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1. Supplemental Methods 

 

1.1 Sample 

 

The Lothian Birth Cohort 1936 is a sample of older individuals, most of whom 

completed a test of mental ability during the Scottish Mental Survey of 1947 [S1], and 

who were contacted in 2004-2007 for follow-up testing. The initial testing wave 

included 1,091 individuals (543 female) with an average age of 69.5 years (SD = .8). 

The second wave, carried out in 2007-2010, included 866 individuals (418 female) 

aged 72.5 (SD = .7). The third, carried out in 2011-2014, included 697 (337 female) 

aged 76.3 (SD = .7). The sample’s recruitment, testing and findings are described in 

detail elsewhere [S2, S3]. All participants gave written informed consent before 

joining the cohort, and the study was approved by the Multi-Centre Research Ethics 

Committee for Scotland (MREC/01/0/56) and the Lothian Research Ethics Committee 

(LREC/2003/2/29). 

 

1.2 Measures 

 

Inspection time. The inspection time stimulus (illustrated in Figure 1A in the main 

article), presented on a computer monitor with a 160Hz refresh rate, consisted of a 

pair of parallel vertical lines, connected at the top with a 2.5cm-long horizontal line. 

One of the vertical lines was noticeably shorter than the other: 2.5cm compared to 

5cm. All lines were 1.6mm wide. After seeing a fixation cross for 500ms, there was a 

gap of 800ms before participants were shown the stimulus, at one of a number of 

durations described below. This was followed by a 500-ms visual pattern mask made 
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up of several side-by-side vertical lines that obstructed both of the original lines. After 

mask-offset, participants were asked to indicate, by pressing the relevant button on 

the computer keyboard, which of the lines was the longer: right, or left. They could 

respond at their leisure; they were informed there was no need for a quick response. 

The task was programmed so that no responses would be accepted until mask offset, 

which prevented impulsive responses. There were 40 practice trials, which gave 

feedback about the correctness of each response. There were 150 test trials, with no 

feedback. For the test trials, the stimulus display duration varied; there were ten trials 

at each of the following fifteen durations: 6, 12, 19, 25, 31, 37, 44, 50, 62, 75, 87, 

100, 125, 150 and 200ms (all to the nearest millisecond), presented in a random order. 

The final variable, used in all the analyses, was the total number of correct responses. 

Since participants all show a pattern where their performance is near-chance at the 

shorter durations and near-ceiling on the longer durations, individuals with a higher 

total number of correct responses are those who reach asymptote (100% correct) more 

rapidly, and thus are theorized to have faster perceptual processing speed. The total 

number of correct responses correlates strongly (r ≈ .7) with the duration at which 

each participant’s performance reaches asymptote, and moderately, though still 

substantially, with the duration at which their performance reaches 80% correct (r ≈ 

.5). 

 

Intelligence. Intelligence was measured using four non-verbal subtests of the 

Wechsler Adult Intelligence Scale, 3rd Edition UK (WAIS-IIIUK) [S4]. First, Matrix 

Reasoning involves the completion of an array of patterns that are organized 

according to rules, and have a piece missing. When the participant has deduced the 

rule, they choose a piece from among a variety of responses to complete the array. 
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Second, Block Design involves the participant being shown a series of patterns on 

cards, and arranging blocks with different colors (white, red, or diagonally white and 

red) on each of their faces so that together they replicate the pattern. They are given 

two minutes to complete each pattern (though speed of response is not a part of the 

final score). Third, Letter-Number Sequencing, primarily a test of working memory, 

involves the participant listening to the tester reading a list of mixed letters and 

numbers of increasing length, and repeating back the numbers in numerical order then 

the letters in alphabetical order. Fourth, Digit Span Backwards also tests working 

memory. The tester reads out increasingly long lists of numbers, and the participant 

attempts to repeat them backwards. 

 

Other speed measures. As discussed in the main document, we compared the 

performance of inspection time change as a predictor of intelligence change with 

three other speed tests. First, Digit-Symbol Substitution from the WAIS-IIIUK, is a 

pencil-and-paper task where participants are shown a list of digits and their 

corresponding symbols, and have to then fill as many missing symbols to a presented 

list of digits as they can in two minutes. Second, Symbol Search, also from the 

WAIS-IIIUK, involves participants examining lines of symbols and indicating whether 

designated target symbols are included, as quickly as possible. Third, mean four-

Choice Reaction Time was measured with a dedicated device, described in detail 

elsewhere [S2]. After eight practice trials, participants had forty test trials where they 

were to press one of four keys indicated by numbers appearing on an LCD screen as 

quickly as possible. 

 

1.3 Statistical Analysis 
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To plot individual trajectories in intelligence as shown in Figure 1B, we extracted a 

single factor from the scores on each of the four WAIS subtests with maximum 

likelihood estimation using the factanal function for R [S5], and used Bartlett’s 

method for factor score estimation. This factor explained 44.9% of the variance in 

WAIS subtest scores across the three waves. 

 

Growth curve modeling was performed in Mplus version 7.11 [S6]. The model, like 

other structural equation models, combines factor analysis and regression, allowing 

simultaneous estimation of latent intelligence factors, their change across time, and 

their relationship with the inspection time measurements. Mplus scripts for the model 

are available on request from the corresponding author. 

 

A full path diagram of the bivariate growth curve model is shown in Figure S1. In the 

diagram, squares represent measured (observed) variables and circles represent latent 

(unobserved) variables. The connections between them are either single-headed 

arrows, indicating a directional relationship, or double-headed arrows, indicating a 

covariance. Covariance paths from a variable to itself represent residual variances.  

 

In order to fit the growth curve model, some of the paths are freely estimated 

according to the data but others are fixed to particular values. In order to set the 

metric of the factor, the factor loadings for the first indicator is fixed at a constant 

value of one and the mean of the baseline factor is fixed at a constant value of zero. 

As is standard in growth curve modeling [S7], the paths from the latent intercept (or 

‘level’) variables to each of the measures at waves 1, 2, and 3 are fixed at one, 
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meaning that the latent intercept variable represents an individual’s expected level of 

performance at baseline. Customarily, growth models would then specify a fixed 

value for each of the paths from the latent slope parameters – in this case, zero, three, 

and six, for the time in years between the testing waves. This specifies a linear slope 

of change with age. However, since there was some variance in age at each wave (the 

participants were not all precisely 70, 73, and 76 years old at the three waves 

respectively), we allowed a finer-grained estimation of change across time by using 

the “TYPE IS RANDOM” option in Mplus to add individually-varying times for each 

participant to the paths from the latent slope variable.  

 

The paths in Figure S1 marked ‘LL’ and ‘SS’ denote level-level and slope-slope 

correlations between intelligence and inspection time, respectively. These are the 

main paths of interest for our hypothesis. The paths marked ‘LS’ are within- and 

between-variable correlations between levels and slopes, with the specific variables 

denoted in subscript.  

 

2. Supplemental Results 

 

2.1 Descriptive statistics 

 

Table S1 shows the correlations between each of the measures, along with their 

means and standard deviations. 

 

2.2 Age-associated change in cognitive tests 
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The means of the two latent slope factors in the growth curve model, indicated 

significant declines in both intelligence and inspection time with age. As noted in the 

main article, overall intelligence declined by .048 SDs per year, SE = .004, z = 

−12.184, p  < .001, and inspection time declined by .055 SDs per year, SE = .010, z = 

−5.755, p  < .001. We also tested the change in the individual intelligence subtests by 

estimating a model with a univariate growth curve for each. This model showed that 

Matrix Reasoning declined by .036 SDs per year, SE = .005, z = −6.641, p < .001; 

Block Design by .045 SDs per year, SE = .004, z = −10.239, p < .001; Letter-Number 

Sequencing by .045 SDs per year, SE = .006, z = −7.268, p < .001; and Digit Span 

Backwards by .013 SDs per year, SE = .006, z = −2.384, p = .017. Thus, there was 

significant age-associated decline in each of the tests used in the final model. 

 

2.3 Measurement invariance for intelligence 

 

Since we modeled longitudinal change in a latent variable (intelligence), it was 

important to ensure that the same construct was being measured across time [S8]. We 

tested this by comparing the fits of models in which factor loadings and test intercepts 

were freely estimated to those in which they were constrained to be invariant across 

time.  

 

The measurement model had acceptable fit to the data with no invariance (χ2 = 

313.31, Root Mean Square Error of Approximation = .080, Comparative Fit Index = 

.953, Tucker-Lewis Index = .921), metric invariance (only loadings invariant across 

time; χ2 = 320.87, RMSEA = .075, CFI = .953, TLI = .931) and with strong factorial 

invariance (loadings and intercepts invariant across time; χ2 = 358.89, RMSEA = 
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.074, CFI = .947, TLI = .932). Metric invariance could be imposed without a 

significant loss of model fit compared to no invariance, according to a chi-squared 

test (p = .27). Although the model with strong factorial invariance fit significantly 

more poorly than the model with metric invariance (p < .001), strong invariance was 

nonetheless preferable for the following reasons. First, the chi-squared test is over-

powered in moderately large samples, and thus trivial differences will be classified as 

significant. Second, the RMSEA value for strong invariance (.074) was somewhat 

better than that for metric invariance (.075). Third, inspection of the freely-estimated 

intercepts indicated that they were very similar across time: for Block Design, they 

were 33.769, 33.982, and 33.039 for waves 1, 2, and 3 respectively; for Letter-

Number Sequencing, they were 10.907, 11.011, and 10.675; and for Digit Span 

Backwards, they were 7.734, 7.897, and 7.986. We thus used the strong invariance 

model due to its superior interpretative value. It should be noted, however, that in a 

model with only metric invariance, a near-identical pattern of results was obtained. 

 

2.4 Growth curve model results 

 

Parameter estimates for the growth curve model are provided in Table S2.  

Unstandardized parameters are reported for all portions of the model except for the 

correlations among the level and slope factors, which we provide in the standardized 

metric for ease of interpretation. Note that, because the random effects approach 

implemented for our growth curve analysis specifies parameters to be person-specific, 

a single covariance matrix for the total population is not implied by the model. Fit 

statistics that are based on the comparison of the ‘model-implied’ population 

covariance matrix to the ‘observed’ sample covariance matrix (e.g. RMSEA, CFI, and 
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TLI) were reported for the measurement models above, but were not available for the 

full growth curve model. 

 

As reported and discussed in the main text, there were substantial and significant 

correlations both between the level of intelligence and the level of inspection time (r 

= .460, SE = .043, z = 10.623, p < .001), and between the slope of intelligence and the 

slope of inspection time (r = .779, SE = .369, z = 2.109, p = .035). There were no 

significant associations between level and slope, either within or between variables. 

 

2.5 Robustness checks 

 

We ran four additional models to check the robustness of our findings. First, we 

adjusted each of the variables for sex before including them in the growth curve 

model. This made very little difference to the final model parameters (e.g. growth 

curve level-level correlation after controlling for sex = .447, p < .001; slope-slope 

correlation = .785, p = .035). 

 

Second, to test whether pathological cognitive ageing influenced the results, we 

excluded all individuals with a score at the final wave lower than 24 on the Mini 

Mental State Examination (MMSE) [S9], a commonly-used cutoff for possible 

dementia. There were 12 individuals with scores below the cutoff at the final wave, 

and their exclusion resulted in a similar level-level correlation (.437, p < .001), and a 

still-strong and significant, slope-slope correlation (.670, p = .032). 
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The nature of the inspection time task is such that durations appear at random; short 

and longer durations appear unpredictably. Therefore, one may use performance on 

the longest durations as a possible check for inattention. In a third check for 

robustness, therefore, we modeled data from only those participants who scored 8 out 

of 10 or better (i.e. >=80% correct) on the trials with the two longest durations (150 

and 200ms; ten trials each). 40 individuals at wave 1 had their inspection time scores 

removed for this reason, in addition to 45 individuals at wave 2, and 42 individuals at 

wave 3. Their exclusion hardly changed our results (level-level correlation = .424, p < 

.001; slope-slope correlation = .754, p = .015). 

 

Our fourth and final robustness check was to change the way inspection time was 

characterized. Instead of using the “total number of correct responses” variable, we 

re-ran the analysis using a stimulus threshold value for each participant. To obtain this 

value, we calculated, for each individual, the shortest of the 15 possible stimulus 

durations at which they scored 80% correct or above (that is, at which they responded 

correctly 8 or more times out of 10). As noted above, the resulting variable correlates 

substantially with the “total correct” variable, but is not identical to it. Using this 

variable produced a numerically larger level-level correlation (r = −.579, p < .001; 

values are negative since shorter durations imply better inspection time performance) 

and slope-slope correlation (r = −.854, p = .001) than using the “total correct” 

variable. Thus, regardless of how inspection time was measured, we still obtained a 

substantial and significant correlation between the slopes of intelligence and 

inspection time. 

 

2.6 Other speed variables 
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We tested the correlation between the slope of fluid intelligence and the slope of the 

three additional speed variables. For Digit-Symbol Substitution, the slope-slope 

correlation with intelligence was r = .811, SE = .228, p < .001. For Symbol Search, it 

was r = .862, SE = .288, p = .003. For Choice Reaction Time, it was r = −.867, SE = 

.186, p < .001 (note that lower scores on Choice Reaction Time indicate faster 

processing). Thus, the magnitude of the slope-slope correlation of inspection time 

with intelligence was similar to that of the other speed variables, even though 

inspection time is a far simpler measure. 

 

3. Supplemental Discussion 

Our results provide strong evidence for coupled change in speed of basic visual 

discrimination and fluid intelligence in later life. In this section, we discuss some 

points arising from the results that could not be included in the main paper for space 

reasons. 

 

First, it should be noted that no significant correlations were found between the latent 

level parameters and the latent slope parameters, either within or between intelligence 

and inspection time. However, the level-slope correlation within intelligence was 

negative and near significance (z = -1.734, p = .083), indicating that individuals with 

higher intelligence scores tended to decline in intelligence more across time than 

those with lower scores. This may reflect the ‘law of initial value’ [S10], whereby 

there are more ways in which a high score can be reduced than there are ways in 

which a low score can be reduced (individuals with higher initial intelligence scores 

have “more to lose” than those with low initial intelligence).  It may also reflect 
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regression to the mean [S11], though this is unlikely given our latent variable 

approach. Overall, then, even if this result were significant, it would be easily 

explainable in terms of well-known statistical regularities. 

 

Second, we ran three additional models where the inspection time measure was 

replaced with, Digit-Symbol Substitution, WAIS Symbol Search, and Choice 

Reaction Time. The correlations of the slope of these tasks with the slope of 

intelligence were all around the same magnitude as the slope-slope correlation of 

inspection time and intelligence. These results strengthen our main finding, since they 

show that inspection time, an extremely basic task of visual discrimination ability that 

(as discussed in the main paper) is unlikely to be confounded by response speed, 

movement time, or more complex cognitive functions such as memory, is as strongly 

related to decline in higher functions as tests that are likely to suffer from these 

confounds. Expressed another way, these results demonstrate that longitudinal slope-

slope correlations between processing speed and intelligence remain strong even 

when potential confounds to this relationship are removed. 

 

Third, it is instructive to compare our results to previous attempts to elucidate the 

longitudinal relation of intelligence to inspection time. The most recent study of this 

relation was that of Gregory and colleagues [9], who showed in a sample of 124 

participants over 70 that lower inspection time performance was predictive of more 

cognitive decline across an 18-month follow-up period, but that there was no 

association between longitudinal changes in inspection time and cognitive decline. 

The most likely reason for the difference between this previous result and our 

significant finding of a slope-slope correlation is the much longer follow-up period 
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for our analysis, though our larger sample (almost nine times larger at wave 1) and 

more complex modeling technique may also have allowed a more accurate estimation 

of the slope-slope correlation. 

 

Finally, the processing speed theory of cognitive ageing predicts that a decline in 

speed underlies the decline in cognitive ability seen in later life [1]. Although our 

results show coupled change in the two parameters, our model is unable to test 

whether the direction of causality is from speed to intelligence (a ‘bottom-up’ 

process). An alternative theory, for instance, might state that declines in intelligence 

lead to poorer performance on the speed task (a ‘top-down’ process), that a complex 

transactional process takes place whereby the variables affect one another across time, 

or that a third (unmeasured) variable is the cause of decline in both factors. Although 

there are models that test at a finer-grained level the association of baseline 

performance on one task with later differences in another [S7, S12], they still do not 

provide a decisive test of the direction of causality, and this should be borne in mind 

when considering the theoretical implications of these (and similar) results.  
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4. Supplemental Tables 
 
Table S1. Correlation matrix with means and standard deviations for each variable measured at each testing wave. All variables correlated 
significantly at p < .001. 
Variable MR  

age 70 
BD  
age 70 

LNS  
age 70 

DSB  
age 70 

IQ  
age 70 

MR  
age 73 

BD  
age 73 

LNS  
age 73 

DSB  
age 73 

IQ  
age 73 

MR  
age 76 

BD  
age 76 

LNS  
age 76 

DSB  
age 76 

IQ  
age 76 

IT  
age 70 

IT  
age 73 

IT  
age 76 

MR age 70 -                  
BD age 70 .57 -                 
LNS age 70 .44 .40 -                
DSB age 70 .40 .34 .54 -               
IQ age 70 .90 .84 .63 .48 -              
MR age 73 .65 .55 .35 .34 .67 -             
BD age 73 .52 .76 .38 .32 .70 .53 -            
LNS age 73 .37 .36 .62 .51 .49 .38 .36 -           
DSB age 73 .34 .31 .47 .64 .42 .35 .29 .55 -          
IQ age 73 .68 .73 .50 .45 .80 .89 .82 .59 .44 -         
MR age 76 .63 .56 .37 .37 .67 .64 .51 .36 .34 .67 -        
BD age 76 .55 .76 .40 .34 .72 .54 .76 .34 .29 .72 .57 -       
LNS age 76 .35 .29 .54 .50 .44 .30 .28 .66 .47 .44 .36 .32 -      
DSB age 76 .39 .30 .49 .65 .45 .35 .28 .52 .68 .43 .38 .32 .56 -     
IQ age 76 .67 .72 .49 .46 .79 .66 .68 .49 .43 .79 .90 .83 .56 .46 -    
IT age 70 .21 .27 .22 .17 .28 .17 .23 .23 .15 .25 .15 .27 .15 .15 .23 -   
IT age 73 .27 .29 .24 .17 .32 .26 .30 .30 .20 .35 .25 .33 .22 .18 .33 .59 -  
IT age 76 .27 .25 .21 .15 .31 .26 .26 .23 .14 .32 .29 .35 .25 .18 .37 .51 .59 - 
N 1086 1085 1079 1090 1075 863 864 863 866 859 689 691 687 695 678 1041 838 654 
Mean  
(SD) 

13.49  
(5.13) 

33.79 
(10.32) 

10.92 
(3.16) 

7.73 
(2.26) 

.06 
(1.20) 

13.17 
(4.96) 

33.64 
(10.08) 

10.91 
(3.08) 

7.81 
(2.29) 

−.01 
(1.14) 

13.04 
(4.91) 

32.18 
(9.95) 

10.48 
(2.99) 

7.77 
(2.37) 

−.10 
(1.14) 

112.14 
(11.00) 

111.22 
(11.79) 

110.17 
(12.53) 

Note: MR = Matrix Reasoning; BD = Block Design; LNS = Letter-Number Sequencing; DSB = Digit Span Backwards; IQ = intelligence; IT = 
inspection time
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Table S2. Parameter estimates for each of the paths in the growth curve model shown 
in Figure S1. Note that all coefficients are unstandardized except those between the 
latent intercept and slope variables. 
Path type Path Estimate SE z p 
Latent intercepts and 
slopes (standardized) 

IQ intercept with IT intercept .460 .043 10.623 < .001 
IQ intercept with IQ slope −.269 .155 −1.734 .083 
IQ intercept with IT slope .231 .122 1.892 .058 
IT intercept with IT slope .100 .251 .397 .691 
IT intercept with IQ slope .062 .186 .334 .738 
IQ slope with IT slope .779 .369 2.109 .035 

IQ factor loadings MR  3.549 .141 25.179 < .001 
BD 7.149 .333 21.444 < .001 
LNS 1.989 .113 17.560 < .001 
DSB 1.287 .089 14.501 < .001 

IQ subtest intercepts MR  13.498 .143 94.203 < .001 
BD 33.724 .307 109.886 < .001 
LNS 10.901 .087 124.993 < .001 
DSB 7.836 .065 120.329 < .001 

Residual variances MR wave 1 12.532 .859 14.598 < .001 
BD wave 1 53.925 3.754 14.366 < .001 
LNS wave 1 5.810 .433 13.420 < .001 
DSB wave 1 3.301 .209 15.762 < .001 
MR wave 2 13.063 .944 13.842 < .001 
BD wave 2 55.675 4.041 12.605 < .001 
LNS wave 2 5.759 .457 12.605 < .001 
DSB wave 2 3.550 .235 15.114 < .001 
MR wave 3 12.324 .968 12.731 < .001 
BD wave 3 49.243 .254 14.536 < .001 
LNS wave 3 5.871 .466 12.586 < .001 
DSB wave 3 3.698 .254 14.536 < .001 
IQ factor .042 .010 4.254 < .001 
IT 52.080 7.618 6.837 < .001 

Residual covariances MR wave 1 with MR wave 2 4.526 .805 5.619 < .001 
MR wave 1 with MR wave 3 3.970 .813 4.884 < .001 
MR wave 2 with MR wave 3 4.534 .830 5.461 < .001 
BD wave 1 with BD wave 2 31.971 3.327 9.609 < .001 
BD wave 1 with BD wave 3 29.428 3.448 8.536 < .001 
BD wave 2 with BD wave 3 30.019 3.391 8.853 < .001 
LNS wave 1 with LNS wave 2 2.380 .383 6.211 < .001 
LNS wave 1 with LNS wave 3 1.837 .370 4.961 < .001 
LNS wave 2 with LNS wave 3 2.946 .393 7.486 < .001 
DSB wave 1 with DSB wave 2 1.607 .189 8.48 < .001 
DSB wave 1 with DSB wave 3 1.640 .202 8.102 < .001 
DSB wave 2 with DSB wave 3 1.965 .211 9.304 < .001 

Note: Factor loadings and intercepts for intelligence constrained to be invariant across 
time – see Section 2.3, above. Intelligence factors and inspection time scores had 
intercepts set to zero and invariant residual variances across all waves. Abbreviations: 
MR = Matrix Reasoning; BD = Block Design; LNS = Letter-Number Sequencing; 
DSB = Digit Span Backwards; IQ = intelligence; IT = inspection time 
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5. Supplemental Figure 
 
Figure S1. Path diagram for the growth curve model. For full model description, see 
Section 1.3, Statistical Analysis, above. To allow individual variance in the time of 
testing, slope parameters are set to zero at the first testing wave (T0), time elapsed by 
the second wave (T1) and time elapsed by the third wave (T2). The model tests for a 
level-level correlation (path LL), a slope-slope correlation (path SS), and level-slope 
correlations within and between the IQ and IT variables (paths LS). Other 
abbreviations: IQ = intelligence; IT = inspection time; MR = Matrix Reasoning; BD = 
Block Design; LNS = Letter-Number Sequencing; DSB = Digit Span Backwards. 
 

 


