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Abstract
Behavior genetic findings figure in debates ranging from urgent public policy matters to perennial questions about the 
nature of human agency. Despite a common set of methodological tools, behavior genetic studies approach scientific ques-
tions with potentially divergent goals. Some studies may be interested in identifying a complete model of how individual 
differences come to be (e.g., identifying causal pathways among genotypes, environments, and phenotypes across develop-
ment). Other studies place primary importance on developing models with predictive utility, in which case understanding 
of underlying causal processes is not necessarily required. Although certainly not mutually exclusive, these two goals often 
represent tradeoffs in terms of costs and benefits associated with various methodological approaches. In particular, given 
that most empirical behavior genetic research assumes that variance can be neatly decomposed into independent genetic and 
environmental components, violations of model assumptions have different consequences for interpretation, depending on 
the particular goals. Developmental behavior genetic theories postulate complex transactions between genetic variation and 
environmental experiences over time, meaning assumptions are routinely violated. Here, we consider two primary questions: 
(1) How might the simultaneous operation of several mechanisms of gene–environment (GE)-interplay affect behavioral 
genetic model estimates? (2) At what level of GE-interplay does the ‘gloomy prospect’ of unsystematic and non-replicable 
genetic associations with a phenotype become an unavoidable certainty?
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Introduction

All behavior genetic models operate under the assumption 
that genetic and environmental processes combine to give 
rise to psychological phenotypes. The most detailed theoreti-
cal models posit multifaceted, dynamic developmental pro-
cesses whereby genetic variation comes to be correlated with 
and statistically dependent on experience (Beam et al. 2015; 
Bronfenbrenner and; Ceci 1994; Dickens and Flynn 2001; 

Johnson 2007; Kandler and Zapko-Willmes 2017; Plomin 
et al. 1977; Scarr and McCartney 1983; Tucker-Drob 2017; 
Tucker-Drob et al. 2013). However, most empirical studies 
in behavior genetics use simple model specifications accord-
ing to which genetic and environmental influences combine 
by addition. For some purposes, simple models are entirely 
appropriate. But for others, simple models may be mislead-
ing. Therefore, it is important to consider the research goals 
being pursued when interpreting behavior genetic results. 
We focus on two potential research goals: explanation and 
prediction.1 Increases in predictive accuracy do not always 

 * Daniel A. Briley 
 dabriley@illinois.edu

1 Department of Psychology, University of Illinois at Urbana-
Champaign, 603 East Daniel Street, Champaign, IL 61820, 
USA

2 Department of Philosophy, University of Illinois 
at Urbana-Champaign, Champaign, IL, USA

3 Department of Psychology and Population Research Center, 
University of Texas at Austin, Austin, TX, USA

1 Other aims that have been claimed as constitutive of scientific 
inquiry include having true answers to our questions (Kelly and Gly-
mour 2004), obtaining knowledge (Nagel 1967), advancing empiri-
cally adequate theories (van Fraassen 1980, 1986), having under-
standing (de Regt 2015), and gaining the ability to control nature 
(Keller 1985). We invite the reader to think about how what we say in 
this paper matters with respect to these other aims as well, though we 
will not discuss them explicitly.
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imply increases in explanatory power. For example, simple 
model specifications aggregate over the potential presence 
of complex underlying processes into relatively few param-
eters. In some circumstances, prediction could be maximized 
via simplifying assumptions, but explanation of the under-
lying processes may not be enhanced (or vice versa). Here, 
we outline seven theoretically and empirically pervasive 
developmental processes that should be considered when 
interpreting behavior genetic model results, regardless of 
whether such processes are formally modeled within any 
given investigation (see Table 1 for summary).

To make some progress on these issues, we begin by 
describing how research goals aimed at prediction compared 
to explanation differ. Next, we describe seven developmen-
tal processes necessary to keep in mind when interpreting 
behavior genetic results. The first six processes are rela-
tively easy to understand, but the final process, simultane-
ous gene–environment interplay (GE-interplay), is quite 
difficult. We then consider how multiple developmental pro-
cesses could generate the empirical data observed in behav-
ior genetic studies, including the possibility of the “gloomy 
prospect,” wherein the influences on human behavior are 
so incredibly idiosyncratic as to preclude the possibility 
of identifying a generalizable model (Plomin and Daniels 
1987). Prospects of gloominess may be phenotype specific, 
implying that boundaries on gloominess could be established 
by a more complete accounting of the magnitude, timing, 
and interdependencies among developmental mechanisms 
guiding phenotype growth.

Identifying research goals

When specifying models or interpreting parameter estimates, 
researchers should first consider their goals. Although there 
are many potential goals, herein we focus on two broad cat-
egories which cover most current behavior genetic research: 
explanation and prediction. If one is primarily interested in 
understanding the causal processes that explain observed 
patterns of individual differences and their development, 
then the specified model would need to include the causal 
processes relevant for a phenotype. To the extent that GE-
interplay is relevant to the development of a phenotype, it 
would be desirable to include these processes in a model. 
If, however, one is primarily interested in obtaining a useful 
model for predicting a phenotype, then the specified model 
may need not represent any causal processes. These pro-
cesses would only need to be included to the extent that they 
would obscure prediction.

When interpretation of models conflates the goals of 
explanation and prediction—and especially when improve-
ments in predictive accuracy are seen as improvements 
in explanatory power—misinterpretation may be likely. 

For example, accuracy of predicting neuroticism could be 
enhanced by including a biological variable reflecting sex 
(for example, presence or absence of a Y chromosome) in 
a regression equation; yet, the fact that sex is a statistically 
significant predictor does not explain individual differences 
with respect to neuroticism. Although sex differences in neu-
roticism are cross-culturally consistent (Schmitt et al. 2008), 
the fact that sex is associated with neuroticism does not tell 
us whether that association results from biological processes 
that stem directly from the measured genetic difference (e.g. 
sexual differentiation, and associated hormones, which stem 
from the presence or absence of the SRY gene), or from per-
sistent cultural processes that are confounded with the same 
measured genetic difference (e.g. the historical power dif-
ferential between the sexes, including assumed gender roles 
in society).

Similarly, it would be a mistake to infer from the fact 
that the R2 for one polygenic risk score is greater than the 
R2 for another that the first risk score is more informative 
about the data-generating mechanism. Bluntly, it would be 
a mistake to think that when the R2 value goes up, we have 
better understanding of how the world works, when in fact, 
we only have a more accurate prediction. Our point here is 
not to disparage prediction. Predictive accuracy is a worth-
while goal, but we should not confuse it with explanatory 
power. As we will discuss, the possibility of GE-interplay 
may alter the number of parameters that plausibly should be 
included in a model or at least considered as to the impact on 
estimated parameters. Moreover, our ability to explain our 
data and to understand how the world works on the basis of 
models that do not include GE-interplay parameters will be 
limited to the extent that GE-interplay influences develop-
ment, even if such models are very useful for prediction. 
For example, Lee et al. (2018, p. 1116) reminded readers 
that “it is inappropriate to interpret the polygenic score for 
educational attainment as a measure of genetic endowment” 
due to evidence of GE-interplay. The polygenic risk score is 
a useful aggregate of information, but it does not explain or 
identify “genetic endowment.”

Likewise, the classical twin design specifies the A 
parameter. Falconer’s formula (1960) approximates2 the 
mathematical definition of A in a classical twin design: 
2 × (rMZ − rDZ), or in other words, twice the difference 
in similarity between monozygotic and dizygotic twins. 
The A parameter is often described as representing addi-
tive genetic effects because additive genetic effects would 
lead monozygotic twins to be more phenotypically similar 
than dizygotic twins. The description of the A parameter is 

2 Modern behavior genetic models typically rely on structural equa-
tion modeling approaches, rather than simple multiplication and sub-
traction.
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Table 1  Seven developmental behavior genetic processes and implications for standard models

Process Contributes to… Evidence for process Notes

(1) Phenotype growth Means and variance Mõttus et al. (2017) Beyond controls for age, trajectories of 
means and variances are typically not 
considered in standard quantitative or 
molecular genetic approaches. For many 
phenotypes, however, age-trends are 
common. Means and variances may dif-
fer across cohorts or samples

(2) Independent genetic and envi-
ronmental effects

ACE Polderman et al. (2015) and Turkheimer 
and Waldron (2000)

This is a typical assumption in both clas-
sical quantitative genetic and molecular 
genetic approaches. In standard quantita-
tive genetic designs, variation is decom-
posed into uncorrelated genetic, shared 
environmental, and nonshared environ-
mental (typically including measurement 
error) variance components. In molecu-
lar genetic designs, genetic effects can 
be represented as SNP-effect sizes or 
as polygenic prediction, among other 
estimates, and the residual variance 
reflects a combination of unexplained 
genetic effects, estimation error (of the 
polygenic scores), measurement error, 
and environmental effects

(3) Non-random mating A D’Onofrio et al. (1999) and Yengo et al. 
(2018)

To the extent that partners positively 
assort, standard estimates of heritability 
in quantitative genetic studies may be 
downwardly biased. Positive assort-
ment is more commonly reported than 
negative assortment. Negative assort-
ment may produce upwardly biased 
estimates of heritability. Both types can 
limit generalizability of SNP asso-
ciations. Extended family designs (e.g. 
Keller et al. 2010) may mitigate these 
biases, but themselves add on additional 
assumptions, such as continuity of 
genetic risk across age and cohorts

(4) Individual development (In)stability of ACE Harden et al. (2015) and Fraley et al. 
(2013)

Because developmental changes may 
occur as outcomes of individually-
varying experiential or biological events 
that themselves vary to differing extents 
over time, genetic and environmental 
variance components may be stable or 
changing across time. When contexts are 
longstanding, or experiences recur, other 
processes (e.g. G × E) could accumulate 
across the lifespan (e.g., increasing 
estimates of heritability with age)
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useful—it accurately describes a likely causal model that 
would lead monozygotic twins to be more similar than dizy-
gotic twins. Yet, the description is not complete. As Pur-
cell (2002) detailed, GE-interplay affects the A parameter. 
Therefore, the A parameter could be described as something 
much more general: any sort of causal process—not just an 
additive genetic one—that would lead monozygotic twins to 
be more phenotypically similar to each other than dizygotic 
twins are to each other.

Such distinctions may be more or less relevant for predic-
tion compared to explanation. As an illustrative example, 
consider measures of personality, which are associated with 
academic achievement primarily through a genetic path-
way (Krapohl et al. 2014; Tucker-Drob et al. 2016). How 
might GE-interplay need to be represented in this result? 
From a prediction perspective, the question may be irrel-
evant. Assuming a consistent environment in which the 
results of these studies hold and genetic markers of relevant 

A genetic effects, including SNP effect sizes, C shared environmental effects, E nonshared environmental effects

Table 1  (continued)

Process Contributes to… Evidence for process Notes

(5) rGE A or C Kendler & Baker 2007
Krapohl & Plomin 2016

If genotypes are positively correlated with 
individually-varying environmental 
factors, initial genetically-influenced 
phenotypic differences may be magni-
fied over time. Standard quantitative and 
molecular genetic models may attribute 
this source of variance to genetic factors. 
This pattern may result from active or 
evocative rGE (Plomin et al. 1977; Scarr 
and McCartney 1983). Passive rGE, 
whereby the environment magnifies 
phenotypic differences, may contribute 
to shared environmental variance in a 
quantitative design, but may contribute 
to the SNP effect size in a molecular 
genetic design. Environments that do not 
magnify initial phenotypic differences 
may lead to different implications. For 
example, compensatory processes (e.g., 
therapy) may reduce genetic effects in 
both standard quantitative and molecular 
genetic studies

(6) Gene × environment interaction A or E Tucker-Drob and Bates (2016) In standard quantitative genetic designs, 
unmodeled interactions with the shared 
environment tend to produce genetic 
variance and interactions with the 
nonshared environment tend to produce 
nonshared environmental variance. In 
standard molecular genetic designs, 
interactions may alter SNP effect 
size estimates. The specific impact of 
unmodeled G × E on both quantitative 
and molecular standard models that do 
not estimate these effects is dependent 
on the form of the interaction and the 
distribution of the environmental vari-
able in the sample

(7) Simultaneous GE-interplay Dependent Limited Due to the complexity of identifying each 
of these processes simultaneously, there 
is limited understanding of how each 
process may function in the context 
of the others. The solution is likely 
dependent on the magnitudes of the 
other processes and their timing across 
the lifespan
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personality characteristics are available, early prediction of 
achievement would be possible.

However, if the goal is to explain our observations or 
to understand the way the world works, representing GE-
interplay will often be important. For example, there may 
be small genetically influenced differences in personality 
which are detectable by parents, teachers, and peers, who 
in turn reinforce the personality characteristics in achieve-
ment-relevant ways. Teachers may be particularly attentive 
to children who sit still and pay attention, and therefore exac-
erbate potentially small early differences. Understanding the 
process requires recognizing that the environment may have 
played a larger role across development compared to genetic 
factors. It just so happens that genetic factors are correlated 
with environmental reinforcement.

In order to make predictions, however, we simply need to 
know the patterns of association. Presumably genetic mark-
ers possess beneficial qualities for prediction, such as being 
measurable early in the lifespan and being relatively simple 
(i.e., not requiring multiple measures of possible sources of 
environmental reinforcement unfolding across the lifespan). 
Yet, more can be gained by merging across these goals. For 
example, gaining control over the process would likely ben-
efit from identifying a set of predictive markers, but also 
understanding the detailed causal mechanisms. Control does 
not need to focus on the genetic variant; a biological or phar-
maceutical intervention may not be desired for numerous 
reasons. Instead, understanding the causal pathway points 
towards several intervention points, such as teacher–student 
interactions.

Disentangling multiple GE‑interplay 
processes across development

One of the most complex empirical approaches to GE-inter-
play simultaneously estimates active or evocative gene–envi-
ronment correlation (rGE) and quantitative Gene × Environ-
ment interaction (G × E) at a single point in time (van der 
Sluis et al. 2012).3 An environment and a phenotype are 
measured once per family member. Heritability of the envi-
ronment reflects rGE, and G × E is estimated by calculating 
the heritability of the phenotype at different levels of the 
environment. Although such studies represent substantial 
progress beyond conventional biometric variance decom-
position approaches, they nevertheless represent static snap-
shots of developmental processes.

Developmental models are underdetermined relative 
to the data collected in behavior genetic studies (Earman 
1993; Glymour 1970; Hausman et al. 2014; Norton 2008; 
Stanford 2001, 2006). In order to find useful models of phe-
notype development, the data must be able to identify each 
of the relevant parameters, some of which may dynamically 
change across the lifespan. Of course, practical limitations 
(e.g., economic resources, not to mention participant fatigue) 
impede our ability to conduct intensive studies to estimate 
each developmental parameter central to models of GE-
interplay. Yet, the typical interpretation of empirical models 
of GE-interplay is premised on the idea that psychological 
outcomes emerge through slow, accumulating, developmen-
tal processes.

For example, Beam et  al. (2015) hypothesized that 
small differences in early phenotypes between siblings will 
increasingly drift apart across development due to environ-
mental reinforcement. If one sibling happens to have slightly 
higher cognitive abilities than the co-sibling, the difference 
between the siblings might be exacerbated by phenotype-
matching behavior by teachers, peers, parents, and econom-
ics (i.e., job demands). The sibling differences typically 
observed in behavior genetic studies of adolescents or adults 
may not have always been present earlier in development, 
and the magnitude of the difference also may not be static 
across subsequent development. To make matters even more 
difficult, both rGE and G × E may take place simultaneously, 
and the effect of such interplay may wax and wane across 
the lifespan.

Theories of GE-interplay are highly complex and 
dynamic, making it nearly impossible, absent prohibitively 
intensive multivariate longitudinal data, to empirically deter-
mine what combinations of processes are responsible for 
observed phenotypic variation from among the universe of 
potential models. It may be the case that twin models are 
perfectly specified, and the only influences that matter for 
the development of phenotypes are additive and uncorre-
lated genetic, shared environmental, and nonshared envi-
ronmental influences. If development works in this manner, 
then the interpretation of behavior genetic models would be 
much easier. To the extent that these sources of variance are 
correlated and non-additive, then the latent variance com-
ponents and molecular genetic associations are potentially 
representative of these developmental processes (Purcell 
2002). If development works in this manner, then the work 
of behavior geneticists requires thoughtful consideration of 
multiple plausible mechanisms that could lead genetically 
related individuals to resemble one another phenotypically. 
We describe seven processes that are relevant when inter-
preting behavior genetic results.

3 In this manuscript, we focus on quantitative G × E, meaning the 
effect sizes of genes and environments are interdependent, rather than 
qualitative G × E, meaning different genes may operate across groups.
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Phenotypic mean and variance shifts

Non-genetically informative studies indicate that phenotype 
means and variance shift across development, typically in 
tandem. Based on CDC growth charts (Kuczmarski et al. 
2002), variance in human height increases by roughly 1200% 
from birth to adulthood which is also the time over which 
the mean increases. Mean levels of many psychological 
dimensions also change across development, such as cogni-
tive ability (Tucker-Drob 2009), personality (Roberts et al. 
2006), sensation seeking and delinquency (Harden et al. 
2011), and internalizing disorders (Hankin et al. 2009). 
Concomitant with these mean-level changes, variance also 
increases for academic achievement (NWEA 2015), person-
ality (Mõttus et al. in press, 2017), and psychopathology 
(Caspi et al. 2014).4 Of course, mean-levels and variance do 
not increase continuously or uniformly across the lifespan 
(e.g., Mõttus et al. 2016; Tucker-Drob 2011). Individuals 
tend to grow and mature across childhood and adolescence, 
followed largely by stability of means and individual differ-
ences in adulthood and possible declines in old age. There 
may be some limit on development, at least relative to the 
prevailing environmental conditions.

Behavior genetic models are rarely interpreted with these 
sorts of lifespan trends in mind. When evaluating the her-
itability of a phenotype in adulthood, it may be useful to 
consider the processes that could lead both to mean-level 
changes in the population and also to increases in variance 
of the phenotype. For instance, individuals could all grow 
in the same direction, but at different rates. Or, fan-shaped 
longitudinal patterns may emerge when some individuals 
decrease, while more individuals increase or increase to 
a greater extent. Just as phenotypic variance estimates for 
a phenotype reflect intermediate states that have resulted 
from an ongoing developmental process, behavior genetic 
variance components reflect a developmental process. The 
common practice to standardize phenotypes at each wave 
(e.g., as Z-scores) or treat age as a simple covariate masks 
this rich information.

Independent genetic and environmental effects

Genetic and environmental differences may influence pheno-
types in an additive and independent manner. By “independ-
ent,” we mean the effects are not tied to GE-interplay and 
instead have relatively direct influences on the phenotype. 

This definition is admittedly murky as all growth requires 
both genetic and environmental factors to be present. Even 
so, we can imagine some allele that increases height by 
some constant amount in all individuals with the allele, in 
every environment that we observe in the real world. Simi-
larly, there may be environmental experiences (e.g., getting 
struck by lightning or bitten by a radioactive spider) that 
have a constant impact on development for all individuals 
that experience it, and individuals do not select or evoke 
the environment on the basis of their characteristics. How 
many genetic and environmental effects are of this variety, 
compared to effects that are partially dependent on GE-inter-
play? Unfortunately, even though this question is a critically 
important one in behavior genetics and goes back to the ear-
liest debates in the field (e.g., R. A. Fisher and L. T. Hogben, 
see Tabery 2014), the answer remains unknown.

Despite this gap in knowledge, several things can be said 
concerning the structure of genetic and environmental influ-
ences. Twin and family studies provide estimates of herita-
bility and environmentality for a wide variety of phenotypes 
(Polderman et al. 2015). Heritability is nontrivial for essen-
tially all phenotypes, and estimates are also not particularly 
close to 0 or 100% for most common human individual dif-
ferences. Turning to molecular genetic information, between 
1 and 15% of common genetic variants may play a causal 
role in height, cognitive ability, and personality, indicating 
substantial pleiotropy (Zeng et al. 2018). The magnitude of 
these statistical associations is known to be incredibly small 
(Chabris et al. 2015). The results of genome-wide associa-
tion studies (GWASs) remain correlational in nature. The 
results are unable to satisfy our definition of “independent” 
given above. Quite the contrary, it is well-established that 
polygenic scores derived from GWAS are at least partly cor-
related with environmental processes (e.g., Koellinger and 
Harden 2018). On the environmental side, a comprehensive 
scan of the relevant environments has not been conducted, 
although it is likely that many relevant environments exist 
with small effect sizes (Turkheimer and Waldron 2000).

Non‑random mating

Assortative mating refers to the observation that individu-
als do not produce offspring with partners having random 
characteristics. Rather, individuals tend to mate with others 
that share similar characteristics (e.g., D’Onofrio et al. 1999; 
Eaves et al. 1999). Assortative mating may occur due to indi-
viduals actively selecting a particular trait in a partner (e.g., 
educational attainment), selecting partners on the basis of a 
phenotype correlated with some other trait (e.g., selecting 
on educational attainment also selects on cognitive ability), 
or selecting partners based on social categories related to 
access (e.g., being willing to partner with individuals who 
differ from one’s educational attainment, but being exposed 

4 Caspi et  al. (2014) report longitudinal data on the psychometric 
structure of psychopathology across ages 18–38 years with approxi-
mately five waves for 11 disorders. Supplemental Table  1 reports 
means and standard deviations for each wave. When mean levels of 
psychopathology increase from one wave to the next, variance in psy-
chopathology also increases (r = 0.78).
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to individuals with similar educational attainment, termed 
social homogamy, which may occur in the presence of 
other selection processes, e.g., McGue et al. 1989). Partner 
similarity may also be observed due to partners influencing 
each other’s behavior (e.g., sharing a partner’s enthusiasm 
for education may motivate an individual to pursue further 
schooling).

Molecular genetic data has made it easier to distinguish 
among these possibilities. For example, at the phenotypic 
level assortative mating for educational attainment is mod-
erate in size (r ~ 0.4), and partly due to genetic assortment 
(Domingue et al. 2014; Hugh-Jones et al. 2016). Results 
for other phenotypes are similar (Conley et al. 2016). One 
limitation of these studies is that they typically rely on poly-
genic scores, which are themselves estimated with consider-
able error. This error limits the precision of the estimate of 
genetic assortment and tends to push the estimates toward 
zero. Yengo et al. (2018) developed a technique to infer 
assortative mating from patterns found in the genome. They 
found significant assortative mating based on genotype for 
educational attainment and height, but not for 30 other phe-
notypes (potentially due to limited sample size of the under-
lying GWAS). The estimates from this approach matched 
those found when comparing genomes of actual couples.

The implications of these types of assortment differ for 
behavior genetic parameters. If positive assortment (i.e., 
partners have similar characteristics) occurs on the basis of 
genetically influenced factors, then partners will be more 
genetically similar than two random members of the popula-
tion. Therefore, the expectation that the genetic correlation 
between dizygotic twins will be on average 0.5 is incorrect; 
the average will be shifted upwards, resulting in an under-
estimate of heritability. If negative assortment (i.e., partners 
have dissimilar characteristics) occurs, then the expectation 
would be reversed. However, across a wide array of pheno-
types, positive assortment is more common (D’Onofrio et al. 
1999; Eaves et al. 1999). Extensions of the classical twin 
design, such as extended family designs (Keller et al. 2010), 
can be used to estimate assortative mating, but these designs 
carry their own assumptions concerning the consistency 
of genetic effects across cohorts and ages. For molecular 
genetic studies, assortative mating could hinder confirma-
tion of SNP associations. Specifically, tests of within-family 
associations will be less powerful to the extent that assorta-
tive mating exists in the population. Evidence of assortative 
mating from molecular genetic data has been documented 
for educational attainment, where estimates of within-fam-
ily effects are systematically smaller than between-family 
effects (Lee et al. 2018), and sibling polygenic risk scores 
for educational attainment are more similar than would 
be expected by chance (sibling PRS r ~ 0.55, Belsky et al. 
2018). Results found in a population with assortative mating 

will also be less likely to transfer to a population were assor-
tative mating does not take place.

Individual developmental trajectories

Over the lifespan, effects may persist from birth (e.g., cesar-
ean sections and immune function; Cho and Norman 2013) 
or activate in response to some transition (e.g., puberty and 
genetic effects on rule-breaking; Harden et al. 2015). Effects 
may fade in importance (e.g., divorce and well-being; Lucas 
2007) or sustain their importance (e.g., parental support 
and social competence; Fraley et al. 2013). Effects may 
be static (i.e., stable across development), innovative (i.e., 
come “online” later in development) or decay (i.e., decrease 
in importance as time passes). Further, it is unlikely that 
phenotypic growth can continue constantly in any direc-
tion (Waddington 1942). Put differently, there may be some 
sort of reaction range in which a phenotype may change 
within an individual, but the range is somewhat limited (Tur-
kheimer and Gottesman 1991).

Longitudinal behavior genetic studies have identified 
lifespan trends in estimates that coincide with phenotype 
growth. For example, personality and cognitive ability 
increase in test–retest stability, heritability, and genetic and 
environmental stability with age (Briley and Tucker-Drob 
2014; Kandler and Papendick 2017; Tucker-Drob and Bri-
ley 2014). The specifics of these trends differ substantially, 
however, potentially pointing toward contrasting develop-
mental processes (Briley and Tucker-Drob 2017). Nearly the 
entire increase in test–retest stability of cognitive ability is 
driven by increasingly stable genetic influences. In contrast, 
nearly the entire increase in test–retest stability of personal-
ity is driven by increasingly stable environmental influences. 
Translating these aggregate trends into actual causal effects, 
such as those outlined at the beginning of this section, 
requires causal reasoning that is more detailed in terms of 
mechanism and developmental specificity (i.e., how, when, 
and where effects occur) than abstract proportions of latent 
variance (see Tucker-Drob and Briley in press).

Similarly, Haworth et al. (2010) demonstrated that the 
heritability of cognitive ability increases relatively linearly 
across childhood and adolescence, which is one of the most 
well-replicated results in behavior genetics (Plomin et al. 
2016). However, there are many potential interpretations of 
this finding. New genetic influences may turn on and explain 
new variance, either in response to some sort of intrinsic 
maturational process or in response to a novel environment 
(e.g., novel genetically influenced characteristics guide 
development after entry into school compared to prior). 
Alternatively, perhaps environmental influences decay and 
no longer impact cognition. Examining unstandardized shifts 
in variance components might help in this context.
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GE-interplay could also result in increasing heritability 
for cognitive ability. We consider two plausible possibilities 
next.

Gene–Environment correlation

Following Plomin et al. (1977), we distinguish between 
passive rGE (parents pass on correlated genes and environ-
ments to their children), evocative rGE (individuals evoke a 
response from the environment based on genetically influ-
enced characteristics), and active rGE (individuals select 
or create environments based on genetically influenced 
characteristics). Empirical evidence suggests that rGE is 
ubiquitous. Kendler and Baker (2007) estimated moderate 
heritabilities for a wide range of environmental factors, such 
as stressful life events, social support, peer relationships, and 
marital quality. Similarly, parenting behaviors are heritable, 
not only on the part of the parent, but also in response to 
genetically influenced characteristics of the child (Klahr and 
Burt 2014; Briley et al. 2014). These results from quantita-
tive genetic studies are consistent with active or evocative 
rGE. Children may possess genetically influenced char-
acteristics which their parents notice and respond to, or 
children may possess genetically influenced characteristics 
which lead to active influence on the parent. Passive rGE is 
somewhat easier to document with molecular genetic data. 
For example, Krapohl and Plomin (2016) found an associa-
tion between family socioeconomic status and a polygenic 
score for educational attainment estimated for the child, 
both of which were also associated with actual academic 
achievement. Thus, parents provided an environment cor-
related with genetic material, and each of these factors are 
likely influential for child development (see also Krapohl 
et al. 2017). Passive rGE, in addition to assortative mating, 
may explain why within-family associations with molecular 
genetic data are weaker than between-family associations 
(Lee et al. 2018).

Strong theoretical models point to rGE as a central driver 
of development through the mechanism of selection into 
environments that match one’s characteristics (e.g., Beam 
and Turkheimer 2013; Scarr and McCartney 1983). For 
example, rGE may be a likely candidate for the increases 
in heritability across age. Teachers might observe aspects 
of their students related to the ability to pick up material 
quickly and provide tailored instruction. Although this might 
be good pedagogical practice, a side effect is that initial dif-
ferences may become magnified. Similarly, students may 
actively choose their educational experiences, whether that 
is paying attention in class, completing homework assign-
ments, or studying for exams. Each of these behaviors likely 
has some sort of causal influence on learning. Again, the ini-
tial preferences for engaging in these behaviors might mag-
nify differences across development, increasing estimates 

of heritability. In particular, the increase in heritability 
is driven by earlier genetic influences exerting a stronger 
impact on later cognitive ability (Briley and Tucker-Drob 
2013). Importantly, these sorts of explanations for increas-
ing heritability assume that the environment has a causal 
effect. If it did not, then a correlation between genes and 
environments would be found, but would not affect pheno-
type development.

In addition to rGE leading to the enhancement of one’s 
characteristics, it is also possible for genetic variants and 
environments to act in opposite directions. For example, 
some individuals may possess genetic variants that increase 
levels of neuroticism, which is a risk factor for depression 
and anxiety disorders (Cuijpers et al. 2010). Individuals with 
relatively high levels of neuroticism may be more likely 
to seek psychotherapy, an environmental experience that 
appears effective at reducing levels of neuroticism (Roberts 
et al. 2017). This sort of rGE would not lead to increasing 
heritability estimates. Instead, the environmental experience 
may limit variance by moving extreme phenotypes toward 
the average. In some circumstances (i.e., if the intervention 
only acts on genetic sources of variance), heritability could 
be reduced. It is also plausible that the intervention is effec-
tive at the level of the phenotype, and therefore aggregate 
variance may be reduced without altering the genetic and 
environmental composition.

Gene × Environment interaction

Theoretical arguments in favor of the pervasive presence 
of G × E interaction are popular (Manuck and McCaffery 
2014), although they are hindered by one limitation: there 
currently exists no single, confirmed, accepted-by-the-
broader-scientific-community example of such an effect 
at the molecular level on any common human individual 
difference. The frequently used example, phenylketonuria, 
is relevant to only a tiny fraction of the population with a 
Mendelian genetic disorder. One major limitation in this 
area is that the expected magnitude of G × E effect sizes 
remains unknown, with nearly all studies likely having very 
low power to detect the effects. Identification of main effects 
via GWAS exploded after the first few successful studies 
allowed researchers to understand the likely magnitude of 
the effect sizes.

Evidence of G × E effects from twin and family studies 
(outside of developmental impacts on heritability) is limited, 
with few published attempts at direct replication (see Plomin 
et al. 2016, p. 4). It is challenging to know whether this is 
due to a preponderance of negative results, which are gener-
ally less likely to be published, or due to natural variation 
in areas of interest and data availability between research 
groups, leading to structural challenges in collaboration and 
replication. Where direct replication has been sought, results 
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appear inconsistently replicable across samples. This may be 
due to low statistical power, lack of true effects, or meaning-
ful moderators. For example, the reported G × SES effects on 
cognitive ability emerge primarily in the US, but not other 
parts of the world, potentially due to differences in social 
services (Tucker-Drob and Bates 2016).

To the extent that such G × SES effects do impact devel-
opment, heritability would be increased when the interac-
tion effect is not modeled. This implication occurs due to 
the fact that monozygotic twins would respond similarly to 
a shared environment, but dizygotic twins would respond 
potentially differentially to the extent that genetic differ-
ences alter response to the environment. That process would 
magnify the difference between monozygotic and dizygotic 
twin similarity. Theoretically, genetically influenced char-
acteristics may play a larger role in cognitive development 
in resource rich environments, and in contrast, such char-
acteristics may not be able to play a role in development 
when there are considerable obstacles to development in low 
resource environments (Bronfenbrenner and Ceci 1994). It 
could be that this process early in life stratifies children’s 
educational outcomes (e.g., achievement, but also moti-
vation, values, and relationships with teachers). Then, the 
subsequent development of the child is guided by this early 
event. Or, it could be the case that the effect of such G × E 
slowly and incrementally accumulates across the lifespan.

Molecular genetic data, particularly candidate gene 
studies, have a poor replication record for G × E (Duncan 
and Keller 2011), although evaluation of the evidence is 
challenging in light of the quality and variety of available 
research (Duncan et al. 2014). Molecular G × E research 
has been hampered by incorrect methods (Keller 2014), 
but even large-sample investigations with appropriate sta-
tistical controls demonstrate conclusively that the specific 
variants selected for the focus of early candidate gene work 
are not consistently associated with outcomes of interest, 
either in terms of main or interaction effects (Chabris et al. 
2012; Samek et al. 2016; Haberstick et al. 2014, 2016). It is 
unlikely that G × E effects should be expected to be much 
larger than main effects (and the distribution may, in fact, be 
considerably closer to zero). Very large samples, at least as 
large as main effects GWAS and likely much larger still due 
to lower power for interaction terms (e.g., N > > 100,000), 
will be necessary to detect interaction of specific genetic 
variant and environmental effects.

Simultaneous GE‑interplay

As emphasized earlier, GE-interplay substantially compli-
cates interpretation of behavior genetic parameters. It is 
sometimes stated that behavior genetic models assume that 
GE-interplay does not take place. We know this assump-
tion is false. Therefore, the parameter estimates in standard 

models should be interpreted cautiously. To the extent that 
genetic influences are dependent on environmental context 
(G × E) or are systematically linked with environmental con-
text (rGE), straightforward implications for development are 
difficult. For example, educational attainment is heritable. 
One interpretation is that genetic variants are associated with 
educational attainment in an invariant manner across all 
environments and all plausible environmental contexts. An 
equally plausible interpretation is that variants are associated 
only in certain environments (G × E), only when systemati-
cally exposed to certain environments (rGE), or are easily 
altered by some sort of intervention.

The impact of GE-interplay on behavior genetic param-
eter estimates can be reasoned out. As laid out by Purcell 
(2002) for twin studies, the typical interpretation states 
that correlation between genes and the shared environment 
results in shared environmental variance, and correlation 
between genes and the nonshared environment results in 
genetic variance. When genetic effects are dependent (i.e., 
G × E) on the shared environment (or vice versa), the result 
is genetic variance. When genetic effects are dependent on 
the nonshared environment (or vice versa), the result is non-
shared environmental variance. However, these implications 
may not always be so clear. For example, if genes are cor-
related with nonshared environments that decrease the phe-
notype (e.g., neuroticism and psychotherapy), then the result 
would not be an increase in genetic variance. Similarly, 
there are likely many potential causal processes that impact 
phenotype development that may not fit into the standard 
interpretation. Reasoning out the implications of a certain 
process in isolation requires understanding the phenotype.

For molecular genetic studies, the implications are some-
what different. To the extent that genes and environments 
are correlated in a way that the environment magnifies the 
initial genetic difference, the genetic variant effect size is 
increased. For example, if a SNP predisposes individuals 
to start smoking, then that SNP will likely be associated 
with lung cancer due to the environmental impact of smok-
ing (e.g., Thorgeirsson et al. 2008). Similarly, if a SNP 
predisposes parents to behave in a certain way toward their 
children and then this SNP is passed on to their children, 
then the SNP will index both the environmental pathway 
and any other genetic pathway that may occur. A similar 
pattern has been demonstrated in recent studies of non-trans-
mitted alleles displaying a statistical association with child 
variables (Bates et al. 2018; Kong et al. 2018). Again, these 
implications assume that environments match and amplify 
genetic effects. To the extent that correlated environments 
mask genetic effects, SNP effect sizes may be decreased.

The influence of G × E on molecular genetic associations 
is dependent on the form that the interaction takes, and only 
in cases of pure cross-over interactions will main effects 
be completely obscured. In all other cases of statistical 
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interaction and with a large enough sample size, the main 
effect should be detectable even in the absence of knowledge 
of the moderating environment.

Multiple developmental processes could generate 
the empirical data observed in behavior genetic studies 
because GE-interplay processes may not be independent. 
Mechanisms like rGE and G × E may synergistically guide 
development (Tucker-Drob et al. 2013). Multiple forms of 
GE-interplay may lead to the increasing heritability of cog-
nitive ability with age simultaneously. Stratified educational 
opportunity may limit opportunities for active rGE to occur, 
resulting in G × E. Although it is statistically straightforward 
to identify the implications of typical examples of rGE and 
G × E in isolation, we have little knowledge about the rela-
tive magnitude of each process, when in development these 
mechanisms exert a causal influence, or how the true cock-
tail of developmental inputs interact with one another. The 
developmental picture may be very complex. For example, 
Brant et al. (2013) found that the heritability of cognition 
increased more quickly for individuals with lower abil-
ity compared to high ability, with high ability adolescents 
similar to low ability children in terms of the magnitude 
of genetic influences. What combination of developmental 
inputs would produce such a potentially counter-intuitive 
finding?

Despite having some knowledge of the traces that rGE 
and G × E leave on behavior genetic estimates, it is not 
known how much each process contributes to any given esti-
mate of heritability. In part, this gap occurs because each 
process is layered on top of the others, resulting in a complex 
developmental history of phenotype growth.

Complexity, compression, and the gloomy 
prospect

As a field, behavior genetics has produced substantial knowl-
edge concerning replicable patterns of genetic and environ-
mental influences across the lifespan (Plomin et al. 2016). 
Heritability is substantial (Turkheimer 2000), but each SNP 
explains a tiny portion of variance (Chabris et al. 2015). 
There is some evidence of GE-interplay, even if the empiri-
cal data to this point have not identified many replicable 
examples for G × E. Genetic and environmental effects 
shift across the lifespan as phenotypes become more stable. 
Although the statistical and interpretational implications of 
GE-interplay processes are well-known, the magnitude of 
each process is not well-known. Worse still, the factors that 
affect behavior genetic estimates all occur potentially simul-
taneously and continuously across development, and they 
may even interact with one another in a nonlinear and highly 
complex fashion. Researchers can increase the reasonable-
ness of their inferences from behavior genetic models by 

gaining clarity on what is known and unknown concerning 
processes that influence parameter estimates. Ruling out 
potential processes can substantially shrink the number of 
possible interpretations.

Some basic questions remain difficult to address: what 
processes led to an estimate of 40% heritability? Was it 
additive and independent genetic effects, rGE reinforcing 
initial differences associated with genotype, or some form 
of G × E? Would heritability have been 40% if the sample 
was 10 years younger? Would heritability actually be 50% if 
assortative mating was correctly handled? Numerous papers 
have been written on the interpretive problems of heritability 
(e.g., Johnson et al. 2011; Keller et al. 2010; Turkheimer 
1998). Our point here is not to retread this ground, but 
instead to point out the number of considerations required. 
Each of these considerations can be deconstructed in isola-
tion to infer what the impact would be on behavior genetic 
models. The real world combines them all simultaneously 
in different quantities for each phenotype.

In the face of such taxing complexity, a framework with 
which to visualize the impact of different combinations of 
structural inputs would be useful. A successful model could 
generate phenotype levels from the ground up, starting 
with partners producing offspring with synthetic genomes 
and environments. One goal could be to identify what sets 
of model parameters can fill in the gaps identified in this 
review. As noted, there are likely several plausible sets of 
developmental parameters that could lead to the empirical 
results found in the literature. It might be the case that sev-
eral potential models could produce similar observed trends, 
such as increasing heritability with age. We view this as 
a useful demonstration of the potential for equifinality in 
behavior genetic models, a limitation of the models that 
could be overlooked due to implicit assumptions about the 
data-generating mechanisms. A simulation approach would 
force these assumptions to be explicit and would allow them 
to be contrasted with other plausible assumptions.

In this context, we may think of phenotype development 
or the task of individual-level prediction as falling along a 
continuum of complexity. At one end is perfect simplicity: a 
change in an input leads to a change in the output every time, 
and researchers are able to make accurate predictions with 
easily obtainable and cognizable information. At the other 
end, it may be the case that there is such complexity that a 
description of development requires the full history of all 
variables at all points in time; the data stream is incapable 
of any compression. Under this scenario, the best anyone can 
do is record what happens. There is no more efficient way to 
express the observations, and the observations do not sup-
port any interesting predictions. Although behavior geneti-
cists widely acknowledge that the phenotypes under study 
are complex (i.e., not having a single cause or simple set of 
causes), less consideration has been given to the potential 
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compressibility of the phenotypes across individuals rela-
tive to the set of available variables (e.g., Li and Vitányi 
1997; Wallace and Freeman 1987). By “compression,” we 
mean the ability to represent some large set of information 
in a more compact manner (Braddon-Mitchell 2001; Sayood 
2005; Wheeler 2016). To what extent can behavior genet-
ics move from thousands of genetic associations toward a 
cognizable and useful model of development (see Kendler 
2008)? This type of question has emerged most clearly in the 
literature surrounding the “gloomy prospect.”

The need to empirically evaluate the gloomy 
prospect

Under the limitations of empirical data collection, little 
behavior genetic research exists that explicitly considers 
the possibility of the gloomy prospect. Plomin and Daniels 
(1987, p. 8) described the gloomy prospect as a situation 
in which “the salient environment might be unsystematic, 
idiosyncratic, or serendipitous events,” ultimately mini-
mizing the possibility that much scientific progress can be 
made. Turkheimer and Gottesman (1996) used a simula-
tion approach to illustrate the gloomy prospect; small shifts 
in environmental context completely removed all specific 
phenotype–environment associations. Turkheimer (2000, p. 
163) applied the same gloomy outlook to molecular genetic 
associations in the real world due to the inherent complex-
ity of development and noted that “the underlying complex 
causal processes would cause the apparent results [of molec-
ular genetic studies] to be small, and to change unpredictably 
from one experiment to the next.”

The gloomy prospect is discouraging from an empirical 
standpoint as it implies that the upper limit for scientific 
progress in predicting and explaining future behavior at 
the individual-level may already have been reached or be 
reached without substantially more meaningful progress. 
If phenotype development is driven by genetic effects that 
manifest differently across environments that are peculiar to 
a given individual, then identifying the effect that a genetic 
variant has on development will necessarily also be idiosyn-
cratic. If true, the clinical utility of genetic or environmen-
tal information about individuals will be largely worthless, 
since a plethora of interdependent factors (many of which 
are inaccessible due to a failure of measurement over devel-
opment) must be known before reasonable predictions can 
be made.

Gloominess falls on a continuum, and how gloomy the 
prospect of giving an informative behavior genetic account 
depends on the phenotype. For example, it may be that 
things are a bit gloomier for personality compared to cogni-
tive ability or anthropometric traits (e.g., Cheesman et al. 
2017). If there is no GE-interplay and no other potentially 
biasing factors, then molecular genetic associations will 

replicate and the prospects for giving an informative account 
is not gloomy at all. But if, on the other hand, GE-interplay 
is extremely large and the effects of any genetic variant are 
entirely dependent on the (potentially random) environ-
mental context, then it is unlikely that any genetic effect 
will replicate. This situation would be maximally gloomy. 
However, most phenotypes likely fall somewhere between 
these extremes.

We suggest that a plausible starting point for identifying 
the “gloominess” of a phenotype is to investigate the seven 
developmental processes highlighted in this manuscript. Put 
differently, a greater understanding of phenotype processes 
(i.e., how the phenotype influences engagement with the 
environment), structure (i.e., how phenotypes covary), and 
development (i.e., how phenotypes respond to engagement 
with the environment in the context of other relevant phe-
notypes across the lifespan; see Baumert et al. 2017). Each 
of these questions can be addressed with behavior genetic 
methodology. For example, the field has established the 
genetic and environmental structure of many related pheno-
types. We suggest that gains can be made in overcoming the 
gloomy prospect by better understanding our phenotypes, 
that is to say, gaining knowledge not only of genetic and 
environmental structure, but also of the processes that led 
to such a structure across developmental time. This work 
toward explanation is directly relevant to researchers inter-
ested primarily in prediction as the gloomy prospect may 
imply some upper limit on prediction. Evaluating simultane-
ous GE-interplay will be challenging, but such work could 
provide important insight into the mechanisms of phenotype 
growth.

Additionally, progress toward identifying the boundaries 
of the gloomy prospect could be made by drawing more 
heavily on animal models. Although the strength of animal 
models is typically seen as exerting control over environ-
mental experiences, an increasing number of studies use 
designs in which GE-interplay is possible (Bell and Saltz 
2017; Freund et al. 2013). For example, social niche con-
struction refers to the tendency of certain organisms to 
form social groups partially based on genetic differences 
(i.e., rGE; Saltz and Foley 2011; Saltz and Nuzhdin 2014). 
This behavioral tendency has also been found to be context 
dependent (Saltz 2011) and influence development (Saltz 
2013, 2014). More generally, animals exhibit repeatable 
behavioral syndromes (Bell et al. 2009; Sih et al. 2004), 
similar to human personality, and a host of tools are avail-
able to better explain and predict these patterns (Bengston 
et al. 2018). This work may be better situated to address 
major unanswered questions in human behavior genetics, 
such as potential sources of Gene × Environment interaction. 
Lee et al. (2018) found relatively few leads on why genetic 
associations with educational attainment might vary across 
contexts (although, see Tropf et al. 2017 for an analysis with 
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individual-level data), but the animal literature may offer 
further clues (see Saltz et al. 2018). Of course, evidence 
from animal models may be difficult to extrapolate to a phe-
notype like educational attainment, but the ability to track 
the effect of GE-interplay on development dynamically and 
consistently across the lifespan is a major advantage of ani-
mal models.

Communicating complexity

Given the complexity of development, disseminating results 
to researchers outside of behavior genetics or to the lay pub-
lic is difficult due to perceptions about genetic influences 
that may not be warranted, such as strict genetic determinism 
(Dar-Nimrod and Heine 2011). In order to head off misinter-
pretations, some researchers have written publicly-accessible 
responses to frequently asked questions as accompaniments 
to major publications (e.g., Rietveld et al. 2013). In addition 
to answering frequently asked questions, researchers should 
describe competing mechanisms by which the observed 
data could have been generated, which would help other 
researchers and the public to better interpret the results. For 
example, we might find a non-trivial heritability of educa-
tional attainment (Lee et al. 2018). One possibility is that 
this heritability relates to fixed genetic effects. However, if 
the heritability of educational attainment were entirely fil-
tered through environmentally mediated processes that were 
quite distant from the genome (e.g., via reinforcement due 
to parental cognitive stimulation; Tucker-Drob and Harden 
2012) and effectively modifiable by intervention (e.g., uni-
versal preschool; Tucker-Drob 2012), then different impli-
cations would be drawn. This descriptive example could be 
an effective tool for communicating with the general public 
that high (or non-zero) heritability estimates do not imply an 
absence of environmental processes. A better understanding 
of phenotype inputs across development could aid in distin-
guishing these potential mechanisms.

Conclusion

Behavior genetics has a public communication problem, 
partly due to the disconnect between our simplistically 
presented models and the long list of required caveats and 
assumptions. Common intuitions concerning genetics 
(e.g., Dar-Nimrod and Heine 2011) likely lead to shortcuts 
about the causal relation between some genetic variant and 
an outcome. For example, a person may intuitively believe 
that an association between a SNP and educational attain-
ment is deterministic and not sensitive to any sort of envi-
ronmental input. Vague statements about GE-interplay and 
other caveats of the models (e.g., behavior genetic models 
reflect what is, not what could be) may not be maximally 

effective. Identifying and interrogating the most likely and 
robust models that are plausibly involved in human devel-
opment may allow for a more nuanced discussion of phe-
notypes, both among researchers and between researchers 
and the general public. Further, we suggest that discus-
sion among researchers could benefit from clarifying the 
motivation of scientific inquiry, whether aiming at under-
standing nature, predicting individual-level outcomes, or 
gaining control over development. Some of the complexity 
we highlight may be particularly relevant to researchers 
aiming at understanding, rather than prediction or control. 
Unifying across these goals may improve behavior genetic 
theory and utility.

In this report we have laid out a set of known empirical 
behavior genetic results, and at the same time, the interpre-
tive ambiguity that accompanies these results. Although 
the implications of GE-interplay for various analytic mod-
els are relatively straightforward (Purcell 2002), a diffi-
culty emerges when applied to development, where mul-
tiple interdependent inputs exert pressure on phenotypes. 
As genetically-informative models of development move 
toward specifying small-scale, mechanistic inputs (Briley 
et al. 2018; Nivard and Boomsma 2016; Tucker-Drob and 
Briley in press) in addition to broad-scale inputs (e.g., Plo-
min et al. 1977; Scarr and McCartney 1983), we encourage 
nuanced thinking concerning the causal chain that leads 
to estimates of heritability and molecular genetic asso-
ciations. Such considerations may lead to different solu-
tions to causal reasoning problems or judgments of human 
agency (see Lynch 2017).

All phenotypes of interest to behavior geneticists are 
complex by one measure or another. The question becomes 
how complex, whether doomed to a true gloomy prospect, 
whereby the intractably complex developmental processes 
that lead to the outcome of interest are so unique as to be 
essentially ungeneralizable beyond a single individual, or 
rather may be placed along a spectrum of relative gloomi-
ness. That is, relative complexity is bound to vary, with some 
phenotypes being simpler to disentangle than others. Exist-
ing empirical trends provide a tool to narrow down the likely 
candidates, from a universe of nearly infinite possibilities.
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