
Journal of Experimental Child Psychology 189 (2020) 104681
Contents lists available at ScienceDirect

Journal of Experimental Child
Psychology

journal homepage: www.elsevier .com/locate/ jecp
Developmental transformations in the structure of
executive functions
https://doi.org/10.1016/j.jecp.2019.104681
0022-0965/� 2019 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: johanna.hartung@uni-ulm.de (J. Hartung).
Johanna Hartung a,⇑, Laura E. Engelhardt b, Megan L. Thibodeaux b,
K. Paige Harden b,c, Elliot M. Tucker-Drob b,c

a Institute of Psychology and Education, Department of Psychology, Ulm University, 89081 Ulm, Germany
bDepartment of Psychology, University of Texas at Austin, Austin, TX 78712, USA
cPopulation Research Center, University of Texas at Austin, Austin, TX 78712, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 January 2019
Revised 4 August 2019
Available online 21 October 2019

Keywords:
Executive function
Age differentiation
Inhibition
Development
Local structural equation models
Moderated factor analysis
Comparisons of results from studies of executive function (EF) in
early childhood to those of EF in middle and late childhood suggest
that individual differences in EFs may differentiate from a unitary
factor in early childhood to an increasingly multidimensional
structure in middle childhood and adolescence. We tested whether
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all three approaches indicated that working memory and updating
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range, whereas inhibition became increasingly differentiated from
the other three domains beginning around 10 years of age.
However, consistent with past research, inhibition tasks were only
weakly intercorrelated. Age-related differences in the organization
of switching abilities were mixed.
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Introduction

Executive functions (EFs) are a constellation of cognitive functions that supervise and manipulate
other cognitive processes. In both childhood and adulthood, EFs have been implicated in learning,
academic achievement, psychiatric health, and everyday functioning (Best, Miller, & Naglieri, 2011;
Diamond, 2013). EFs include inhibition of prepotent responses, updating of information, shifting
between cognitive operations, and short-term storage and processing of information in working mem-
ory (Miyake et al., 2000; Unsworth & Engle, 2007). These are commonly referred to as EF domains.

From a long history of studies, it is well known that individuals differ in their executive abilities.
Individuals who have good performance in a given EF task (e.g., N-Back) tend to do well on other tasks
tapping the same EF (e.g., updating), which shows that these tasks capture reliable individual differ-
ences. Studies of individual differences in EFs in adulthood indicate that performance on tasks
designed to tap a specific EF domain (e.g., inhibition) is correlated with, but also separable from, per-
formance on tasks tapping other EF domains (e.g., switching). One statistical method for understand-
ing these correlations is latent factor analysis. Under this framework, correlations in task performance
arise because the tasks tap the same underlying, but not directly observed, ability. This unobserved (or
latent) ability can be interpreted as what is common across the tasks. This method is advantageous for
studying relations among multiple measures because the latent factors do not include any error vari-
ance specific to each task. So variance in performance on any given task can be explained by common,
specific, and error/unexplained variance. Confirmatory factor analysis (CFA) is a form of latent factor
analysis that allows for the evaluation of different models reflecting different theories by different
assignments of indicators (observed performance on a task) to latent factors (Brown & Moore,
2012). The latent factors represent variance shared across constituent indicators (common variance).
Therefore, CFA helps to identify the number of underlying constructs of a task battery by testing how
well different measures cluster together (by evaluating fit of a specified factor model to actual data on
task performance as well as loading patterns in the model). When applied to performance on multiple
EF tasks, CFA has revealed that a common EF factor accounts for high degrees of variance shared across
EF domains, but some domain-specific variance independent of common EF remains (Miyake et al.,
2000). In other words, EF domains are statistically separable—performance is not perfectly corre-
lated—but they still share a significant portion of their variance.

The development of EF across childhood and adolescence has gained increasing attention in recent
years. In particular, the question of the extent to which EF domains are differentiable across childhood
and adolescence remains highly contested. Studies attempting to reproduce the hierarchical structure
of latent EF factors in child and adolescent samples have generated mixed support for a fully differen-
tiated EF framework (for a review, see Table 1 in Lee, Bull, & Ho, 2013). Studies of individual
differences in EFs in early childhood (~2–6 years of age) have routinely reported a single EF factor,
such that performance on multiple tasks does not cluster into separable components (e.g., Shing,
Lindenberger, Diamond, Li, & Davidson, 2010; Wiebe, Espy, & Charak, 2008; Willoughby, Wirth, &
Blair, 2012). Studies in middle childhood and adolescence have tended to report two-, three-, and
four-factor solutions, with latent factors most commonly representing working memory, inhibition,
and shifting (e.g., Agostino, Johnson, & Pascual-Leone, 2010; McAuley & White, 2011; Wu et al.,
2011). These studies provide circumstantial evidence that performance on EF becomes increasingly
differentiated in middle childhood and adolescence. In their review of the development of EF, Best
and Miller (2010) supported this conjecture, stating that ‘‘the degree of unity or diversity of EF varies
from age to age” (p. 1652). Nevertheless, there have been reports of fewer EF factors in samples of
older children (e.g., Huizinga, Dolan, & van der Molen, 2006) as well as more EF factors in younger
children (e.g., Wu et al., 2011).

The hypothesis that the factor structure of cognitive abilities differentiates with age stems from
early work by Garrett (1946), who suggested that, over the course of development, factor structure
changes from a strong general ability to separable correlated abilities. According to this hypothesis,
a general factor of cognitive ability explains less variance in lower-level abilities with increasing
age, such that the relations among specific cognitive abilities weaken. This age differentiation
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hypothesis has been examined extensively with respect to psychometric measures of intelligence
(Deary et al., 1996; Filella, 1960; Hartmann, 2006; Hildebrandt, Lüdtke, Robitzsch, Sommer, &
Wilhelm, 2016; Hülür, Wilhelm, & Robitzsch, 2011; Juan-Espinosa et al., 2002; Molenaar, Dolan,
Wicherts, & van der Maas, 2010; Tucker-Drob, 2009). Few studies, however, have directly examined
this hypothesis with respect to the structure of EFs, and no study to date has applied newer multivari-
ate methods for modeling EF differentiation continuously as a function of age. Challenges in the mea-
surement of EFs in childhood, as well as discrepancies in the content and coverage of measurement
batteries, contribute to inconsistent conclusions about the differentiation of EF across age.

Few studies intent on testing the age differentiation hypothesis have used a single age-
heterogeneous sample that is representative of the general population or that has completed the same
battery of EF tasks. Exceptions are Lee et al. (2013) and Xu et al. (2013). However, Lee et al. (2013) used
the same tasks as indicators for inhibition and switching, making interpretation of the differentiation
of these factors difficult (even though they used different trials as indicators for the two factors), and
Xu et al. (2013) split participants into age groups. The risk of missing a nonlinear relation between
model parameter and age is substantial when age is arbitrarily categorized (MacCallum, Zhang,
Preacher, & Rucker, 2002). In summary, the small number of studies investigating the age differenti-
ation hypothesis directly—that is, using a single age-heterogeneous sample with a multivariate task
battery—relied on categorization of age into discrete bins (Deary et al., 1996). To our knowledge, no
previous study has examined developmental transformations in the structure of EF using methods
that allow for a continuous moderation of model parameters.

The EF factor structure may transform with age as certain components become more central to
general executive processing and, therefore, have a greater influence on other EF processes. It has been
suggested that inhibitory control is particularly important for allowing young children to employ
other EFs in pursuit of goals, and when an individual’s baseline levels of inhibitory control increase
with age, inhibition no longer plays a central role in regulating other EFs (Best, Miller, & Jones,
2009; Huizinga & van der Molen, 2007; Isquith, Gioia, & Espy, 2004). Others have extended this theory,
suggesting that once a certain level of inhibition has been developed, working memory capacity plays
a critical role as a processing resource throughout adolescence and adulthood (Best et al., 2009;
Davidson, Amso, Anderson, & Diamond, 2006; Huizinga & van der Molen, 2007; Isquith et al., 2004;
Vandierendonck, 2012). Language ability has also been discussed as a possible driver of EF develop-
ment (Bishop, Nation, & Patterson, 2014), although a recent test of this theory by Messer et al.
(2018) did not find that EF factor structure differed on the basis of verbal and nonverbal tasks.

Drawing on task performance on a multidimensional battery of EF tasks administered to more than
1000 children ranging from 7 to 15 years of age, the current study examined both quantitative and
qualitative transformations in the structure of EF over the transition to adolescence. At the quantita-
tive level of analysis, we tested whether the proportion of variance in individual EFs that is explained
by a common EF factor decreased with age, as would be predicted by the age differentiation hypoth-
esis. We examined age-related shifts in the relative contributions of domain-common and domain-
general variance to individual differences in EF performance. In other words, we tested whether the
core of common EF was differentially representative of EF domains at different ages.

We addressed these questions using three complementary and innovative methods for estimating
continuous age moderation in multidimensional space: moderated factor analysis (MFA; Cheung,
Harden, & Tucker-Drob, 2015; Molenaar et al., 2010; Tucker-Drob, 2009), local structural equation
modeling (LSEM; Hildebrandt, Wilhelm, & Robitzsch, 2009), and network modeling (Epskamp,
Rhemtulla, & Borsboom, 2017). MFA and LSEM are based on a measurement model of EF testing
whether age moderates the strength of associations between tasks in the same EF domain as well
as the strength of associations across EF domains. Both analytical approaches allow for continuous
age moderation of factor model parameters. Whereas the shape of the moderation effect needs to
be specified a priori in MFA (e.g., a linear function in the case of linear moderation), this is not neces-
sary for the nonparametric LSEM analysis. As a baseline model, we relied on the factor structure pre-
viously established for EFs generally (Miyake & Friedman, 2012; Miyake et al., 2000) and in this
sample specifically (Engelhardt, Briley, Mann, Harden, & Tucker-Drob, 2015; Engelhardt et al., 2016)
(more details about the measurement model can be found in the Method section). Network analysis
is used to investigate the interrelations of tasks without a predefined structure. In summary, the
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current study moved beyond previous studies that used individual CFAs for different age groups,
namely by our ability to investigate factor structure across continuously measured age.
Method

Sample

Data were drawn from 1019 participants from the Texas Twin Project (Harden, Tucker-Drob, &
Tackett, 2013), a population-based sample that included children spanning the range of functioning
so long as they were able to understand the instructions and complete the tasks encompassed in
the protocol. For this reason, children with very severe disabilities and delays were not eligible to par-
ticipate. The average full scale intelligence quotient (FSIQ) of participants in the sample measured by
the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011) was 103.99, with a standard devia-
tion of 14.09. These scores are normed to have a mean of 100 and a standard deviation of 15 in the
general population of the United States. Therefore, the sample was very close to average IQ (slightly
above) and nearly as variable as (slightly less than) the nationwide standardization sample. The cur-
rent sample consisted of children in Grades 3 to 8 between 7.8 and 15.3 years of age (M = 10.79 years,
SD = 1.76). This sample, of which 50.4% was female, included 479 twin pairs, 19 triplet sets, and 1
quadruplet set. In terms of race/ethnicity, 59.1% of the sample identified as non-Hispanic Caucasian,
15.0% as Hispanic, 6.7% as African American, 4.2% as Asian, 0.6% as another race or ethnicity, and
14.3% as multiple races or ethnicities.

Measures

In total, 15 tasks were administered to assess four EF domains: inhibition, switching, updating, and
working memory (see Table 1). The battery initially consisted of 12 tasks (three per domain). After
approximately 2 years of data collection, three of the tasks were replaced by versions that were amen-
able for use in a magnetic resonance imaging (MRI) scanner as follows: Stop Signal auditory was
replaced by Stop Signal visual, 2-Back was replaced by N-Back (consisting of 1- and 2-Back), and
Plus–Minus was replaced by Cognitive Flexibility. The remaining nine tasks were collected for the
whole sample. Data used in this analysis were collected following a planned missing data design
(Little & Rhemtulla, 2013).1 The tasks constituting the EF battery are described in Appendix A (Table A1).

Inhibition was measured with the following tasks: Animal Stroop (Wright, Waterman, Prescott, &
Murdoch-Eaton, 2003), Mickey (Lee et al., 2013), and Stop Signal auditory and visual (Logan,
Schachar, & Tannock, 1997; Verbruggen, Logan, & Stevens, 2008). Differences in reaction times for
inhibit versus noninhibit trials were used as dependent variables for Animal Stroop and Mickey.
The dependent variable for both Stop Signal tasks was Stop Signal reaction time, which was calculated
by subtracting the average Stop Signal delay (time between presentation of the ‘‘go” stimulus and the
‘‘stop” stimulus) from mean go reaction time. Block-level Stop Signal scores (64 trials per block) were
computed and omitted on the basis of consistent stop failures, misidentification of arrow direction,
failure to respond to go trials, and implausibly low Stop Signal reaction times (Congdon et al.,
2010). Scores from the remaining blocks were then averaged to produce a final Stop Signal reaction
time.

Switching was assessed with Trail Making (Salthouse, 2011), Local–Global (Miyake et al., 2000),
Plus–Minus (Miyake et al., 2000), and Cognitive Flexibility (based on Heaton, 1993). The outcome of
interest for Trail Making, Local–Global, and Plus–Minus was switch cost or the difference in reaction
times between switch and nonswitch conditions. To correct for positive skew, the scores of Trail Mak-
ing and Local–Global were log-transformed. For Cognitive Flexibility, the reaction time for all correct
trials was used as the dependent variable.

Working memory (WM) was assessed with Digit Span Backward (Wechsler, 2003), Symmetry Span
(Kane et al., 2004), and Listening Recall (Daneman & Carpenter, 1980). All memory tasks were scored
1 Results from MFA and LSEM analyses using only the old tasks did not substantially differ from the analysis including all tasks.



Table 1
Descriptive statistics for executive function tasks.

Task n Mean (ms) SD (ms) Reliability a

Inhibition
Stroop 1016 238.77 239.91 .86a

Mickey 780 35.40 70.87 46a

Stop Signal auditory 594 322.32 90.74 .40b

Stop Signal visual 326 267.07 65.71 .31b

Switching
Trail Making 862 1219.57 783.62 .84a

Local–Global 1002 1436.68 746.63 .74a

Plus–Minus 582 669.55 1200.83 .69a

Cognitive Flexibility 374 1122.84 192.89 .80b

Updating
Running Memory 833 18.84 8.34 .75c

Keeping Track 1004 6.57 2.36 .52c

2-Back 599 3.77 1.07 .84b

N-Back 396 4.47 1.73 .90b

Working memory
Symmetry Span 993 19.90 8.69 .78c

Listening Recall 954 23.35 8.12 .79c

Digit Span Backward 880 7.02 1.83 .60c

Note. Total N = 1019.
a Reliability estimates were calculated based on difference scores formed by subtracting reaction time on nonswitch (or

noninhibit) blocks from reaction time on switch (or inhibit) blocks for each possible pair of switch (inhibit) and nonswitch
(noninhibit) blocks.

b Reliability estimates were calculated across blocks.
c Reliability estimates were calculated across trials.
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with the number of items correctly recalled. The square root of Listening Recall scores was taken to
correct for skew.

Updatingwas assessed with 2-Back, N-Back (Jaeggi et al., 2010), Keeping Track (Miyake et al., 2000),
and Running Memory for Letters (Broadway & Engle, 2010). For 2-Back and N-Back, we computed the
number of correctly identified matches minus incorrectly identified nonmatches (i.e., hits minus false
alarms). Square root transformations were applied to 2-Back and N-Back scores to correct for skew.
The outcome of interest for the remaining updating tasks was the number of items correctly recalled.

Table 1 reports descriptive statistics for the EF indices, including the number of observations per
task. As discussed in Engelhardt et al. (2015), low reliability estimates for many of the EF indices
are due, in part, to the scoring of these tasks. Building a difference score between executive and nonex-
ecutive conditions leads to the compounding of measurement error (Cronbach & Furby, 1970). This
assumption is substantiated by the high reliabilities for the individual task conditions that underlie
the difference scores (Engelhardt et al., 2015, 2016).
Analyses

As described earlier, age-related differences in the EF covariance structure were examined using
three different analytical methods: MFA (Molenaar et al., 2010; see also Cheung et al., 2015), LSEM
(Hildebrandt et al., 2009; also see Briley, Harden, & Tucker-Drob, 2015), and network modelling
(Epskamp et al., 2017). A comparison of the three methods can be found in Table 2. Structural equation
models were fit in Mplus Version 7.4 (Muthén & Muthén, 1998–2012). Mplus uses a full-information
likelihood estimation to account for missing data. In all analyses, to correct standard errors for the
nonindependence of observations from individuals within the same family, a sandwich estimator
was implemented using the Complex Survey option.2
2 A sensitivity analysis of the analyses was done with data from one sibling per family. Results can be found in Appendix A.



Table 2
Comparison of characteristics of moderated factor analysis, local structural equation modeling, and network analysis approaches
used in the current study.

MFA LSEM Network analysis

Parametric U X X
Inferential tests U X X
Detection of onset X U U

Confirmatory U U X
Continuous moderator U U U

Note. A check mark indicates that it is a characteristic of this approach, a cross notates it is not; MFA, moderated factor analysis;
LSEM, local structural equation modeling.
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Measurement model
Engelhardt et al. (2015) compared a series of competing models, concluding that a hierarchical fac-

tor structure with a common EF factor summarizing the common variance of four factors representing
four broad EF domains (inhibition, switching, WM, and updating) represents the data best. Following
Molenaar et al. (2010), we examined differentiation at multiple levels within a hierarchical factor
structure. In this specific case, we used a higher-order factor model in which observed task scores
are related to first-order factors (first-order loadings) and the first-order factors are regressed on a
second-order factor (second-order factor loadings). The second-order factor explains the intercorrela-
tions among the first-order constructs (see Fig. 1). Hence, the tasks are influenced by the four first-
order factors representing the constructs inhibition, switching, updating, and WM. However, tasks
are also influenced by task-specific factors (i.e., residual variances) that are independent of first-
and second-order factors. The shared variance of the four EF domains is accounted for by a second-
order factor that represents the higher-order construct EF. The age differentiation hypothesis is typi-
cally conceptualized that the correlations among EF domains decrease with age. However, it is neces-
sary to investigate all levels of the model so as to test the age differentiation hypothesis because
differentiation can arise on the task level (Molenaar et al., 2010). We examined age trends in the mag-
nitudes of the residual variances of the individual EF tests, loadings of the individual tests onto the
first-order EF domains, residual variances of the first-order domains, and loadings of the first-order
domains onto the higher-order common EF factor. If EF follows the age differentiation hypothesis,
we would anticipate residual variances of individual EF tests and/or first-order EF factors to increase
systematically across age and/or first-/second-order loadings to decrease systematically across age
Fig. 1. Path diagram for moderated factor analysis. Asterisks indicate age-moderated parameters. Moderation of first-order
loadings and test-specific residuals was specified only when age moderation was significant in initial domain-specific models.
EF, executive function.
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depending on the level on which differentiation occurs. Unsystematically changing higher-order factor
loadings could be indicative for a shift in the meaning of the common EF factor, with differing EF
domains getting more or less important. Using the same factor model across the whole age range
allows us to investigate effects on parameters in an explicit model.
Moderated factor analysis
MFA allows for the examination of model parameters along age as continuous moderator according

to a parametric function (e.g., a linear function in the case of linear moderation). The parameters (e.g.,
loadings of an indicator) are predicted by age, resulting in regression equations for each moderated
parameter. The interpretation of the coefficients is similar to a regression analysis; the intercept is
the expected parameter at the mean of the variable age (because age is centered) and the slope indi-
cates a linear increase or decrease in the model parameter with increasing age. When the chosen para-
metric function conforms to the shape of the true moderation function, MFA is advantageous for
increasing power while decreasing false discovery. The restriction to linear effects can produce unin-
tuitive estimates for some values of the moderator. Prior to fitting MFA within a full hierarchical struc-
ture, we fit separate MFA models for subsets of variables from each of the four EF domains (inhibition,
switching, updating, and WM). Age was centered by subtracting its mean. To scale the metric of each
factor, its variance was fixed to 1. We included main effects of age and age squared on the latent factor
and allowed for age-moderated factor loadings and loadings onto age-moderated residual variances.
We went on to fit MFA within a fully hierarchical structure that was informed by the domain-
specific analyses. In this model, we allowed for main effects of age and age squared on the first-
order latent factors and allowed all second-order factor loadings and loadings onto residual factors
to be linearly moderated by age. Moderation of the factor loadings and loadings onto residual factors
of the individual EF measures was allowed when these parameters showed significant moderation by
age in the domain-specific models. In the hierarchical factor model, we scaled the metric of each first-
order factor by fixing a single loading to 1.0 for an indicator that had demonstrated no age moderation
in the initial domain-specific models. This procedure is data driven and needed to have enough power
to estimate parameters in the full model. However, it also means that not all possible moderation
parameters are estimated in the full model.

The focus of MFA is the significance of slope parameters, reflecting moderation of the respective
parameter. A significant coefficient indicates a linear moderation of the respective parameter by
age, whereas the parameter is assumed to be not (linearly) moderated by age if the slope coefficient
is not significantly different from 0.
Local structural equation modeling
LSEM is a method for modeling a parameter of a structural equation model as a continuous non-

parametric function of a moderator (in this case age). LSEM is more descriptive and flexible than
MFA because a priori specification of the age function of the parameter estimates (e.g., linear, quad-
ratic, exponential) is not necessary. Therefore, it is particularly useful for detecting nonlinear trends
(for an illustration, see Fig. 5 in Olaru, Schroeders, Hartung, & Wilhelm, 2019) by visualizing transfor-
mations in factor model parameters. LSEM estimates a series of models along a range of moderator
values (i.e., ages), with observations weighted as a function of their proximity to a focal age point.
The weighting function was based on the recommendations of Hildebrandt et al. (2009). At each
defined value of the age variable, called focal points, a Gaussian kernel function is used to weight
observations, with the highest weight at the age point and decreasing weights for observations further
from this age point. Because of the nonparametric character of LSEM, onset of transformation can be
detected. We fit LSEM to examine age trends in the parameters for the same hierarchical model of EF
for which we fit the MFA models. As described by Briley et al. (2015), the MplusAutomation package in
R (Hallquist, 2016; R Development Core Team, 2001) was used to automate the fitting of the multiple
models.

We investigated trends in standardized loadings. Standardized first-order loadings (from EF
domain factors to indicator tasks) indicate how first-order loadings are defined by the indicators while
also allowing for statements about how reliable indicators measure the construct. How stable the
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common EF factor is defined was investigated with standardized second-order loadings (loadings from
the EF domain factors to common EF).

Network modeling
Network modeling is the most exploratory approach to representing the factor structure of a set of

indicators because it imposes no particular structure on variable interrelations. In a conventional psy-
chometric network model, a correlation matrix of the task scores is used to build a network represent-
ing the interrelations between tasks. Here, we extended the network approach to investigate age
trends in the EF task covariance network. We estimated age-specific, fully saturated correlation matri-
ces using the LSEM weighting approach. Thus, correlation matrices for each weighted sample are
formed, and a network illustrating these relations can be extracted. This is the most exploratory of
the three approaches and has the strongest potential to illuminate qualitative transformations in
the relative patterns of covariation among EF variables across age. Due to the data collection design
described earlier, correlations between the three old and three new tasks were necessarily missing,
and including all tasks could lead to inaccurate depiction of the relations. Based on the larger sample
size for the old tasks and a slightly more evenly distributed age in this subsample, we excluded the
three new tasks from this analysis. The network includes 12 nodes, which represent the 12 EF tasks,
and 66 edges, which are the connections between nodes.

We aimed to evaluate the centrality of specific nodes, meaning the interrelation of performance on
one task with that on all the other tasks. Although different indices can be used to measure centrality,
they are typically computed on the basis of the edges, such that nodes sharing a lot of variance with
other nodes have high centrality (Opsahl, Agneessens, & Skvoretz, 2010). One such index is the close-
ness of a node, which is computed as the inverse of the total length of all the shortest paths between
the selected node and all other nodes in the network. Another centrality index, strength, is based on
summing up the weights of the direct relations of a node to all other nodes. Higher closeness centrality
indicates that a task is related to more other tasks, and strength indicates that a task is related more
strongly with other tasks. Other measures of centrality were not reported based on their limitations
(e.g., degree ignores the structure of the network) or redundancy with one of the former mentioned
indices (e.g., betweenness is redundant with the closeness index).
Results

Descriptive statistics

Correlations among age and scores on the individual tasks can be found in Table 3. Age significantly
correlated with performance on all tasks. Most variables were positively related to each other. Scatter-
plots depicting the mean value trajectories of the indicators across age can be found in Appendix A
(Fig. A1).

Moderated factor analyses

MFA produces estimates reflecting the age moderation of model parameters that can be tested for
differing significantly from 0. According to the age differentiation hypothesis, EF domains should share
less variance with one another across age. This would be supported by negative moderation coeffi-
cients for associations between the common EF factor and the domain-specific factors and by positive
moderation coefficients for residual loadings.

We began by fitting domain-specific moderation models in which we allowed for an interaction
parameter constraint to be equal across all loadings and an interaction parameter constraint to be
equal across variances (see Cheung et al., 2015). For each domain, we compared models with and
without interaction terms by conducting chi-square difference tests based on log likelihood values
and scaling correction factors. In the next step, we included specific interaction coefficients3 for each
3 All coefficients reported for the moderated factor analyses are unstandardized due to the model constraints.



Table 3
Correlation matrix of task performance and age.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. Stroop
2. Stop Signal auditory .02
3. Stop Signal visual .09 NA
4. Mickey .10 .11 .10
5. Trail Making .21 .07 .08 .16
6. Plus–Minus .25 .06 NA .09 .20
7. Local–Global .27 .04 .18 .15 .39 .22
8. Cognitive Flexibility .26 NA .13 .04 .29 NA .30
9. Running Memory .25 .07 .06 .17 .44 .21 .39 .27
10. 2-Back .22 .12 NA .18 .39 .14 .34 NA .54
11. N-Back .27 NA .11 .18 .39 NA .43 .38 .58 NA
12. Keeping Track .21 .07 .23 .13 .38 .15 .31 .24 .47 .42 .36
13. Digit Span Backward .18 .05 .03 .14 .36 .16 .28 .13 .44 .33 .29 .35
14. Symmetry Span .27 .02 .11 .18 .40 .21 .35 .30 .46 .38 .45 .36 .32
15. Listening Recall .28 .02 .15 .21 .44 .25 .40 .35 .62 .45 .50 .45 .42 .52
16. Age .34 .18 .23 .26 .43 .24 .43 .31 .44 .35 .40 .36 .30 .50 .53

Note. Zero-order Pearson correlation coefficients are shown. All task scores are standardized. Cells marked ‘‘NA” are due to the
change in task administration (participants were administered only one of the tasks).
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indicator; interaction coefficients applied to the factor loadings, the loadings onto residual factors, or
both, depending on the previous model results. Table 4 summarizes the estimates from the four separate
models, one for each EF domain. We demonstrate how to interpret an MFA parameter using the example
of Plus–Minus. The main effect value (.22) is the expected loading of Plus–Minus on the switching factor
at mean age (because age is centered). The linear age moderation effect, which is negative (�.18), signi-
fies a decrease in the loading with a one-unit increase in age. The effects on the loading onto the residual
variance can be interpreted in the same manner. Results from the domain-specific models (see Table 4)
indicate that (a) for the inhibition indicators, the residual variances for Stroop and Mickey were signif-
icantly moderated by age, with both decreasing over age; (b) for switching, the loadings of Trail Making,
Plus–Minus, and Local–Global onto their respective lower-order factors decreased over age, as did the
residual variance for Plus–Minus; (c) the loading of 2-Back onto the updating factor increased over
age; and (d) the residual variances of WM indicators Digit Span Backward and Running Memory
increased slightly over age.

We went on to construct a hierarchical EF model, allowing for age moderation of EF factor loadings
and domain-specific variances as well as for task-specific loadings and variances that were significant
in the domain-specific models. A path diagram of the MFA model, including the common EF factor, is
depicted in Fig. 1. Coefficient estimates for this model are summarized in Table 5. Loadings onto the
residual variances for the inhibition and switching factors were moderated by age, as was the factor
loading of switching onto the common EF factor. On the other hand, higher-order loadings and resid-
ual variances for WM and updating were stable across age. At the indicator level, the largest age trend
corresponded to residual variances for Stroop and Plus–Minus. The estimates for the EF domains can
be interpreted as follows. For inhibition, the loading onto EF at 10.79 years of age (which is the mean
age in the sample) is .16 with no significant linear moderation, with a residual variance of .005 (the
loading onto the residual variance factor needs to be equivalent to the residual variance) at mean
age and .04 at about age 14. For switching, the loading onto EF at mean age is .27 with a significant
decrease of �.04 per year, which results in a factor loading of .14 (notice that differences occur due
to rounding errors) at about age 14; the residual variance of .01 at mean age decreases linearly with
increasing age, resulting in a negative residual variance of �.02 at about age 14. Factor loadings of
updating and WM are not significantly moderated.

Fig. 2 depicts the proportion of variance in each of the four EF domains that was explained by the
general EF factor is depicted as a function of age. For a given EF domain and age, this was computed as
loading2 � (loading2 + residual variance2). The proportion of variance in the inhibition factor that
could be explained by general EF decreases after about 11 years of age. Age trends for switching were



Table 4
Coefficient estimates from the domain-specific moderated factor analysis models.

Loading on latent domain-specific
factor

Loading on residual variance

Main effect Linear age moderation Main effect Linear age moderation

Inhibition Stroop .27 – .78*** �.20**

Mickey .20** – .96*** �.09***

Stop Signal auditory .13** – .98*** �.01
Stop Signal visual .19** – .96*** �.04

Switching Trail Making .37*** �.15* .82*** �.01
Plus–Minus .22*** �.18*** .69*** �.38***

Local–Global .40*** �.19** .81*** �.01
Cognitive Flexibility .32 �.16 .88*** .00

Updating Running Memory .64*** .03 .61*** �.01
Keeping Track .48*** .03 .81*** �.01
2-Back .55*** .13** .73*** �.04
N-Back .54*** �.01 .72*** �.01

Working memory Symmetry Span .49*** – .73*** �.01
Listening Recall .57*** – .61*** .06*
Digit Span .35*** – .87*** .04*

Note. Note that models were estimated separately for each domain.
* p < .05.
** p < .01.
*** p < .001.

Table 5
Coefficient estimates from the higher-order moderated factor analysis model.

Main effect
age

Main effect
age2

Factor loading Loading on residual factor

Main
effect

Linear age
moderation

Main
effect

Linear age
moderation

Inhibition .21*** �.02* .16*** �.02 .07 .10*
Switching .20*** �.03** .27*** �.04** .12** �.10***

Updating .28*** �.04*** .62*** .01 .17* .02
Working memory .21*** �.02** .35*** �.01 .12* �.00

Stroop 1 – .81*** �.19**

Mickey .63*** – .96*** �.09***

Stop Signal
auditory

.35* – .99*** –

Stop Signal visual .58*** – .97*** –

Trail Making 1.37*** .12 .78*** –
Plus–Minus .74*** �.02 .81*** �.23***

Local–Global 1.30*** .06 .79*** –
Cognitive

Flexibility
1 – .87*** –

Running Memory 1 – .60*** –
Keeping Track .76*** – .80*** –
2-Back .84*** .08** .74*** –
N-Back .83*** – .74*** –

Symmetry Span 1.29*** – .75*** –
Listening Recall 1.52*** – .62*** .03*
Digit Span

Backward
1 – .85*** .03*

* p < .05.
** p < .01.
*** p < .001.
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Fig. 2. Proportion of variance in the first-order factors explained by the general executive function factor across age, as
measured by moderated factor analysis.
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flatter, with the decrease starting at about age 13. WM and updating were not significantly moderated
by age.

According to the age differentiation hypothesis, general EF is expected to account for less variance
in the EF domains with age, resulting in a decrease of second-order factor loadings. We do not find a
general decrease in second-order factor loadings, indicating that the variance among all four EF
domains does not decrease generally. What we find is a more specific pattern where the higher-
order EF factor consistently accounts for individual differences in WM and updating but not in inhi-
bition and switching.

Local structural equation modeling

LSEM allows for visual detection of nonlinear relations between model parameters and age.
According to the age differentiation hypothesis, we should observe decreases in standardized loadings
of domain-specific EF onto the common EF factor with increasing age. For LSEM, focal age points ran-
ged from 8.0 to 14.0 with 0.1 increments. These upper and lower limits were selected to reduce
boundary bias based on the age distribution of the sample (Hildebrandt et al., 2009, 2016). In total,
we estimated 61 weighted models. Standardized loadings are reported to facilitate interpretation.
Fig. 3 shows the trajectories of the standardized higher-order factor loadings, and Fig. 4 shows the
first-order factor loadings. LSEM indicated that the standardized loadings of the switching, updating,
and WM factors on common EF were relatively stable over the age range. The standardized loading of
inhibition onto common EF was 1.0 at earlier ages. After approximately 10 years of age, this loading
dropped precipitously, reaching a lower magnitude of approximately .40. This result indicates that
inhibition shared less variance with the other factors after about age 10.

The first-order loadings of specific tasks onto the updating and WM factors were stable with two
exceptions. First, after 12 years of age, the loading of Symmetry Span ontoWM decreased, whereas the
loadings of the other two tasks slightly increased. Second, the loading of 2-Back onto the updating fac-
tor increased. Both of these trends were also observed in the MFA results. The loading of Cognitive
Flexibility onto the latent switching factor showed a reverse U-shaped relation with age. Between
about 10 and 12 years of age, Cognitive Flexibility and Trail Making had the highest factor loadings,



Fig. 3. Standardized second-order factor loadings across age from local structural equation modeling. EF, executive function.
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whereas at younger and older ages, Trail Making and Local–Global had the highest loadings. Loadings
of individual tasks onto the inhibition factor remained negative or close to 0 at younger ages, comple-
menting MFA results concerning instability of the inhibition factor across age. Both Stop Signal tasks
showed considerable increase in factor loadings in the LSEM model.

Counter to the age differentiation hypothesis, results of this analysis do not show a general
decrease in second-order factor loadings, nor is there an overarching pattern at the level of first-
order factor loadings.

Network models

The main goal of network analysis is to investigate relations at the task level. According to the age
differentiation hypothesis, we should observe a general decrease in relations among all tasks. We used
the ages and steps from the LSEM analysis to estimate the saturated correlation matrices on which we
based the network models. (A visual depiction of network transformations across age can be found in
the online supplementary material.) In a visual representation of a network model, the thickness of the
lines corresponds to the magnitude of the interrelation. Network models indicated that the inhibition
tests became less strongly related to one another from 8 to 13 years of age. This pattern had the effect
of reducing variance shared by inhibition with the other first-order domains. However, it is worth
remembering that loadings of the inhibition tasks onto their first-order factor were sometimes nega-
tive at younger ages. Because the network was based only on the strength of interrelations, node
valence was not taken into account; in the supplemental visual depiction of network transformations,
inhibition indicators are closer to each other even when the relation is negative. Fig. 5 plots the cen-
trality indices by age, with strength capturing how strongly a task is directly connected to other tasks
by summing up the absolute values of all correlations of a task with the other tasks and with closeness
describing each task’s indirect closeness to all other tasks by taking the inverse of the sum of all the
shortest paths between a task and all other tasks in the network. We see that, for many of the nodes,
centrality decreased over the age range of the sample. This is particularly the case for the Stroop and
Plus–Minus tasks. Higher centrality before 10 years of age for the inhibition indicators might be
explained by higher negative relations at younger ages and slightly positive relations after age 10.



Fig. 4. Standardized first-order loadings on first-order factor loadings from local structural equation modeling. WM, working
memory.

J. Hartung et al. / Journal of Experimental Child Psychology 189 (2020) 104681 13
The decrease in centrality of all indicators until approximately 13 years of age could indicate sup-
port for the age differentiation hypothesis. However, taking a closer look on the network or the cor-
relation coefficients, this decrease is largely driven by the inhibition indicators and by Plus–Minus
(see online supplementary material). Steep decreases in correlations of the Stroop and Plus–Minus
tasks would lead to lower centrality indices for all indicators if they were not simultaneously becom-
ing more related to each other. Furthermore, the increase in centrality after age 13 is contrary to the
age differentiation hypothesis. Therefore, the network analysis suggests the same implication as the
previous two approaches: There is no general decrease in task correlations, but specific tasks have
an age-moderated relationship with the remaining EF tasks.



Fig. 5. Closeness and strength of the 12 nodes in the network models across age.
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Sensitivity analyses using one twin per family

Although we statistically accounted for the dependency between individuals from the same family
in all previously described analyses, a sensitivity analysis is useful to determine whether the pattern of
results was unduly influenced by the dependency between siblings. Sensitivity analysis were con-
ducted by repeating the analyses with a subsample consisting of one sibling per family only. In sum-
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mary, the results from the sensitivity analyses indicated that the pattern of results did not change sub-
stantially if a subsample consisting of only independent observations was used. Due to the lower
power in the subsample, linear moderation of inhibition was hard to discover within the subsample,
but nonparametric and correlational analyses did not differ substantially from the complete sample.
Refer to Appendix A for a detailed description of the results from the sensitivity analysis.
Discussion

The aim of this project was to investigate age trends in the multivariate structure of children’s
executive abilities. We used three complementary techniques, exploiting their respective strengths.
In contrast to the age differentiation hypothesis, none of the three methods indicated a global pattern
of decreasing EF interrelations with age. MFA and LSEM did not show consistent decreases in factor
loadings or increases in residual variances, nor did network analysis indicate uniform decreases in
relations between nodes across age. Rather, we observed a more nuanced pattern marked by consis-
tent covariance patterns for WM and updating across the age range and differentiation of inhibition
from the other EFs with age. Trends for switching were less consistent across analytic approaches.

Results of MFA indicated that parameters linking a common EF factor to the lower-order WM and
updating factors were stable over the age range. In contrast, inhibition and switching factors differen-
tially loaded onto the common EF factor across the age range. LSEM highlighted the relative stability of
the switching loading across the age range but substantiated the age trends detected for the loading of
the inhibition factor onto common EF. In particular, the common EF factor explained 100% of the vari-
ance in the inhibition factor (loading = 1) through approximately 10 years of age and dropped in mag-
nitude to approximately .50 by the teenage years. This effect could be driven by the small to negative
loadings of the tasks onto the inhibition factor at earlier ages, reflecting a lack of shared variance or
high task specificity. In the network models, the inhibition tasks and one switching task (Plus–Minus)
became more remote from the other tasks through approximately 13 years of age, indicating that vari-
ance shared between these and other tasks decreased, then subsequently increased. Despite nuanced
differences in the results as a function of the three analytic approaches, all approaches indicated sub-
stantial age differences in the structure of the inhibition factor across the age range, with greater con-
sistency across age observed for the WM, updating, and switching factors.

It is less clear whether age differences affected the domain-specific factor structure. The network
approach indicated that at younger ages there were negative relations specific to the inhibition tasks.
Very low to negative relations between inhibition tasks have been found in other studies. For instance,
in Huizinga et al. (2006), a common inhibition factor could not be extracted due to low correlations of
the tasks. The low task loadings onto the inhibition factor in the current study’s LSEM and MFA, in
addition to decreasing age-moderated residual variance in the Stroop and Mickey tasks, are in line
with this observation. All three methods cast doubt on the existence of a unified inhibition factor at
younger ages. Earlier analyses based on the same tasks and partly the same sample also found low cor-
relations and low factor loadings of the inhibition indicators (Engelhardt et al., 2015, 2016). In addi-
tion, reliability of the current inhibition tasks was relatively low, which is not unusual for inhibition
tasks. Because inhibition tasks are scored by subtracting performance on one condition from perfor-
mance on another, measurement error is compounded, leading to low reliability. Indeed, Engelhardt
et al. (2015) previously reported relatively high reliability of individual conditions within inhibition
tasks but lower reliability for difference scores across conditions. Future studies could investigate
the effects of different scoring procedures on the presented results.

The high loadings of WM and updating onto the common EF factor are in line with studies seeking
to understand the nature of a common EF factor. These studies have shown a high overlap between
WM capacity and common EF, with some referring to this common ability as executive attention
(McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010). According to Miyake and Friedman
(2012), ‘‘Common EF is about one’s ability to actively maintain task goals and goal-related information
and use this information to bias lower-level processing” (p. 11). Similarly, Engle (2002, 2018) hypoth-
esized that a major feature of both EFs and fluid intelligence is the capacity for controlled attention.
More insight about the nature of the common EF factor is provided by studies suggesting that it is
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highly related to, but distinct from, both general intelligence and fluid intelligence specifically
(Engelhardt et al., 2016; Friedman et al., 2008).

Interestingly, in the current study, all three methods indicate at least some developmental trans-
formations in associations within and between EF domains. Engelhardt et al. (2015) investigated
age invariance of their model with a subsample drawn from the Texas Twin Project (N = 505). They
conducted a multiple group analysis with two age groups. They reported measurement invariance
on the first-order level; a model in which first-order loadings and intercepts were constrained to be
invariant across age groups fit the data as well as a model in which these parameters were free to dif-
fer across groups. However, second-order invariance was not tested, and the downsides of categoriz-
ing participants into arbitrary groups were discussed in the Introduction of the current article.

The measurement model used in the current analysis is based on previous studies that were per-
formed on data drawn from the Texas Twin Project (Engelhardt et al., 2015, 2016). In this model,
updating and WM are modeled as separate factors, although others have argued that the two factors
assess the same underlying construct (e.g., Chein, Moore, & Conway, 2011; St Clair-Thompson &
Gathercole, 2006). In the current sample, the model in which updating and WM tasks loaded onto a
single factor exhibited the same fit as the primary model that included separate factors (standardized
root mean square residual [SRMR] = .038 for both models). Due to the superiority of the four-factor
model in previous analysis and a balanced representation of factors, the four-factor model provides
a better basis for the current analysis. The number and nature of components of EF is a subject of
an ongoing debate. As defined in the current analysis, WM can be interpreted as storage or memory
maintenance measured with simple span tasks, whereas updating reflects storage-plus-processing
or updating. Although there are studies arguing for a common ability underlying both domains
(Schmiedek et al., 2009), other studies show that they are conceptually related but differentiable in
terms of cognitive processes (Ecker, Lewandowsky, & Oberauer, 2014; Ecker, Lewandowsky,
Oberauer, & Chee, 2010). Nevertheless, it should be noted that the WM and updating factors are sub-
stantially correlated (.74).

Best et al. (2009) theorized that a certain level of inhibition needs to emerge first to facilitate other
EFs. Our results indicated that whereas inhibition tasks become more correlated with one another
with increasing age, the inhibition factor becomes less central in the overall EF framework. Therefore,
the inhibition factor might increasingly convey specific variance that is unique from other EF factors,
whereas the little variance shared by the inhibition indicators in young age can be completely
explained by common EF. The results of the current study are in line with Lee et al. (2013) and Xu
et al. (2013), who found less differentiable factors in CFAs of younger children’s EFs in the sense that
we find correlations between second-order factors to be highest at younger ages. A possible explana-
tion for the low loadings of inhibition indicators for the younger participants could be a stronger effect
of the task impurity problem (Snyder, Miyake, & Hankin, 2015). This means that a greater proportion
of variance in inhibition tasks can be attributed to specific task contexts such as articulation speed in
the Stroop task. This concern with respect to the low convergent validity of inhibition tasks is not a
new one. Weak correlations between inhibition tasks have been reported in many studies
(Salthouse, Atkinson, & Berish, 2003; Shilling, Chetwynd, & Rabbitt, 2002; van der Sluis, de Jong, &
van der Leij, 2007). Nevertheless, studies with data from older children or young adults have been able
to identify inhibition factors, albeit with weak to moderate factor loadings (Miyake et al., 2000; Wu
et al., 2011). The current results, therefore, are consistent with the finding that inhibition tasks con-
verge only weakly on a common source of individual differences. Here, we expand on this finding
by showing that the shared variance between inhibition tasks increases with increasing age. More
generally, the results of the current study suggest that task impurity poses a major problem in the
measurement of inhibition in earlier childhood.

The current study was based on a broad EF battery containing at least three tasks per EF domain
and compared inferences derived from three different analytic approaches (Engle, 2018; Miyake
et al., 2000). The initial selection of EF measures was based on a broad review of the literature on indi-
vidual differences in EFs and has been empirically validated using confirmatory factor analytic meth-
ods (Engelhardt et al., 2015, 2016). Because of advantages and disadvantages of different analytic
techniques, it is reasonable to combine them in examining age moderation. Nevertheless, the extent
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to which the inferences drawn here will generalize to other EF tasks, domains, or analytic approaches
is unclear.

It is also important to consider whether results are affected by a sample composed of twins and
multiples. Importantly, we statistically accounted for the dependency that arises from including mul-
tiple individuals per family. Furthermore, in a sensitivity analysis using only one sibling per family,
results indicated patterns similar to those obtained from the entire dataset. Regarding generalizability
from twin samples to the broader population of singletons, we cannot be certain because we have not
tested singletons using this battery. Nevertheless, studies by the Miyake and Friedman group used a
similar battery in both twins and non-twins and reported very similar factor structures (Friedman
et al., 2008; Miyake & Friedman, 2012; Miyake et al., 2000). Furthermore, the FSIQ of the current sam-
ple was quite similar to that of the general U.S. population. Of course, any one study cannot be defini-
tive in its conclusions. Therefore, it will be important for future work—employing different protocols,
methods, and sampling strategies—to examine the question of age differentiation of EFs.

In summary, results of three different modeling strategies did not produce clear evidence for a glo-
bal pattern of decreasing interrelations among domain-specific EF factors. Rather, we found that WM
and updating are domains of EF with consistently high centrality to the EF construct space with age
and that inhibition tasks increased in their within-domain coherence while at the same time increas-
ing in between-domain separation over age. At the level of the constructs, EFs may be relatively stable
in their dimensionality with childhood age. However, challenges may remain in the consistent mea-
surement of some domains of EF in early childhood.
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Appendix A

Sensitivity analysis with only one sibling per family
The analyses described in the article were repeated using data from only one randomly chosen sib-

ling per family (n = 498). The analysis followed the same procedure as that of the complete sample.
Results from the domain-specific MFA models did not differ for inhibition and updating. The
domain-specific model for switching differed from the results of the overall data set; only the residual
factor loading of Plus–Minus was significantly moderated; and factor loadings for Trail Making, Plus–
Minus, and Local–Global were not significantly moderated. However, in the higher-order model using
the overall data set, these factor loading moderations also did not reach the significance value. In the
domain-specific model for working memory, only the residual factor loading of Listening Recall was
significantly moderated, whereas the residual factor loading of Digit Span Backward was not signifi-
cantly moderated. In the higher-order model of the complete sample, both moderation estimates were
quite small.

Table A2 shows the results from the higher-order MFA using the subset. Predictably, fewer esti-
mates reached significance because power in this subsample is lower. Because of the lower power,
we are not focusing on significance but rather report on substantial differences between parameter
estimates. As can be seen in Table A2, most estimates were very close to the full sample. The most
notable difference is the moderation of the loading on the inhibition residual factor, which was 10
times larger in the full sample. Fig. A2 shows the proportion of explained variance in the four EF
domains.

Fig. A3 shows the trajectories of the standardized higher-order factor loadings, and Fig. A4 shows
the first-order factor loadings from local structural equation modeling. Results did not differ substan-
tively from the results of the complete sample.



Table A1
Descriptions of the tasks.

Task Source Paradigm

Inhibition
Stroop Wright et al. (2003) Verbally identify animals from line drawings. In the congruent condition, the face

of the animal matches the body. In the incongruent condition, the face does not
match the body and identification should be based on the body. In the neutral
condition, the face area is blank and identification should be based on the body

Mickey Lee et al. (2013) Indicate on which side of a computer screen a cartoon Mickey Mouse face
appears while ignoring any squares that flash on-screen before Mickey. In the
congruent condition, a square flashes on the same side where Mickey appears. In
the incongruent condition, a square flashes on the opposite side. In the neutral
condition, squares flash on both sides

Stop Signal
auditory

Verbruggen et al.
(2008)

Indicate which way an arrow points, but do not respond if a tone (stop signal)
sounds after the arrow is presented

Stop Signal
visual

Verbruggen et al.
(2008)

Indicate which way an arrow points, but do not respond if a red X (stop signal)
appears on top of the arrow

Switching
Trail Making Salthouse (2011) Connect circles containing numbers in numerical sequence and circles containing

letters in alphabetical order. In the two simple conditions, only numbers or letters
are presented. In the two alternating conditions, both numbers and letters are
presented, and the circles should be connected in an alternating sequence
(numbers–letters: 1-A-2-B, etc.; letters–numbers: A-1-B-2, etc.)

Local–
Global

Miyake et al. (2000) Verbally identify letters and shapes composed of smaller letters and shapes. In
the two local conditions, participants should name the small constituent letters
or shapes. In the two global conditions, they should name the large overall letter
or shape. In the alternating condition, they should alternate between naming the
constituent and overall letters or shapes

Plus–Minus Miyake et al. (2000) Complete simple addition and subtraction problems on paper. In the adding
condition, participants should add 1 to each provided number. In the subtracting
condition, they should subtract 1 from each number. In the alternating condition,
they should alternate between adding 1 and subtracting 1

Cognitive
Flexibility

Pay attention to which of two possible rules (shape or color) is cued on a given
trial. When a target stimulus appears, select one of two response choices that
matches the target stimulus on the cued rule

Updating
Running
Memory

Broadway and Engle
(2010)

View a sequence of single letters and identify the last n digits in order of their
presentation

Keeping
Track

Miyake et al. (2000) Listen to words falling under four categories and recall the most recent word
from a given category

2-Back Jaeggi et al. (2010) View a sequence of individual shapes and indicate when the current shape
matches the shape from two trials prior

N-Back Jaeggi et al. (2010) View a sequence of individual shapes and indicate when the current shape
matches the shape from n trials prior. Blocks consist of 1- and 2-back targets

Working memory
Symmetry
Span

Kane et al. (2004) View and encode a square flashing on a grid. On alternating trials, indicate
whether the geometric display is symmetrical. Later, recall the locations and
order of the flashing squares on the preceding trials

Listening
Recall

Daneman and
Carpenter (1980)

Listen to single letters and sentences presented in alternation trials. On sentence
trials, determine whether the sentences make sense. Later, recall the order of the
letters on the preceding trials

Digit Span
Backward

Wechsler (2008) Repeat increasingly long strings of numbers backward

Note. This table is based on Table 1 from Engelhardt et al. (2015).
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Table A2
Coefficient estimates from the higher-order moderated factor analysis model using the subset with only one sibling.

Main effect
age

Main effect
age2

Factor loading Loading on residual factor

Main
effect

Linear age
moderation

Main
effect

Linear age
moderation

Inhibition .21*** (.21) �.01 (�.02) .15*** (.16) �.01 (�.02) .12 (.07) .01 (.10)
Switching .21*** (.20) �.01 (�.03) .33*** (.27) �.01 (�.04) .11 (.12) �.13*** (�.10)
Updating .28*** (.28) �.04*** (�.04) .59*** (.62) .01 (.01) .00 (.17) .00 (.02)
Working memory .22*** (.21) �.02** (�.02) .37*** (.35) �.01 (�.01) .12 (.12) �.00 (�.00)

Stroop 1 (1) – .89***

(.81)
�.13*** (�.19)

Mickey .82*** (.63) – .94***

(.96)
�.08** (�.09)

Stop Signal
auditory

.24 (.35) – .99***

(.99)
–

Stop Signal visual .49* (.58) – .98***

(.97)
–

Trail Making 1.16***

(1.37)
– (.12) .76***

(.78)
–

Plus–Minus .38*** (.74) – (�.02) .84***

(.81)
�.23*** (�.23)

Local–Global 1.07***

(1.30)
– (.06) .81***

(.79)
–

Cognitive
Flexibility

1 (1) – .84***

(.87)
–

Running Memory 1 (1) – .64*** –
Keeping Track .79*** (.76) – .79*** –
2-Back .85*** (.84) .14** (.08) .74*** –
N-Back .78*** (.83) – .79*** –

Symmetry Span 1.33***

(1.29)
– .70***

(.75)
–

Listening Recall 1.49***

(1.52)
– .59***

(.62)
.03 (.03)

Digit Span
Backward

1 (1) – .84***

(.85)
– (.03)

Note. Estimates from the full sample are in parentheses.
* p < .05.
** p < .01.
*** p < .001.
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Fig. A1. Scatterplots of the scores in the single tasks across age.
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Fig. A2. Proportion of variance in the first-order factors explained by the general executive function factor across age, as
implied by moderated factor analysis in the subsample with only one sibling per family.

Fig. A3. Standardized second-order factor loadings across age from local structural equation modeling in the subsample with
only one sibling per family. EF, executive function.
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Fig. A4. Standardized first-order loadings on first-order factor loadings from local structural equation modeling in the
subsample.
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Fig. A5 plots the centrality indices by age from the subsample. There were no major differences in
the network analysis of the complete sample.
Fig. A5. Closeness and strength of the 12 nodes in the network models across age in the subsample.



24 J. Hartung et al. / Journal of Experimental Child Psychology 189 (2020) 104681
Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jecp.2019.
104681.
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