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Auditory Perception of Fractal Contours

Mark A. Schmuckler and David L. Gilden

A series of experiments examined auditory contour formation, investigating listeners' sensitivities
to a family of random fractals known as fractional Brownian noises. Experiments 1A and IB
looked at identification of contours when 3 different noises were portrayed using variations in the
pitch, duration, or loudness of successive notes of a sequence. Listeners could categorize pitch and
loudness encodings, but not duration mappings. Experiment 2 looked at the effect of simultaneous
presentation of pitch and loudness information, finding that these dimensions combined additively
to increase identification of the noise distributions. Experiment 3 looked at discrimination of pitch
contours as a function of changing fractal dimension. Discrimination curves approximated an
inverted U shape, a finding that is not understandable in terms of sensitivity to differences in fractal
dimension per se, nor in terms of "tuned" perceptual sensitivity to statistical regularities of the
environment.

Our environment consists of a wide variety of sounds. One
of the critical tasks undertaken by the auditory system is to
organize this complex array into a series of unified, discrete
objects; this process of auditory organization can be thought
of as auditory scene analysis (Bregman, 1990). One of the
crucial functions of the process of auditory scene analysis is
to decide what aspects of the auditory environment go with
what—in many ways a problem of auditory localization. A
critical component of an auditory signal in this process of
scene analysis involves the formation and recognition of a
particular signal's contour. This article is concerned with
people's ability to form auditory contours and to discriminate
among contours under a variety of different situations.

The importance of contour information has been widely
recognized by researchers interested in two of the most com-
plex exemplars of auditory signals: speech and music. Within
speech, contour is a major component of the "prosody" of an
utterance (Kuhl, 1987) and can carry important information,
such as the distinction between a declarative and interrog-
ative sentence. Contour is also a fundamental attribute of
other complex auditory sequences, specifically musical pas-
sages. For example, contour appears to be a particularly sa-
lient aspect for short-term memory of a passage (DeWitt &
Crowder, 1986; Dowling, 1978; Bowling & Bartlett, 1981;
Dowling & Fujitani, 1981). Similarly, there is evidence that
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familiar melodies can be recognized solely on the basis of
their contour information (Dowling & Fujitani, 1971, Ex-
periment 2; Dowling & Hollombe, 1977; White, 1960).

In all of this work, our understanding of contour formation
is limited to the role of contour during recognition of com-
plex auditory objects. Perceptual sensitivity to the relational
information underlying contour is therefore bound to the role
contour plays within these domains. As such, little is known
about contour formation generally; under what circum-
stances, for example, can our perceptual systems recover the
global relational information that underlies a contour?

To explore basic questions of auditory contour formation,
we first need to define a set of auditory sources in which
contour information is preeminent. As a start, we must first
decide what it means for a contour to exist in perception. The
notion of contour is subtle, involving informal conceptions
from gestalt theory that have not been made precise. Con-
sider an array of dots laid out horizontally, with a constant
spacing between them. In the informal language of gestalt,
the perception of a contour in this display, a straight, hori-
zontal line, is an emergent feature of the arrangement of the
dots. The line does not exist distally but arises in perception
through organization. This arrangement can be considered
analogous to an auditory sequence, in which the dots (and
their placement on the page) represent a series of note events,
each having a specific pitch, loudness, duration, timbre, and
so forth.

One characteristic of this arrangement is that there are a
multiplicity of scales arising from the dot size and the in-
terdot separations. The distal support for collinearity arises
from chaining features in the three-point correlation function
(see Gilden, Bertenthal, & Othman, 1990, for a discussion of
«-point image statistics). Perceptually, seeing the line in-
volves perceiving the chain structure over the range of scales
extant in the dot distribution. Now, although the notion of
scale may be made precise, the sense in which scales are
integrated remains informal. In this article we will attempt
to develop a more rigorous notion of scale integration by
constructing contours that are scale-free and hence feature-
less. A set of sources that are featureless in the sense dis-
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cussed here is a family of random fractals known as fractional
Brownian noises, or scaling noises (Mandelbrot, 1977).

Fractional Brownian noises contain two properties that
make them of interest for our research. Specifically, these
noises have random phase spectra and are self-affine. The
first property differentiates fractional Brownian noises from
other types of nonrandom contour. The property of self-
affinity means essentially that an arbitrary magnification of
any portion of the noise reproduces its global statistical
structure.

An example may clarify what it means for a noise to be
self-affine. If a tape recording of a self-affine noise is played,
say, at a faster speed than at which it was recorded, an ap-
propriate change in the overall volume would nullify this
difference. Noises that are not self-affine will sound altered
in pitch no matter how one adjusts the volume control. Sim-
ilarly, a photograph of a scaling contour would not reveal the
distance or magnification at which the photograph was taken.
A change in distance or magnification can be offset by crop-
ping the photo.

The importance of self-affinity is ultimately related to what
it means for a contour to be perceived. The perception of a
contour must involve, at least, the integration of the multiple
scales that define a stimulus. Although we are unsure as to
what integration means, we do know what a scale is, and
self-affine stimuli are those in which all scales are on an
equal footing. In other words, in a self-affine noise, every
scale carries the exact same signal information under
magnification.

When a signal contains a feature, this feature must exist on
some scale or group of scales. A self-affine noise does not
have a unique structure that exists on a finite set of scales;
therefore it is featureless. The dot pattern discussed earlier is
not featureless because the constant interdot separation de-
fines a unique scale. In order for a scale to carry a structure
not shared by all scales, the signal must contain some sort of
periodic or rhythmic structure. The existence of this structure
and the way it is differentiated from self-affine structure is
best described in terms of the power spectrum of the signal.
Only one power spectrum is consistent with the requirement
of self-affinity; the spectrum must be a power law. For def-
initeness, we will denote by /3 the exponent in the power law
for the power spectrum, P = /~p.

Scaling noises do not have structural descriptions that refer
to any single scale. Instead, these noises can only be de-
scribed globally in terms of the slope of the power spectrum;
no other information exists. The fact that the slope identifies
the noise requires that discriminations be made on the basis
of how each particular element appears in the composite
matrix of the entire signal, that is, how the point-to-point
fluctuation is embedded in overall trend.

Figure 1 shows three examples of scaling noises. The sim-
plest example, seen at the top of Figure 1, is white noise.
When one hears white noise, such as static on a radio, it
sounds like a dull hiss regardless of the intensity or speed at
which it is heard. For white noise, 3 = 0. A more complicated
scaling noise is seen in the bottom of Figure 1 and is called
brown noise (Gardner, 1978). Brown noise consists of num-
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Figure I. Graphic representations of white, flicker, and brown
noise distributions.

bers produced by a random walk, with successive positions
highly correlated. For Brown noise, /3 = 2. Finally, the mid-
dle of Figure 1 presents a third scaling noise; this noise has
been called flicker or one-over-f noise (Mandelbrot, 1977;
Voss & Clarke, 1978). Flicker noise is moderately correlated,
producing both general trend (as occurs in Brown noise) and
point-to-point fluctuation (as in white noise). Flicker noise
represents a value halfway between white and brown noise,
with )3 = 1.

Now we can understand why fractional Brownian noises
comprise the ideal stimulus for studying contour formation.
They are the only stimulus having scale integration as the
sole attribute of their structure. Although other stimuli may
lead to the perception of contour, these contours have other
pieces of information bound to a particular scale that could
serve as the basis of discrimination. On the other hand, frac-
tional Brownian noises can only be discriminated on the basis
of how the different scales are integrated, or put differently,
by differentiating between slopes of the power spectrum.
Discrimination made on the basis of integration is to dis-
tinguish on the basis of contour per se. In the experiments that
follow, we exploit this property of fractional Brownian
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noises to examine listeners' sensitivity to contour informa-
tion in auditory sequences.

Our primary motivation in studying fractional Brownian
noises is due to this property of being "pure" contour in-
formation. Secondarily, and related to this notion, is the fact
that fractional Brownian noises and fractal analyses more
generally have been found to describe a variety of visual
(Keller, Crownover, & Chen, -1987), auditory (Voss &
Clarke, 1978), and motor phenomena (Schmidt, Beek,
Treffner, & Turvey, 1991). For our purposes, the most rel-
evant work involves a series of analyses by Voss and Clarke
(1978), who performed spectral density analyses on a range
of speech and musical sources, including Scott Joplin rags,
jazz and blues, rock and roll, the Bach Brandenburg con-
certos, and a news and talk show. The results of analyses of
frequency and power changes indicated that all of these
sources could be described in terms of fractional Brownian
noises. Even more interestingly, the exponent of the power
law of the power spectrum approximating all of the sources
was one over the frequency, or flicker noise.

The fact that many natural phenomena are describable in
terms of fractal structure suggests that fractal structure might
also be relevant psychologically. Can listeners, for example,
distinguish between auditory contours on the basis of their
fractal dimension? Do fractals have some sort of "privileged"
status in perception, given that a great deal of perceptual
information can be described in this way? The experiments
in this article attempt, as an underlying recurrent theme, to
address this question.

Unfortunately, little psychological research has examined
the perception of fractal information in its own right. More-
over, what little work has been done has examined primarily
visual perception. For example, Cutting and Garvin (1987)
had subjects rate the complexity of a set of fractal curves
varying in fractional dimension, recursion, and the number
of segments in the initiator. These ratings were then predicted
from dummy codings of the factors just described. Although
recursion depth was the most reliable predictor of these view-
ers' judgments, for those stimuli with the greatest recursion
depth, fractal dimension predicted these ratings quite well.
Other research on the perception of fractals has focused
on the perceived roughness of fractal curves and textures
(Marshak, 1986; Pentland, 1984, 1985; both cited in Cutting
& Garvin, 1987). Knill, Field, and Kersten (1990) had ob-
servers discriminate among two-dimensional images in
which the graininess determined the fractal dimension of
these displays. People's ability to discriminate between frac-
tal images varied as a function of fractal dimension, with
maximal discrimination found for images with a fractal di-
mension on the order of 2.5.

Experiment 1A: Contour Formation in Pitch,
Loudness, and Duration

Our first step in answering questions concerning contour
formation and the perception of fractal structure involves
determining whether listeners can perceive differences
among fractional Brownian noises. Although one can argue

that, theoretically, fractal noises comprise an ideal stimulus
for studying contour perception, it is not clear that listeners
are sensitive to this structure. A simple test would be to
present listeners with auditory sequences differing in their
fractal properties (i.e., in the slope of their power spectra) and
see whether these noises can be reliably discriminated. To
start, we arbitrarily choose noises differing by a constant
amount in terms of their fractal dimension (as measured by
the slope of the power spectra) and examine listeners' abil-
ities to distinguish between these noises. Although we have
no way of determining whether this difference in fractal di-
mension between noises is perceptually equivalent, it is, at
least, physically comparable.

Fractional Brownian noises can be represented as a set of
random numbers possessing certain mathematical properties.
To produce a perceptible contour, it is necessary to map these
random numbers into a perceptually extensive dimension,
such as pitch or loudness in audition or height or brightness
in vision. Two issues arise out of this transformation. The first
involves the choice of perceptual dimension into which this
information is encoded, whereas the second involves the con-
sequences of this transformation on the mathematical prop-
erties of the sequence. The first of these issues will be dis-
cussed here; the second will be taken up in the discussion.

Contour is potentially applicable to any number of dimen-
sions. In audition, contour is most routinely thought of in
terms of rises and falls in pitch. However, other auditory
dimensions, such as loudness and duration, are candidates for
conveying such information, Voss and Clarke (1978), for
example, found evidence of fractal structure in both fre-
quency (pitch) and power (loudness) of their sample, and
subsequently produced auditory sequences in which both
pitch and duration of successive notes were determined in
accordance with a fractal noise structure.

Given that contour information can be multiply repre-
sented by different auditory dimensions, we can question
whether listeners' sensitivity to this information is equivalent
across attributes. Does the perception of contour vary de-
pending on a particular mode of representation? To answer
this question, we examined listeners' abilities to recognize
different power spectra when instantiated in pitch, loudness,
and duration changes.

A final concern involves issues related to perceptual learn-
ing. Specifically, does discrimination of fractional Brownian
noises depend on previous experience with complex auditory
passages, which might occur through formal musical train-
ing? Throughout the musical cognition literature, one finds
that listeners differ in their sensitivity to complex musical
structure as a function of the level of musical training they
have received.

Method

Subjects

The final sample of subjects consisted of 18 adult listeners re-
cruited from the University of Virginia community.' These listeners

1 Seven additional subjects participated in the experiment, but
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either volunteered their services or participated in partial fulfillment
of course requirements for an introductory psychology course. Sub-
jects were divided into groups of musically trained and musically
untrained listeners. Each group consisted of nine listeners, with the
musically trained group having an average of 7.3 years of formal
instruction and the untrained listeners having 0.8 years of formal
instruction. All of the listeners reported normal hearing, and none
had absolute pitch.

Apparatus and Stimulus Materials

All stimuli were generated on-line by a Yamaha DX7 synthesizer
controlled by an IBM-PC computer, using a Roland MPU-401
MIDI interface. The listeners, who were seated directly in front of
a computer, heard the stimulus passages over Sennheiser HD414SL
headphones plugged directly into the synthesizer.

The harmonic structure of the voices used by the DX7 are
complex, consisting of six sine-wave generators running simulta-
neously. The timbre of these stimuli approximated that of a pi-
ano. Each tone had a 15-ms rise to peak amplitude, a gradual de-
cay over the length of the tone until its release, and an 80-ms fall
to zero amplitude.

Conditions

There were three conditions in this study, corresponding to dif-
ferent mappings of the noise distributions into musical attributes.
For each condition, noise distributions (a sequence of random num-
bers) determined changes in the pitch, loudness, or duration of tones
in a passage; these will be referred to as the pitch, loudness, and
duration conditions respectively. Three noise distributions were
used for generating these sequences; these noise distributions were
white, flicker, and brown noise sources (see Figure 1). Generation
of the auditory sequences occurred by binning the continuous noise
distributions into discrete levels of pitch, loudness, or duration. For
each condition, 10 sets of 100 random numbers from each noise
distribution produced passages 100 notes in length. To ensure com-
parable overall ranges between the sequences, the break points be-
tween the bins were scaled individually for each sequence of 100
notes. Thus, the maximum number in each sample of 100 corre-
sponded to the highest level of pitch, loudness, or duration, whereas
the minimum of the sequence corresponded to the lowest level.

The pitch condition consisted of frequency changes, with the
loudness and duration of each tone in the sequence remaining con-
stant. Fourteen different pitch levels were used, corresponding to
two octaves of a C major scale, beginning on C4 (middle C, 260
Hz) and ending on B5. The duration of each tone was 200 ms, and
the loudness was approximately 84 dBC.

The loudness condition consisted of amplitude changes, with the
pitch and duration of each note in the sequence held constant.
Twelve different loudness levels were chosen, ranging from ap-
proximately 66.5 dBC to 93.5 dBC, in roughly 2.5-3-dB steps.2 The
pitch of each tone in this sequence was C4, and the duration was
always 200 ms.

The duration condition consisted of changes in tone length, with
the pitch and loudness of the sequence remaining constant. There
were 14 durations, ranging from 100 ms to 750 ms, in 50-ms steps.
There were no silent intervals between tones. The pitch of each tone
was C4, whereas the loudness was approximately 84 dBC.

their data were removed because of equipment error, failure to
correctly perform the task, and so forth.

Ten exemplars of each of the three noise distributions were gen-
erated for each condition, producing 90 trials in all. These trials
were blocked according to condition (pitch, loudness, or duration),
with the 30 trials for each condition presented randomly for each
listener.

Procedure

At the beginning of the study, listeners saw a drawing of the
white, flicker, and brown noise distributions (see Figure 1), and the
structure of these sequences was explained. White noise was de-
scribed as containing large excursions from point to point, with little
or no overall trend. In contrast, brown noise consisted of mostly
overall trend, with few large, point-to-point excursions. Flicker
noise was described as being intermediate between the two, con-
sisting of both point-to-point excursions as well as containing over-
all trend. The visual models of these three distributions were placed
on a poster, which was present throughout the entire experiment.

After having the structure of the noise distributions explained to
them, listeners were told that the different noise distributions gen-
erated auditory passages varying in pitch, loudness, or duration. The
listener's task was to decide which noise distribution (white, flicker,
or brown) generated the auditory sequence they heard by entering
a 1, 2, or 3 into the computer terminal after hearing each sequence.
At the start of each condition, listeners were told which attribute
would vary in that block, and then they listened to nine practice
trials, three examples of each noise distribution. During these prac-
tice trials, listeners received feedback about their categorization
accuracy, and when incorrect they were told the correct category.
The experimenter was present during the initial practice session of
the first condition to answer any questions listeners might have as
well as assist them in the use of the computer, and so on.

The order of the three conditions was counterbalanced across
subjects. Listeners were told that they could take a break between
the conditions but were asked not to stop during a block of trials.
The entire experimental session lasted approximately 1 hr.

Results

For each listener, the frequency with which they responded
white, flicker, or brown to the white, flicker, and brown noise
sequences was calculated for each condition. Table 1 lists the
percentage responses for the noise distributions for the con-
ditions averaged across listeners. Inspection of Table 1 re-
veals that listeners were generally successfully in catego-
rizing the different white, flicker, and brown noise
sequences, with this ability dependent on the particular mode
of representation. When encoded in pitch and loudness di-
mensions, listeners categorized these noise distributions suc-
cessfully. In contrast, when mapped into duration changes,
categorization performance diminished greatly.

Subsequent analyses aimed at quantitative verification of
these differences between encoding dimensions, along with
examining categorization performance as a function of mu-
sical training. For each listener, chi-squares were calculated
to determine whether their categorizations differed signifi-
cantly from chance performance. The mean chi-squares for

2 Given the nature of the synthesizer equipment, all loudnesses
are approximate. Loudness measurements were performed with a
Bruel and Kjaer Type 2203 Precision Sound Level meter.
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Table 1
Mean Percentage Categorization Responses for the White, Flicker, and Brown Noise
Distributions for the Different Auditory Coding Dimensions

Auditory
dimension and
noise stimulus

Pitch
White
Flicker
Brown

Duration
White
Flicker
Brown

Loudness
White
Flicker
Brown

Listener's response

White

66 .1
21.1
6.7

52.2
26.1
18.3

75.6
22.2
2.8

Flicker

31.7
58.9
27.8

27.2
31.7
41.1

22.2
67.7
25.0

Brown %2

2.2 19.9*
20.0
65.6

10.6 11.2
42.2
40.6

2.2 24.1**
16.1
72.2

AB

0.41

0.23

0.51

Note. Correct categorizations are in italics.
*p<.05. **p<.0\.

both pitch and loudness conditions differed significantly
from chance, whereas the mean chi-square for the duration
condition did not differ from chance (see Table 1).

A 2 X 3 X 3 analysis of variance (ANOVA) was per-
formed, using these chi-squares as the dependent variable.
This analysis used the between-subject factors of training
(trained, untrained) and order of conditions and the within-
subject factor of coding dimension (pitch, loudness, and du-
ration). This analysis revealed main effects for order, F(2,12)
= 5.4, p < .05, and coding dimension, F(2, 24) = 20.2,
p < .001. There was no effect for training, F(\, 12) = 0.08,
ns, nor were there significant interactions.3 Multiple com-
parisons between all pairs of mean chi-squares for the three
coding dimensions, using Bonferroni corrections, found that
whereas pitch and loudness conditions did not differ from
each other, both differed from the duration condition (both
ps < .01).

The preceding analyses examined whether categorization
of the different encodings differed from chance; they did not
test the accuracy of these categorizations. Did listeners cor-
rectly associate the white noise sequences with the "white
noise category," and so on. To examine this question, an
index of predictive association was calculated for each sub-
ject. The index of predictive association, or AB, provides a
measure of the degree to which each stimulus is associated
with a single response category (Goodman & Kruskal, 1954;
see Hays, 1963, p. 60S).4 \B ranges between 0 and 1, with
0 signifying no association between a given stimulus and
response label and 1 signifying a perfect association between
stimulus and response. Although no significance test exists
for \B itself, once calculated, this number can be used as the
dependent variable in subsequent analyses.

Measures of predictive association were compared in a 2
X 3 X 3 ANOVA, with the same factors as discussed earlier.
The only significant results produced by this analysis in-
volved a main effect for coding dimension, F(2,24) = 24.45,
p < .001. Multiple comparisons between the mean \B for the
three conditions (see Table 1), using Bonferroni corrections,
revealed that whereas pitch and loudness conditions did not

differ from each other, both differed from the duration con-
dition (both ps < .01).

Finally, analyses assessed the degree to which practice ef-
fects occurred in categorization performance for the three
conditions. For each condition, each listener's responses
were receded either as correct (1) or incorrect (0), and the
number of correct responses for each trial, summed across
listeners, were calculated. In this analysis, practice effects
would be manifest as an increasing function across trials.
Regression analyses failed to find a significant linear rela-
tionship in these data for the pitch (r = .13, ns), loudness
(r = .27, ns), or duration conditions (r = -.17, ns), and
inspection of these data did not suggest any nonlinear in-
creasing function.

Discussion

In response to our original questions, these results indicate
that listeners can reliably distinguish between white, flicker,

3 Although we were initially quite taken by the idea that musical
training might play an important role in the perception of fractal
structure, the results of Experiment 1A provide strong evidence
that training is unimportant. With hindsight, the fact that musical
training is not a prerequisite for sensitivity to this structure fits well
with the literature suggesting that even naive subjects (i.e., infants
and children) are sensitive to contour information in both speech
(Kuhl, 1987) and music (Trehub, Bull, & Thorpe, 1984). Although
it seems that perception of some aspects of musical and linguistic
structure might require experience, the type of structural informa-
tion that is being investigated in these studies is available without
the need for previous training. As such, we will ignore any effects
related to musical training.

4 Although the index of predictive association determines the
degree to which a given stimulus type is associated with a single
category label, there is no guarantee that this labeling is veridical,
that is, that the white noise sequences were consistently associated
with the "white" category label. However, inspection of the data on
an individual and group basis (see Table 1) verified that these
sequences were given the appropriate label.
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and brown noise distributions. However, not all mappings
were perceptually relevant for listeners. When encoded by
changes in note duration, listeners failed to successfully cat-
egorize the noise distributions. In contrast, when mapped into
pitch and loudness changes, listeners accurately categorized
these stimuli.

Before discussing why successful categorization of noise
distributions was so difficult for duration encodings, it is
instructive to rule out some obvious (and uninteresting) ex-
planations for this finding. One possibility is that duration
differences, in contrast to pitch and loudness changes, were
simply not discriminable to our subjects, resulting in the ob-
served inability to categorize these sequences. Unfortunately,
appeals to the psychophysical literature on discrimination
accuracy for durations are not particularly helpful, given that
results vary as a function of the specific experimental meth-
odology used (Fraisse, 1978) and that none of the standard
psychophysical methods is particularly applicable to this
case. Nevertheless, on some estimates, the smallest percep-
tible duration difference for tones between 200 and 4,000 ms
is a constant differential fraction of less than 0.05 (Getty,
1975; see Fraisse, 1978), meaning that duration differences
of 50 ms (the smallest possible duration difference) should
have been discriminable for our listeners.

A different possibility is that differences between the
pitch-loudness conditions and the duration condition simply
reflect different learning curves for these encodings. Accord-
ing to this explanation, differential performance between
conditions occurred because listeners are at different points
on the learning curve for the duration stimuli than they are
for either the pitch or loudness conditions. However, the
amount of learning (as assessed by improvement in catego-
rization across trials within a block) was examined and failed
to show any strong evidence of increasing performance over
trials for any of the three conditions, making it unlikely that
there were any strong learning effects.5

We suggest that the best explanation for the failure of the
duration encodings to accurately convey contour information
involves the nature of the duration contours in relation to
listeners' abilities to accurately perceive and represent
rhythmic-duration patterns. For all three of our coding di-
mensions, representing noise distributions occurred by trans-
lating random numbers into tone attribute changes, with in-
creasing numbers leading to notes that were longer, louder,
or higher. Though no data exist on the nature of listeners'
encodings of loudness sequences, this translation scheme
does appear to match with theories concerning the internal
representation of pitch sequences (Deutsch & Feroe, 1981;
Jones, 1981). In contrast, investigations of the representation
of rhythmic sequences suggest a hierarchical structuring in
which low-level events nest within higher level events. As
such, musical rhythms generally consist of simple integer
ratios like 2:1 or 3:1 (Lerdahl & Jackendoff, 1983; Povel,
1981). It is possible that listeners have difficulty encoding
rhythms not using these simple ratios. Essens (1986), for
example, suggested that accurate internal representations of
a rhythmic pattern are possible only when this pattern con-
sists of simple ratios. Presenting noise distribution informa-
tion by adding or subtracting 50-ms time constants (or mul-

tiples thereof) does not produce a preponderance of these
simple ratios, resulting in sequences that listeners are unable
to encode accurately.

Unfortunately, there exist other reasons that make accept-
ing this explanation premature. An obvious candidate for the
poor performance with duration sequences has to do with the
fact that in both pitch and loudness dimensions differences
between steps were logarithmically scaled, whereas they
were linearly scaled in the duration condition. The failure to
recognize duration encodings might have been due to the
underlying continuum rather than an inherent difficulty in
forming duration contours. Another difficulty involves the
fact that the various auditory dimensions covered different
overall ranges. Assuming that a doubling in a particular di-
mension defines an "octave," then the pitch stimuli had a
range of 2 octaves, the loudness stimuli ranged over approx-
imately 2.7 octaves (assuming that a 10-dB increase equals
a perceived doubling in loudness), and the duration stimuli
spanned approximately 2.9 octaves. Although these stimuli
are approximately equal (between two and three octaves), the
differences in overall ranges raises lingering doubts. Both of
these issues are examined in Experiment IB.

Most important, however, there is a possible mediating
factor underlying listeners' categorizations of these sequenc-
es. Specifically, there is an issue involving the extent to
which the different noise distributions could have produced
auditory sequences with various amounts of auditory stream
segregation. Auditory stream segregation refers to a general
process by which connections are formed between events
within an auditory sequence (Bregman, 1990). Auditory
stream segregation, or streaming, involves the effect pro-
duced by a sequence of rapidly alternating high and low tones
in which the high and low tones split into distinct perceptual
groups or streams (Bregman, 1990). As a gross oversimpli-
fication, the greater the distance (in some dimension) be-
tween two events, the more likely these events will be to
stream. The complement of streaming has been called fusion
or temporal coherence and refers to the situation in which an
auditory sequence is heard as a single, unitary event (Van
Noorden, 1975).

The application of the principles of auditory stream seg-
regation to the fractal noises of this experiment is straight-
forward. Using the pitch condition as an example, white
noise contains a high number of large pitch intervals between
successive notes, resulting in sequences that stream. Brown
noise contains a high number of small pitch intervals, pro-
ducing sequences that rarely stream. Finally, flicker noise
will be halfway between the two. It is possible that catego-
rization performance in this experiment was based on lis-
teners' detection of the amount of streaming in these pas-
sages. Moreover, auditory streaming could help explain the
decrement in performance for duration encodings, in that
whereas stream segregation is applicable to both pitch and

5 Unfortunately, ruling out practice effects in categorization with
these distributions is difficult. Given sufficient exposure, recogni-
tion of these distributions will increase. For example, Schmuckler
has noted that after numerous years of exposure to these noises, his
categorization performance has improved.
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loudness dimensions, variation in duration does not neces-
sarily produce streaming (except possibly for the white noise
sequences); the result would be poorer discrimination for this
condition.

Unfortunately, it is difficult to wholly dissociate the effect
of auditory stream segregation from the fractal structure of
the noise distributions. White noise, by definition, will con-
tain power in the upper frequencies, resulting in a lot of
point-to-point fluctuation, or large differences in pitch (or
loudness or duration) between successive notes. In contrast,
brown noise contains little power in the upper frequencies but
a great deal of power in the low frequencies. This results in
strong general trend, with little point-to-point fluctuation,
producing sequences that do not stream.

It is possible, however, to devise a situation in which the
importance of streaming for the perception of fractal noises
can be assessed. If the entire range of the sequences were
manipulated, such that the largest possible difference be-
tween successive events was within the boundary for which
these sequences could be heard coherently, then streaming
would be effectively reduced or eliminated. This sequence
would, however, still approximate the fractal structure of the
different noise distributions. This strategy was undertaken in
the following experiment.

Experiment IB: The Effects of Streaming, Range,
and Underlying Scale

The main purpose underlying Experiment IB was to assess
the importance of the different factors that were raised in the
previous discussion. First, and most trivially, this experiment
controls for the earlier difference in the underlying dimen-
sions between duration and pitch-loudness by scaling these
dimensions logarithmically. This experiment also controls
for the absolute ranges of the different dimensions by equat-
ing them.

A far more interesting extension provided by this exper-
iment is in its attempt to assess the role of streaming in per-
ception of fractal sequences. Here, streaming was manipu-
lated by changing the overall range into which the noise
structures were mapped. In one case, the noise distributions
could be mapped into a large range, in which streaming
would be inevitable, at least for white noise. For comparison,
the same noise distribution could also be mapped into a more
truncated range, one that does not produce streaming. If
streaming is crucial for our ability to discriminate between
fractal noises, then there will be better discrimination in the
first case (in which noises differ in their streaming) than in
the second case (in which none of the noises stream).

Finally, this experiment also examined the influence of the
number of discrete levels into which the noise distributions
were mapped. One assumption of fractal analyses is that the
stimuli used are continuous. Binning the continuous noise
distributions into discrete values does violence to the fractal
nature of these sequences. Strictly speaking, our sequences
only approximate fractal structure because the very act of
producing auditory sequences with discrete values changes
these noises from continuous to discrete. Manipulating the

"coarseness" of the coding of the continuous information by
varying the number of bins these noises are mapped into
allows us to assess the effect that binning has on our per-
ception of this structure. Less coarse codings (more discrete
levels) better approximate the continuous fractal structure of
the underlying noise distributions and might therefore be
more easily discriminated than more coarse codings.

Method

Subjects

The final sample of subjects consisted of 48 listeners drawn from
the University of Toronto, Scarborough, community.6 These lis-
teners either volunteered their services or received extra credit in
an introductory psychology class for participating.

Apparatus

All stimuli were generated on-line using the same equipment as
in Experiment 1 A, with the only difference being that listeners heard
the sequences through a Peavey KB-60 Amplifier located in the
room with them.

Stimuli

Overall, generation of these sequences was similar to that of
Experiment 1A: 10 samples of 100 random numbers were drawn
from white, flicker, and brown noise distributions and were binned
into discrete levels, with the break points between bins scaled in-
dividually for each sequence. The ranges of the different conditions
varied as a function of condition, as did the number of bins into
which the noise distributions were mapped.

Because the pitch and loudness conditions of Experiment 1A did
not differ, and both differed from the duration condition, this ex-
periment used only pitch and duration encodings. To create stimuli
in which the total ranges were equivalent and the underlying con-
tinuum was the same, pitch and duration dimensions were given
comparable ranges in terms of the number of octaves they spanned,
with an octave defined as a doubling within that dimension. For
example, pitches between 220 and 440 Hz or 440 and 880 Hz each
span a single octave; similarly, durations between 100 and 200 ms
or 200 and 400 ms also span single octaves. Within each octave, 12
equally spaced logarithmic steps were derived. Although this is a
novel encoding of duration changes, in pitch such an arrangement
produces the equal-tempered scale.

Conditions

There were two within-subject conditions in this experiment, and
three between-subject conditions. The within-subject conditions
corresponded to the auditory dimension (either pitch or duration)
into which the noise distribution was encoded. These will be re-
ferred to as the pitch and duration encoded conditions.

The three between-subject conditions corresponded to the dif-
ferent mappings of noise distributions into auditory sequences. In
the first condition, noise distributions were mapped into a one-
octave range containing 13 discrete levels (including the octave

6 Two additional subjects were run, but their data were not
included because of a failure to follow the instructions, as well as
failure to complete the experiment.
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doubling at the top). For the pitch stimuli, the duration of each tone
in the sequence was 200 ms.7 The pitches used ranged from C4
(middle C) to C5 in 12 equally spaced logarithmic steps. Musically,
these pitches are separated by an interval of a semitone. For the
duration encoded stimuli, the pitch of each tone was C4. The du-
rations used ranged from 200 to 400 ms in 12 equally spaced log-
arithmic steps. This condition will be referred to as the 1 octave, 13
bin condition.

In the second condition, noise distributions were mapped into a
three-octave range, again containing 13 discrete levels. For the pitch
stimuli, the duration of each tone was 200 ms. The pitches used in
this sequence ranged from C3 to C6 in 12 equally spaced loga-
rithmic steps. Musically, these pitches are separated by an interval
of a minor third. For the duration stimuli, the pitch of each tone was
C4. The durations used ranged from 100 to 800 ms in 12 equally
spaced logarithmic steps. This condition will be referred to as the
3 octave, 13 bin condition.

In the third condition, noise distributions were mapped into a
three-octave range containing 37 discrete levels. For the pitch stim-
uli, the duration of each tone was 200 ms. The pitches used in this
sequence ranged from C3 to C6 in 36 equally spaced logarithmic
steps. Musically, these pitches are separated by an interval of a
semitone. For the duration stimuli, the pitch of each tone was C4.
The durations used ranged from 100 to 800 ms in 36 equally spaced
logarithmic steps. This condition will be referred to as the 3 octave,
37 bin condition.

Listeners were assigned to one of the three range-bin conditions.
Within each condition, listeners heard both pitch and duration en-
codings, with the order of these encodings counterbalanced across
listeners.

Procedure

The procedure of this experiment was similar to that of Exper-
iment 1A. Listeners saw drawings of the white, flicker, and Brown
noise distributions, and the structure of these distributions was ex-
plained. The task of the listener was again to determine which noise
distribution they had heard. As in Experiment 1A, subjects heard
nine practice trials (with feedback about their accuracy) and then
began the first block of 30 trials (10 of each noise distribution). After
completing the first block, listeners again heard nine practice trials
and then performed the second block of trials. The entire experi-
mental session lasted approximately 45 min.

Results

The data analysis for Experiment IB was similar to that for
Experiment 1 A. For each listener, the frequency with which
they responded white, flicker, or brown was calculated for
both pitch and duration encodings. Table 2 lists the average
percentage response for the noise distributions for pitch and
duration encodings as a function of the range and bin map-
pings. As in Experiment 1A, listeners categorized the dif-
ferent noise distributions successfully, with this ability again
dependent on the particular mode of representation. Gener-
ally, pitch encodings led to better categorization performance
than did duration encodings. Interestingly, there do not ap-
pear to be any systematic differences between categoriza-
tions as a function of the range and number of bins of the
different maps. Subsequent analyses attempt to quantify
these intuitive impressions.

Similar analyses compared performance in the different
conditions, using both the chi-square and Xfi measures de-

scribed earlier. Both variables were calculated for all listen-
ers, with the mean values for these measures also shown in
Table 2. Two 3 X 2 X 2 ANOVAs were performed, with a
between-subject factor corresponding to the number of bins
and range-bins of the stimuli (1 octave, 13 bin; 3 octave, 13
bin; 3 octave, 37 bin), a within-subject factor of encoding
dimension (pitch vs. duration), and a between-subject factor
of order (pitch first vs. duration first). The dependent vari-
ables in these ANOVAs were the chi-squares and the AB mea-
sures. For the chi-squares, the only significant effect was the
main effect of encoding dimension, with the pitch condition
significantly greater than the duration condition, F( 1, 42) =
13.98, p = .001. Similarly, for the ABs, the only significant
difference was a main effect for encoding dimension, with
the pitch condition greater than the duration condition, F(l,
42) = 10.87, p = .002. In neither case was there a significant
interaction between encoding dimension and range-bins, al-
though for the chi-square analysis this interaction ap-
proached significance, F(2, 42) = 2.6, p = .09.

Discussion

The results of this experiment help to clarify the questions
raised concerning Experiment 1A. The observed difference
between the pitch-loudness encodings and duration encod-
ings of Experiment 1A were not likely due to logarithmic
versus linear scaling, given that even with logarithmic scal-
ing for both pitch and duration dimensions categorization
was still better for pitch encodings. Similarly, equating of the
overall ranges of pitch and duration changes (in terms of the
number of octaves spanned) also gave rise to a difference
between pitch and duration dimension categorizations.

The most interesting results of Experiment IB stem from
the manipulations of range (1 octave vs. 3 octaves) and the
coarseness of the coding (13 bins vs. 37 bins). Stated simply,
there were no differences in categorization performance as
a function of manipulating either of these dimensions. Al-
though one must always remember the dangers of drawing
conclusions from null results, these findings are suggestive.
One implication involves the importance of streaming in the
perception of these sequences. If streaming were a critical
mediating factor, then there should have been a difference in
performance as a function of whether the range of the se-
quences facilitated the occurrence of streaming for some
noises (i.e., 1 octave vs. 3 octaves). This result did not occur,
however. Although it is tempting to suggest that streaming
is unimportant in perceiving these structures, we should be
cautious in dismissing such a potent organizing principle. As
discussed earlier, the very structure of these noise distribu-
tions is such that some noises produce streaming more easily

7 According to Van Noorden's (1975) seminal work on stream
segregation, at a rate of 200 ms per tone a pitch range of one octave
(13 semitones) should fall within the temporal coherence bound-
ary, which is the "boundary between temporal coherence and
fission when the observer is trying to hear temporal coherence" (p.
10). Other support for temporal coherence between notes within an
octave (with durations of 200 ms) comes from Miller and Heise
(1950) and Schouten (1962, cited in Van Noorden, 1975).



AUDITORY FRACTAL CONTOURS 649

Table 2
Mean Percentage Categorization Responses for White, Flicker, and Brown Noise
Distributions as a Function of Auditory Dimension and Condition

Pitch encoding

Stimulus

White
Flicker
Brown
x2

AB

White
Flicker
Brown
x2

AB

White
Flicker
Brown
X2

AB

White

60.0
33.7
10.6
17.4*
0.38

56.3
38.8
11.2
15.9*
0.32

52.5
26.2
13.7
17.0*
0.33

Flicker

Condition:
32.5
49.4
23.9

Condition:
35.0
50.0
25.0

Condition:
30.6
51.3
23.1

Brown

1 Octave,
7.5

16.9
62.5

3 Octaves,
8.7

12.2
63.8

3 Octaves,
16.9
22.5
63.7

Duration encoding

White

13 Bins
55.6
29.1
14.4
14.5
0.28

13 Bins
41.9
28.8
16.9
13.2
0.29

37 Bins
33.7
29.4
21.9
7.8
0.18

Flicker

32.5
55.0
31.9

41.2
46.2
25.6

44.4
36.2
30.6

Brown

11.9
16.9
53.7

16.9
25.0
57.5

21.9
34.4
47.5

Note. Correct categorizations are in italics.
* p < .05.

than others. Simply because eliminating streaming did not
dramatically affect categorization does not mean that stream-
ing does not play a role when it is potentially available. Nor
does it rule out the possibility that it might have a more subtle
influence, one that the current situation could not detect.
Moreover, it might be that in our one-octave condition the
sequences did stream to some extent. We chose a one-octave
range primarily because of convenience (and limitations in
our equipment). Though 1 octave is below the temporal co-
herence boundary (Van Noorden, 1975) for tones of 200 ms,
it is above the fission boundary. This means that listeners
might have been able to hear some streaming in these se-
quences, with conscious effort. However, the amount of
streaming as well as the strength of the effect would be
greatly reduced relative to the three-octave condition. Based
on our results, as well as the aforementioned caveats, it ap-
pears that streaming, though conceivably playing a role in
perception of these structures, is unable to account for lis-
teners' categorizations.

A second result of interest arises from the lack of a dif-
ference between the 3 octave, 13 bin condition and the 3
octave, 37 bin condition. These conditions differ in the
strength of their approximation of the continuous fractal dis-
tribution underlying the different sequences, or what we have
called the coarseness of the coding. Interestingly, it appears
that 13 discrete levels (a relatively coarse coding) can ade-
quately convey the distribution information. One possible
extension would be to provide even fewer levels to determine
the point at which this information can no longer be recov-
ered. Additionally, the efficacy of the coarseness of the
coding of these sequences must, in part, be relative to
the separation (in fractal dimension) of the different noise
distributions being discriminated. Other extensions might

vary the separation between noise distributions, along with
the number of discrete levels used to represent these distri-
butions, to investigate possible interactions between these
factors. Experiment 3 touches peripherally on this issue.

Taken together, Experiments 1A and IB provide some in-
teresting insights into the perception of fractal structure, as
well as the formation of contour more generally. Experiments
2 and 3 both provide more in-depth study of listener's ap-
prehension of this type of information, although these studies
move in divergent directions. Experiment 2 extends our in-
vestigations into the perception of contour information when
coded into different auditory dimensions. Experiment 3
looks more finely at listeners' perceptions of pitch contours
and how appreciation of fractal structure varies as a function
of fractal dimension.

Experiment 2: Perceiving Simultaneous Pitch and
Loudness Contours

Experiment 2 investigated the effects of simultaneous pre-
sentation of pitch and loudness contours in identification of
fractal information. The basic question examined is whether
the availability of multiple, simultaneous sources of infor-
mation leads to better recognition of a particular noise dis-
tribution. That is, if we are searching for a white noise struc-
ture in a sequence that has both pitch and loudness variation,
is our recognition of white noise better when both pitch and
loudness change according to a white noise distribution, as
opposed to if just one of the two dimensions (pitch or loud-
ness) is based on a white noise distribution?

We might anticipate that presenting simultaneous pitch and
loudness changes in an auditory sequence should lead to
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more accurate identification of this information. On what
basis might we form this expectation? A very simple model
for why recognition of fractal information might increase in
this situation is that presenting simultaneous target informa-
tion in two dimensions gives listeners two independent sam-
ples on which to base a judgment. Such a model assumes an
additive relationship between the different sources of infor-
mation. If true, we should be able to predict the identification
of sequences changing in both pitch and loudness informa-
tion simultaneously from the identification of sequences in
which there is only pitch information, combined with iden-
tification of sequences in which there is only loudness in-
formation. We develop such a model below.

For convenience, we will develop this model using sig-
nal detection terminology. The task of the listeners is to
say yes if they detect the presence of a specified noise dis-
tribution (the target) in either pitch or loudness dimen-
sions. Let p( + ) denote the probability of saying yes in sit-
uations in which both pitch and loudness dimensions vary
simultaneously. Within a given dimension (either pitch or
loudness), we denote the conditional probability p( + :+) =
p as the probability of saying yes if the target was, in fact,
present (a hit), and p(+:—) = q denotes the probability of
saying yes if the target was absent (a false alarm). These
two probabilities will be given by conditions in which only
one dimension carries relevant information. For complete-
ness, denote by p(-: + ) = 1 - p and /?(-:-) = 1 - q
the probabilities of saying no if the target information
is present or absent, respectively (misses and correct
rejections).

To analyze a situation in which both pitch and loudness
levels vary simultaneously, we need to compute the proba-
bility of a yes response to either or both dimensions. In a
model where the different dimensions are independent, the
individual probabilities compound multiplicatively. In gen-
eral, the probability of a yes response is

p( + ) = p(\, + )p(2, -) + p(l, -)p(2, +) + p ( l , +)p(2, + ),

where p(j, +) is the probability of saying yes to informa-
tion in the y'th (j = 1 or 2) dimension and where p(j, -)
is the probability of saying no to information in the y'th
dimension, regardless of the nature of the information in
either dimension. This equation plus the preceding defini-
tions allow us to compute the probability of identifying a
noise distribution in a sequence in which both pitch and
loudness vary simultaneously, simply by keeping track of
whether a target is present in the first or second dimension
and whether the response is a yes or a no. For the example
below, we assume that the listener has been instructed to
listen for the presence of white noise (the target).

Case 1: Two Targets Present

White noise is present in pitch and loudness:

/» (+)= X+:+M- :+)

Case 2: One Target Present

White noise is present only in pitch. Because the target can
appear in either dimension with equal probability, we can
suppose without loss of generality that the target is present
in Dimension 1 :

p( + ) = p(i - q) + (1 - p)q + pq = p + q - pq.

Case 3: 0 Targets Present

White noise is not present in pitch and loudness:

/>(+)= P(+ :-)/?(-:-)

/?(+) = q(\ - « - q)q + q2 = 2q - q2.

It is assumed here that the hit and false alarm rates are the
same regardless of which dimension carries the target.

The current experiment tests this probability model by ex-
amining identification accuracy when fractal information oc-
curred simultaneously in two tone dimensions. Toward this
end, we adapted a methodology typically used in work in-
vestigating global versus local precedence (Navon, 1977;
Pomerantz, 1983; Pomerantz & Sager, 1975), in which sub-
jects report if a target stimulus (i.e., the letter //) is present
in a multidimensional stimulus.

Method

Subjects

The final sample of subjects consisted of 16 adult listeners re-
cruited from the University of Virginia community.8 All listeners
were paid $5 for participating. All listeners reported normal hearing,
and none had absolute pitch.

Apparatus and Stimulus Materials

Stimuli were generated with the same equipment as in Experi-
ment 1A. All sequences were heard over Sennheiser HD414SL
headphones plugged directly into the synthesizer. In this study,
samples of 100 random numbers from the white and flicker noise
distributions were mapped into 14 levels of pitch and 12 levels of
loudness, using the same ranges and coding scheme as in Exper-
iment 1 A. All tones were 200 ms in duration and played in the same
timbre as in Experiments 1A and IB.

Conditions

This experiment contained a number of different experimental
conditions; these are described below and outlined in Figure 2. The
primary manipulation involved the simultaneous presentation of
sequences changing in both pitch and loudness. For comparison,

p( + ) = p(\ - p) - p)p + p2 =2p - p\

8 One additional subject was removed from this study because of
her failure to follow the experimental instructions.
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Pitch Dimension

Loudness

Dimension

White Noise

Flicker Noise

White Noise

Redundant:
1. Congruent
2. Incongruent

Response:
"present"

Non-redundant

Response:
"present"

Flicker Noise

Non-redundant

Response:
"present"

Redundant:
1. Congruent
2. Incongruent

Response:
"absent"

Unidimensional Conditions:

Pitch
Dimension

White Noise

Response: "present"

Flicker Noise

Response: "absent"

Loudness
Dimension

White Noise

Response: "present"

Flicker Noise

Response: "absent"

Note: The task of the listener is to listen for the presence of White noise in either Pitch or
Loudness dimensions.

Figure 2. Schematic representation of the bidimensional and unidimensional conditions of Ex-
periment 2. (Also shown are the appropriate responses for the conditions of Experiment 2 when
listening for the white noise distribution.)

sequences were included in which variation in only one dimension
occurred, while the second dimension was held constant. There
were, therefore, two general classes of sequences: bidimensional
stimuli, in which both pitch and loudness varied simultaneously, and

unidimensional sequences, in which either pitch or loudness varied,
while the other dimension stayed constant. For both bi- and uni-
dimensional sequences, pitches and loudnesses could vary in ac-
cordance with either a white noise or a flicker noise distribution.
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Bidimensional sequences. Crossing the two dimensions avail-
able for change (pitch and loudness) with the two noise distributions
each on which could be based (white or flicker noise) produced four
different bidimensional sequences of two general types. The first
type were "redundant" sequences, in which both pitch and loudness
changes were based on the same noise distribution (i.e., both
determined by white noise or both by flicker noise), whereas the
second type were "nonredundant" sequences, in which the pitch
dimension was determined by one noise distribution and the loud-
ness dimension was determined by the second noise distribution
(i.e., white noise pitch changes and flicker noise loudness changes,
or vice versa; see Figure 2). A final manipulation for the bidimen-
sional sequences occurred within the redundant sequences, which
could be either "congruent" or "incongruent." For the congruent
redundant sequences, pitch and loudness changes were based not
only on the same general noise distribution (i.e., white noise) but
also on the same set of 100 random numbers. Thus, changes in pitch
and loudness were almost perfectly correlated.9 For the incongruent
redundant sequences, pitch and loudness varied in accordance with
the same general noise distribution, but the actual set of random
numbers determining these changes differed for these dimensions.
In sum, then, there were six bidimensional conditions: two con-
gruent redundant conditions, two incongruent redundant conditions,
and two nonredundant conditions (see Figure 2).

Unidimensional sequences. For the unidimensional sequences,
the stimuli contained one dimension (either pitch or loudness) that
changed in accordance with either white or flicker noise, while the
second dimension remained constant. For those sequences in which
the loudness changed, the pitch of each note was held constant at
C4; when the pitch changed, the loudness level was approximately
84 dBC. These sequences are essentially a replication of the pitch
and loudness conditions of Experiment 1 A. Both pitch and loudness
unidimensional stimuli were crossed with each noise distribution,
producing four unidimensional conditions (see Figure 2).

This study contained one final experimental manipulation. Al-
though each sequence was generated on the basis of samples of 100
random numbers, the actual length of the sequences heard by lis-
teners was manipulated. Specifically, five different sequence
lengths were used: 15 notes in length, 30 notes, 45 notes, 60 notes,
or 75 notes.

In sum, then, there were 10 experimental conditions: six bidi-
mensional conditions and four unidimensional conditions (see Fig-
ure 2). Each of these conditions contained five different lengths,
producing 50 experimental trials. One set of 50 trials was consid-
ered a single experimental block of trials. Four exemplars of each
trial type were created, producing four blocks of 50 trials each.

Procedure

Prior to the start of the experiment, listeners saw drawings of the
white and flicker noise distributions (see Figure 1), with the struc-
ture of the sequences explained as in Experiments 1A and IB. Lis-
teners were told that these distributions generated auditory se-
quences varying in pitch, in loudness, or in both pitch and loudness
simultaneously. The listener's task was to listen for one of the two
noise distributions in each sequence (i.e., to listen for the white
noise distribution) and to respond present if that noise distribution
occurred in either pitch or loudness and absent if it was not present.
We will refer to the noise distribution that subjects were instructed
to listen for as the target and will distinguish between sequences on
the basis of whether this target information was present. Present and
absent responses were indicated by pressing different keys on the
computer keyboard. Figure 2 also shows the different conditions of
this study, along with the appropriate responses when listening for

the presence of the white noise distribution. Half the subjects lis-
tened for the white noise distribution, and the other half listened for
flicker noise. After responding, listeners received feedback as to
whether their answer was correct. Feedback occurred throughout
the experimental session.

Listeners heard one practice block of trials and four blocks of
experimental trials. The practice block was one of the later exper-
imental blocks. All listeners heard the trials within each block in
different random orders. The entire experimental session lasted
approximately 1.5 hr.

Results

For each listener, the percentage of correct responses (an-
swering present when the target noise distribution was
present and absent when the target noise distribution was not
present) was calculated for the different conditions. These
data were then analyzed with a three-way ANOVA, with
factors of noise type (listening for white vs. flicker noise),
sequence length (15,30,45,60, or 75 notes), and condition—
the 10 bi- and unidimensional sequence conditions. Se-
quence length and condition were within-subject factors,
whereas noise type was a between-subject variable. This
analysis revealed a main effect of sequence length, F(4, 56)
= 8.89, p < .001, and condition, F(4, 56) = 11.60,p < .001,
but no main effect for noise type, F(l, 14) = 1.82, ns. None
of the two-way interactions was significant, but the three-
way interaction among length, condition, and noise type was
significant, F(36, 504) = 2.44, p < .001. The percentages
correct for the 10 conditions (averaged across noise type and
length) are shown in the top half of Table 3. Given the lack
of a main effect for noise type, all further analyses collapsed
across this variable.

Before discussing any subsequent analyses, it is important
to note one interesting aspect of these results. Inspection of
the top half of Table 3 suggests that accuracy differed de-
pending on whether the target information was actually
present in the sequence. For sequences in which the target
information was present, accuracy increased relative to se-
quences in which the target information was not present. This
effect is particularly pronounced for the bidimensional se-
quences, which had response levels of 89.7% (both congru-
ent and incongruent sequences) when the target was present,
versus 59.4% and 56.7% (congruent and incongruent se-
quences, respectively) when the target was not present. Be-
cause of this difference, all subsequent analyses distin-
guished between sequences in which the target information
was present and sequences in which the target information
was absent.

Analyses were performed in which the different redundant,
nonredundant, and unidimensional conditions were exam-
ined, averaging across the sequence lengths. In these anal-
yses, the congruent redundant sequences were compared
with the incongruent redundant sequences, the unidimen-
sional pitch sequences were compared with the unidimen-
sional stimuli loudness sequences, and the two nonredundant

9 Pitch and loudness changes were not perfectly correlated be-
cause there were 14 levels of pitch and only 12 levels of loudness.
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Table 3
Mean Percentage Correct for the Uni- and Bidimensional Conditions
of Experiment 2

Condition

Bidimensional redundant
Congruent
Incongruent

Bidimensional nonredundant
Pitch = White, Loudness = Flicker
Pitch = Flicker, Loudness = White

Unidimensional
Pitch
Loudness

Bidimensional redundant
Congruent
Incongruent

Unidimensional
Pitch
Loudness

Bidimensional redundant
Bidimensional nonredundant
Unidimensional
Bidimensional redundant
Unidimensional

Target
information

Present
Present

Present
Present

Present
Present

Absent
Absent

Absent
Absent

Present
Present
Present
Absent
Absent

Percentage
correct

89.7
89.7

79.1
74.1

79.1
75.0

59.4
56.7

66.9
74.1

89.7
76.6
77.0
58.0
70.5

F for difference
between the means

F(l, 15) = 0.0, ns

F(l, 15) = 3.83, ns

F(l, 15) = 1.16, ns

F(l, 15) = 0.35, ns

F(l, 15) = 2.58, ns

sequences were compared. The results of these five com-
parisons are shown in the last column of the top of Table 3;
none of the pairs of means differed significantly. Accord-
ingly, these pairs were averaged, producing five conditions:
redundant sequences in which the target information was
present, redundant sequences in which the target information
was absent, Unidimensional sequences in which the target
information was either present or absent, and nonredundant
sequences in which the target information was present.

Comparisons then looked for effects of having the target
information present (or absent) simultaneously in pitch and
loudness dimensions. The means for the five conditions were
compared with one-way ANOVAs with Bonferroni correc-
tions. The most important test involved comparison of the
bidimensional redundant condition with the bidimensional
nonredundant condition and the Unidimensional condition
when the target was present. In this case, detection accuracy
for the bidimensional redundant condition was significantly
greater than detection in both the bidimensional nonredun-
dant condition, F(l, 15) = 28.64, p < .01, and the unidi-
mensional condition, F(l, 15) = 17.83, p < .01. No differ-
ence in performance occurred between the bidimensional
nonredundant condition and the Unidimensional condition,
F(l, 15) = 0.01, ns.

The pattern of results becomes more complicated for con-
ditions in which the target information was not available.
Before correcting for multiple comparisons, the bidimen-
sional redundant condition differed significantly from the
Unidimensional condition; after correction, this difference
approached significance, F(l, 15) = 7.94, p < .08. What
makes this result so striking is that the difference between
these means is in a direction opposite from what was
expected—the bidimensional redundant condition produced
substantially poorer performance than the Unidimensional

condition. Two additional analyses compared means across
response type. First, the two bidimensional redundant con-
ditions (the target information was and was not present) were
compared; these means differed significantly, F(l, 15) =
57.37,/> < .001. Second, performance in the Unidimensional
conditions (across the presence or absence of target infor-
mation) was examined; here, no difference occurred, F(l, 15)
= 1.66, ns.

Finally, the effects of the different sequence lengths were
examined. A two-way ANOVA, with the factors of sequence
length and condition, revealed significant main effects for
both variables, F(4, 60) = 8.24, p < .001, and F(4, 60) =
17.08, p < .001, respectively. The two-way interaction did
not reach significance, F(16,240) = 0.82, ns. Figure 3 shows
the average correct percentage for the different conditions as
a function of sequence length. Although the length of the
sequence influenced accuracy, this effect was constant across
all conditions.

Discussion

The results of this study suggest, in keeping with our ear-
lier predictions, that accuracy for identification of fractal
structure changes when this information is simultaneously
available in both pitch and loudness dimensions of a tone
sequence. Specifically, when target information was present
in both dimensions accuracy increased relative to when this
target information was available in only a single dimension.
Interestingly, when the target information was not present in
either dimension, accuracy decreased substantially. Although
somewhat nonintuitive, such a result falls naturally out of the
probability model that we described earlier.

How well does our probability model predict the results of
this study? To test our model, we first determine the hit and
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Figure 3. Average percentage correct as a function of sequence
length for the bidimensional and unidimensional conditions of
Experiment 2.

false alarm rates, orp( + : + ) and /?(+:-), using the results of
the unidimensional condition when the target was present
and absent, respectively. From Table 3, we see that/?( + :+)
= p = .77 and thatp(+:-) = q = .30. Substituting these
values in the equations described earlier, we calculate that
p(+, 2 targets) (the probability of a present response given
that two targets were present) is .95, p(+, 1 target) = .84, and
/>(+, 0 targets) = .51. From Table 3, we havep(+, 2 targets)
= .90,/?(+, 1 target) = .77, andp(+, 0 targets) = .42. Slight
adjustments in p and q allow us to fit our data more closely.
For/? = .70 and q = .25, we calculate p(+, 2 targets) = .91,
p( + ,l target) = .78, and/?(+, 0 targets) = .44. In Figure 4,
we show the predicted hit and false alarm rates as a function
of target number together with the observed rates. The agree-
ment between the additive model and our data indicates that
loudness and pitch are processed independently and that
identification accuracy is understandable simply in terms of
the detection of two independent samples.

Throughout this experiment, we have focused on the ways
in which listeners might be made more aware of the under-
lying structure of the auditory sequences presented to them.
It is instructive to note, however, that the current experiment
is related to work on the integrality and separability of di-
mensions in perceptual organization (Garner, 1974, 1981;
Garner & Morton, 1969; Pomerantz, 1981). Although a full
account of this topic is beyond the scope of this article, the
issues involved in the integrality versus separability of stim-
ulus dimensions can be loosely characterized as follows.

When perceiving multidimensional stimuli (such as pitch and
loudness in auditory stimuli or the size and orientation of
visual objects), two dimensions are perceptually independent
if perception of one dimension is not influenced by the per-
ception of the other dimension (Ashby & Townsend, 1986;
Garner & Morton, 1969). Perceptual interaction occurs when
perception of one dimension is somehow contingent on per-
ception of a second dimension. In one particular test of per-
ceptual interaction (speeded sorting), integral dimensions in-
teract by facilitating identification of a stimulus when the
dimensions of this stimulus are redundant relative to when
a single dimension defines a category (Garner, 1976). Such
facilatory effects have been referred to as redundancy gains
and are a hallmark indicator of perceptual interaction.

Previous researchers have found evidence for integrality of
auditory dimensions, using both speech sounds (Day &
Wood, 1972; Wood, 1974; Wood & Day, 1975), as well as
more basic tone attributes of pitch and loudness (Grau &
Kemler Nelson, 1988). The most comprehensive research on
interactions among auditory dimensions is recent work by
Melara and Marks (1990a, 1990b, 1990c). This work pro-
vides a wealth of interesting results and generates extensive
empirical support for the idea that tone attributes, such as
pitch, loudness, and timbre, are processed interactively by
listeners. Our current study is methodologically related to
studies examining perceptual interaction, and our results in-
dicate the presence of redundancy gains in that the co-
occurrence of a common fractal structure in two auditory
dimensions facilitated detection of this information. This
suggests, contrary to our earlier probabilistic model, that
pitch and loudness contours are in fact being processed in-
teractively by listeners. As such, we are in the curious po-
sition that the same set of data simultaneously supports both
an independent and interactive model of performance.

Given this situation, we are faced with a problem. How do
we reconcile the divergent implications of our results? In
answer to this question, we should stress that our experiment
is not an adequate test of whether pitch and loudness contours
are perceptually interactive or independent. Garner (1976,
1981) has proposed that dimensional interaction be defined
by a set of converging operations involving a variety of re-
lated tasks. In the current case, we have only a single task

Observed
Probability Summation

Nonredundant Redundant
"Absent"

Figure 4, Comparison of the observed probability of responding
yes with the probability summation model for Experiment 2.
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(speeded sorting), and our method is at best analogous to this
task, not identical to it. Moreover, even within the task of
speeded sorting, we did not include the different combina-
tions of stimulus sets (i.e., baseline, positively correlated,
negatively correlated stimuli, filtering stimuli) that make the
evaluation of perceptual interaction possible. Given that our
initial interest was not examining the possible interaction of
pitch and loudness dimensions, this oversight is understand-
able; we are interested primarily in listener's apprehension
of the underlying fractal structure and only peripherally in the
relationship between pitch and loudness dimensions of tone
sequences.

Methodological differences suggest that the current study
is not a fair test of perceptual interaction between pitch and
loudness contours. As such, it seems most conservative to
accept the implications of our probability model, which sug-
gests independent processing of pitch and loudness contours.
Unfortunately, though, this raises a subsequent problem.
Namely, how do we reconcile our findings of independence
between pitch and loudness dimensions with other research
suggesting perceptual interaction between pitch and loudness
(Grau & Kemler Nelson, 1988; Melara & Marks, 1990b)?

There are some important differences between previous
work investigating interaction among auditory dimensions
and the current study, however. Previous work (Grau &
Kemler Nelson, 1988; Melara & Marks, 1990b) observed
interactions among pitch-loudness dimensions during pro-
cessing of a single note. In contrast, our study examined the
processing of pitch and loudness contour information that is
available only over time and as a result of integrating pitch-
loudness differences between successive tone events. This is
a dramatically different process than occurs when processing
a single note. This difference in the inherent nature of the
judgment is quite important and could underlie the distinc-
tion between our findings of additivity and other work sug-
gesting interaction. A related difference is that traditional
work on dimensional interaction uses stimuli that are well
defined, whereas our stimuli are more ambiguous. For ex-
ample, in Melara and Marks's (1990b) Experiment la, lis-
teners classified single tones that could have one of two val-
ues of pitch and loudness: 900 or 950 Hz for pitch and 60 or
70 dB for loudness. As such, the categories as well as the
exemplars of these categories were well defined; loud or soft
and high or low pitch. In contrast, our categories were de-
fined by the slope of the power spectrum, and we had mul-
tiple exemplars for each power spectrum. Thus, it is likely
that our categories of stimuli, white versus flicker noise, were
much less well defined for our listeners. Given both of these
differences, it is not surprising that we did not necessarily
find evidence for interaction between pitch and loudness di-
mensions. Simply put, although pitch and loudness might
interact when processing single tones, there is no reason that
these dimensions should interact in the formation of more
complex auditory objects.

Finally, brief mention should be made of two other results
of this study. First, this experiment found that having con-
gruent changes between pitch and loudness did not produce
better detection. This result is striking, given that congruent
sequences provided stimuli that were isomorphic in terms of

pitch and loudness variation. It is possible, of course, that
listeners were simply unaware of the relationship between
these dimensions. However, this result fits nicely with the
idea that pitch and loudness contours combine additively;
facilatory effects produced by dimensional congruity tend to
be an indicator of perceptual interaction between dimensions
(Melara & Marks, 1990b, 1990c). Second, this experiment
found that sequence length had a relatively consistent and
straightforward impact on identification of these sequences,
with increasing accuracy associated with increasing se-
quence length. Probably the most surprising aspect of this
manipulation, though, was that identification was quite good
even for very short sequences. For the bidimensional redun-
dant condition in which the target was present, accuracy was
over 80% at sequence lengths as short as 15 notes. Such a
result suggests that sufficient information exists for detecting
gross differences in fractal structure in relatively small sam-
ples of the noise distribution.

Experiment 3: Discrimination of Noise Distributions

The purpose underlying Experiment 3 was to look in more
detail at listeners' ability to discriminate between noise dis-
tributions. In this case, however, rather than look at noise
discrimination as a function of the number of dimensions
within which this information is embedded, the current study
looked at changes in discrimination as a function of varying
fractal dimension. Specifically, we investigated listeners'
abilities to distinguish between noise distributions across a
range of fractal dimensions. A secondary manipulation in the
current study was to further examine the influence of the total
range or coarseness of the coding on discrimination.

Why might sensitivity vary as a function of fractal di-
mension? Earlier, we noted that many natural sources, both
auditory and visual, can be conveniently described in terms
of their fractal dimension. Voss and Clarke's (1978) research
demonstrated that a number of diverse auditory sources could
be related to a single fractional Brownian noise—I// or
flicker noise. Additionally, fractional Brownian noises have
been recognized as providing useful descriptions for visual
scenes. For example, Keller et al. (1987) found that the sil-
houettes of tree lines and mountain tops could be charac-
terized as self-affine noises varying in their fractal dimen-
sion. Other examples include work by Sayles and Thomas
(1978a, 1978b), who measured the roughness of a number of
objects ranging from steel balls to runways and found that all
could be described by their fractal dimension. This work
found a variety of fractal dimensions for these sources, pri-
marily in the range between -2.0 and -3.0.

The observation that both auditory and visual sources are
fractal suggests that people might be sensitive to fractal
information. Of course, in a general sense, investigation of
this idea has been a recurrent theme of these experiments.
More specifically, though, it is possible that perceptual sen-
sitivity might be somehow "tuned" to the regularities of
fractal structure in the environment. As such, sensitivity to
fractal structure might vary according to fractal dimension,
with greater sensitivity occurring for structures whose frac-
tal dimension matches naturally occurring fractal sources.
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For example, in the work by Knill et al. (1990) described
earlier, maximal discrimination of fractal images occurred
for displays with a fractal dimension of 2.5—the same range
of fractal dimensions of naturally occurring landscapes.
Knill et al. (1990) interpreted this finding in terms of the
efficiency of perception, with our perceptual systems being
maximally tuned for structures that are likely to occur in the
environment.

When considering visual sources, one might expect in-
creased sensitivity to stimuli with a fractal dimension be-
tween -2.0 and -3.0. For auditory stimuli, we might antic-
ipate increased sensitivity around the region of -1.0, based
on Voss and Clarke's (1978) results. It is possible, moreover,
that there will be crossover between visual and auditory mo-
dalities, resulting in a discrimination function having roughly
an inverted U shape, with either 1 or 2 peaks, in the regions
of -1.0 and -2.0 to -3.0. Alternatively, it might be that lis-
teners are not maximally sensitive to the fractal structure
occurring naturally within our environment. If so, then we
should see relatively constant discrimination across a range
of fractal structure.

Method

Subjects

Five listeners from the University of Toronto, Scarborough, were
paid for participating. Each listener ran in multiple experimental
sessions over the course of 1-2 months.

Apparatus and Stimulus Materials

Stimuli were generated with the same equipment as in Experi-
ments 1 A, IB, and 2. All listeners heard the auditory passages over
a Peavey KB-60 amplifier.

A series of fractional Brownian noise distributions were gener-
ated (see Figure 5) in which the slope of the power spectra for these
noises varied systematically from 0.0 to -3.9 in steps of 0.3. These
noise distributions (coded as sequences of random numbers) were
used to generate auditory sequences varying in pitch using the same
method as in the previous three experiments. Although each se-
quence consisted of 100 notes, listeners heard only the first 50 for
each sequence. This decrease in the length of each sequence is
justified, given the results of Experiment 2, which found that iden-
tification of noise distributions could be quite accurate even in se-
quences as short as 15 notes. Thirty different sequences were gen-
erated for each noise distribution.

Conditions

There were two conditions in this experiment, corresponding to
the total range into which the random numbers could be mapped.
In the first case, there were 24 discrete levels of pitch, corresponding
to two octaves of a chromatic scale starting from C4 (middle C, 260
Hz) and ending on B5. This condition will be referred to as the
narrow condition. In the second case there were 48 discrete levels
of pitch, corresponding to four octaves of a chromatic scale, be-
ginning with C3 and ending on B6. This condition will be referred
to as the wide condition. For all stimuli, the duration of each tone
was 200 ms.

0.0

-0.3

-0.6

-1.2

-1.8

-2.4

-3.0

-3.6

-3.9

Figure 5. Samples of noise distributions used to generate stimuli
for Experiment 3. (Slopes of the power spectra range from 0.0 to
-3.9.)

Procedure

During each experimental session, listeners heard a series of se-
quences based on two different noise distributions. One of the noise
distributions was arbitrarily labeled Category A, whereas the other
noise distribution was labeled Category B. The listener's task was
to correctly categorize each of the sequences into either the A or B
category. A single session consisted of 200 experimental trials, 100
from each category. As there were only 30 different exemplars of
each category, individual sequences were repeated within sessions.
For each trial, the sequence was chosen randomly from the total set
of exemplars of that noise distribution.

At the beginning of each session, listeners heard three samples
of each of the categories. Subsequently, listeners began the block
of 200 trials. After hearing each trial, the computer prompted the
listener to respond as to whether the sequence was an exemplar of
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Category A or Category B. Feedback as to whether the listener's
categorization was correct was given throughout the entire exper-
imental session. A single session lasted approximately 1 hr.

Training phase. Prior to starting the experimental sessions, lis-
teners received training in distinguishing between the different
noise distributions. At the beginning of this training phase, the struc-
ture of the different noise distributions was explained in a similar
fashion as in Experiments 1 A, IB, and 2. Listeners then ran a num-
ber of blocks of trials in which the separation between Categories
A and B, in terms of fractal dimension, was quite large. For example,
initially listeners discriminated between noise distributions with a
slope of 0.0 and -3.0. The difference, in terms of fractal dimension,
between the two noise distributions was gradually decreased (over
multiple experimental sessions) until listeners were discriminating
between noise distributions with slopes of 0.0 and -1.0. At this point
the listener began the experimental phase.

Experimental phase. During the experimental phase, listeners
discriminated between two noise distributions differing in the slope
of their respective power spectra. Based on pilot work, it was de-
cided that a reasonable separation between noise distributions, in
terms of fractal dimension, was a difference of 0.6. The range from
0.0 to -3.9 was sampled at intervals of 0.3. Thus, in one session
listeners would discriminate sequences in which the slopes of the
power spectra were 0.0 and -0.6. Subsequent to this session, lis-
teners would then discriminate between slopes of-0.3 and -0.9 and
so on up to slopes of-3.3 and -3.9. This produced 12 different pairs
of noise distribution comparisons.

Three of the listeners discriminated noise distributions starting
with the least coherent noises and ending with the most coherent
noises (i.e., 0.0:-0.6; -0.3:-0.9; . . ., -3.3:-3.9), whereas the re-
maining two listeners ran the experimental sessions in the reverse
order (i.e., -3.3:-3.9; -3.0:-3.6; . . . , 0.0:-0.6). All listeners par-
ticipated in the narrow condition first and the wide condition sec-
ond.

Results

The percentages of correct and incorrect responses for Cat-
egories A and B were converted into d'', using the percentage
correct for Category A as the hit rate, and the percentage
incorrect for Category B as the false alarm rate. Initial anal-
yses determined that there were no obvious differences in
performance as a function of the order these sequences were
heard; thus, this variable was ignored in subsequent analyses.

The d's were analyzed with a two-way ANOVA with
within-subjects factors of condition (narrow versus wide)
and slope (0.0:-0.3, . . . , -3.3:-3.9). This analysis revealed
a main effect of slope, F( 11, 44) = 8.01, p < .001, no effect
of condition, F(\, 4) = 1.62, ns, and no interaction between
the two, F(ll, 44) = 0.61, ns. Figure 6 shows the average
d' values across listeners for the narrow and wide conditions,
as well as the average of the two conditions. These values are
plotted in terms of the intermediate slope value between the
two noise distributions being discriminated (i.e., discrimi-
nation performance for slopes of 0.0 and -0.6 are plotted at
-0.3). Also shown in Figure 6 is the range of fractal dimen-
sions for the previously discussed inventory of visual land-
scapes and auditory sources.

Discussion

The discrimination function shown in Figure 6 demon-
strates that sensitivity to fractal structure varies as a function
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Figure 6. Mean d' for the narrow, wide, and averaged narrow
and wide conditions of Experiment 3. (Also shown are the ranges
of visual and auditory sources.)

of fractal dimension, with the discrimination function ap-
proximating an inverted U-shaped curve. Interestingly,
however, we find only limited support for the idea that
sensitivity to fractal structure is related to the statistical
regularities of fractal structure in our environment. Al-
though there was a discrimination peak for slopes between
-2.0 and -3.0 (the range of visual landscapes), there was no
heightened sensitivity for slopes around —1.0 (the slope
value underlying auditory sources). It is unclear why, if
perceptual sensitivity is related to statistical regularities of
the environment, that auditory discrimination should peak in
the range of visual stimuli, with no heightened sensitivity in
the range of auditory sources.

Alternatively, it might be that the shape of the discrimi-
nation curve is not a result of learned environmental regu-
larities but is simply a fortuitous by-product of the process
of discriminating between the noise distributions. In an ex-
periment similar to the current study, Gilden, Schmuckler,
and Clayton (in press) had observers discriminate between
pairs of line drawings of fractal noises differing in the slope
of their power spectra. Discrimination functions for these
displays had essentially the same shape as seen in the current
study: The curves had an inverted U shape, peaking in the
region between -2.0 and -3.0. In subsequent analyses, how-
ever, this discrimination was modeled by algorithms that
were essentially blind to the integrated hierarchical nature of
fractal structure. Instead, these models operated on the basis
of signal-noise distinctions or by decomposing the fractal
structure into smooth and rough components of the se-
quences and comparing the variances of these components.
The success of this model argues strongly against the idea
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that our perceptual systems are tuned to the statistical dis-
tribution of environmental forms (Knill et al., 1990). Cur-
rently, we are extending these results, looking at discrimi-
nation of different fractal and nonfractal noises, in an attempt
to provide further data bearing on perceivers' abilities to de-
tect the information inherent in fractal structure. Viewed in
this light, the current experiment is best considered as a pre-
liminary report of the discrimination of fractal structure.

General Discussion

The results of these studies can be looked at in a number
of ways. First, these experiments represent an investigation
into listeners' abilities to use "pure" contour information, or
the recognition of contours that are mathematically feature-
less and relatively independent of their mode of represen-
tation. The ability to identify contour is critical for auditory
perception, being implicated as a crucial component in per-
ceiving the overall structure of the auditory environment, or
what has been termed auditory scene analysis (Bregman,
1990). From this view, these studies examine our abilities to
perceive relational information when presented by different
auditory dimensions (pitch, loudness, and duration) either in
isolation (Experiments 1A and IB) or simultaneously (Ex-
periment 2). All of these studies demonstrated listeners'
sensitivity to the global structure of the featureless noise
distributions used to generate the auditory passages. Exper-
iments 1A and IB showed that listeners could perceive the
abstract information underlying contours, although not all
modes of representing this information were perceptually
relevant. Experiment 2 demonstrated that the presentation of
contours simultaneously in pitch and loudness dimensions of
a sequence facilitated identification of these noise distribu-
tions in an additive fashion. Overall, these results fit well into
the expanding literature on perception of complex auditory
information.

In our attempt to study contours that were independent of
sources of information other than relational, we used random
number distributions having fractal structure. Because of
this, a secondary framework for understanding these studies
involves people's abilities to perceive the integrated hierar-
chical information characterizing fractal sources. It has been
noted in recent years that our environment is replete with
fractal structure; evidence for the psychological relevance of
fractal structure has been much less forthcoming, however.
Essentially, this project is a step toward making good on this
implied promissory note by investigating the sensitivity of
listeners to fractal structure when mapped into changes in
auditory sequences. Moreover, this work has attempted, al-
beit informally, to compare sensitivity to fractal structure
to other, more traditional characterizations of auditory se-
quences, namely auditory stream segregation.

In this sense, the current studies are somewhat analogous
to work by Cutting and Garvin (1987), in which the impor-
tance of fractal structure in similarity ratings of images was
compared with the role of more classical characterizations of
these images. Similar to Cutting and Garvin's (1987) results,
we find that fractal structure plays a role in discrimination,
although it is not an overwhelming source of information.

Experiments 1A and IB, for example, demonstrate that the
perception of auditory fractal contours varying in pitch, loud-
ness, and duration cannot be wholly accounted for on the
basis of a more simple explanation relying on auditory
streaming. Though we are reluctant to discount the impor-
tance of streaming in these studies (our reasons were enu-
merated earlier), these results suggest that there was clearly
more to these sequences than streaming. Experiment 3, how-
ever, points out the limits of explanations relying in terms of
fractal structure. This experiment demonstrated that discrim-
ination of noises varying in their fractal structure could not
be wholly accounted for by the differences in fractal dimen-
sion (which predicts constant discrimination with constant
difference in fractal dimension) or by heightened sensitivity
to statistical regularities of the environment (which predicts
increased discrimination for noises with fractal dimension of
-1.0 and between -2.0 to -3.0). It appears, then, that fractal
information might simply be another potential source of
structure, working in concert (or sometimes in opposition)
with other aspects of auditory structure.

The fact that both visual scenes and auditory stimuli have
fractal descriptions raises a variety of cross-modal questions,
some of which have already been discussed. One of the more
fascinating results of the current project involved finding that
not all mappings of the contour information could be per-
ceived by listeners. Similar questions arise concerning the
effectiveness of different encodings in other sensory modal-
ities. Gilden and Schmuckler (1989) examined contour per-
ception when contour information was presented in different
visual dimensions. In a comparable study to Experiments 1A
and IB, Gilden and Schmuckler (1989) chose five different
isomorphic representations of white, flicker, and brown noise
distributions and had observers categorize these representa-
tions. The different representations used consisted of bands
of rectangles differing in height or width, bands of stripes
differing in monochromatic brightness, the vertical motion of
a line, and the brightness of a patch over time. The results
of this study revealed a hierarchy of category discriminability
among the isomorphs in contour formation. Categorization
performance was enhanced when contour information oc-
curred in displays making use of spatial layout and was max-
imal when the varying dimension of the representation used
scales familiar from everyday experience (e.g., distance met-
rics for height and width are more familiar than brightness
metrics). In addition, as already discussed, Gilden et al. (in
press) examined sensitivity to line drawings of scaling noises
as a function of their power law exponent and found that
sensitivity to contour information varied over the range of
fractal dimensions tested, with the discrimination curve also
approximating an inverted U-shaped function.

The current studies represent an initial investigation into
contour formation and the perception of fractal structure.
Unfortunately, the results of these studies raise more ques-
tions than they answer. Issues concerning the perceptual rel-
evance of different encodings of auditory structure have, for
example, been only lightly touched. Another question need-
ing further work involves the effect of the coarseness of cod-
ing from continuous to discrete representation. In a few
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different manipulations (Experiments IB and 3), we consis-
tently failed to find an effect of this variable, an unusual and
somewhat nonintuitive result. There are similar issues con-
cerning the additivity versus interaction of simultaneous
pitch and loudness contours. Although our study did not pro-
vide a fair assessment of the possible interaction of these
sources, the results did strongly suggest independence be-
tween these dimensions. Finally, we have a host of issues
concerning the apprehension of fractal structure per se, its
psychological relevance as a factor in perceptual processing,
and its relationship to other factors traditionally thought to
play a role in auditory perception. Investigating these issues
promises to be an illuminating task, providing insight into
contour perception and auditory processing generally.
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