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ABSTRACT
BACKGROUND: Single nucleotide polymorphism–based heritability is a fundamental quantity in the genetic analysis
of complex traits. For case-control phenotypes, for which the continuous distribution of risk in the population is
unobserved, observed-scale heritability estimates must be transformed to the more interpretable liability scale.
This article describes how the field standard approach incorrectly performs the liability correction in that it does
not appropriately account for variation in the proportion of cases across the cohorts comprising the meta-analysis.
We propose a simple solution that incorporates cohort-specific ascertainment using the summation of effective
sample sizes across cohorts. This solution is applied at the stage of single nucleotide polymorphism–based
heritability estimation and does not require generating updated meta-analytic genome-wide association study
summary statistics.
METHODS: We began by performing a series of simulations to examine the ability of the standard approach and our
proposed approach to recapture liability-scale heritability in the population. We went on to examine the differences in
estimates obtained from these 2 approaches for real data for 12 major case-control genome-wide association studies
of psychiatric and neurologic traits.
RESULTS: We found that the field standard approach for performing the liability conversion can downwardly bias
estimates by as much as approximately 50% in simulation and approximately 30% in real data.
CONCLUSIONS: Prior estimates of liability-scale heritability for genome-wide association study meta-analysis may
be drastically underestimated. To this end, we strongly recommend using our proposed approach of using the
sum of effective sample sizes across contributing cohorts to obtain unbiased estimates.

https://doi.org/10.1016/j.biopsych.2022.05.029
Single nucleotide polymorphism (SNP)–based heritability
(h2SNP) quantifies the proportion of total variance in a phenotype
within a population that is attributable to the additive effect of
tagged genetic variants. For continuously measured quantita-
tive traits, in which phenotypic variation is directly observed,
h2SNP estimates produced from standard methods such as
linkage disequilibrium (LD) score regression (LDSC) (1) are
directly interpretable. However, when the measured pheno-
types are binary (e.g., for case-control psychiatric traits) con-
ventional estimates of h2SNP are not easily interpreted for 2
reasons. The first is because of the binarized scale of the data
in which h2SNP is most interpretable when taking into account
the continuous distribution of risk in the population. The sec-
ond relates to the fact that genome-wide association studies
(GWASs) of disease traits are often performed on ascertained
samples, in which affected individuals are overrepresented so
as to increase statistical power for rare disorders. The standard
transformation for binary traits then uses a liability threshold
N: 0006-3223 Bi
model to convert observed-scale SNP-based heritability (h2oÞ to
liability-scale SNP-based heritability (h2l ) to produce an esti-
mate that both accounts for the continuous distribution of risk
in the population and is not biased by ascertainment. In
practice, h2l is commonly estimated with summary-based
methods such as LDSC using results from GWAS meta-
analysis across many different samples, varying in their
levels of ascertainment.

Here, we highlight a critical error in the standard practice for
calculating h2l from GWAS meta-analysis that can cause
substantial downward bias due to variation in cohort-specific
ascertainment, and we formally derive a simple procedure for
obtaining unbiased h2l estimates. We report results from sim-
ulations that illustrate the extent of the downward bias across a
variety of conditions and showcase the unbiased nature of the
proposed procedure within these same conditions. We go on
to quantify the extent of this bias in 12 recent GWAS meta-
analyses of case-control psychiatric and neurologic traits. It
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1We note that we have observed different, statistically equivalent
versions of calculating effective sample size in the literature,
any of which may be used as long as they are calculated at the
cohort-level prior to summation. At the cohort-specific level,
these equivalent versions can be expressed as either
4ncases;kncontrols;k
ncases;k 1ncontrols;k

or 4
1 1 1 .
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appears that the biased approach has been used for h2l esti-
mates for nearly all meta-analytic GWAS of binary traits.

Observed-scale heritability is estimated within univariate
LDSC as
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where N is the sample size, h2o is the observed-scale herita-
bility, ‘ðjÞ is the total LD score for SNP j, M is the total number
of SNPs used to calculate the LD scores, and a is a term
representing unmeasured sources of confounding such as
population stratification (1).

When summary data are derived from a single case-control
GWAS (either of a single sample or of raw data that have been
combined across multiple samples prior to GWAS), the
observed-scale heritability (h2oÞ can be converted to the liability
scale (h2l Þ as follows:

h2l ¼ h2o
P2ð12PÞ2
f2vð12vÞ

(2)

where v is the sample prevalence, P is the population preva-
lence, and f is the height of the standard normal probability
density function at the threshold corresponding to P (2–4).
Combining equations 1 and 2 produces the reduced form
LDSC equation for binary traits:
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In Supplement 1, we show that when GWAS summary data are
derived from meta-analysis of summary statistics from multi-
ple, individual case-control GWASs, the appropriate reduced
form equation for estimating h2l is
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which resembles equation 3 for summary statistics derived
from a single GWAS, with the key difference being that
vð1 2 vÞN is replaced by ðP vkð1 2 vkÞnkÞ.

Importantly, currently available software does not allow for
direct entry of ðP vkð1 2 vkÞnkÞ, and the standard practice in
LDSC analysis of meta-analytic GWAS summary data has
been to compute a single meta-analytic v as the total sample
prevalence (i.e., aggregate number of cases across all samples
divided by the aggregate sample size and enter this quantity
into equation 3). When samples are differentially ascertained,
as is nearly always the case in empirical settings, such an
approach is not equivalent to the correct approach given by
equation 4. Indeed, the 2 calculations can produce very
different results in the presence of varying levels of ascer-
tainment across contributing cohorts, with corresponding ef-
fects on estimates of h2l . For example, consider 2 case-control
cohorts each comprising 10,000 participants but with dispa-
rate levels of ascertainment wherein the first cohort has 10%
cases (i.e., vk = 0.1) and the second cohort has 50% cases
(vk = 0.5). In this example, vð1 2 vÞN = 4200, whereas the
correct value given by ðP vkð1 2 vkÞnkÞ = 3400.
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Put more formally, we can express the inequivalence of the
2 approaches as follows:
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We refer to the quantity on the left of the inequality as the
summation of cohort-specific ascertainments and the quanti-
ties on the right of the inequality as the total sample
ascertainment.

In Supplement 1, we describe a simple procedure in which
the correct estimate of h2l (as would be obtained via equation 4)
can be obtained for meta-analytic summary statistics using
standard software (i.e., implementing equation 2) [e.g., LDSC
(1), genomic structural equation modeling (Genomic SEM) (5),
MTAG (6), LDAK (7)]. First, the effective sample size, EffN is
computed for each study, k, as

EffNk ¼ 4vkð12 vkÞnk (6)

where EffNk represents the sample size for an equivalently
powered GWAS within a balanced sample (i.e., 50% cases,
50% controls)1. Because the EffNk values are directly com-
parable across GWAS samples they can be summed. The sum
of EffNk across all contributing GWASs (

P
EffNkÞ is then

entered for N along with the v = 0.5, so as to represent the
balanced nature of the design. Relatedly, we note that multi-
plying the quantity vkð1 2 vkÞnk by 4 when calculating effective
sample counterbalances the fact that entering v = 0.5 results in
the quantity 0.5 (1–0.5) (i.e., 14 ). This proposed solution of using
the

P
EffNk is applied at the point of estimating the SNP-

based heritability and does not require redoing the GWAS
meta-analysis. The population prevalence from collateral
epidemiological data is entered for P as usual. As with the
quantities described in equation 5, the effective sample size
calculated using total sample prevalence is not equal to the
sum of effective sample sizes calculated using cohort-specific
sample prevalence. This inequality can be expressed asX

4vkð12 vkÞnk s 4vð12 vÞN (7)

In addition to being pragmatically appealing, given current
available software, this approach has 3 additional advantages.
First, a number of statistical pipelines adopted by major,
genomic research consortia default to outputting

P
EffNk in

the GWAS summary statistics output. In recognition of the fact
that the RICOPILI (Rapid Imputation and Computational
Pipeline for GWAS) pipeline implemented by the Psychiatric

Genomics Consortium (1) defaults to outputting
P

EffNk

2 . We
have updated the GenomicSEM software to automatically
double this column (typically labeled as Neff_half) and use it as
ncases;k ncontrols;k
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input for subsequent heritability calculations (of course, for
other software, the researcher can easily double this quantity
prior to running analyses). Second, this allows the researcher
to account for both cohort-specific and SNP-specific infor-
mation. That is, when participant sample size varies by SNP, as
is often the case given different genotyping platforms used by
cohorts, it is preferrable to use this SNP-specific information.
Third, when cohort-level information is not available to
compute

P
EffNk , the sum of effective sample sizes can be

approximated directly from GWAS summary statistics (see
Section S6 of Supplement 1) (8,9). Annotated code and ex-
amples for applying this proposed procedure can be found in a
new section on how to calculate sample size on the
GenomicSEM GitHub (https://github.com/GenomicSEM/
GenomicSEM/wiki/2.1-Calculating-Sum-of-Effective-Sample-
Size-and-Preparing-GWAS-Summary-Statistics). Note that we
also describe in Section S5 of Supplement 1 how to extend
this approach to produce unbiased, SNP-based heritability
estimates for meta-analyses that combine binary and contin-
uous measures of the same trait.
METHODS AND MATERIALS

Simulation and Recovery of SNP Heritability for
Binary Traits

Simulation of Summary Statistics. Each simulation
began by generating genome-wide summary statistics for bi-
nary traits for 10 individual cohorts. We began with a series of
simulations that specified a population prevalence of 1%, a
liability-scale heritability of 15% in the population, cross-trait
intercepts of 0 to reflect no sample overlap across the 10
cohorts, and a univariate intercept of 1.0 to reflect no uncon-
trolled for population stratification. Each cohort was specified
to have a sample prevalence of either 10% (low ascertainment)
Table 1. Simulation Results Across Conditions

Condition
50% Cases/
50% Controls

10% Cases/
90% Controls

Proposed Appro

Mean h2

(SD) h2 Range

Condition 1 0 10 15.06 (0.56) 13.51–16.4

Condition 2 1 9 14.98 (0.50) 13.51–16.1

Condition 3 2 8 14.99 (0.48) 13.67–16.2

Condition 4 3 7 15.02 (0.37) 14.13–15.9

Condition 5 4 6 14.97 (0.35) 14.33–15.6

Condition 6 5 5 15.02 (0.32) 14.01–15.7

Condition 7 6 4 15.07 (0.28) 13.83–15.6

Condition 8 7 3 14.99 (0.26) 14.37–15.7

Condition 9 8 2 15.03 (0.26) 14.39–15.6

Condition 10 9 1 15.01 (0.25) 14.37–15.6

Condition 11 10 0 15.03 (0.22) 14.36–15.5

The 50% cases/50% controls and 10% cases/90% controls columns d
condition. The Proposed Approach columns denote the simulation resul
across cohorts, and v = 0.5 for the liability correction. The Field Standard
denotes using the total sample prevalence calculated using the aggregate
size for the liability correction.

h2, SNP-based heritability estimate; SNP, single nucleotide polymorphis

Biologica
or 50% (high ascertainment), with the balance of cohorts with
low and high ascertainment varying across 11 simulation
conditions (see Table 1 for details on each condition). Note that
when liability-scale heritability is equal, but sample prevalence
differs across cohorts, observed-scale heritability will differ
across cohorts.

We went on to perform a second set of simulations that
aimed to systematically characterize the effect of different
population generating parameters on liability-scale heritability
estimates. For all conditions in this second set of simulations,
the 10 cohorts consisted of 5 cohorts with 10% sample
prevalence and 5 cohorts with 50% sample prevalence. The
same population generating parameters from the first set of
simulations were used (population prevalence = 1%; liability-
scale heritability = 15%; cohort-level sample size = 5000;
univariate LDSC intercept = 1) with the exception that one of
these values was changed within each condition. This second
set of simulations then consisted of 12 distinct conditions that
examined the downstream consequences of changing
the cohort-level sample size (1000, 10,000, 20,000, or 25,000),
the liability-scale heritability (5%, 10%, 20%, or 25%), the
population prevalence (1%, 5%, 10%, or 15%), or the LDSC
univariate intercept (1.04) (see Table S1 in Supplement 2).

Data Generating Model. For all simulations, data were
simulated using European population LD scores provided by
the original LDSC developers (10) for 1,184,461 HapMap3
SNPs, excluding the major histocompatibility complex region
and sex chromosomes, according to simulation procedures
first described in de la Fuente et al. (11). More specifically,
summary statistics were simulated following the multivariate
LDSC equation:

�
Z1j;Z2j; :::Z10j

�
wN

�½0;0; :::0�; cov�Z1j;Z2j; :::Z10j
		

(8)
ach:
P

EffNk Field Standard Approach: vTotal
Mean %
Bias (SD)

Mean h2

(SD) h2 Range
Mean %
Bias (SD)

2 0.39% (3.70%) 15.06 (0.56) 13.51–16.42 0.39% (3.70%)

4 20.12% (3.34%) 13.19 (0.44) 11.89–14.22 212.07% (2.94%)

3 20.11% (3.18%) 12.39 (0.39) 11.30–13.41 217.43% (2.63%)

3 0.15% (2.48%) 12.08 (0.30) 11.37–12.81 219.46% (1.99%)

2 20.21% (2.35%) 11.98 (0.28) 11.47–12.50 220.13% (1.88%)

5 0.12% (2.10%) 12.15 (0.26) 11.34–12.75 218.95% (1.70%)

3 0.48% (1.87%) 12.49 (0.23) 11.47–12.95 216.72% (1.55%)

3 20.04% (1.70%) 12.86 (0.22) 12.32–13.49 214.29% (1.46%)

3 0.24% (1.75%) 13.46 (0.24) 12.88–13.99 210.30% (1.57%)

7 0.08% (1.68%) 14.14 (0.24) 13.53–14.76 25.72% (1.58%)

7 0.22% (1.50%) 15.03 (0.22) 14.36–15.57 0.22% (1.50%)

enote the total number of cohorts with this case-control split for each
ts when using

P
EffNk ; reflecting the sum of effective sample sizes

Approach columns report simulation results when using vTotal, which
number of cases and controls across cohorts and the total sample

m.
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(9)
and ½Z1j;Z2j; :::Z10j� reflects the Z statistics for the 10 GWAS
cohorts (expressed in condensed form, not depicting cohorts 3
to 9 from the current simulations for display reasons), M is the
number of SNPs from the LD file (1,184,461), Ns is the number
of overlapping individuals, N is the sample size of the individual
GWAS, ‘(j) is the LD score of SNP j, and a 1 1 reflects the
univariate LDSC intercept that picks up on unmeasured con-
founds, such as population stratification. The bivariate LDSC
intercept, expressed as r1;2Ns1;2ffiffiffiffiffiffiffiffiffi

N1N2
p for cohorts 1 and 2, was 0 owing

to setting the sample overlap (Ns) to 0 for all simulations.
GWAS z statistics were simulated following the equation above
and using the mvrnorm R function from the MASS package for
each SNP. For each condition, 100 sets of summary statistics
were simulated (i.e., 1000 cohort-level summary statistics per
condition for a total of 11,000 simulated cohorts across the 11
conditions).

From the simulated cohort-level GWAS z statistics, we
computed logistic betas as follows:

blogitk; j ¼ Zk; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkvkð12vkÞs2SNP; j

q (10)

where vk and nk reflects the cohort-specific sample prevalence
and sample size, respectively, and s2SNP; j reflects the variance
of a given SNP j calculated as 2 3 MAF 3 (1 2 MAF), where
MAF is the minor allele frequency. The logistic standard errors
for a given SNP j and cohort k were then calculated as

SEblogitc; j ¼
blogitk; j
Zk; j

(11)

These logistic betas and standard errors were used to calcu-
late the inverse-variance weighted meta-analytic beta across
the 10 contributing cohorts as described in Supplement 1. This
procedure then produced a single summary statistics file
reflecting the meta-analyzed output across the 10 simulated
cohorts. This summary statistics file was finally analyzed in
LDSC in 1 of 2 ways, as described in the section below.
Analysis of Simulated Summary Statistics. We
compared the ability to recover the population liability-scale
heritability (h2l Þ for 2 approaches: the standard procedure of
inputting the total sample prevalence (vTotal) and the total
sample size (NTotal), versus our proposed approach of inputting
32 Biological Psychiatry January 1, 2023; 93:29–36 www.sobp.org/jou
the sum of effective sample sizes (
P

EffNkÞ and a sample
prevalence (v) of 0.5 to reflect the fact that the effective
sample size equation already accounts for cohort-specific
sample ascertainment. For each simulation condition and lia-
bility correction approach, we report the mean liability-scaled
heritability estimate, standard deviation across the 100 simu-
lations, the range of parameter estimates, and the mean
proportional bias relative to the population generating param-
eter, calculated as

Mean % Bias ¼ 1
100

X100
r¼1

 ch2l;r
h2l;True

2 1

!
(12)

where ch2l;r is the parameter estimate for a given run, r, and
h2l;True was the population generating value of 15%.

Simulating Ascertainment Variability

The key error in the field standard approach is that it does not
account for variation in ascertainment across cohorts. As such,
the expectation for the degree of bias in liability-scale herita-
bility for the field standard approach can be indexed using the
ratio of the sum of effective sample sizes (our proposed
approach) over the effective sample size calculated using the
total number of cases and controls (statistically equivalent to
the field standard approach). In other words,

% Bias ¼ h2l Estimate for vTotal
h2l estimate for

P
EffNk

2 1

¼
P

vkð12vkÞnk
ðP vk nk ÞP

nk

ðP ð12vk Þ nkÞP
nk

ðP nkÞ
21 (13)

Note that equation 13 makes it explicit that bias with respect to
the heritability estimate is an inverse function of bias with
respect to the computation of EffN.

We went on then to perform a series of simulations that
relied on this property by generating a wide variety of cohort-
specific sample sizes and analytically computing bias in the
heritability estimate, rather than generating GWAS summary
statistics and estimating heritability. We began by performing a
set of simulations that mirrored the simulating conditions when
GWAS summary statistics were generated (i.e., mixtures of
cohorts consisting of 50%/50% and 10%/90% cases/control
ratios) to confirm the equivalence of the 2 approaches. We
rnal
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then expanded the range of simulating conditions to consider
the full scope of potential bias within a plausible range. This
involved running 1000 simulations that all consisted of
generating 10 cohorts of 1000 participants, with each cohort
set to randomly contain a proportion of cases between 5% and
95%.

Analysis of Real Data

We examined liability-scale heritability estimates for publicly
available, European only summary statistics for 12 major dis-
orders: attention-deficit/hyperactivity disorder (12), alcohol
dependence (13), Alzheimer’s disease (ALZ) (14), anorexia
nervosa (15), autism spectrum disorder (16), bipolar disorder
(17), cannabis use disorder (18), major depressive disorder
(19), obsessive-compulsive disorder (20), posttraumatic stress
disorder (21), schizophrenia (22), and Tourette syndrome (23).
For each set of summary statistics, we followed the standard
quality control procedure of filtering out SNPs with an impu-
tation quality (INFO) score , 0.9 and minor allele frequency
,1% and filtering to SNPs present in the HapMap3 file
excluding the major histocompatibility complex region and sex
chromosomes. In line with prior work for ALZ, we also removed
the APOE region prior to calculating heritability. In addition, for
ALZ we confirmed that the GERAD (Genetic and Environmental
Risk in Alzheimer’s Disease) consortium was analyzed as a
Figure 1. Simulation results across conditions. Panel (A) depicts the mean perc
Error bars depict 61 SD. Panels (B–L) depict the individual point estimates from
line indicates the liability-scale h2 of 15% in the population. All panels depict the
green and the results from using vTotal for the liability correction in blue, which
number of cases and controls across cohorts. Because vTotal and

P
EffNk p

distributions are entirely overlapping.

Biologica
single cohort while the remaining contributing consortia (ADGC
[Alzheimer’s Disease Genetics Consortium], CHARGE [Cohorts
for Heart and Aging Research in Genomic Epidemiology], and
EADI [European Alzheimer’s Disease Initiative]) reflected meta-
analyzed summary statistics obtained from individual cohorts.
Thus, a single EffN was calculated for GERAD while EffN was
calculated for each of the contributing cohorts for the other
consortia prior to summing them all together to produce a
single

P
EffNk for ALZ. For all traits, the liability-scale herita-

bility was then calculated using either our proposed approach
of inputting

P
EffNk or the field standard approach of using

vTotal. For
P

EffNk , the SNP-specific sum of effective sample
sizes was used when available. Similarly, when using vTotal, the
SNP-specific total sample size was used when this information
was available. Bias was calculated here as the proportion of
the

P
EffNk estimate captured by vTotal:

h2l Estimate for vTotal
h2l estimate for

P
EffNk

21 (15)

RESULTS

Simulation results using GWAS summary statistics are pre-
sented in Figure 1, Table 1, and Table S1 in Supplement 2.
Simulation results that directly simulated ascertainment
entage bias on the y-axis across the 11 simulation conditions on the x-axis.
the 100 simulations per condition across the 11 conditions. The red dashed
results from using

P
EffNk to account for cohort-specific ascertainment in

denotes using the total sample prevalence calculated using the aggregate
roduced equivalent solutions for panels (B) and (L), the blue and green
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variability are presented in Figure S1 in Supplement 1. These
results reveal 3 primary findings. First, the field standard
approach of using vTotal can produce substantial, downward
bias for liability-scale heritability estimates, with bias
increasing as a function of the degree of variability in ascer-
tainment across contributing cohorts (Figure 1A; Figure S1 in
Supplement 1). Thus, bias was greatest for those conditions
when the ascertainment variability was highest across cohorts.
Indeed, holding ascertainment variability constant resulted in
the same level of bias for different population SNP-based
heritability estimates, cohort sample sizes, population preva-
lence, and levels of unaccounted for population stratification
(Table S1 in Supplement 2). For simulations using GWAS
summary statistics within a relatively narrow range of condi-
tions and those directly simulating ascertainment variability
across a wider range of conditions, the downward bias was as
much as approximately 20% and approximately 50%,
respectively (Table 1; Figure S1 in Supplement 1). Second,
both the field standard and our proposed approaches produce
the same estimates when ascertainment is equivalent across
all cohorts (Figure 1B, L). Importantly, the standard procedure
of using total sample prevalence (vTotal) is not biased as a
function of the overall degree of ascertainment. Rather, the
bias is attributable to the level of ascertainment variability
across cohorts. Third, our proposed procedure of usingP

EffNk removes this bias, producing accurate estimates of
the population-level, liability-scale heritability (Table 1 and
Figure 1) across a range of population generating conditions
(Table S1 in Supplement 2). Having established that using
Table 2. LDSC Heritability Estimates Using Total or Cohort-Spe

Trait Reference
Population
Prevalence Cases

ADHD Demontis et al., 2019 (12) 5.0% 19,099

ALCH Walters et al., 2018 (13) 15.9% 10,206

ALZ Kunkle et al., 2019 (14) 4.3% 21,982

AN Watson et al., 2019 (15) 0.9% 16,992

ASD Grove et al., 2019 (16) 1.2% 18,381

BIP Mullins et al., 2021 (17) 2.0% 41,917

CUD Johnson et al., 2020 (18) 1.0% 14,080

MDD Wray et al., 2018 (19) 15.0% 59,851

OCD Arnold et al., 2018 (20) 2.5% 2688

PTSD Nievergelt et al., 2019 (21) 30.0% 23,212

SCZ Trubetskoy et al., 2022 (22) 1.0% 53,386

TS Yu et al., 2019 (23) 0.8% 4819

The field standard approach column report liability-scale heritability re
correction. The proposed approach column reports results when using
heritability estimates were calculated using the SNP-specific total samp
Supplement 2 reports the original heritability estimates from the correspon
the SNP-specific or total sample sizes for reference. Population prevale
publication for that trait for comparability purposes. % Bias was calculate
total over cohort-specific ascertainment to perform the liability correction;
will not exactly match the numbers obtained from using the liability h2 rep
data that are strictly publicly available (e.g., 23andMe data are not included

ADHD, attention-deficit/hyperactivity disorder; ALCH, alcohol use diso
spectrum disorder; BIP, bipolar disorder; CUD, cannabis use disorder; h2,
score regression; MDD, major depressive disorder; OCD, obsessive-
schizophrenia; SNP, single nucleotide polymorphism; TS, Tourette syndrom
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P
EffNk produces an accurate estimate of h2l , we went on to

examine the difference across using vTotal and
P

EffNk in real
data.

We compared the field standard procedure of using vTotal
versus our proposed approach of using

P
EffNk for 12 major,

binary traits for which sufficient cohort-level information was
available: We used the same population prevalences from the
original GWAS publications from which the summary statistics
were derived. We quantified bias here as the proportional dif-
ference across

P
EffNk and vTotal (i.e.,

h2l Estimate for vTotal
h2l estimate for

P
EffNk

2 1).

Consistent with simulation findings, real data results revealed
that in all cases using vTotal produced a deflated estimate of
liability-scale heritability relative to

P
EffNk . This bias ranged

from as little as 1.3% for autism spectrum disorder to as much
as 28.1% for alcohol use disorder and 31.8% for bipolar dis-
order (17) (Table 2). In all but one instance, the heritability es-
timates reported in the corresponding manuscripts most
closely matched those produced from using vTotal (Table S2 in
Supplement 2). The exception was the most recent release
(Freeze 3) of the Psychiatric Genomics Consortium bipolar
summary statistics (17), which reports a liability-scale herita-
bility consistent with using

P
EffNk:

DISCUSSION

SNP-based heritability is a fundamental quantity in complex
trait genetics. As such, SNP-based heritability estimates from
GWAS summary statistics are standard results to report in any
major GWAS meta-analysis effort. For binary traits, such as
cific Ascertainment

Controls

Field Standard
Approach

(vTotal): h
2 (SE)

Proposed
Approach

(
P

EffNÞ: h2 (SE) % Bias

34,194 22.1% (1.4) 23.7% (1.6) 26.7%

28,480 10.0% (1.8) 13.9% (2.5) 228.1%

41,944 5.8% (0.9) 7.0% (1.1) 220.7%

55,525 13.8% (0.9) 15.5% (1.0) 210.8%

27,969 11.7% (1.0) 11.9% (1.0) 21.3%

371,549 12.8% (0.5) 18.7% (0.8) 231.8%

343,726 6.7% (0.6) 7.5% (0.7) 211.5%

113,154 10.2% (0.6) 11.5% (0.7) 211.8%

7037 28.5% (4.4) 29.9% (4.6) 24.7%

151,447 5.3% (0.9) 6.1% (1.1) 212.9%

77,258 20.7% (0.7) 22.3% (0.8) 26.9%

9488 21.5% (2.5) 22.4% (2.6) 24.0%

sults when using vTotal and the total sample size for ascertainmentP
EffN and v = 0.5 for ascertainment correction. Liability-scale

le sizes, or the SNP-specific
P

EffN, when possible. Table S1 in
ding publication along with heritability estimates calculated using both
nce was chosen based on the prevalence reported in the original
d as the proportional attenuation in heritability estimates when using
this was calculated using the direct output from LDSC and therefore
orted in the table owing to rounding. Results are reported for GWAS
for MDD or ADHD).
rder; ALZ, Alzheimer’s disease; AN, anorexia nervosa; ASD, autism
LDSC liability-scale heritability estimate; LDSC, linkage disequilibrium
compulsive disorder; PTSD, posttraumatic stress disorder; SCZ,
e.
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case-control disease traits, SNP-based heritability estimates
must be converted to the liability scale to be meaningfully
interpreted. We demonstrate here that the field standard
approach for estimating liability-scale heritability from meta-
analytic GWAS summary data can downwardly bias liability-
scale heritability estimates by as much as approximately
50% in simulations and approximately 30% in real data. We
have therefore proposed a simple procedure for obtaining
unbiased estimates of liability-scale SNP-based heritability in
these contexts.

Downwardly biased estimates of SNP-based heritability will
propagate to produce downwardly biased estimates of genetic
covariance, which may in turn bias methods that rely on these
estimates [e.g., MTAG (6), GenomicSEM (5)]. Importantly, ge-
netic correlations are expected to be unaffected by this bias
because they standardize genetic covariance estimates rela-
tive to heritability estimates, thereby canceling out the bias.
Another issue that merits further investigation is the presence
of ascertainment differences that stratify by meaningful cova-
riates across cohorts. For example, it is currently unknown how
estimates may be biased when ascertainment varies across
GWAS cohorts more for one sex than the other. In addition, it
will be important to examine the effect of ascertainment dif-
ferences when cohorts systematically vary with respect to the
severity of cases, as may be observed for meta-analyses of
inpatient and community samples.

Genomic-relatedness matrix restricted maximum likelihood
(2,24) is a major alternative to LDSC that estimates heritability
using raw genotypes among unrelated individuals. While LDSC
has the advantage of requiring only summary-level data, and is
thus especially applicable to GWAS meta-analysis results,
genomic-relatedness matrix restricted maximum likelihood is
often considered preferable when raw data are available
(25,26) because it is typically found to produce larger SNP-
based heritability estimates than those obtained from LDSC
(27). One potential explanation for this discrepancy includes
the possibility that, because LDSC is typically applied to meta-
analytic GWAS data, it will only detect the portion of heritable
signal that is consistent across contributing GWAS datasets. A
second potential explanation for this discrepancy is that LDSC
may produce attenuated heritability estimates because of
discrepancies between LD structure in the reference data used
to construct the LD scores and the samples from which the
GWAS estimates were derived. In addition to these issues, the
present findings highlight another, easily correctable, source of
discrepancy across LDSC and genomic-relatedness matrix
restricted maximum likelihood for binary traits.

In summary, the field standard approach to estimating SNP-
based h2 for GWAS meta-analysis of binary traits results in a
downward bias because it fails to account for variation in
the proportion of cases (i.e., variable levels of ascertainment)
across contributing cohorts. Our proposed solution of usingP

EffNk corrects for this bias and is applied at the stage of
SNP-based h2 estimation such that it does not require
rerunning the GWAS meta-analysis. For most psychiatric
traits,

P
EffNk is already available in the GWAS summary

statistics or can be straightforwardly computed from infor-
mation provided in the original publication reporting the
GWAS meta-analysis. In addition, we have shown that whenP

EffNk cannot be obtained, it can be straightforwardly
Biologica
approximated from the GWAS summary data. Thus, the use
of
P

EffNk can be widely applied for the liability correction
going forward so as to produce more accurate estimates of
SNP-based heritability.
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