughout this article, we refer to this empirical ap-
proach collectively as the method of STS.

In STS, attentional limitation is inferred from the target-present
latencies. If the target element is well camouflaged within its distrac-
tor field, search will be difficult and time consuming, and this means
that RT will increase with set size. When this increase is substantial
(usually a linear function of set size, with a slope of approximately
20–50 ms per additional item), the implication is that the search is
difficult—attentionally demanding. A paradigmatic example of a dif-
ficult search task is hunting for a sideways T element target among
mirror-flipped distractor Ts (Logan, 1994; Wolfe, 1998b).

There are also searches wherein the target is so obvious that it
literally pops out. This happens in searches based on differences in
color, motion, orientation, size, luminance, and other feature di-
mensions known to be processed early in visual cortex. When the
target pops out, it makes no difference how many distractors are
present, and in this limiting case, there is no cost associated with
set size. In fact, flat RT functions were originally thought to define
the class of parallel processes. It was this association that
Townsend (1972, 1974) was clarifying with the introduction of
limited-capacity parallel processes.

Shortcomings of Single-Target Search

There are problems with the single-target method, one theoret-
ical, one practical. The theoretical problem is that set-size effects
and RT functions with slopes greater than zero are not necessarily
indicative of serial process. A parallel process might suffer costs of
divided attention, and this would lead to serial-appearing RT
functions (Townsend, 1990). In fact, there is no way to sort out
seriality from capacity limitation by analyzing RT slopes.

The second major limitation of STS concerns experimental
design and stimulus generation. Most experiments use a range of
set sizes spanning anywhere from 1 to 4 elements at the lower end
to 24 or more elements at the upper end. Although these ranges
may provide a statistically reliable estimate of slope, they may also

introduce visual artifacts such as masking and low acuity in the
periphery (Carrasco & Frieder, 1997; Carrasco, McLean, Katz, &
Frieder, 1998; Carrasco & Yeshurun, 1998; Geisler & Chou,
1995). These artifacts have been shown to undermine a clear
interpretation of RT slopes.

Multiple-Target Visual Search

In recent years, several alternative methodologies that might be
able to distinguish serial from capacity-limited parallel processes
(Townsend, 1990; Townsend & Wenger, 2004) have been pro-
posed. The MTS method, as implemented by van der Heijden
(1975), is one such example. This method is an extension of STS
that, under appropriate constraints, decouples capacity limitation
from processing protocol. MTS augments the standard design by
including trials with more than one target. The participant’s task is
the same as in STS—to indicate whether any targets are present.
This extension generates key diagnostic conditions known as pure-
target trials, in which every element in the display is a target. The
pure-target trials are the critical feature in this design.

The potential benefits of this method (Townsend, 1990) lie in
the following logic: If target-present RT decreases as pure-target
number increases (i.e., there is a redundancy gain), then process-
ing is parallel—if not, then processing is serial.1 This follows
because, for a serial process, the first item visited in a pure-target
display will always be a target regardless of set size. As soon as
this element is identified as a target, the search can terminate with
a “target-present” response. Assuming that the average identification
time of individual elements does not vary with set size (the standard
assumption), serial models must predict flat pure-target RTs with set
size. The practical implication is that whenever redundancy gains are
observed in data, serial models can be ruled out in favor of limited-
capacity parallel processing. Standard parallel models predict that RT
should decrease with target number either owing to statistical consid-
erations (race gains; Raab, 1962) or via spatial pooling of evidence
across channels (see Miller, 1982).

The multiple-target method as originally discussed by van der
Heijden (1975) involves only small set sizes, from one to three. In
our work, we have added an additional element to potentially
increase the resolution of redundancy gains. In the context of
search experiments, four is not a large number. STS methods often

1 Though a standard serial architecture does not predict redundancy
gains, there are amendments to the basic model that can in principle
achieve such effects. For example, a serial model with a favored position
for processing (Egeth & Mordkoff, 1991; Mullin, Egeth, & Mordkoff,
1988; van der Heijden, La Heij, & Boer, 1983) can generate redundancy
gains provided that there is a reliable benefit conferred by having a spatial
bias (e.g., by reducing the time associated with orienting attention to that
location, etc.) and that at least one element falls within this position. If
these provisions are met, then on pure-target displays containing two or
four targets, it is more likely that one of the targets will occupy the serial
model’s favored position (relative to Set Size 1). The more likely a target
is to fall within the privileged position, the faster the average RT. In MTS,
elements do not occupy fixed locations, and set size varies randomly, so
that these kinds of favored-position effects are much less of a concern.
Moreover, we have conducted simple analyses to check for favored-
position artifacts (see Thornton & Gilden, 2001; van der Heijden et al.,
1983), and we have found no evidence for such effects in any of our data.
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use as many as 12 or 24 elements. We prefer a small cap on set size
for several reasons. First, our studies are exploratory, and we wish
to create a test bed with as few artifacts as possible. Larger set
sizes introduce acuity artifacts as elements move into the periphery
(constant density) or are packed more densely (constant area)
(Geisler & Chou, 1995; Palmer, 1995; Palmer, Verghese, & Pavel,
2000), as well as promoting seriality through explicit eye move-
ments. Also, as the element number increases, the overall pattern
becomes more texturelike, and there is no question that textures
have different grouping properties than individual elements
(Wolfe, 1992; Wolfe, Chun, & Friedman-Hill, 1995). Neverthe-
less, inferences drawn from small element methods may not gen-
eralize to more complex search fields, an issue to which we return
in our concluding comments.

Moving Beyond a Naı̈ve Implementation of the Multiple-
Target Search Method

Our initial interest in the MTS method arose from efforts to
distinguish the different attentional demands placed by rotational
and translational motions (Thornton & Gilden, 2001). In this work,
we were particularly interested in the presence of redundancy
gains in search for targets defined by direction sign. Three motion
classes were investigated: translation (left, right), rotation (clock-
wise, counterclockwise), and looming–receding motion (transla-
tion along the line of sight). The data from these experiments are
plotted in Figure 1. The average median RTs for correct trials only
are plotted (upper graphs), with the associated error rates below
them. In these plots, the target-absent data are connected by black,
dashed lines, and the pure-target trials are denoted by the leftmost
symbols on each of the one-, two-, and four-target tracks. We
found that only rotation failed to show redundancy gains in the
pure-target trials, implying that this motion uniquely requires a
serial process for the acquisition of direction sign.

Although all of the target-present data are consistent with this
interpretation, the target-absent data are problematic as it is not
immediately clear what they signify. In all cases, the target-absent
RT trends appear to mirror the pure-target trends (the only real
difference between target-present and -absent RTs is in terms of a
constant absolute offset in RT that is typical of yes–no paradigms).
Obviously, the interpretation of the target-absent data cannot be
the same as that of the target-present data even though they have
the same shape. How is it possible to reject four distractors faster
than one or two? Until redundancy gains in the target-absent
conditions are understood, making inferences about processing
style from the redundancy gains in the pure targets is simply not
possible.2

Speed–Accuracy Trade-Off

As we gained further experience with MTS, it became increas-
ingly clear that target-absent–pure-target mirroring is common-
place (Thornton, 2002). Typically, shallow or flat target-absent RT
functions have been taken to indicate configural effects and the
grouping of similar distractors (Humphreys, Quinlan, & Riddoch,
1989). In such cases, the target-present RTs are also typically flat
or shallow with set size. This is a kind of mirroring, but we have
seen mirroring even when there are large set-size costs (e.g., the

rotation RTs in Figure 1). Additional investigations in our labora-
tory revealed that this kind of mirroring persists even when group-
ing and texture segmentation are attenuated (Thornton, 2002).
Instead, the mirroring characterizing MTS data seems to be asso-
ciated more with speed–accuracy trade-offs than with element
grouping.

It appears that our observers were systematically scaling re-
sponse criteria with set size in such a way as to reduce RT costs
when targets were not present. Any adjustment of criteria that
reduces RT will necessarily increase error rate, the miss rates in
particular. Examination of the error-rate patterns in Figure 1 shows
they are consistent with this idea. For all three motion experiments,
there is a general trend for single-target misses to increase with set
size, whereas false alarms hold constant or decrease with set size.
This pattern of error is especially evident in the case of search for
rotation direction, where misses for a single target among three
distractors approach 20%. This particular pattern of rising miss
rates and low false alarms has also been seen in some single-target
experiments (e.g., Rensink & Enns, 1995) and may reflect the fact
that observers were using a rational strategy (see Zenger & Fahle,
1997, for a treatment of error patterns in STS). A moment’s
thought suggests that observers might well truncate searches when
targets are rare in the design (Wolfe, Horowitz, & Kenner, 2005)—
especially when given instructions to respond quickly.

The standard approach for dealing with speed–accuracy trade-
off is to either explicitly compute the trade-off function (McElree
& Carrasco, 1999; Meyer, Irwin, Osman, & Kounios, 1988; Pach-
ella, 1974; Wickelgren, 1977), construct an analytic function that
combines RT and error (e.g., RT divided by accuracy; see Dennis
& Evans, 1996; Townsend & Ashby, 1983), or constrain either RT
or error so as to reduce its variation (Palmer, Ames, & Lindsey,
1993). None of these approaches is possible in MTS. Observers
partition their error nonuniformly among the different treatment
cells, and this is an unavoidable consequence of using a design that
has variable numbers of targets and set sizes. The complexity of
the error patterns is such that individual trade-off curves cannot be
constructed, and we doubt whether it would be profitable to
develop a separate trade-off rule for each cell. Instead, we have
allowed explicit simulation of the search process to generate error
partitions and have addressed speed–accuracy trade-off within the
context of model fitting.

Construction of a Modeling Test Bed

Developing models of visual search processes requires a large
test bed of data. These data should span the gamut of search

2 The mirroring between conditions is puzzling because flat or decreas-
ing target-absent RT functions are not predicted by any standard model of
search (serial or parallel). Both standard serial and parallel models of
processing predict that target-absent RTs should increase with set size. In
the case of a serial process, this prediction is rather straightforward.
Target-absent responses can only be made after all elements have been
identified as nontargets, and thus, increases in set size necessarily lead to
increases in target-absent RTs. In the case of a parallel process (capacity
unlimited or not), the prediction is also that target-absent RTs should
increase with set size purely because of statistical considerations (the
slowest of n processes limits an exhaustive response).
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difficulty so that the models can be calibrated across the full range
of attentional demand. In this section, we describe the 29-study test
bed we created, the core methodology, and all pertinent details for
replications of these studies.

In addition to the motion tasks that motivated our original
studies, the remainder of tasks in the test bed were chosen first to
represent the continuum of search difficulty and second to repre-
sent the key stimulus sets that have historically shaped theory
development in this field. The ensemble includes tasks that must
support parallel processes, such as search for color, as well as tasks
that are known to be challenging, such as looking for targets that
differ from distractors by a mirror reflection.

Method

For all MTS measurements, displays contained either one, two,
or four elements. Individual elements were configured about a
central fixation point along a virtual circle whose radius varied
from 1.5° to 2.5° of visual angle. Elements were drawn at canon-
ical locations along the virtual circle (45°, �45°, 135°, �135°),
and for most tasks, the entire display was randomly rotated about
fixation to remove configural effects by choosing a uniform devi-
ate from the interval �25°. For some of the tasks, additional radial
jitter (�0.5°) was added individually to each element to remove
effects due to element colinearity. A schematic of the general
protocol for display generation is shown in Figure 2A.

All target–distractor differences were of high contrast, and we
verified on numerous occasions that all elements were both highly

discriminable and categorizable. The majority of individual ele-
ments across all of the studies subtended about 1° or 2° at a
viewing distance of 57.3 cm. In all, there were nine basic types of
stimulus displays; displays containing three targets were excluded
from this design. Displays consisted of all distractors (target-
absent trials), all targets (pure target-present trials), or some com-
bination of a variable number of targets and distractors (mixed
target-present trials). Figure 2B shows the relative probabilities of
encountering each type of stimulus display. This particular design
matrix was necessary to insure that the probability of encountering
target-present and target-absent displays was balanced across set
size.

Nine different observers participated in each motion-sign exper-
iment, except for Task 26 (rotation textures), where data were
pooled over an additional replication to yield 18 observers. Eight
observers participated in all other experiments, except for Task 2
(orientation), where data were again pooled over an additional
replication to yield 16 observers. For all tasks, stimulus displays
were preceded by a brief fixation interval (�500 ms) and were
present until response.

Stimuli

In total, the test bed consisted of 29 search tasks, each of which
may be broadly categorized into one of six groupings: (a) featural,
(b) emergent cues, (c) rotation-induced distractor heterogeneity,
(d) conjunction, (e) configuration, and (f) rotations. These groups
summarize our impressions of task similarity and do not at this

Figure 1. Multiple-target search (MTS) results for three motion-sign experiments adapted from Thornton and
Gilden (2001). The upper graphs plot patterns of average response time (RT) for each of the nine conditions in
MTS; the lower graphs plot the associated average error rates (error bars denote standard errors). Nine observers
participated in the translation and expansion experiments; 18 observers participated in the rotation experiment.
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point confer any theoretical commitment. For reference, Figures 3,
4, 5, 6, 7, and 8 show examples of the stimulus displays that were
used in each of the 29 tasks. In every panel, there is an example of
a single-target, three-distractor display (the element assigned as
target appears in the upper left quadrant).

Featural Search

The following eight tasks consisted of searches based on targets
and distractors that differ along a single feature dimension. These
are the classic pop-out searches and are well known to generate
spatially parallel search and vivid texture segmentation. The
looming–receding motion task is an oddball in this regard because
this aspect of motion direction is encoded first in the dorsal
division of the medial superior temporal area (Graziano, Anderson,
& Snowden, 1994; Tanaka, Fukada, & Saito, 1989; Tanaka &
Saito, 1989), whereas the other features generate responses in

visual cortical area 1. Also, unlike the other feature contrasts in
this group, looming and receding motion patches do not generate
strong texture segmentation (Gilden & Kaiser, 1992). We include
the task in our featural group only because recent visual search
studies suggest that it is acquired efficiently and in parallel (Takeu-
chi, 1997; Thornton & Gilden, 2001). Key members of this class
serve to benchmark and establish the external validity of our
models. The models must find, for example, that suprathreshold
color differences are processed in parallel—because they are in
fact processed in parallel. Example stimulus displays from each
task are shown in Figure 3.

Task 1: Color. Elements were circular, colored disks (�1.33°
visual angle); targets were reddish gray, and distractors were
bluish gray; elements were made highly similar by reducing sat-
uration—this was done primarily to protract overall RTs (in an
earlier pilot study using highly discriminable color differences, the
pure-target RTs were so fast as to preclude any observable redun-
dancy gains).

Task 2: Orientation. Elements were windowed sinusoids
(sine-phase Gabors, 2.5 cycles per degree, with a 1.5° Gaussian
envelope). Targets were oriented 45° left of vertical; distractors
were vertical.

Task 3: Size (big target). Targets were large, low-frequency
Gabors (2.5 cycles per degree, with a 1.5° envelope); distractors
were small, higher frequency Gabors (4 cycles per degree, with a
0.75° envelope).

Task 4: Size (small target). This task used the same stimuli as
Task 3 with target and distractor roles reversed.

Task 5: Translation. Elements were continuously translating
naturalistic textures moving behind circular apertures (�3° visual
angle); targets moved rightward, and distractors moved leftward
(this experiment was previously reported in Thornton & Gilden,
2001).

Task 6: Expansion. Elements were identical to Task 5 but
consisted of expanding–contracting texture with realistic two-
dimensional acceleration; targets were expanding, and distractors
were contracting.

Task 7: Contraction. This task used the same stimuli as in
Task 6; target and distractor roles were reversed (data from Tasks
6 and 7 were reported previously in Thornton & Gilden, 2001).

Task 8: A among Bs. This task was included to investigate
efficient letter search in the context of MTS. This particular search
should come out parallel given that the target and distractor letters
differ from each other along a number of basic stimulus dimen-
sions (e.g., local orientation, curvature, closure, terminations, etc.).
Both letters were uppercase (�1.3° visual angle) and were white
on a black background; targets were As, and distractors were Bs.
The letter elements were ramped up from zero to full contrast over
the course of a second (this was done to protract the very fast RTs
observed in pilot studies).

Emergent Cues

This class is particularly interesting in that the features that
distinguish targets from distractors are standard examples of per-
ceptual organization. Shape from shading (Ramachandran, 1988),
the use of perspective to generate depth (Enns & Rensink, 1990),
and the famed parenthesis objects (Pomerantz & Pristach, 1989)

Figure 2. Details of the multiple-target search (MTS) method. A: Sche-
matic of the stimulus arrangement protocol used for all tasks. B: Relative
probabilities of the nine trial types used in MTS. Each trial type is defined
by one of three set sizes (1, 2, or 4) and one of four target numbers (0, 1,
2, or 4); the number of distractors present in any display equals the set size
minus the number of targets. Probabilities for the target-absent conditions
are shown in the leftmost column (gray squares) and increase with set size
so as to balance the probability of target-present and target-absent trials
within set size.
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are in this group. The common wisdom based on STS is that depth
and emergent shape may lead to highly efficient searches, and this
is interesting because these contrasts are not based on simple
features. The additional degrees of freedom in MTS clarify the
extent to which this is true. Example stimulus displays from this
class are shown in Figure 4.

Task 9: Shading-UD. This task examined search for emergent
shape based on shading and an assumed lighting source (Ram-
achandran, 1988; Sun & Perona, 1996). Elements were circular
disks (�1.5° visual angle) with a shading gradient running from
top to bottom; targets were shaded from white to black and were
perceived as surface bumps; distractors had opposite polarity and
were perceived as surface dimples. Small reverse-shaded inducer
elements were included so as to increase the percept of shape in
Set Size 1 displays.

Task 10: Boxes. This stimulus set was based on work by Enns
and Rensink (1990) showing that an implied organization in depth
(using only two-dimensional elements) can generate efficient
search. Elements shared a set of three colored faces in differing
arrangements; targets were boxes that were white on top and
pointed up and to the left; distractors were white on the bottom and
pointed down and to the right.

Task 11: Parentheses. This task used search stimuli similar to
those originally investigated by Pomerantz and Pristach (1989).

Elements were distinguished by configurations of a set of two
curved lines and were constructed so as to minimize any difference
in overall spatial extent; targets had the curves facing each other so
as to create an ovallike group, whereas distractors had the curves
facing out to create an hourglass group.

Rotation-Induced Heterogeneity

The following four search tasks were based on shape discrimi-
nation and were purposely made difficult by distractor heteroge-
neity. This was achieved by randomly rotating all of the elements.
The first two tasks consisted of search for a T among Ls, which is
of particular interest given the general consensus in the literature
that these stimuli demand a serial analysis (Bergen & Julesz, 1983;
Egeth & Dagenbach, 1991; Treisman & Gelade, 1980; Wolfe et
al., 1989). The final two tasks examined search for triangles
presented among a set of diamonds (Task 14) or among a set of
polygons (with varying numbers of sides; Task 15). Distractor
heterogeneity is known to increase attentional demand (Duncan &
Humphreys, 1989), but it is not known whether random rotations
induce serial process. Stimulus examples appear in Figure 5.

Task 12: TL-white. Elements were letters (�1.8° visual angle)
presented on a black background and were constructed from a
shared set of three line-elements (this was done to equate compo-

Color

Expansion/ Contraction

Orientation

Translation

Size
(big & small)

ligh t-red

light-blu e

+

+

A

B B

B

A among Bs

Figure 3. Example stimulus displays from the eight tasks that make up the featural group (color, orientation,
size-big, size-small, translation, expansion, contraction, and A among Bs). Each display shows a Set Size 4,
single-target condition (the targets are consistently the upper left elements in each display).
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nent orientation, length, and overall luminance across target and
distractor). Targets were Ts, and distractors were Ls; all elements
were randomly given an orientation of 0°, 90°, 180°, or 270°.

Task 13: TL-black. This task provided a replication of Task 12
using smaller, black letters (�0.8° visual angle) on a white back-
ground.

Task 14: Triangles. Elements were simple black polygons that
were randomly rotated to remove cues based on local orientation;
targets were triangles, and distractors were diamonds. All shapes
were constructed so as to minimize any perceived distinctions in
spatial extent.

Task 15: Polygons. Elements were similar to those used in
Task 14. Targets were randomly rotated triangles, and distractors
were randomly sampled from a heterogeneous set of three poly-
gons (a pentagon, diamond, or hexagon matched in phenomenal
size to the target).

Conjunction Search

We have conducted two variants of this classic search task in
which target and distractor elements are defined via a conjunction
of feature values. The presumed serial nature of these kinds of
tasks has figured prominently in tests of feature-integration theory
(Treisman & Gelade, 1980) and guided search (Wolfe et al., 1989)
and continues to play an important role in more recent work on
signal-detection models of search (e.g., Eckstein, 1998; Eckstein,
Thomas, Palmer, & Shimozaki, 2000). By definition, conjunction
search tasks have heterogeneous distractors. The theoretical issues

surrounding conjunction search are essentially whether this form
of heterogeneity is sufficient to require serial process. Examples of
the stimulus displays used in these tasks are shown in Figure 6.

Task 16: Color-orientation. This particular conjunction task
utilized a Color � Orientation stimulus set known to consistently
yield moderate to large set-size effects in STS (Nakayama, Wang,
& Kristjansson, 2000; Wolfe, 1998a). Targets were white verticals;
distractors shared one feature with the target and consisted of black
verticals and white horizontals. Displays were constructed by
randomly sampling distractors, with the constraint that homoge-
neous distractor draws were not allowed (without this constraint,
targets can be distinguished solely by color or orientation).

Task 17: Bigram-conjunction. This task examined conjunction
search in the context of simple letter-strings. The stimuli were
drawn from a previous set of studies that used STS data to argue
for serial processing of words (Duncan, 1989). The search ele-
ments consisted of strings of four black letters (�1° visual angle)
presented on a white background. The target was the string STAB,
consisting of the concatenation of the bigrams ST and AB. The
distractors consisted of random draws from a set of two strings that
shared one bigram with the targets (STUX, ICAB). In Set Size 4
displays, distractor heterogeneity was maintained so that the target
could not be distinguished solely by a unique letter.

Configuration

The following tasks examined the most difficult searches—
when targets and distractors can only be distinguished in terms of

Shading-UD Boxes

Parentheses

Figure 4. Example stimulus displays from the three tasks in the emergent
features group (shading-UD, boxes, and parentheses).

Triangles Polygons

+ +

TL-white TL-black

Figure 5. Example stimulus displays from the four tasks in the rotation-
induced heterogeneity group (TL-white, TL-black, triangles, and poly-
gons).
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the relative position or configuration of shared components.
There is a large body of work attesting to the difficulty subtle
changes in configuration impose on attention. This has been
documented in STS (Enns & Rensink, 1990; Logan, 1994;
Moore, Egeth, Berglan, & Luck, 1996; Saarinen, 1996; Wolfe,
1998a; Wolfe & Bennett, 1996), threshold search based on
accuracy (Palmer, 1994; Poder, 1999), and studies of texture
segmentation (Beck, 1966; Geisler, Stern, Thornton, Kuyel, &
Ghosh, 1998; Malik & Perona, 1990; Rentschler, Hubner, &
Caelli, 1988; Sagi, 1995). From our point of view, these tasks
are key members of the test bed because the models must reflect

the reality that these kinds of search are attention demanding.
Either the models must assign large costs for dividing attention
in parallel or they must fit the data with a serial process.
Examples of the stimulus displays used in these measurements
are shown in Figure 7.

Task 18: Missing-side. Elements were highly discriminable
black C-like figures (�1.2° visual angle) constructed from a
shared set of three lines; targets had a missing side on the right,
whereas distractors had a missing side on the left.

Task 19: Y-UD. Elements were Y junctions (�1.3° visual
angle) oriented upward for targets and downward for distractors.

target

+

Color-orientation

STAB ICAB

STUX ICAB

+

Bigram-conjunction

Figure 6. Example stimulus displays from the two tasks in the conjunction group (color-orientation and
bigram-conjunction). In both cases, distractors were randomly sampled from a two-element set with the
additional constraint that, on any given trial, the distractors could not all be identical.

Missing-side Y-UD Broken-boxes Bigram-position

Shading-LR CirclePlus: 1 & 2 Phase

Figure 7. Example stimulus displays from the eight tasks making up the configural group (missing-side, Y-UD,
broken-boxes, bigram-position, shading-LR, circlePlus-1, circlePlus-2, and phase).
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Task 20: Broken-boxes. These elements were based on the
same stimulus sets used in Task 9 (boxes; see also Enns &
Rensink, 1990) except that the colored, trapezoidal faces were
separated so as to attenuate the three-dimensional cubelike inter-
pretation. With this change, targets can only be distinguished from
distractors by a particular configuration of trapezoids.

Task 21: Shading-LR. This task was based on the same stim-
ulus sets used in Task 8 (shading-UD) except that the target and
distractor elements were rotated 90° counterclockwise. This ma-
nipulation removes distinctions in surface curvature and reduces
the task to a strict judgment of shading polarity.

Task 22: CirclePlus-1. Elements consisted of arrangements of
a circle and a plus sign (�1.2° � 2.2° visual angle) presented on
a white background; targets had the plus to the right of the circle,
whereas distractors had the reverse arrangement. Though these
stimuli are highly discriminable psychophysically, in the context
of multielement displays they are known to generate inefficient
patterns of search characterized by large set-size effects (Logan,
1994; Moore, Elsinger, & Lleras, 2001).

Task 23: CirclePlus-2. This task served to replicate Task 22
with a different set of observers.

Task 24: Phase. Elements were one-cycle square waves
blurred by a circular Gaussian envelope (�1.3° visual angle)—
targets were white on the left, and distractors were white on the
right. These stimuli were similar to those used in Task 21 but were
of higher contrast, had a sharper gradient, and did not include
inducer elements.

Task 25: Bigram-position. This stimulus set examined search
for a specific configuration of shared bigrams (Duncan, 1989).
Elements were identical to those used in Task 17 with the follow-
ing change—the distractors were no longer heterogeneous and
were defined by a reversed arrangement (ABST) of the bigrams
used in the target string (STAB).

Rotations

The following four tasks examined search for a specific direc-
tion of rotation. In contrast to translational motion, the sensing of
rotation direction generates seriallike patterns in search (Thornton
& Gilden, 2001) and does not permit effortless texture segmenta-
tion (Julesz & Hesse, 1970). One of the benefits of reassessing this
group is that we were able to replicate our earlier findings and to

Figure 8. Example stimulus displays from the four tasks in the rotations group (rotation-textures, rotation-
coins, rotation-pinwheels, and rotation-keyholes).
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put them on a more solid basis with the modeling approach that
was developed subsequent to the original studies. Examples of the
stimulus displays used in these tasks are shown in Figure 8.

Task 26: Rotation-textures. Elements were continuously rotat-
ing naturalistic textures moving behind circular apertures (�3°
visual angle)—targets rotated clockwise, and distractors rotated
counterclockwise (this experiment was previously reported in
Thornton & Gilden, 2001).

Task 27: Rotation-coins. This task extended the investigation
of rotation search to the case of motion about an axis oriented in
depth. Elements were realistic coinlike objects (rendered in Cin-
ema 4D; Maxon, Newbury Park, CA). Targets and distractors
rotated in different directions about an obliquely oriented axis.
Unlike the stimuli used in our other motion tasks, individual
elements differed slightly in size within a display (owing to per-
spective projection) and were given realistic lighting cues and
specularities to strengthen the three-dimensional percept.

Task 28: Rotation-pinwheels. Measurements on this task were
previously reported in Thornton and Gilden (2001). The task
examined rotation search when elements dynamically accreted and
deleted background texture. This manipulation gave rotation a
feature common to all translational displacements and tested
whether this property was sufficient to generate efficient search for
direction. Elements were black pinwheels (�3° visual angle) that
rotated against a static Gaussian noise background (targets rotated
clockwise, distractors counterclockwise).

Task 29: Rotation-keyholes. This task also examined rotation
search in the context of accretion and deletion. In this variant,
naturalistic textures rotated behind keyhole apertures (�3° visual
angle), and object texture was accreted or deleted in a manner
similar to the aperture-bounded translation and expansion–
contraction stimuli used in Tasks 5–7.

Preliminary Data Reduction

For all 29 tasks, observers completed 288 trials of practice
before providing either 576 trials (motion-sign tasks) or 864 trials
(the remaining 22 tasks). In the preparation of the RT data, we
excluded all trials on which errors occurred and trials with RTs
greater than 1,500 ms or less than 150 ms. In no case was more
than 1% of the data excluded (this did not vary across the test bed).
Prior to averaging, we converted RT data from individual observ-
ers to z scores using each observer’s global mean and standard
deviation.

Transformation to z scores before averaging across observers
has a number of desirable properties. First, a z-score transforma-
tion uses each observer’s intrinsic variability to bring all the RT
effect sizes onto a common scale prior to averaging—a 100-ms
set-size effect is phenomenally much larger for an observer whose
overall standard deviation is 50 ms than it is for an observer whose
standard deviation is 200 ms. Second, it removes individual-
differences variability arising from overall speed—some people
are faster than others. The variability that is left and that is relevant
to model selection arises from how participants differentially ef-
fect speed–accuracy trade-offs across the nine cells of the design.
In this way, it is the patterns of RT data that are highlighted in the
analysis, not where the patterns happen to fall in terms of an
absolute number of milliseconds. The models indeed make no

prediction about how many milliseconds any aspect of search will
consume. Removing between-participant overall speed differences
effectively shrinks the error bars in RT patterns, providing a more
demanding test for models in goodness-of-fit comparisons.

After normalization to z scores, we computed within-
observer RT medians for each of the nine search conditions.
Median z scores were used to compute cell means and standard
errors. Models were fit to the averaged data using a resampling
procedure so that error bars on the model parameters could be
estimated. It should be noted that although the RT distributions
collected from individual participants are nonnormal (and so
too are the derived z-score distributions), the data that we
modeled are averages over observers and so are approximately
normal. We used the normality of these distributions to obtain
confidence limits on parameter estimation (see Appendix A,
section entitled Resampling Data).

For clarity of presentation and intertask comparison (targets in
different experiments are more or less easy to find), we converted
the final averaged RT z scores and standard errors back to units of
seconds using each task’s global RT mean and standard deviation
(averaged over observers). This last step was taken simply to
present our results in dimensional units and in no way influences
the fitting and development of models.

Insofar as RT patterns in visual search cannot be understood
outside of the context of speed–accuracy trade-offs, we have found
it necessary to also compute averaged error-rate patterns for each
task. Because the errors tended to have a common range across all
observers and tasks (a floor at 0 and less than 10% errors on
average), no z-score transformation was used here prior to aver-
aging over participants. These two sets of patterns, one in RT, one
in error, were jointly used to select models.

RT and Error Patterns in Multiple-Target Search

We found three basic patterns of data, illustrated in Figure 9,
that were reiterated throughout the entire test bed, and they fairly
describe what might be expected in MTS. Eventually, we identify
these patterns with specific models of visual search. Here, we
introduce the patterns in terms of their most salient and identifying
features. The individual plots for each experiment are displayed in
Appendix B and are grouped according to classes outlined in
Figure 9.

Class A

1. Mild set-size effects in single-target RT and miss rates
(average increases of approximately 43 ms and 6% error
at Set Size 4);

2. Target-absent and pure-target RTs that mirror each other,
decreasing similarly with set size (–27 ms and –17 ms,
respectively); and

3. False alarms that decrease over set size by about 3%.

Class B

1. Set-size effects in single-target RTs roughly twice those
seen in Class A (�89-ms increase at Set Size 4),
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2. Slightly larger increments (relative to Class A) in single-
target misses (approximately 8% at Set Size 4),

3. Target-absent and pure-target RTs that mirror each other
with no appreciable redundancy gains in pure-target RT
and similarly flat target-absent RT patterns, and

4. False alarms that decrease over set size by about 4%.

Class C

1. Low single-element errors with little observable RT asym-
metry (both misses and false alarms around 2% to 3%);

2. Large set-size effects, whereby single-target RTs and

misses rise dramatically (154 ms and 16%, respectively,
in going from zero to three distractors);

3. Target-absent RTs that rise with set size at roughly half
the rate of single-target RTs (an approximately 72-ms
increase);

4. Pure-target RTs that are flat or rise mildly with set size
(on average, �18 ms); and

5. False-alarm rates that are generally low and roughly
constant over set size.

Class A tasks show the hallmark signatures of spatial parallel-
ism in MTS in that set size has a relatively small influence on RT

Figure 9. Three classes of data as revealed in the use of multiple-target search. The graphs in Panel A show
the average response time (RT) and error data from a subset of 10 tasks based on simple featural distinctions.
The graphs in Panel B show the average data from a subset of 11 tasks that have proven difficult to interpret in
previous treatments; this class includes searches for shape, conjunctions, and emergent properties. The graphs
in Panel C show the average data from a subset of 8 highly demanding forms of search based on relative position,
phase, and rotation direction. The inset numbers in the three upper graphs denote the RT differentials over set
size. From top to bottom, the values correspond to (Set Size 4, single-target RT) minus (Set Size 1, single-target
RT), (four-distractor RT) minus (Set Size 1, single-distractor RT), and (four-target RT) minus (Set Size 1, single-
target RT), respectively. The inset numbers in the lower three graphs denote error-rate differentials over set size.
From top to bottom, the values correspond to (Set Size 4, single-target miss rate) minus (Set Size 1, single-target
miss rate), and (Set Size 4, false-alarm rate) minus (Set Size 1, single-distractor false-alarm rate). Error bars
denote standard error of the mean.

81PARALLEL AND SERIAL PROCESSES



and miss rate and there are strong redundancy gains in the pure-
target conditions (i.e., RT decreases with target number). That
these tasks generate clear evidence of parallel processing validates
our methods because we know from physiology and psychophys-
ics that distinctions in size, color, orientation, and so on are
realized via massively parallel representations in early cortex
(Kandel, Schwartz, & Jessell, 2005, provide an overview of these
issues). Moreover, these tasks allowed us to calibrate the search
methodology by defining an intrinsic ruler with which to measure
other, more demanding tasks.

Class C tasks are known to be highly demanding and were
included in the ensemble as an additional calibration point. The
large single-target slope implies a high degree of attentional de-
mand, and the pure-target losses with set size are at face value
inconsistent with parallelism—even if capacity limited. Four of
the eight tasks in the class are based on search for a unique
direction of rotation. This particular stimulus distinction has been
shown to yield seriallike data in previous work (Gilden & Kaiser,
1992; Julesz & Hesse, 1970; Thornton & Gilden, 2001). The
remaining four tasks in Class C require judgments of relative phase
or configuration, a similarly demanding distinction that generates
highly inefficient search patterns in single-target treatments (Lo-
gan, 1994; Moore et al., 2001; Poder, 1999; Wolfe, 1998a, 1998b).

Class B contains data from search tasks that have historically
been the most difficult to characterize. One of the principal aims of
this work was to give this class proper definition. Class B data do
not show redundancy gains in the pure-target trials, and this makes
them look serial. However, the error patterns look more like those
of Figure 9A, and Figure 9A must be exemplary of a parallel
process given the featural tasks it includes. Class B includes
conjunction search as well as search for specific emergent cues
(boxes drawn in perspective, curvature based on implied lighting,
gestalt closure). It has never been clear how to categorize conjunc-
tion search (Duncan, 1989; Eckstein, 1998; Treisman & Gelade,
1980; Wang, Kristjansson, & Nakayama, 2005; Wolfe et al., 1989;
see also Wolfe, 1998a, and the many references therein). Further-
more, although it is established that emergent cues may make
search more efficient (Enns & Rensink, 1990; Pomerantz & Pris-
tach, 1989), set-size costs have never been estimated within a
consistent paradigm and within a modeling approach.

In reality, Figure 9B is not unique in posing problems of
interpretation. None of the data displayed in Figure 9 are entirely
straightforward. The speed–accuracy trade-offs that distorted the
target-absent RTs in our original studies (see Figure 1) are generic
to the entire test bed. To our knowledge, there are no models that
predict that people will be faster on target-absent trials with
increasing set size.3 Moreover, it is fundamental to the literature on
error analysis that error rates increase whenever the opportunities
for making errors increase. Yet we have never found increasing
false-alarm rates with set size. Inferences about processing style
must take into account trends in both RT and error, and these
trends are simply too complicated to understand through informal
visual inspection. To this end, we have modeled the data using
Monte Carlo techniques that allow us to flexibly simulate the
speed–accuracy trade-offs that create these counterintuitive trends.
To the extent that we can adequately capture the patterns used by
observers in MTS, we will be able to decide the parallel–serial
problem for the three major classes illustrated in Figure 9.

Models

In the following section, we discuss the various issues that arise
in the formulation of models of visual search. This discussion
involves several parts: how attention and perception are repre-
sented, how decisions are represented, and how the model gener-
ates the requisite data—reaction times and error rates. The desired
outcome is a formal decision procedure that stipulates the kind of
process that most likely is responsible for the observed patterns of
data.

Sequential Sampling and Diffusion-Based Evidence
Accumulation

The core component of our modeling approach derives from a
tradition of sequential sampling models that construe information
pickup as a process of noisy evidence accumulation over time
(Laming, 1968; Link, 1975; Ratcliff & Smith, 2004; Stone, 1960;
Townsend & Ashby, 1983). Sequential sampling algorithms mimic
the physics of diffusion to a boundary and represent an extension
of signal-detection theory over time.4 Their application in psychol-
ogy has proven enormously successful in the modeling of two-
choice decision (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff

3 In some of our earliest attempts to explain the target-absent RT patterns
observed in MTS, we explored the utility of a model based on the notion
of discriminating display homogeneity. The idea here was that target-
absent and pure-target RTs had symmetric trends because observers were
making fast initial judgments of homogeneity (i.e., whether all elements
were of one type), followed by a more refined assessment of identity (target
or distractor?). Though this kind of two-stage model does succeed in
qualitatively explaining the mirroring seen in some data sets—in particular,
those cases in which target-absent RTs are invariant or decrease with set
size—we abandoned it as a complete model of MTS data for two reasons.
First, without a number of additional assumptions regarding how perceived
display heterogeneity scales with set size and target number, the homoge-
neity model makes incorrect predictions for mixed-element displays (e.g.,
the standard displays of STS). As soon as a mixed-element display is
perceived to be inhomogeneous (via the first-stage analysis), then the
model necessarily generates a “target-present” response with no need for a
further analysis of individual element identity. By this logic, mixed-
element displays should be analyzed faster overall and should have trends
that track those of homogeneous displays (i.e., the pure-target and target-
absent RT trends)—both predictions are at odds with actual MTS data.
Second, although the central construct of homogeneity is easy to articulate,
it is difficult to instantiate formally in a process model, especially if we
assume it proceeds prior to element identification.

4 In signal detection (Green & Swets, 1988), decision is modeled as the
comparison of a single sample of noisy evidence with a fixed decision
bound (if the sample exceeds the bound, say signal, else noise). In the most
general version of a sequential sampling model, the sampling–comparative
process of signal-detection theory is reiterated so that at each point in time,
a new sample of evidence is added to one or more registers. The current
value of total evidence in the register(s) is then compared with one or more
decision bounds. Samples continue to accrue until enough evidence has
accumulated to reach one of the competing response boundaries. A number
of other sequential sampling variants possess similar properties and so
represent equally plausible alternatives for the modeling of multiple-target
visual search (e.g., the Poisson race model: Pike, 1973; Townsend &
Ashby, 1983; Van Zandt, Colonius, & Proctor, 2000).
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& Smith, 2004, and the references therein). For our purposes, we
used an approximation of continuous diffusion based on the ran-
dom walk model of decision (Laming, 1968; Link, 1975).

There are several virtues that recommend diffusion models.
Their properties are well understood mathematically (Link, 1975;
Townsend & Ashby, 1983), and we are able to check our simula-
tions against key analytic results. This provides crucial tests for
debugging code. Diffusion models are also perfectly suited for
simulating search because the termination of a random walk si-
multaneously yields a stopping time (reaction time) and a bound-
ary absorption (correct or incorrect decision). The geometry of
noisy diffusion to a boundary naturally leads to positively skewed
distributions of performance variables, a feature common to em-
pirical RT distributions (Luce, 1986). Most importantly, diffusion
models allowed us to graft a decision theory onto the components
that simulate the attentional and perceptual aspects of the task. It
is this flexibility that ultimately makes our models successful.

A Random Walk Model of Search

Random walks are typically applied to study choice decision for
a single instance or element. In multiple-target visual search, there
are as many as four elements, and this requires that we elaborate
the basic model accordingly. We did this by introducing multiple
independent walkers, one for each of the n elements present in a
stimulus display (for related models, see Palmer & McLean, 1995;
Ward & McClelland, 1989). In this scheme, any single walk
evolves stochastically over time through the formation of a run-
ning sum based on repeatedly sampling random deviates (usually
Gaussian, though not required). The walks drift in what is formally
called a Brownian motion.

In the search model, we interpret the random walk to represent
a record of the observer’s accumulating evidence about an indi-
vidual element’s identity. Walks corresponding to target elements
are formed by summing deviates from a distribution with positive
mean and on average move toward a positive target criterion.
Similarly, distractor walks are formed by summing deviates from
a distribution with negative mean, so that, on average, they tend to
drift toward the negative distractor criterion (typically, the means
of the target and distractor increment distributions are symmetri-
cally placed about zero, and both distributions have identical
variance, though this is by no means required). The overlap of
target and distractor distributions may be manipulated to simulate
the variation in underlying evidence confusability.

In the simplest form of the parallel model of MTS, n random
walks drift simultaneously between the two decision criteria. A
target-present decision is made when the first walk crosses the
positive criterion; a target-absent decision is made when all
walks have crossed a negative criterion. Target-present reaction
time in the model is given by the number of sampled deviates
required for a given walk to reach a response criterion. Errors
occur when a walk is absorbed at the wrong response boundary.
For example, a false alarm is recorded when one of n distractor
walks reaches the target-present boundary in error. Schematic
details of the algorithm are shown in Figure 10. In the figure, a
single target walk and a single distractor walk are illustrated
(plotted in black and gray, respectively), along with represen-
tations of the underlying increment distributions that give rise

to each accumulation process (note that the moments of these
distributions are exaggerated in the figure). S is the mean
displacement of the evidence samples (i.e., the average step size
in a random walk) and is what distinguishes targets from
distractors in the sampling algorithm. V is the common variance
of the evidence samples. T is the distance of the absorbing
boundaries.5

Asymmetry in Target-Absent Response

Pilot simulations of the random walk model revealed that the
basic architecture is inadequate to deal with certain aspects of
response asymmetry. In the first place, people are generally
slower to make negative judgments (Baddeley & Hitch, 1974;
Clark & Chase, 1972; Kosslyn, 1975; Lewis & Anderson, 1976;
Sternberg, 1969; Treisman & Gormican, 1988), and this feature
cannot arise if the absorbing boundaries and the evidence
distributions are both symmetric about the walk origin. One has
to be displaced, and we displaced the distractor boundary so
that it is slightly more distal by a factor D. D is always greater
than one in the simulations. The effect of D is to delay target-
absent decisions by requiring the random walk to migrate
further from the origin. This delay has a concomitant effect on
error: fewer misses and (a few) more false alarms.

There may also be aspects of decision making that inhibit
negative responses that may have nothing to do with the gath-
ering of evidence, and these are not captured by the model in
any sense. The evidence that nonvisual and nonattentional
processes are active in search is that we on occasion found that
RT for signaling the presence of a target at Set Size 1 would
sometimes be much less than the RT for signaling the absence
of a target at Set Size 1 even though the error rates in the two
cases were virtually identical. Where large RT differences for a
single object are so large and there is no speed–accuracy
trade-off occurring, a secondary process of inhibition is impli-
cated. This model does not attempt to characterize such sec-
ondary processes, and when there are large disparities in RT at
Set Size 1 with no attending difference in error, we use the
difference in time to estimate an overall inhibition cost. This
cost is then subtracted from all of the target-absent RTs in
models of that experiment to remove the influence of these
out-of-model factors.

5 T represents the amount of evidence necessary to decide an element’s
identity and thus sets the distance of the target-present and target-absent
response criteria from the walk origin (the target-absent criterion is by
default equal to the target-present criterion but of opposite sign; the walk
origin is set to zero). A target-present response is initiated as soon as one
of the n independent walks reaches the boundary set by T; a target-absent
response is initiated as soon as all of the n walks reach the oppositely
signed distractor bound. Because of simple scaling relationships among T
and the mean (S) and variability (V) of the increment distributions, one of
these parameters can be fixed without loss of generality. To see this, note
that T is really just a distance that can be expressed as a linear combination
of S and V (i.e., T � ZV � S, where Z is a normalized distance). For all the
modeling work reported here, we have chosen to fix T at 20 and to let S and
V enter the model as free parameters. Because of this, the exact value of T
has no real psychological meaning in and of itself—it is set simply to
produce walk times and error rates commensurate to the fitting of data.
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A Parallel Model of Multiple-Target Search

The model described here is intended to simulate the search
process from first principles. The model acts as an observer in
the sense that it makes decisions about stimuli. The stimuli in
the model are isomorphs to the stimuli that humans evaluate.
So, in parallel search, the model acts upon all elements in the
display simultaneously. This is represented in the language of
random walks by simply allowing as many random walks as
there are elements in the display—recognizing, of course, that
this display is nothing more than a set of instructions that tells
the model which evidence distributions (target or distractor) to
sample from. The walks corresponding to different elements
accumulate independently but on the same clock cycle—they all
take steps together. A schematic representation of this archi-
tecture is shown in Figure 11. In this figure, each random walk
is linked to a single element (depicted by grayscale), and the
walks all move in the same decision space—the absorbing
boundaries are not indexed to the individual random walks.

Set-Size Costs and Capacity Limitation in Parallel Models

Capacity limitation is a construct associated with the spread-
ing of a finite resource over multiple tasks. In the case of
multiple random walks, capacity limitation is represented as a
slowing down in the rate of accumulated evidence. This slowing
is a function of set size, and the rate of evidence accumulation
must be strictly decreasing with increasing set size. There are an
indefinite number of ways of realizing this mathematical con-
straint, and the procedure we have chosen is simply to reduce
the step size as a function of set size. Specifically, the step size
obtained by sampling the evidence distribution is multiplied by
n��, where n is the set size and � is a free parameter that sets

the cost of divided attention.6 When � is zero, there are no
set-size costs, and this means that RT and error will be invariant
with display numerosity. In contrast, when � is close to one, the
step size is reduced by the factor 1/n, and this means that model
RT will rise dramatically with display numerosity.

We estimated � by directly fitting models to data. It is small (on
the order of .2) in feature search and as large as .8 in the most
difficult configuration searches. This particular manner of enforc-
ing set-size costs increases RT, but it also decreases error rate as
the variability of the evidence distribution is also scaled. The
qualitative effect of � on the rate of evidence accumulation is
depicted in Figure 11. The random walks in the upper and lower
panels differ only in terms of the size of �: .2 in the upper panel,
.8 in the lower.

Relaxation of Decision Criteria in a Parallel Model

The observation that people are actually faster in making
target-absent judgments at larger set size mandates that the
simulation have some flexibility in its decision protocols. Peo-
ple are faster because they are less accurate, and they choose to
suffer the loss in accuracy because targets are in fact rare at
large set size and time is indeed of the essence. We required a
decision mechanism in the random walk procedure that would
allow early absorption because this is how RT is reduced. We
introduce here the notion of preponderance of the evidence as a
vehicle for early termination. Specifically, we added a second
absorption boundary for distractors that has the following logic:
If all walks have crossed (i.e., are more negative than) this more
proximal boundary, then as there is no early evidence for a
target, there probably is no target present—so, terminate the
trial. Although this strategy increases the relative frequency that
single targets are liable to be missed at larger set size, it has
little overall effect on the total error rate.

Preponderance of the evidence is instantiated in the algorithm
through a parameter C. The relaxed distractor criterion is placed

6 We reduce the step size by multiplying each evidence sample by a
scale factor (n��) that is smaller than one. This is equivalent to reducing
both the mean (S) and standard deviation (V) of the walk increments
identically as a function of set size. There are several reasons we chose this
implementation of capacity limitation. First, it seemed intuitive to conceive
of attention as having a multiplicative influence on stimulus information
(Palmer, 1989), much as increasing resistivity has a multiplicative influ-
ence on current flow. Second, we chose this type of scaling because it
preserves the intrinsic discriminability of target and distractor increments,
the aim being to incorporate attentional effects independent of the under-
lying evidence quality. Finally, only this manner of scaling was able to fit
the error patterns observed in the MTS test bed (namely, the decreasing
false alarms with set size). An alternative to multiplicative attenuation is to
scale the mean and standard deviation of the increments independently. A
common approach in this vein is to scale the standard deviation by the
square root of the factor that is used to scale the mean (Ward & McClel-
land, 1989). This kind of scaling is related to sample-size models of
attention and leads to decreases in evidence discriminability with set size
(cf. McLean, 1999; Palmer et al., 1993; Verghese & Nakayama, 1994). Our
parallel model of search does not incorporate such scaling because it quite
generally leads to the prediction that false alarms should increase with set
size—this is a pattern that never occurs in the use of the MTS method.

Figure 10. Schematic representation of the core random walk generator
used in both the parallel and serial models of multiple-target search. The
parameters S and V correspond to the mean and standard deviation of the
increments accumulated in the random walks. The target-present and
target-absent criteria are set by the constant T and the asymmetry parameter
D. A single example walk based on increments sampled from the target
distribution is shown in black; an example walk for the distractor case is
shown in gray. The corresponding Gaussian increment distributions on the
left have been exaggerated for illustrative purposes.
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at a distance �L/C at Set Size 2 and at L/C2 at Set Size 4, where
L is the boundary for distractor absorptions when there is only
one walk (�DT). C is adjusted by fit to the overall RT and error
patterns in each study. This parameter, as expected, played a
major role in explaining data. In every case, C was greater than
two, meaning, for example, that at Set Size 2, people require
about half the evidence from any one element that they would
need to identify a single element in isolation.

Underlying the notion of preponderance of the evidence are two
facts about the design: Targets are increasingly rare at large set
size, and many target-present displays have multiple targets. These
facts seem to have been at least implicitly understood by our
participants and are presumably why people choose to evaluate
displays on the basis of early perceptual returns. Why perseverate
in a search that has not produced any target evidence? It is possible
to calculate exactly the posterior probability that a target is present
given the joint state of n walks. This probability allows a boundary
to be defined, say, where the probability is .95, so that the error
rate is held at .05 for all target-present displays (see Appendix A).
We have found that preponderance of the evidence acts as a
heuristic that closely approximates the optimal Bayesian boundary
placement.

A Serial Model of Multiple-Target Search

There is a long tradition in the memory and visual search
literatures of contrasting predictions of parallel and serial mod-
els. In virtually every case, the kinds of serial models that have
been proposed (and occasionally explicitly evaluated) build on
the idealized conception of a serial process in which elements
are analyzed independently in sequence, randomly, and without
replacement (see Horowitz & Wolfe, 1998, for a memoryless
account of serial search). In these kinds of models, each element
is thought to receive an identical analysis using a set of invari-
ant response criteria and a processing rate that remains fixed
throughout the sequence of identifications. Let us refer to such
a serial model simply as a fixed criterion model. That it uses
fixed criteria leads to two immediate consequences in the
domain in which it has been evaluated, that is, STS: Target-
present RTs should rise in proportion to set size, and target-
absent RTs should increase at twice this rate. This logic is the
origin of the expected 2:1 slope ratio that specifies the so-called
serial search in single-target methods.

Although this conception of seriality is ingrained in the search
literature, it must be recognized that no rational person would search

Figure 11. Elaboration of the random walk generator for use in the parallel model of multiple-target search.
The various random walks denote the four accumulation processes that correspond to each of the elements in a
Set Size 4, single-target display. One walk is based on target increments (black); the remaining walks are based
on distractor increments (shades of gray). In the parallel model, the walks diffuse independently and accumulate
evidence simultaneously. The attentional limitation parameter � attenuates the drift rate of each random walk as
a function of set size. The parameter C controls a secondary joint walk criterion that can trigger a target-absent
response depending on the joint state of all n walks at a given moment in time.
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in this manner unless there were extreme penalties or rewards im-
posed. Imagine a 12-element display in a design where half the stimuli
at each set size have one target and half have no targets. Would it be
rational or even reasonable to exhaustively search this display? It is
much more likely that a given display has no targets than that the
target will be encountered among the final few uninspected elements.
Animals that behaved this way looking for food would starve (see
Alexander, 1996).

The fixed criterion search model is a poor candidate for
explaining any of the MTS data. The consequences of fixed
criteria in the multiple-target methodology are easily worked
out and are displayed in Figure 12 (left panel). In the right panel
of the figure, we show the RT and error-rate data obtained for
a typical search based on rotation direction (Thornton & Gilden,
2001), a task that is as difficult as anything we have encoun-
tered. It is evident that the fixed criterion search model makes
predictions that look nothing like these data, and these data are
our best candidates for a serial process. The miss rates, false-
alarm rates, and target-absent RTs are in complete disagreement
in terms of their global shapes. The fixed criterion model
requires flat miss rates and increasing false-alarm rates with set
size. This is simply not seen in any of the data.

The problem with this serial model is not that it is serial but
that the decision structure is irrational. Computational imple-
mentations of this model typically fail to explain data (e.g.,
Eckstein, 1998; McElree & Carrasco, 1999), and the default
model fails to explain our data as well. It is clear that decisions
about processing style should not be based on what is essen-
tially a straw man of a serial process and that we must develop
the serial process so that it is able to effect rational speed–
accuracy trade-offs. This is exactly what the fixed criterion
serial model cannot do, and it is why the model is virtually
useless. It is basic to any decision procedure that the validity of
the distinction is supported only to the extent that the two

competing alternatives are equally plausible and similarly ar-
ticulated so that each has some chance of fitting data. Here, we
require a good model of the serial process.

We have developed a serial architecture that is psychologi-
cally motivated and sufficiently flexible so that it may compete
with the limited-capacity parallel models. Like its parallel
counterpart, the serial model of MTS inherits the three core
parameters of the random walk generator (S, V, and D). What
makes the serial model serial is that it generates walks one at a
time. This implies that in a Set Size n condition, the model will
make n successive decisions based on n random walks— each
walk must terminate in either a target or distractor identification
prior to initiating the next accumulation process. If one of the
random walks is absorbed at the target-present criterion T (prior
to absorption at the distractor criterion), a “target-present”
response is generated, and no further identifications are carried
out. Provided that no random walk crosses the target-present
boundary, the sequence of analyses will continue until all n
elements have been categorized.

This kind of serial decision structure is generic to serial
models but is insufficient for our purposes. A useful serial
model must also be endowed with flexible criteria if it is to fit
any of the data in MTS. Realistic serial models require that the
decision criteria be sensitive to both set size and evidence
accumulated during the trial. These adjustments basically allow
the serial model to save time by not perseverating in fruitless
searches for rare targets.

Relaxation of Decision Criteria in a Serial Model

The motivations for introducing the notion of preponderance
of the evidence and the parameter C in the parallel model apply
here as well. Although the preponderance of current evidence is
not an issue in serial access to information, we must allow

Figure 12. Comparison of the multiple-target search predictions of a standard serial model having invariant
criteria and exhaustive processing (left panel) with actual data from the rotation-textures experiment (right
panel). Error bars denote standard error of the mean. RT � response time.

86 THORNTON AND GILDEN



criteria to be set-size dependent if the model is to not waste time
on the multiplicity of displays that in fact contain no targets.7 In
practice, we implemented this kind of rationality in the serial
random walk model via the parameter �, which moves the base
distractor criterion (–DT) closer to the origin as set size in-
creases. A schematic representation of the effects of � on the
distractor criterion is shown in Figure 13. Note that � has its
influence only on the distractor criterion and that the target
response criterion remains fixed at T in all cases. This manner
of asymmetric �-scaling was adopted because it alone generates
patterns of RT and error consistent with the observed data.

Positive values of � generate several clear effects on the
predicted patterns of RT and error in a serial model. For � 	 0,
the distractor criterion is moved relatively closer to the origin,
and thus, distractor elements are identified more quickly— but
with different consequences for the various kinds of error. False
alarms are reduced, whereas miss rates increase (both conse-
quences of easier access to the distractor boundary). Such
set-size effects are in fact common in the most difficult searches
(Class C). However, if we want a serious serial competitor to
the parallel limited-capacity model of MTS, there is an addi-
tional source of decisional flexibility to be implemented.

Relaxation During the Trial

The second component of the serial model is its decision
parameter TZ. We included TZ to allow the simulated observer
to incrementally relax its distractor criterion in situations where
it is uncovering nothing but distractors. A flexible decision
heuristic such as this allows the observer the freedom to con-
duct a cursory inspection of remaining items so as to end the
trial in a timely manner. The additional error that is accrued is
more than outweighed by the time saved in avoiding fruitless
searches of the myriad number of target-absent displays (recall
that at each set size, the number of target-absent displays must
balance all of the ways that targets may appear; see Figure 2).
This is exactly the freedom that a serial observer must have to
rationally conserve a valuable resource such as time. In this
way, only a fraction of the elements in a display is fully
analyzed, and searches are effectively abandoned if the elapsed
time approaches some fixed deadline. This notion is similar to
many of the guessing rules used by high-threshold models of
search (see Chun & Wolfe, 1996; Palmer et al., 2000).

A schematic representation of how TZ is implemented in our
random walk framework is shown in Figure 14. Here, we depict a
hypothetical analysis of a display containing four distractors. The
leftmost random walk represents the accumulation of evidence of the
first element to be inspected. This walk terminates at C1, the base
distractor criterion set by �DT and �. The time required to achieve a
categorization of the first element as a distractor is denoted t1. Prior to
analysis of the second of the four elements, the criterion C1 is relaxed
by an amount equal to the fraction of TZ remaining after the first
analysis (i.e., 1 � t1/TZ). This criterion, C2, sets the boundary for the
next distractor decision. This procedure successively repeats until all
four elements have been inspected, a target has been found, or a time
TZ has elapsed. Once a time TZ has elapsed, the distractor criterion is
at the origin, and no further trial time is allowed to accrue (decisions
are based on the sign of the next random deviate).

Summary of the Models

We have developed two models of MTS based on noisy accumu-
lation of evidence regarding element identity. One model adopts a
parallel, limited-capacity architecture, the other a serial architecture.
The models both share an identical core random walk generator
parameterized by the variables S, V, and D. These parameters deter-
mine in part the single-element decision times and error rates. The
parallel model elaborates on the basic discriminator by introducing a
capacity-limitation parameter (�) that multiplicatively attenuates the
magnitude of evidence available to decision as a function of set size.
The model also has a parameter that allows decision criteria to relax
with set size (C). The serial model has two unique parameters that
serve to relax decision criteria as a function of both set size (�) and
accumulated processing time (TZ). Like the parameter C in the parallel
model, these parameters allow the serial model to incorporate a
rationallike strategy that is responsive to changing priors on element
identity during search. The formal functions of the full set of shared
and model-specific parameters are summarized in Figure 15, along
with the principle psychological motivations supporting the inclusion
of each parameter.

Heuristic Guide to the Serial–Parallel Decision Problem

The most straightforward way to solve the parallel–serial
classification problem is through brute-force simulation with
model selection based upon goodness of fit.8 As the complete
data set comprises nine RTs and nine error rates, the complexity
of the data patterns mandates a formal procedure. However,
before we present algorithms for model selection, it is instruc-
tive to introduce the key signatures in data that distinguish the
serial and parallel processes. We present these signatures as
heuristics in deciding the serial–parallel issue. In spirit, these
heuristics are similar to the rule that if target-present RT in-

7 Criterion relaxation with set size is rational regardless of processing style.
The reason is simply that targets become increasingly rare at larger set size,
and if time is a commodity, it is not advantageous to waste it searching for
targets that are probably not there. We have computed the extent to which
distractor elements outnumber target elements in MTS on the basis of the
probabilities of encountering specific stimulus types and a tally of the number
of target and distractor elements present in each type. For Set Sizes 2 and 4, the
probabilities of encountering a distractor are 5/8 and 17/24, respectively. The
implication of this imbalance in the priors, as far as decision is concerned, is
that for set sizes greater than one, it is almost twice as likely that any given
element currently under inspection will be a distractor.

8 Because the two computational models we have created require complex
nonlinear decision structures, they are not amenable to simple analytic decom-
position (Laming, 1968). To evaluate these kinds of models, we rely instead on
brute-force Monte Carlo simulations to generate predictions. Running the
model in an explicit simulation is the only way to determine exactly what the
model will do in any given situation, though, in simple limiting cases, we do
check that the simulations give mathematically correct answers using analytic
formulations based on either continuous diffusion to a boundary (Ratcliff,
1978) or the discrete random walk (Karlin & Taylor, 1975; Smith & Mewhort,
1998). What numerical simulation lacks in elegance, it far makes up for in
terms of flexibility—by forgoing the world of analytic model fitting, it is
possible to explore the variety of complex decision structures embodied in the
parallel and serial models of MTS we contemplate.
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creases with set size, then serial, which guided early research in
this field. Our heuristics are more subtle and more numerous
because of the fact that it is necessary to consider both speed
and accuracy in deciding the kind of search process that is
operating. We have found that going through the following
rules, observations, and constraints is inevitable in conceptually
navigating the enormous complexity of search data.

Heuristic for Both Serial and Parallel Models

The Probability of a Miss

All models with fixed decision criteria tend to produce shallow
or flat miss rates on single-target trials.

Observation

When there are single targets among a variable number of
distractors, the miss rate (responding “target-absent” on target-
present trials) increases with set size throughout all data sets.

Heuristic 1

Serial and parallel models must allow distractor boundary
movement that is contingent upon set size. As the distractor
boundary moves inward, the probability that any random walk will
be absorbed on the distractor boundary increases. In this way, the
random walks that represent targets tend to be missed. The benefit
of making misses on single-target trials is that observers do not
become bogged down on target-absent trials while they make sure
that each distractor actually is a distractor.

Heuristics Related to the Serial Model

Probability Summation

A serial search with a fixed target-present criterion must pro-
duce false alarms (responding “target” on target-absent trials) that

increase with set size. The probability of an error (false alarm)
must increase when there are more items to be rejected.

Consequence

If the false-alarm rate at Set Size 1 (fa1) is large, say, 5%, then
the false-alarm rate at Set Size 4 will be about 20% in a serial
model with fixed target-present criterion.

Observation

There are no increasing false-alarm trends in the data.

Heuristic 2

A serial model with a fixed target-present criterion must be
constructed so that fa1 is near zero (such models have traditionally
been referred to as high-threshold models; Palmer et al., 2000). If
the serial model is to fit data with fa1 on the order of 5% or larger,
then it cannot have fixed decision criteria: The model must then
allow the target-present criterion to move outward with set size to
suppress the effects of probability summation.

Speed–Accuracy Trade-Off

Serial models that allow the target-present criterion to move
outward with set size produce steep costs in reaction time. Even
the pure-target RTs will increase dramatically with set size when
the criterion is moved so as to suppress the effects of probability
summation.

Observation

There are no steep pure-target functions in the data. Where fa1

is 5% or greater, pure-target functions are generally flat or de-
crease with set size.
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Figure 13. Schematic representation of the effect of the serial model’s set-size relaxation parameter �. At set
sizes of 2 and 4, � scales the target-absent criterion (prior to analysis) so that it is closer to the origin. �DT �
base distractor criterion; T � target-response criterion.
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Heuristic 3

The only data sets that are candidates to be fit by a serial model
will have small fa1.

Heuristic Related to the Parallel Model

Redundancy Gains

The distribution of fast finishers will always be speeded relative
to the finishing time of a single process when there is little cost for
divided attention (Raab, 1962). In this way, parallel processes with
small � typically show statistical race gains. A parallel search with
flat or rising pure-target function must have � on the order of 1
(this is the largest � can be in this model when attentional re-
sources are divided exactly by the set size).

Divided Attention Lowers Error

If all other variables are held constant, accuracy increases mono-
tonically with increasing �. Divided attention is implemented
through smaller step size. Smaller step size means that more steps
(n) will be required for any given walk to be absorbed at any
boundary, and error rates grow relatively as 1/�n. In particular, it
is difficult for a high-� model to produce large miss rates.

Speed–Accuracy Trade-Off

Miss rates constrain the slopes of the target-absent RTs with set
size. If a distractor boundary is moved inward to force the parallel

model to accept larger miss rates, the model will necessarily
produce low set-size costs in the target-absent RTs.

Heuristic 4

The parallel model is ill suited to fit data in which both the miss
rate and target-absent RT increase with set size.

Summary

There is a class of data that has small fa1, flat false-alarm
functions, rapidly increasing miss-rate functions, and increasing
target-absent RT functions. This one class is best fit by a serial
process. The remaining data are characterized by decreasing false
alarms and trade-offs between miss rates and speed on target-
absent trials. These data are fit by the parallel model.

Deciding Serial or Parallel by Goodness of Fit

The central goal of our work is the development of a formal
procedure for deciding how element analysis is scheduled in visual
search. As has been previously noted, these models have many
parts and are addressing complex patterns in data. For their me-
chanics to be comprehensible, it is necessary to describe the
procedure in some detail. All the insights and generalizations that
we draw from this work ultimately come from the certainty that
may be attained by using a rote algorithm.

Figure 14. Schematic representation of the effect of the serial model parameter TZ for a Set Size 4 display.
With each subsequent classification of an element as a distractor, TZ proportionally relaxes the target-absent
criterion (within a sequence of element analyses) as a function of the total elapsed processing time. RT �
response time; �DT � base distractor criterion; Ck � decision criterion for element k; tk � time to make decision
on element k.
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Normalization of the Models

The serial–parallel problem in MTS data is decided by assessing
the proximity of models to all the available data. The issue of
proximity is not entirely straightforward as the model RT and
human RT are offset by aspects of response that go into perceptual
encoding and keypress response (response mapping, execution,
etc.). To bring the two systems of RT into alignment, we normal-
ized the models so that the average of the pure-target RTs is the
same for both model and data. Although there are certainly other
ways of taking into account elapsed time produced by nondeci-
sional components of the task, we have found that this procedure
constrains the chi-square fit to capture the most important trends
(pure targets, target absent, and single target). Error rates in model
and data are also slightly out of alignment because of mistakes in
response mapping, various forms of distraction, pushing the wrong
finger, and so on. Misalignments in error are generally caused by
sources of confusion or uncertainty that are outside of the purview
of the diffusion framework. The best estimate we have of extra-
neous error is the error rate in the four-target condition. Whenever
this error is the smallest over the entire design, we align the error
rates in model and data by subtracting it from all cells. Otherwise,
no alignment is attempted. Aligning RT and error between model
and data has no effect on the relative patterns, but it is required for
estimates of goodness of fit.

Reconciling Reaction Time and Error Residuals

In the fitting of models to data, we have had to reckon with the
obvious problem that error rates and reaction times are measured
on different continua. This problem has rarely been faced in the
search literature, or in any psychological literature for that matter,
insofar as models tend to be applied to RT or error—but not to
both, as we are attempting to do. One strategy that has been
adopted to circumvent this apples-and-oranges problem is to apply
an arbitrary multiplier to RT residuals so that they can be mean-
ingfully combined with error residuals (Maddox & Ashby, 1996;

Van Zandt et al., 2000). We prefer to use the natural metric
provided by chi-squares, using intrinsic variability to measure the
distance between model and data. In this method, RT chi-square is
added to error chi-square to obtain a total chi-square for the entire data
set. As usual, the model with the minimum chi-square is selected as
the best description of the data in question. This process not only
provides a solution to the serial–parallel classification problem but
also generates meaningful parameter estimates that characterize both
search difficulty and how people adjust their decision criteria.

Specifications of the Decision Algorithm

The serial–parallel decision algorithm is spelled out briefly here
and in further detail in Appendix A.

1. Find the parallel process that minimizes the chi-square
deviation between model and data (do this for 100 ran-
domly resampled pseudoexperiments).

2. Find the serial process that minimizes the chi-square
deviation between model and data using the same re-
sampled data as in Step 1.

3. For each resampled pseudoexperiment for each task,
compute the difference in chi-square between the best
parallel and serial models (
�2). Average the differences
over the 100 pseudoexperiments, and estimate the 95%
confidence limits. By virtue of the independence of data
resampling, 
�2 is proportional to the log-likelihood ratio.

4. The best model for each task is given by the sign of 
�2

(i.e., the log-likelihood ratio). As we have an estimate of
the variability of 
�2, we can assess the reliability of
each decision.

Results of the Decision Procedure on the Test Bed of
Data

The results of applying this algorithm to each of the 29 tasks in
the ensemble are shown in Figure 16, where we have plotted the
log-likelihood ratio and the associated 95% confidence limits for
all 29 tasks. Parallel tasks are on the left (negative logarithm), and
serial tasks are on the right (positive logarithm). The ensemble has
been further ordered from top to bottom using the standard mea-
sure of search efficiency (i.e., the single-target RT slope) com-
puted from the data. The model-based estimates of attentional
limitation via the parameter � have also been inset for those data
sets fit best by the parallel model.

For the most part, there is always one process that fits the data
in each task quite well. In Appendix B, we have plotted every data
set in the entire ensemble, together with the best fitting model. The
majority of tasks (21) in the ensemble appear to be mediated by a
parallel process. These tasks include feature conjunction, letter
identity, shape identity, and relative-position judgment. The re-
maining 8 tasks—rotations and mirror inversions of luminance
polarity (shading-LR, phase) and arbitrary coalitions of circles and
plusses—are serial. It must be recognized that this ensemble is not
representative of either natural search or laboratory search tasks.
The probability of selecting a serial task from the literature is notFigure 15. Summary of model parameters. RT � response time.
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8/29 but much smaller. As the construction of the task ensemble
was partly guided by our interest in difficult search, the member-
ship is biased toward serial processes. Nevertheless, demonstrating
the existence of a class of serial processes is one of our principal
findings in that there has been a growing tacit assumption in the
literature that all visual search is conducted in parallel with more
or less capacity limitation (Palmer, 1995; Palmer et al., 1993;
Pashler, 1998; Wolfe, 1998a).

That we have been able to fit well over 20 data sets with a pair
of fairly simple models suggests that the basic mechanisms of
decision and attention are replicated within the model architec-
tures. To this extent, we have captured the strategies and mental set
that are involved in looking for something. However, there is one

task that seems to involve different strategies, and neither our
serial nor our parallel model provides an adequate fit to both RT
and error; this task is orientation search. This failure occurred
primarily because observers had a relatively difficult time re-
sponding correctly (error rates almost 10%) to the identity of
distractors and targets when presented in homogeneous fields,
that is, on pure-target trials and on target-absent trials. Category
confusion could have occurred if observers did not in fact
regard the targets and distractors as being in different catego-
ries. In this sense, an oriented Gabor (or line) is just one single
object regardless of its orientation, and it may have been
difficult for our observers to assign categories to the particular
angle at which it was viewed. The orientation data are consis-

Figure 16. Competitive modeling of the multiple-target search (MTS) ensemble based on fits of the parallel
and serial models to each data set. The abscissa plots the average log-likelihood ratio (with 95% confidence
limits) for all 29 data sets. Tasks falling to the left of 0 were fit better by the parallel model of MTS; those falling
to the right were fit better by the serial model of MTS. The entire test bed is ordered using the standard measure
of efficiency (i.e., the single-target response time [RT] slope across set size). The value of the capacity-limitation
parameter � is included for the 21 tasks in the test bed best fit by the parallel model.
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tent with this hypothesis, and both RT and error appear to be
mediated by a search strategy that is aided by heterogeneity.
Heterogeneity implies that a target must be present, whereas
homogeneity has no entailment— hence, the relatively large
error rates. The unique and odd error patterns aside, the RT
patterns are indicative of a high-capacity (low-�) parallel pro-
cess (as illustrated in Figure 9A), and the best fitting model is
parallel. We replicated these results on several separate occa-
sions using oriented lines, oriented Gabors, two sets of absolute
angles, and two sets of eight observers. Indeed, this enterprise
would be compromised if we were to conclude that orientation
search was serial.

Model Parameters

The best model provides not only a protocol (serial or parallel)
but also a parametric description of the search process. For exam-
ple, we know how observers evaluate the preponderance of mul-
tiple lines of subthreshold evidence (C), how effectively they are
able to divide attention across elements (�), and how they manage
time in slow serial search (� and TZ). � is of particular interest
because it provides an effective ordering of all parallel search
processes.9 � is distinguished from simple data features, such as
the slope of the target-present RT with set size, in that it literally
incorporates aspects of all 18 degrees of freedom. Still, the order-
ing implied by the magnitude of � is not meaningfully different
from a standard slope ordering (shown in Figure 16), though there
are several tasks where � and the standard measure of efficiency
disagree (e.g., in both conjunction tasks [red] and for orientation).
We also find that all parallel search tasks lead to a common form
of criterion movement, and in Appendix A, we show that this
movement is rational in the context of multiple-target parallel
search (see the Appendix A section entitled Rationality of Crite-
rion Relaxation and the Parameter C). Similarly, we find a com-
mon level of criterion movement in serial search data that is also
consistent with rational decision making—observers are able to
sacrifice accuracy for speed in a principled way by abandoning
those searches that are least likely to yield a target. The detailed
model parameters that summarize attentional limitation and
boundary movement in all 21 parallel tasks and all 8 serial tasks
are given in Appendix C.

The Natural Kinds of Search

Previous research has also found that search data divide into
roughly three categories, which we have called the A, B, and C
classes. Much of the history of this field can be traced in terms of
how these classes have been regarded. Originally, Classes B and C
were thought to be serial (Treisman, 1988; Treisman & Gelade,
1980), and certain aspects of the RT patterns certainly do look
serial. With the advent and popularization of the concept of ca-
pacity limitation (Townsend, 1972, 1974, 1990), it became clear
that there was no reason to distinguish any of the classes on the
basis of STS data. As a consequence, all three classes are now
regarded as residing on a continuum of capacity—or, in more
modern language, efficiency (Wolfe, 1998a).

The work presented here resolves some of these issues. First, the
universe of search data cannot be placed onto a continuum of

efficiency. There is evidence for both serial and parallel search
tasks, and these operate via different protocols. They cannot be
smoothly morphed into each other. However, this does not mean
that there is a sharp dividing line between serial and parallel search
in the observed data. Two well-defined categories may have a
fuzzy evidentiary boundary, and such appears to be the case here.
For example, the conjunction bigram task generated data that had
parallellike false-alarm rates but seriallike speed–accuracy trade-
offs between the miss rates and target-absent RT. Neither the serial
nor the parallel model produced satisfying fits. We note that this is
a task near the serial–parallel boundary—of all parallel tasks in the
ensemble, it produced the greatest single-target slopes.

Perspective

In this article, we have presented a general framework that
marries an improved methodology to explicit computational the-
ories of attention and decision. The framework demonstrates that
the serial–parallel issue can be resolved in the domain of simple
visual search. Admittedly, our conclusions are relative to the two
models we have developed, but these models do manage to capture
most of the features in both RT and error. Still, there is little doubt
that these models are not the final word, and there are surely
insights and improvements that we have not incorporated. One
potentially fruitful direction is to create hybrid models that have
both serial and parallel aspects in their architecture. Wolfe (2003)
has suggested such a model wherein the serial and parallel modes
are distinct, temporally separated stages. A hybrid model that has
obvious appeal is one in which elements within small clusters are
analyzed in parallel while clusters themselves are analyzed in
serial succession. Such models might be required for understand-
ing search behavior at large set size (say, more than eight ele-
ments) when search is known to be hard, even at two or four
elements. For example, the classic letter search (rotated Ts among
rotated Ls) was found to be parallel at small set size, but there
could be a transition to seriality as fine divisions of attention
become untenable at large set size. There is, however, always the
concern that seriality at large set size may be induced by loss of
visual resolution (Geisler & Chou, 1995) and not by the exhaustion
of attentional resource.

Our serial model could also be extended to allow for imperfect
memory. In large set-size searches, there is evidence that people do
not remember what they have discarded (Horowitz & Wolfe, 1998,

9 The observed variations in � reported here are not due to task-specific
differences in the discriminability of single-target and distractor elements.
Some of the most demanding searches (high �) have stimulus sets that are
highly discriminable at the single-element level (Thornton, 2002). Specif-
ically, psychophysical control experiments have verified that even though
the missing-side and Y-UD tasks have the largest levels of attentional
limitation as measured by �, they contain some of the most discriminable
elements in the MTS ensemble. Of course, manipulations of target–
distractor similarity influence our measures of attentional load. When
target–distractor stimuli are made highly similar, both RT and errors soar
(Duncan & Humphreys, 1989), and this will generally lead to increases in
�. The important point is that all the stimulus sets used here are clearly
suprathreshold and thus are near ceiling in terms of single-element dis-
crimination.
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2001, 2003; but see Gibson, Li, Skow, Salvagni, & Cooke, 2000;
Kristjansson, 2000), and if our model is to be extended to set sizes
larger than four, it might be desirable to model item selection in a
way that is guided by empirical data. There are also refinements
that could be made to our formulation of parallelism. Kim and
Cave (1995), for example, showed in a conjunction search that
there is nonuniform sampling within the distractor field. Not all
features are equally salient, and attention is guided more by color
than by shape. In our simulations, we sampled from all elements at
the same rate. Parallelism, however, need not imply that all ran-
dom walks drift at the same rate. Allowing different dimensions to
be sampled at different rates would provide a model of parallelism
closer to that actually achieved by people. A model able to rec-
ognize that objects may vary simultaneously on more than one
dimension is considerably more complex than those considered
here. Our models are quite simple in that objects are either dis-
tractors or targets, and what is being accumulated in a random
walk is abstract evidence for the element being one or the other.

What our models do provide is a principled division between
serial and parallel processes that is ultimately based on detailed fits
to data within a rather large corpus of studies. Almost all of the
search data are fit by only one of the two models, and where the
models fit, there is external validity. The parallel model fits all of
the feature search data (this has to be parallel), the conjunction data
(there is some evidence that this is parallel—Eckstein, 1998;
Eckstein et al., 2000; McElree & Carrasco, 1999; Palmer et al.,
2000), and the emergent cue data (Enns & Rensink, 1990, made a
good case for this). The serial model fits only the most difficult
search data, those with the largest set-size costs and overall largest
latencies. The model parameters also provide a process definition
of the notion of efficiency. The set-size cost that we have ex-
pressed in terms of � is effectively a metric of efficiency. More-
over, because � is estimated using a small number of foveally
presented elements, it reveals limitations due solely to attention
and is not susceptible to the low-level artifacts that often contam-
inate estimates of efficiency in large set-size tasks (Geisler &
Chou, 1995; Palmer, 1995).

Though we have made substantial progress toward solving the
character of attentional limitation in visual search, there are many
questions that remain unanswered. From our perspective, the most
intriguing of these concerns how aspects of shape determine seri-
ality in search. For example, why are certain configural tasks (e.g.,
phase, circlePlus) processed serially, whereas other tasks (e.g.,
missing-side, Y-UD) that seem to be equivalent permit limited-
capacity, parallel processing? Are discriminations of rotation di-
rection special within the serial class, or is there a common
organizing principle at work that unites them with certain aspects
of shape? Within the framework developed here, these questions
may now be posed with the certainty that at least one knows that
one has a meaningful question and that the assignments serial and
parallel can be applied according to a principled procedure.

This procedure is based on simulation for the simple reason that
these data are complicated. The history of this field has been to
visually inspect the RT data, make simple determinations of slope,
check that no obvious speed–accuracy trade-offs are occurring,
and then make a decision about process. However, process cannot
be reduced to the slope of target-present RT with set size (Treis-
man & Gelade, 1980). Neither can it be reduced to the slope of the

pure-target trial RTs (Townsend, 1990; van der Heijden, 1975). In
fact, it cannot be reduced to RT. This field must reckon with
process models that handle specific trade-offs between speed and
accuracy, and the ones we have invented provide a start in this
direction.
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Appendix A

Details of Implementation and Model Parameters

Parameter Ranges Used for Simulation

The parallel and serial models of multiple-target search (MTS)
are parameterized by five independent variables each. To effec-
tively assess the full predictive range of each model, we divided
each of the five parameter ranges into a linearly spaced set of
values. The set of parameters was defined over ranges that were
broad enough to capture virtually any type of realistic data pattern
that might emerge from experiment yet had a high enough reso-
lution to afford reasonable fits to data. The particular ranges used
in our simulations are given below. Note that although both the
serial and the parallel models share the parameters S, V, and D,
they do not occupy the same parts of the parameter space.

Parallel model: S � [0.12, 0.53], V � �1.00, 3.20,

D � �1.00, 2.20, C � [1.00, 4.00], � � [0.20, 0.90].

Serial model: S � [0.05, 0.20], V � [0.40, 1.50],

D � [1.00, 1.50], � � [0.00, 9.00], TZ � [150.00, 1,000.00].

The parallel model was resolved on the discrete S � V � D � C �
� lattice with resolution 10 � 10 � 7 � 10 � 8. The serial model
was resolved on the discrete S � V � D � � � TZ lattice with
resolution 10 � 10 � 5 � 10 � 10.

For each quintuple of parameter values, we simulated 2,000
search trials for each of the nine MTS conditions so that all of the
standard errors in response time (RT) and error rate were less than
two time steps or one half of a percent, respectively. For example,
to obtain estimates of the RT and error rate in a Set Size 2,
single-target condition associated with a specific parallel model,
we simulated 2,000 trials with two random walks (one based on
target evidence, one based on distractor evidence) that drifted
between response criteria. The drift, variance, asymmetry, and
criterion levels were set by the specific quintuple being simulated.
RT was estimated as the average number of steps until one of the
walks was absorbed at the correct target-present boundary; error
rates were estimated as the proportion of times both walks termi-
nated on the relaxed distractor boundary. The full library of par-
allel and serial models was computed by rote estimates of RT and
error rate for all nine MTS conditions across the range of each
parameter. These libraries were used to compute goodness of fit to the
data for each member of the test bed; there were 29 studies in all.

Resampling Data

To determine the robustness of models, we calculated error bars
on all of the parameters and the chi-squares by resampling data.
Each experiment consisted of nine conditions of target number and
set size. Each condition generated two quantities, an observer-
averaged RT and an observer-averaged error rate. Associated with
the averages were standard deviations generated by observer vari-
ability. Each average and standard deviation sufficed to describe a
sampling distribution of average data for a particular target number
and set size—data that were consistent with those actually ob-
tained. These sampling distributions were used to estimate param-
eter variability in our models.

The process of model parameter estimation began by drawing
one sample from each of the 18 sampling distributions (9 RT and
9 error conditions) that defined the received average data in a
given experiment. These 18 numbers were the results of a hypo-
thetical experiment, a pseudoexperiment, consistent with the one
actually run. Serial and parallel models were then fit to the pseudo-
experiment, yielding estimates of capacity limitation, boundary
movement, and so on. We also obtained an estimate of goodness of
fit (chi-squares or equivalent log-likelihood in this context) from
each pseudoexperiment. The procedure was repeated 100 times to
permit reliable estimates of both the model parameters and their
variability given the observed variability of the data. The ensemble
of 100 pseudoexperiments also generated 100 matched chi-squares
that could then be used to effect a simple paired t test to determine
which model, serial or parallel, better fit the data. This procedure of
model selection is more conservative than that obtained by computing
a single chi-square on the observed data. We required that there be a
significant difference in goodness of fit for model selection.

This manner of resampling does not take into account that
speeds and accuracies are correlated in real reaction time ex-
periments. Insofar as our parameter estimations are based on 18
independently varying quantities, the inferred variability is in
fact much larger than would be realized in 100 actual experi-
mental replications. This leads to a slight loss in resolution
between serial and parallel models. The conclusions that we
draw are therefore conservative and highlight the large differ-
ences that exist among different stimulus domains. That is, the
data that serial models fit are in fact quite distinguishable from
data that parallel models fit.

Rationality of Criterion Relaxation and the Parameter C
Here, we show that the parameter C that figures prominently

in the parallel model of MTS effectively instantiates a manner
of criterion relaxation that approximates rational decision mak-
ing. Figure A1 compares the bounds of an ideal decision maker
with the representative boundary structure used by the parallel
model of MTS when the parameter C is set equal to two. The
figure expresses evidence accumulation for the Set Size 2 case
by plotting the joint state of the two random walks as an x,y
coordinate in two dimensions. In this representation, the joint
state of the walks begins at the origin (at Time 0) and evolves
over time as a two-dimensional Brownian motion through the
state-space. The black and gray lines represent the rational
decision bounds for maintaining 95% accuracy (these bounds
are derived in the section that follows). Whenever the joint state
of the two random walks passes beyond the target-present
bound, a rational decision maker will respond, “Target-
present.” Provided that the model and prior information are
complete and that both are correctly specified, a decision maker
using such a bound will be in error in responding “target-
present” only 5% of the time. Similarly, whenever the joint
state of the two evolving walks falls to the left or below the
target-absent bound, a rational decision maker will be in error
in responding “target-absent” only 5% of the time. The pair of
gray dashed lines show the decision structure implemented by
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the parallel model of MTS for C � 2. The similarity of the
bounds set by C and those of the optimal decision maker
indicates that using a preponderance-of-the-evidence heuristic
approximates a rational decision strategy.

The rational bounds are used to compute the patterns of RT and error
expected of an ideal observer who makes decisions on the basis of the
evidence accumulated in a set of random walks. These predictions are
shown in Figure A2 for the case of parallel unlimited-capacity processing
(no influence of set size on the random walks); predictions are shown for
both a multiple-target (left panels) and a single-target (right panels)
design. The ideal observer is constructed to maintain a constant average
error rate of 5% across set size. Note that the RT and error predictions
shown in the left panels of Figure A2
bear a striking resemblance to actual MTS data from Class A (see
Figure 9 in main text). The target-absent RT predictions from the ideal
observer decrease with set size at roughly the same rate as the pure-target
conditions (the dashed line), indicating that the mirroring among these
conditions is also a property of rational decision making. Recall that this
kind of mirroring is common across the MTS data sets we have collected.

The errors of the rational observer are also similar to actual
MTS data—the miss rates rise with set size, whereas the false

alarms remain low. As the right panels of Figure A2 show, these
structures emerge only in the context of a multiple-target design.
When the rational observer is given a standard single-target design
(i.e., no more than one target can appear at any set size), the
predicted target-absent RTs will rise with set size at the same rate
as the single-target RTs, and both the miss rates and false alarms
will remain constant across set size at 5%.

Deriving Rational Decision Bounds in Visual Search

The rational bounds used in the previous two figures are based on
standard expressions from statistical decision theory. These expres-
sions provide the optimal rule for arriving at a decision given multiple
lines of evidence (see Appendix IA in Green & Swets, 1988). The
derivation begins with the posterior probability of the hypothesis that
a display is of the target-present class (HP) given the current evidence
ε(�)1 that has accumulated at time � for Element 1:

P(HP�ε(�)1) �
P(ε(�)1�HP)P(HP)

P(ε(�)1�HP)P(HP) � P(ε(�)1�HA)P(HA)
(A1)

(Appendixes continue)

Figure A1. Similarity of the Set Size 2 decision bounds used by the parallel model of multiple-target search
(MTS) and the optimal decision bounds of a rational observer. The abscissa and ordinate denote the current state
of two random walks accumulating evidence on elements in a Set Size 2 display. The thick black curve denotes
those points in the state-space where the posterior probability of the target-present hypothesis is .95. The lower
gray solid curve denotes those points in the space where the posterior probability of the target-absent hypothesis
is .95. The pair of gray dashed lines show the Set Size 2, target-absent criterion used by the parallel model of
MTS when its criterion relaxation parameter C is set to two.
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(HA denotes the alternative hypothesis of a target-absent display).
By dividing out the numerator, we can reexpress Equation A1 as

P(HP�ε(�)1) �
1

1 �
P(HA)P(ε(�)1�HA)

P(HP)P(ε(�)1�HP)

. (A2)

The quantity P(ε(�)1�HA)/P(ε(�)1�HP) is the likelihood ratio of the
evidence given the competing target-present and target-absent
hypotheses; the quantity P(HA)/P(HP) is the ratio of the prior
probability of the target-absent hypothesis to the target-present
hypothesis.

We can extend Equation A2 to express the posterior probability
of the target-present hypothesis given the current joint state of two
walks:

P(HP�ε(�)1,ε(�)2)

�
P(ε(�)1,ε(�)2�HP)P(HP)

P(ε(�)1,ε(�)2�HP)P(HP) � P(ε(�)1,ε(�)2�HA)P(HA)
,

where ε(�)1 and ε(�)2 represent the accumulated evidence at time
� for the random walks corresponding to Elements 1 and 2,
respectively. Again, this expression can be simplified as

P(HP�ε(�)1,ε(�)2) �
1

1 �
P(HA)P(ε(�)1,ε(�)2�HA)

P(HP)P(ε(�)1,ε(�)2�HP)

. (A3)

The quantity P(ε(�)1,ε(�)2�HA)/P(ε(�)1,ε(�)2�HP) is the ratio of the like-
lihoods of the joint walk states given the competing hypotheses.

To compute the rational decision bounds for Set Size 2, Equa-
tion A3 must also incorporate aspects of the search design (i.e.,
both the prior probabilities of encountering various types of target-
present and target-absent trials and the varied ways target and
distractor elements can appear in such displays). For example,
each conditional probability in the right-hand side of Equation A3
can be expanded to reflect a combination of the different trial types
subsumed by each hypothesis. Consider the probability
P(ε(�)1,ε(�)2�HP)—this is the likelihood of the joint state of evi-
dence given the hypothesis that the current trial is in the target-
present class. For a Set Size 2, MTS display, there are three
possible trial types: target–distractor (td), distractor–target (dt),
and target–target (tt). Thus, we end up expressing the likelihood of
ε(�)1 and ε(�)2 given HP as

P(ε(�)1,ε(�)2�td)P(td) � P(ε(�)1,ε(�)2�dt)P(dt)

� P(ε(�)1,ε(�)2�tt)P(tt),

where the prior probabilities of the display types—P(td), P(dt),
and P(tt)—sum to HP. By the assumption of independent evidence,
this likelihood becomes

P(ε(�)1�t)P(ε(�)2�d)P(td) � P(ε(�)1�d)P(ε(�)2�t)P(dt)

� P(ε(�)1�t)P(ε(�)2�t)P(tt). (A4)
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Figure A2. Predictions of an unlimited-capacity parallel model of search with rational decision bounds. The
left panels show the predictions for response time (RT; upper left panel) and error (lower left panel) in a
multiple-target search design. The right panels show companion predictions for the same model under a
single-target design. Note that the legend in the upper left panel also pertains to the upper right panel, whereas
the legend in the lower left panel also pertains to the lower right panel. Dashed line � target-absent trials.
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Expression A4, along with a similar expansion given the target-
absent hypothesis, is plugged into Equation A3 and simplified
using the actual prior probabilities of display types as provided by
the experimental design.

In the end, we are able to express the posterior probability of
the target-present hypothesis in terms of basic quantities—the
likelihood ratio of each independent line of evidence and the
probabilities with which different conditions occur in the de-
sign. The rational observer uses this exact expression to form
decision bounds. The target-present bound is simply those
points in the state-space (one-, two-, or four-dimensional de-
pending on set size) where the posterior probability reaches
95% (the absent bound denotes those points where the proba-
bility reaches 5%). The final expression for the Set Size 1 case
is the same for both single-target search (STS) and MTS de-
signs and is given by

P(HP�ε(�)1) � �1 �
B1

Lε(�)1

��1

. (A5)

The term B1 in the numerator is the ratio of the prior probabilities
of the competing hypotheses, P(HA)/P(HP), and reflects any a
priori bias in the model at Set Size 1 to favor one hypothesis over
the other (for B1 	 1, the model is biased to respond, “Target-
absent”). The quantity Lε(�)1 in the denominator is the likelihood
ratio of the evidence in Walk 1 (cf. Equation A2). For a random
walk model based on Gaussian increment distributions with sym-
metric means (�S) and common variance (V), the likelihood ratio
reduces to exp(ε(�)12S/V2).

The exact expressions used for computing the Set Size 2 pre-
dictions in MTS (Equation A6) and STS (Equation A7) are pro-
vided below without further derivation.

P(HP�ε(�)1,ε(�)2)MTS

� �1 �
B2

1

4
( Lε(�)1 � Lε(�)2) �

1

2
� Lε(�)1Lε(�)2��

�1

, and (A6)

P(HP�ε(�)1,ε(�)2)STS � �1 �
B2

1

2
( Lε(�)1 � Lε(�)2)�

�1

. (A7)

The term B2 in the numerators is the a priori bias the model has at
Set Size 2 to favor one hypothesis over the other. Comparison of
Equations A6 and A7 shows that at Set Size 2, the MTS expression
incorporates a product of the likelihood ratios in addition to a sum
of the likelihood ratios.

The corresponding MTS expression for Set Size 4 is consider-
ably more complicated as it entails combining the design proba-
bilities with the multitude of ways targets and distractors can
appear in the three distinct types of target-present conditions (i.e.,
tttt plus the permutations of tddd and ttdd). The Set Size 4
expression is given below without derivation.

P(HP�ε(�)1,ε(�)2,ε(�)3,ε(�)4)MTS

� �1 � B4� 1

12�
k�1

4

Lε(�)k �
1

18 ��
k�1

3 �Lε(�)k �
j�k�1

4

Lε(�)j,��
�

1

3�
k�1

4

Lε(�)k��1��1

. (A8)

The term B4 is the a priori bias the model has at Set Size 4 to favor
one hypothesis over the other.

The predicted patterns of RT and error shown in Figure A2 were
generated by simulating a series of random walks appropriate to
each trial type using the expressions appropriate to either an MTS
or an STS design. For these simulations, all bias terms (Bk) were
set to one (i.e., no bias). With each additional increment in time,
the rational observer simply computes the posterior probability of
the target-present hypothesis given the current joint walk state. The
posterior probability is itself a random walk in probability space
that begins at .5 (the ignorant state) and drifts over time between
0 and 1. The rational observer makes decisions by monitoring the
status of the posterior probability: If this probability exceeds .95,
the observer responds, “Target-present”; if this probability falls
below .05, the observer responds, “Target-absent.” The predicted
RT by condition is the time required (number of steps) to reach one
of these probability bounds. The associated error rate is the pro-
portion of times the rational observer arrives at an incorrect con-
clusion (by design, this has to equal 5% averaged across conditions
at each set size). Note that in MTS, error rates for some conditions
can exceed 5% (e.g., misses for the Set Size 4, single-target cell),
but these are offset by lower errors elsewhere so that the average
target-present error remains invariant over set size.

Rationality of TZ Relaxation

Much like the principled motivation behind the parameter �, the
parameter TZ in the serial model of MTS also instantiates a rational
decision strategy. Whereas � is grounded in the increased prior
probability of encountering distractor elements given large set-size
displays (relative to the Set Size 1 case), TZ approximates sensi-
tivity to how priors get modified during the sequential analysis of
a single n-element display.

The intuition behind the rationality of TZ-based criterion relax-
ation arises in considering the following probability:

P(ek � D�ej � D, j � k � n). (A9)

Here, ek represents the currently uncategorized element under
inspection, ej is the previously categorized element(s), and D
denotes the category of distractor. In words, this probability con-
cerns the likelihood that the kth element is a distractor (prior to
evidence accumulation) given that the previous element(s) was
(were) categorized as distractors. If the previously identified dis-
tractor elements are somewhat certain to be in the distractor class
D (i.e., categorization accuracy is high), then in the context of a
typical visual search design, the prior for any unexamined element
(ek) will increase with the number of previous elements catego-
rized as distractor. The intuition is that once the first element has

(Appendixes continue)
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been categorized as a distractor, then it is somewhat more likely
that the display in question is a target-absent display, and this of
course implies that the remaining uncategorized elements are dis-
tractors. A rational observer would adjust his or her response
criterion following each categorization so as to reflect the chang-
ing priors on the remaining elements. This kind of dynamic change
to the response criteria is implemented in the model by TZ relax-
ation.

In practice, we use TZ to explore a range of possible relax-
ation rates in our simulations, recognizing that most of these
values may not reflect optimal relaxation. One can approximate
optimal boundary relaxation using analytic expressions that
give categorization accuracy as a function of the number of
accumulated evidence samples. These expressions depend on

the basic model parameters (S and V), the sign and magnitude
of accumulated evidence in the walk at time t, and the prior
probability of each category. When the parameters are chosen
such that categorization accuracy for single elements is close to
perfect (i.e., the standard high-threshold regime; see Palmer et
al., 2000), we are able to easily compute the probability in
Equation A9 for the case in which the first element inspected in
an n-element display has been categorized as a distractor. On
the basis of the MTS design, the prior probability that the
second to-be-inspected element will be a distractor, given that
the first element has been categorized as such, is .80 for n � 2
and .86 for n � 4 (for a matched single-target design, these
probabilities will be somewhat lower given the lack of redun-
dant target displays).
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Appendix B

Data and Model Fits
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Figure B1. Data (points) and fits (lines) of the specific parallel model of multiple-target search that maximizes
the likelihood of the data for each of the 21 tasks in Classes A and B. The 10 tasks in Class A are shown in the
upper panel; the 11 tasks in Class B are shown in the lower panel. The parameter estimates based on fits to 100
resampled pseudoexperiments are inset for each task. RT � response time; S/T � average step size relative to
target criterion; V/T � step-size variability relative to target criterion; D � criterion asymmetry; C � criterion
relaxation parameter; � � attention limitation parameter.
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Figure B2. Data (points) and fits (lines) of the specific serial model of multiple-target search that maximizes the
likelihood of the data for each of the eight tasks in Class C. The parameter estimates based on fits to resampled data are inset
for each task. RT � response time; S/T � average step size relative to target criterion; V/T � step-size variability relative
to target criterion; D � criterion asymmetry; � � set-size-dependent bias; TZ � time-based relaxation parameter.
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Appendix C

Parameter Tables

Table C1
Parameters Based on Best Fit of the Parallel Model to Class A and Class B Data Sets

Task

S/T V/T C D � �2-RT �2-Err

Average SE Average SE Average SE Average SE Average SE Average SE Average SE

Missing-side .0151 �3e–4 .102 �.001 2.71 �.03 1.51 �.03 .72 �.010 2.87 �.10 1.42 �.07
Shading-UD .0178 �2e–4 .117 �9e–4 2.97 �.03 1.58 �.02 .60 �.007 2.15 �.09 2.82 �.10
Color .0187 �1e–4 .108 �7e–4 2.43 �.02 1.44 �.02 .44 �.008 1.59 �.07 2.17 �.10
Color-orientation .0127 �3e–4 .092 �.001 2.02 �.01 1.06 �.01 .55 �.009 3.50 �.13 2.40 �.08
Boxes .0191 �1e–4 .107 �7e–4 2.90 �.03 1.54 �.02 .58 �.007 1.64 �.09 2.04 �.09
Broken-boxes .0159 �3e–4 .096 �.001 3.46 �.04 1.77 �.02 .70 �.008 3.51 �.12 2.23 �.08
Expansion .0182 �2e–4 .098 �.001 2.49 �.04 1.17 �.02 .47 �.008 1.30 �.06 1.69 �.07
Contraction .0176 �2e–4 .111 �.001 2.56 �.04 1.62 �.03 .35 �.010 3.44 �.14 4.96 �.12
A among Bs .0166 �2e–4 .107 �9e–4 2.72 �.03 1.53 �.02 .49 �.007 2.46 �.10 4.18 �.13
Orientation .0189 �1e–4 .125 �5e–4 2.26 �.02 1.66 �.01 .39 �.006 1.85 �.07 8.66 �.15
Parentheses .0193 �1e–4 .107 �6e–4 2.62 �.03 1.34 �.02 .55 �.005 3.27 �.12 1.36 �.07
Size-big .0192 �1e–4 .094 �6e–4 2.09 �.02 1.16 �.02 .21 �.003 2.01 �.13 2.15 �.08
Size-small .0192 �1e–4 .112 �6e–4 2.79 �.03 1.77 �.02 .33 �.008 2.31 �.10 1.92 �.08
Translation .0089 �2e–4 .074 �.001 2.95 �.04 1.39 �.02 .47 �.010 2.85 �.11 2.34 �.09
Triangles .0190 �2e–4 .128 �9e–4 2.12 �.01 1.39 �.02 .55 �.006 3.97 �.15 5.51 �.12
Polygons .0166 �2e–4 .118 �.001 2.03 �.01 1.12 �.01 .57 �.007 2.84 �.11 8.17 �.18
Bigram-conjunction .0079 �1e–4 .084 �6e–4 2.28 �.02 1.12 �.01 .58 �.005 7.05 �.24 7.94 �.25
Bigram-position .0167 �2e–4 .109 �.001 2.42 �.03 1.12 �.01 .63 �.006 1.99 �.09 3.28 �.12
Y-UD .0159 �3e–4 .107 �.001 2.51 �.03 1.20 �.02 .69 �.009 4.29 �.16 1.42 �.05
TL-white .0154 �3e–4 .089 �.001 2.72 �.05 1.23 �.02 .32 �.008 2.59 �.10 2.98 �.11
TL-black .0157 �3e–4 .100 �.001 2.78 �.03 1.28 �.01 .48 �.008 1.89 �.09 2.31 �.08

Note. Averages and standard errors are based on fits to 100 pseudoexperiments. S/T � average step size relative to target criterion; V/T � step-size
variability relative to target criterion; C � criterion relaxation parameter; D � criterion asymmetry; � � attention limitation parameter; RT � response
time; Err � error rate.

Table C2
Parameters Based on Best Fit of the Serial Model to Class C Data

Task

S/T V/T D �/DT TZ �2-RT �2-Err

Average SE Average SE Average SE Average SE Average SE Average SE Average SE

CirclePlus-1 .0031 �1e–4 .0209 �2e–4 1.11 �.009 .197 �.005 479 �12.0 2.00 �.09 7.24 �.18
CirclePlus-2 .0042 �1e–4 .0344 �6e–4 1.07 �.007 .236 �.005 351 �11.0 3.58 �.17 6.09 �.24
Shading-LR .0052 �1e–4 .0389 �5e–4 1.03 �.005 .222 �.005 392 �11.8 1.77 �.08 1.84 �.07
Phase .0053 �1e–4 .0216 �3e–4 1.17 �.010 .232 �.005 296 �8.8 1.04 �.06 1.68 �.07
Rotation-textures .0041 �1e–4 .0230 �4e–4 1.31 �.013 .165 �.011 468 �17.0 1.69 �.09 4.61 �.11
Rotation-coins .0033 �5e–5 .0296 �4e–4 1.10 �.006 .337 �.002 791 �16.0 1.68 �.07 2.99 �.11
Rotation-pinwheels .0030 �1e–4 .0237 �5e–4 1.06 �.006 .161 �.006 493 �7.9 2.50 �.10 2.07 �.07
Rotation-keyholes .0034 �1e–4 .0392 �8e–4 1.02 �.004 .249 �.004 654 �15.6 2.94 �.15 2.95 �.14

Note. Averages and standard errors are based on fits to 100 pseudoexperiments. S/T � average step size relative to target criterion; V/T � step-size
variability relative to target criterion; D � criterion asymmetry; �/DT � set-size-dependent bias relative to distractor base criterion; TZ � time-based
relaxation parameter; RT � response time; Err � error rate.
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