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Research Article

Executive functions (EFs) are supervisory cognitive pro-
cesses that monitor, coordinate, and control the execu-
tion of other cognitive operations necessary for learning 
and everyday functioning. Across the life span, there exist 
marked individual differences in EF abilities, which 
include temporary storage of information simultaneous 
with cognitive processing (working memory), monitoring 
of incoming stimuli and replacement of old information 
with new information (updating), rapid shifting between 
cognitive operations (switching), and effortful inhibition 
of prepotent responses (inhibition). The neural bases for 
EFs are well studied; early research implicated the pre-
frontal cortex as fundamental to EFs, and more recent 
research has implicated complex and distributed net-
works of brain regions (Carpenter, Just, & Reichle, 
2000; Collette, Hogge, Salmon, & Van der Linden, 2006). 
EFs are commonly conceptualized as psychological 
intermediaries between neurobiology and complex psy-
chological outcomes, including normal-range individual 
differences (in, e.g., intelligence; Kane & Engle, 2002) 
and clinical levels of psychopathology (e.g., schizophre-
nia; Elliott, 2003). Although much of the research on EFs 

has been based on adult samples, a growing body of 
developmental research indicates that EFs during child-
hood are related, both concurrently and prospectively, to 
a host of normative psychological outcomes, such as aca-
demic achievement and externalizing problem behaviors, 
as well as childhood-onset psychiatric disorders, such as 
attention-deficit/hyperactivity disorder and autism (Best, 
Miller, & Naglieri, 2011; Pennington & Ozonoff, 1996; 
Young et al., 2009; Zelazo, Carter, Reznick, & Frye, 1997).

Among adults, behavioral genetic studies of EFs have 
highlighted the importance of genetic influences on these 
abilities. Individual differences in performance on indi-
vidual EF tasks are moderately heritable (e.g., Ando, Ono, 
& Wright, 2001; Kremen et al., 2009; T. Lee et al., 2012; 
Vasilopoulos et al., 2012). When data for individual tasks 
are combined to measure broader EFs, these abilities— 
including inhibition, switching, and updating—“are almost 
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entirely genetic in origin” (Friedman et  al., 2008). 
Additionally, the covariation among EF domains, as repre-
sented by a single higher-order EF factor, is also nearly 
100% heritable. Thus, by adulthood, nongenetic variance 
in environmental experience accounts for variation in 
executive processing only narrowly, that is, at the level of 
performance on specific tasks; at the level of the construct, 
adult identical twins’ EFs are nearly perfectly correlated. 
However, it is currently unclear whether the outstandingly 
high heritability of general executive processing is in place 
in childhood, or whether genetic influences do not reach 
a developmental apex until adulthood.

Very few behavioral genetic studies of childhood EFs 
have been conducted, and those that have been reported 
have focused on individual EF tasks in isolation, rather 
than broader EF factors (e.g., Kuntsi et al., 2006; Luciano 
et  al., 2001; Polderman et  al., 2006; Schachar, Forget-
Dubois, Dionne, Boivin, & Robaey, 2011; M. Wang & 
Saudino, 2013; Z. Wang, Deater-Deckard, Cutting, 
Thompson, & Petrill, 2012). Such task-level analyses are 
unable to differentiate genetic and environmental influ-
ences on nonexecutive demands from those specific to 
the EF in question, nor are they able to test the extent to 
which genetic and environmental influences are shared 
across different EFs. Other studies (e.g., Cuevas et  al., 
2014) have examined parent-child resemblance for more 
general EF composites but have been unable to distin-
guish the extent to which such resemblance derives from 
genetic versus shared environmental factors. We are 
aware of no studies of children that have both imple-
mented genetically informative designs capable of distin-
guishing genetic from environmental effects and focused 
on broader EF factors representing variance common to 
multiple EF tasks separately from unique, potentially 
nonexecutive, variance.

The heritability of EFs might be substantially lower 
in childhood than in adulthood, as developmental 
increases in genetic influence have been observed for 
multiple phenotypes. For instance, meta-analyses 
(Briley & Tucker-Drob, 2013; Haworth et al., 2009) have 
indicated that the heritability of cognitive ability 
increases continuously from less than 20% in early 
childhood to upward of 70% by early adulthood. From 
middle childhood forward, these increases primarily 
result from the amplification of the same genetic factors 
over time (Briley & Tucker-Drob, 2013; Tucker-Drob & 
Briley, 2014), possibly as a result of dynamic processes 
whereby children select and evoke cognitively stimulat-
ing experiences on the basis of genetically influenced 
traits (Tucker-Drob, Briley, & Harden, 2013). Should 
EFs show substantially lower heritability in childhood 
than has been reported for early adulthood, this may 
point to the sensitivity of EFs to similar dynamic pro-
cesses over development.

Alternatively, it is possible that individual differences 
in EFs are nearly entirely genetic in origin even in child-
hood. If so, individual differences in EFs may represent 
genetically influenced aptitudes that are expressed early 
and serve as foundations onto which higher-order cogni-
tive processes are scaffolded. Should childhood EFs 
prove to be high in heritability, they may serve as devel-
opmental endophenotypes: early-life markers of genetic 
risk for a cross-cutting range of later-life functions and 
pathologies (Gottesman & Gould, 2003). Researchers 
who are interested in understanding the mechanisms of 
genetic risk for these complex, multidetermined out-
comes would thus be able to study variables that are 
mechanistically more proximal to genotypes and less 
“diluted” by extraneous influences. Developmental endo-
phenotypes could also be leveraged in applied settings to 
identify children who are at genetic risk for—but who 
have not yet expressed—maladaptive outcomes and who 
might therefore be the best candidates for preventive 
treatments or interventions.

This article reports the first comprehensive multivari-
ate behavioral genetic analysis of EFs in childhood. Using 
a population-based sample of third- through eighth-grade 
twins and a multivariate test battery, we investigated 
genetic and environmental effects in four EF domains: 
inhibition, switching, working memory, and updating.

Method

Sample

Data were drawn from 505 third- through eighth-graders 
who were recruited through the Texas Twin Project 
(Harden, Tucker-Drob, & Tackett, 2013), a registry of 
infant, child, and adolescent twins in central Texas. Here, 
we report 2-year results from a study that stems from the 
Texas Twin Project and includes in-laboratory assess-
ments of executive function. For the current report, data 
were available for a total of 272 pairs (233 twin pairs and 
39 pairs from triplet sets). Participants ranged in age from 
7.89 to 15.25 years (M = 10.97, SD = 1.74); 52.1% were 
female. Their racial-ethnic distribution was as follows: 
64.6% non-Hispanic White, 18.6% Hispanic, 6.7% African 
American, 2.0% Asian, 1.2% other, and 6.9% multiple 
races or ethnicities. Of the participating families, 31.2% 
reported having received a form of means-tested public 
assistance, such as food stamps. Thus, the current sample 
is comparable in size to and considerably more diverse 
than the sample in which Friedman et al. (2008) found 
nearly 100% heritability of EF factors in young adulthood 
(N = 293 pairs, approximately 90% non-Hispanic White; 
for a description of the sample, see Rhea, Gross, 
Haberstick, & Corley, 2006). As in-lab data collection for 
the current study is predominantly conducted each 
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summer, with about 100 to 150 pairs assessed per year, 
we decided to proceed with the current analysis after the 
second summer of data collection, so that our sample 
size would approximate that of Friedman et al.

Zygosity of same-sex twins was assessed by a latent-
class analysis of parents’ and experimenters’ ratings of 
physical similarity. Zygosity determinations from latent-
class analyses of physical-similarity ratings have been 
found to be more than 99% accurate, as validated by 
determinations based on genotyping (Heath et al., 2003). 
Our final sample consisted of 84 (30.9%) monozygotic 
pairs, 99 (36.4%) same-sex dizygotic pairs, and 89 (32.7%) 
opposite-sex dizygotic pairs. Behavioral genetic analyses 
that excluded the opposite-sex pairs produced a pattern 
of results very similar to what is reported here.

Measures

Twelve tasks were selected to assess individual differ-
ences in the following four EF domains: inhibition, 
switching, working memory, and updating (see Table 1). 
As EF tasks are generally known to have poor reliability 
relative to cognitive-ability measures (Miyake et al., 2000), 
we placed considerable emphasis on selecting tasks that 
have been reported to have strong psychometric proper-
ties in child samples. Tasks were administered orally, by 
computer (Windows computers running E-Prime 2.0, 
Psychology Software Tools, http://www.pstnet.com, and 
Inquisit 4, Millisecond Software, Seattle, WA), or on paper.

To maintain consistency with the broader EF literature, 
we converted timed responses to reaction time (RT) met-
rics. Switch costs and inhibition costs were multiplied by 
−1 so that higher scores indicated better performance. To 
correct for positive skew, we log-transformed trail-making 
and local-global scores and took the square root of n-back 
and listening-recall scores. All stop-signal scores in a given 
block were omitted if the participant failed to stop on stop 
trials less than 25% or more than 75% of the time, failed to 
respond on go trials more than 60% of the time, responded 
incorrectly on go trials more than 10% of the time, or had 
a stop-signal RT less than 50 ms (Congdon et al., 2010). 
Stop-signal RTs were averaged across blocks for the 91% 
of participants for whom block-level data remained. Plus-
minus scores more than 3 standard deviations from the 
mean were Winsorized to the next least extreme value. 
Additional scores were omitted because of errors in task 
administration. All analyses used standardized scores. We 
controlled for age-related differences in performance by 
regressing first-order latent EF factors onto age in all 
models.

Phenotypic analyses

For all phenotypic analyses, the sample was treated as 
consisting of individual cases. Analyses were run using 

Mplus Version 7.11 (Muthén & Muthén, 2012). We used 
the Complex Survey option in Mplus to correct for the 
nonindependence of observations that arose from having 
individuals embedded in the same family. Each of the 12 
tasks was specified to load onto one of up to four latent 
variables representing inhibition, switching, working 
memory, and updating ability. This latent-variable 
approach allowed us to extract factors representing vari-
ance common across selected tasks separately from task-
specific (and potentially nonexecutive) variance.

We fit a series of confirmatory factor models to evalu-
ate possible relationships among the EF tasks: a four-
factor model in which four distinct EFs accounted for 
variation in task performance (Model 1), a three-factor 
model in which updating and working memory tasks 
were modeled as indicators of a single latent variable 
(Model 2), a three-factor model in which inhibition and 
switching tasks served as indicators of a single latent 
variable (Model 3), a two-factor model in which updat-
ing and working memory were combined into one latent 
factor and switching and inhibition were combined into 
a second factor (Model 4), and a one-factor model in 
which all tasks were regressed onto a single latent vari-
able (Model 5). Models 1 through 4 included a latent, 
Common EF factor for which all first-order latent factors 
served as indicators. Model fit was assessed by the chi-
square test, which measures badness of fit of the model 
to the data; by the root-mean-square error of approxima-
tion (RMSEA), which indicates the overall degree of dis-
crepancy between the observed covariance matrix and a 
model-implied covariance matrix; by the comparative fit 
index (CFI), which compares the model with a baseline 
model in which no variables are interrelated; and by the 
Akaike information criterion (AIC), which enables the 
comparison of nonnested models. To compare the fit of 
different models, we computed scaled chi-square differ-
ence statistics.

Behavioral genetic analyses

Our primary behavioral genetic analyses modeled phe-
notypic variances as the sum of three factors: additive 
genetic influences (A), which serve to make individuals 
who are genetically more related (e.g., monozygotic 
twins compared with dizygotic twins) more similar on an 
outcome of interest; shared environmental influences 
(C), which serve to make children raised in the same 
family more similar than children raised in different fami-
lies, regardless of genetic relatedness; and nonshared 
environmental influences (E), which serve to differentiate 
children raised in the same family, even when genetically 
identical. We also fit models in which the C factors were 
dropped. One of these consisted of only the A and E fac-
tors, and the other allowed for contributions from the A 
and E factors along with a factor representing dominance 
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genetic effects (D), which are nonadditive. Using the 
best-fitting phenotypic model for guidance, we estimated 
the relative contributions of the genetic and environmen-
tal factors to variance at three levels of measurement: the 
Common EF factor, the domain-specific factors (indepen-
dent of Common EF), and the individual tasks (indepen-
dent of Common EF and domain-specific factors). All 
behavioral genetic analyses used the Complex Survey 
option in Mplus to correct for the nonindependence of 
observations that arose from having multiple “twin” pairs 
from each set of triplets.

Results

Tables 2 and 3 report descriptive statistics for the 12 EF 
tasks. For each inhibition and switching task that com-
pared RTs across nonexecutive and executive conditions, 
there was a mean RT cost associated with the respective 
executive skill. Reliabilities were generally moderate to 
high for individual conditions but, as is typical for the 
literature, were occasionally somewhat lower for differ-
ence scores, which represent person-specific switching 
and inhibition costs. Reliabilities for the updating and 

Table 2. Descriptive Statistics for the Task Conditions

Task and condition n M (ms) SD (ms) Reliability (α)

Animal Stroop: congruent 504 953.86 250.38 .83

Animal Stroop: neutral 504 955.99 218.01 .81
Animal Stroop: incongruent 504 1,180.27 322.40 .86
Mickey: congruent 472 419.52 100.04 .93
Mickey: neutral 472 444.22 112.84 .82
Mickey: incongruent 472 454.26 96.91 .94
Trail making: numbers 505 1,151.50 490.07 .88
Trail making: letters 505 1,622.76 1,999.89 .83
Trail making: numbers-letters 505 2,514.92 1,653.57 .76
Trail making: letters-numbers 503 3,239.71 3,476.84 .76
Local-global: local 496 1,089.30 344.03 .84
Local-global: global 496 1,021.05 386.25 .75
Local-global: alternating 496 2,473.43 973.49 .80
Plus-minus: addition 490 3,223.41 3,264.16 .94
Plus-minus: subtraction 491 3,690.44 4,556.96 .94
Plus-minus: alternating 491 4,154.18 4,069.63 .94

Note: The statistics in this table are based on untransformed data. Reliabilities were calculated 
across trials.

Table 3. Descriptive Statistics for the Dependent Variables

Task and dependent variable n M SD Reliability (α)

Animal Stroop: inhibition cost 504 229.42 ms 206.26 ms .86a

Mickey: inhibition cost 472 22.39 ms 44.30 ms .38b

Stop signal: stop-signal reaction time 422 326.44 ms 82.41 ms .42b

Trail making: switch cost 505 1,316.93 ms 1,051.60 ms .87a

Local-global: switch cost 495 1,432.36 ms 788.49 ms .67a

Plus-minus: switch cost 491 703.71 ms 1,357.53 ms .69a

Symmetry span: number correct 501 20.17 8.60 .77c

Listening recall: number correct 498 23.83 7.85 .77c

Digit Span Backward: number correct 505 6.96 1.81 .57c

Running memory for letters: number correct 490 19.13 8.23 .74c

n-back: number correct minus number incorrect 497 2.59 8.27 .84b

Keeping track: number correct 494 6.71 2.28 .48c

Note: The statistics in this table are based on untransformed data.
aFor all reaction time measures, reliability was calculated by computing Cronbach’s alpha from difference scores formed by 
subtracting reaction time on nonswitch (or noninhibit) blocks from reaction time on switch (or inhibit) blocks, for each possible 
pair of switch (inhibit) and nonswitch (noninhibit) blocks. bReliability was calculated across blocks. cReliability was calculated 
across trials.
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working memory tasks were also generally moderate to 
high. Correlations of task performance with age and 
within-twin (phenotypic) and cross-twin correlations in 
task performance are provided in Tables S1, S2, and S3 in 
the Supplemental Material available online.

Confirmatory factor models

We compared four factor structures to determine which 
model to enter into behavioral genetic analyses. Table 4 
presents the standardized factor loadings from these 
competing models. Our primary model was a hierarchi-
cal factor model consisting of four first-order EF domains 
and a higher-order Common EF factor (Model 1). The fit 
of this full model was excellent, χ2(58) = 62.31, p = .326, 
RMSEA = .01, CFI = .997 (see Table 5). Factor loadings of 
individual tasks on the first-order factors were all signifi-
cant and generally in the moderate range, with the excep-
tion of lower—yet still significant—loadings for the 
Mickey, stop-signal, and plus-minus tasks. This overall 
pattern of loading magnitudes (Mdn = .62, M = .54) is 
comparable to that found in previous EF research with 
adult samples: Miyake et  al. (2000) reported a median 
loading of .60 and a mean loading of .50, and Friedman 
et al. (2008) reported a median loading of .63 and a mean 
loading of .59. Loadings of the first-order factors on the 
higher-order Common EF factor, when standardized rela-
tive to the factors’ total variances, were moderate in range 
(.33, .61, .75, and .78 for Inhibition, Switching, Working 
Memory, and Updating, respectively). However, because 
each of the first-order factors was also regressed on age 
(see Table 4), such loadings are semipartial with respect 
to age; the loadings are therefore attenuated relative to 
what they would be in an age-homogeneous sample. 
When standardized relative to variance in each factor that 
was independent of age—that is, partial with respect to 
age and therefore more directly comparable to loadings 
from an age-homogeneous sample—the loadings of the 
first-order factors on the Common EF factor were large 
(.66, .80, 1.00, and .92 for Inhibition, Switching, Working 
Memory, and Updating, respectively), as has often been 
found in child samples (e.g., K. Lee, Bull, & Ho, 2013).

Model-implied semipartial correlations among the 
first-order factors were .20 for Inhibition and Switching, 
.25 for Inhibition and Working Memory, .26 for Inhibition 
and Updating, .46 for Switching and Working Memory, 
.48 for Switching and Updating, and .59 for Working 
Memory and Updating. Model-implied partial correla-
tions among the first-order factors were .52 for Inhibition 
and Switching, .65 for Inhibition and Working Memory, 
.60 for Inhibition and Updating, .79 for Switching and 
Working Memory, .73 for Switching and Updating, and 
.91 for Working Memory and Updating.

We tested whether a number of more parsimonious 
models could account for the data as well as the full 

hierarchical four-factor model (see Tables 4 and 5). Model 
2 was a hierarchical three-factor model in which working 
memory and updating tasks served as indicators for the 
same factor. Though model fit was good overall, χ2(60) = 
82.19, p = .030, RMSEA = .03, CFI = .984, there was a 
significant decrease in fit compared with Model 1 (p < 
.001). In Model 3, inhibition and switching tasks were 
loaded onto the same factor, and working memory and 
updating tasks remained independent. The model fit the 
data well, χ2(60) = 76.86, p = .07, RMSEA = .02, CFI = 
9.88, though not as well as Model 1 (p < .001). Model 4 
was a two-factor model that consisted of a combined 
Inhibition and Switching factor and a combined Working 
Memory and Updating factor. The decrement in model 
fit, χ2(63) = 97.21, p = .004, RMSEA = .03, CFI = .976, as 
compared with Model 1, was even more pronounced 
(p < .001). Finally, we considered the possibility that the 
commonalities among the tasks and factors could be 
explained by a unitary dimension (Model 5). Although 
all factor loadings onto the Common EF factor remained 
significant and model fit was acceptable, χ2(65) = 127.623, 
p < .001, RMSEA = .04, CFI = .956, this model fit appre-
ciably worse than all the other models (p < .001). 
Additional model fit statistics and comparisons are pro-
vided in Table 5. On the basis of these comparisons, we 
accepted Model 1 as the best-fitting model.

Age-invariance models

Age-related differences in the measurement properties of 
the EF tasks could distort estimates of genetic and envi-
ronmental influence. To address this concern, we divided 
the sample into relatively equally sized groups of younger 
children (< 11 years) and older children and adolescents 
(≥ 11 years) and tested for measurement invariance. We 
first fit an invariance model in which each EF task was 
specified to load onto its corresponding first-order EF 
domain (as per Model 1), and factor loadings and inter-
cepts were constrained to be invariant across age groups. 
The invariance model exhibited excellent fit to the data, 
χ2(112) = 115.44, p = .39, RMSEA = .01, CFI = .996. Next, 
we fit a noninvariance model in which the intercepts and 
loadings of the tasks on their respective factors were free 
to differ across groups. The noninvariance model also 
resulted in exceptional model fit, χ2(96) = 101.59, p = .33, 
RMSEA = .02, CFI = .993. A χ2 difference test indicated 
that the invariance model fit no worse than the nonin-
variance model (p = .514), an indication of measurement 
invariance across age groups.

Behavioral genetic models

The best-fitting model (Model 1) from the confirmatory 
factor analyses specified a hierarchical structure with 
each task loading onto one of four broad EF domains 
(Inhibition, Switching, Working Memory, and Updating) 
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that in turn loaded onto a higher-order Common EF fac-
tor. This structure served as the basis for our behavioral 
genetic analyses. We first fit a model that estimated A, C, 
and E influences operating on the Common EF factor, 
individual EFs, and specific tasks (see Fig. 1 and Table 6). 
The standardized a coefficient for the Common EF factor 
equaled 1.00 (p < .001); this indicated that genetic influ-
ences on the Common EF factor mediated 100% of the 
variance common to the domain-specific factors. Of the 
domain-specific factors, only Switching showed genetic 
influence independent of the Common EF factor (a = .59, 
p < .001). We also observed significant unique nonshared 
environmental influence on Working Memory (e = .38, 
p  = .003) and Updating (e = .24, p = .028). Significant 
residual genetic effects were present for 7 of the 12 tasks, 
and all tasks exhibited significant nonshared environ-
mental effects. The shared environment significantly con-
tributed to residual variance of only one task, stop signal 
(c = .28, p = .021).

We next fit an AE model (see Table 6), which yielded 
a pattern of results very similar to that of the ACE model: 
100% additive genetic influence on the Common EF fac-
tor, unique genetic influence on the Switching factor and 
7 tasks, and unique nonshared environmental influence 
on Working Memory, Updating, and all 12 tasks. A model 
fit comparison revealed that the AE and ACE models did 
not differ significantly in their chi-square values (p = .092); 
thus, there was no loss in fit to the data when shared 
environmental parameters were dropped completely.

Finally, we fit an ADE model representing the possibil-
ity that dominance genetic effects explained the observed 
task and factor correlations better than additive genetics 
alone (see Table 6). Genes continued to explain more than 
99% of the variation in Common EF performance; additive 
genetics contributed 77.4% (p < .001), and dominance 

genetics contributed the remaining 23.0% (p = .177). The 
nonshared environment accounted for less than 1% of the 
variation in the Common EF factor. Dominance genetic 
effects significantly contributed to unique variance in 
Switching performance, as well as to residual variance for 
five tasks. After we accounted for dominance effects, addi-
tive genetics contributed significantly to unique variance 
for only one task. Model fit, as indexed by chi-square, did 
not differ significantly from that of the AE model (p = .248). 
The AIC, which takes into account model parsimony, indi-
cated that the AE model was the best of all three models.

Discussion

Despite widespread interest in EFs as explanatory mech-
anisms for the development of a host of psychological 
and social outcomes, there has been surprisingly little 
behavioral genetic work on EFs in childhood. Motivated 
by provocative findings of substantial heritability of EF 
factors in young adults (Friedman et al., 2008), in the cur-
rent study we applied behavioral genetic methods to esti-
mate the magnitude of genetic and environmental 
influences on individual differences within a hierarchical 
factor structure of EFs in childhood.

Our results indicate that an exclusively genetic factor 
mediates 100% of the variance common to all four EF 
domains that we examined: inhibition, switching, work-
ing memory, and updating. That we found this high level 
of heritability in a sample of children is particularly strik-
ing in light of strong evidence that other phenotypes, 
such as general intelligence, are only modestly heritable 
in childhood and increase in heritability into adulthood 
(Haworth et al., 2009). The nonshared environment con-
tributed significantly to variance specific to the Working 
Memory and Updating factors, as well as to potentially 

Table 5. Results for the Confirmatory Factor Models of Executive Functions: Fit Indices and Results for Scaled Chi-Square 
Differences Between Models

Model

Model fit p for the χ2 difference

χ2
χ2 scaling 

factor RMSEA CFI AIC
vs.  

Model 1
vs.  

Model 2
vs.  

Model 3
vs.  

Model 4

1. Four factors: In, 
Sw, WM, Up

χ2(58) = 62.31,  
p = .326

1.07 .012 [.00, .03] .997 15,128.45 —  

2. Three factors:  
In, Sw, WM-Up

χ2(60) = 82.19,
p = .030

1.06 .027 [.02, .04] .984 15,144.89 2.05e–6 —  

3. Three factors:  
In-Sw, WM, Up

χ2(60) = 76.86,
p = .070

1.06 .024 [.00, .04] .988 15,139.49 1.77e–4 — —  

4. Two factors:  
In-Sw, WM-Up

χ2(63) = 97.21,
p = .004

1.06 .033 [.03, .05] .976 15,155.35 8.48e–7 2.93e–3 2.08e–4 —

5. One factor: 
Common EF

χ2(65) = 127.62,  
p < .001

1.07 .044 [.03, .06] .956 15,184.86 3.45e–9 1.48e–7 1.06e–8 4.32e–6

Note: Values in brackets are 95% confidence intervals. EF = executive function; In = Inhibition; Sw = Switching; WM = Working Memory; Up = 
Updating; RMSEA = root-mean-square error of approximation; CFI = comparative fit index; AIC = Akaike information criterion.
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Fig. 1. Hierarchical multivariate twin model for additive genetic (A), shared environmental (C), and nonshared environmental (E) contribu-
tions to performance on executive-function tasks. The numbers on the arrows represent standardized factor loadings. The model controlled 
for age effects at the level of the first-order factors (Inhibition, Switching, Working Memory, and Updating). Because the purpose of this 
analysis was to understand the relative contributions of genetic and environmental influences to individual differences, as distinct from 
age-related differences, the loadings of the first-order factors have been standardized relative to their age-independent variance. Boldface 
indicates significant paths, p < .05.

nonexecutive variance specific to each individual task, 
but not to the Common EF factor. No appreciable effects 
of the shared environment were apparent at any level of 
analysis. Together, these results indicate that EFs in child-
hood are united by shared genetic influences, yet distin-
guishable as a result of both genetic and nonshared 
environmental contributions to specific EF domains and 
task performance.

Although our main findings are consistent with the 
genetic architecture uncovered for young adults by 
Friedman et al. (2008), there is one notable difference. In 
contrast to Friedman et  al., we did not detect genetic 
effects specific to the latent Updating factor above and 
beyond those mediated by the Common EF factor. This 
may indicate that the genetic factors that distinguish EFs 
from one another are not fully expressed until later in 
development.

The finding that the Common EF factor is entirely heri-
table in middle childhood has important implications for 
understanding how EFs develop over time, as well as for 

understanding the mechanisms through which they are 
associated with important psychosocial sequelae. In 
combination with accumulating evidence that childhood 
EFs predict a cross-cutting range of academic, economic, 
and mental-health outcomes later in life, our results sug-
gest that childhood EFs may act as developmental endo-
phenotypes—or prodromal markers—for an array of 
genetically influenced psychological, social, and health 
outcomes. This suggests not only that EFs have the poten-
tial to provide researchers “simpler clues to genetic 
underpinnings” (Gottesman & Gould, 2003, p. 636) of 
such outcomes compared with the outcomes themselves, 
but also that EFs might be used to identify children who 
are at genetic risk for as-yet-unexpressed maladaptive 
outcomes and who could therefore be targeted in early 
interventions.

Our findings also open exciting avenues for future 
work. First, in light of the strong theoretical and empirical 
link between EFs and neurobiology, it will be important 
to test the extent to which the neural bases of EFs are 
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themselves genetically influenced and whether such 
genetic factors are fully captured by behavioral EF mea-
sures. Second, although our findings indicate that there is 
a strong statistical link between the Common EF factor 
and genetic variation, it is well known that heritability 
may encompass variation resulting from Gene × 
Environment interactions, whereby the magnitude of 
genetic influence on a phenotype differs as a function of 
environmental context, in addition to more direct genetic 
main effects. Future work will be necessary to test for 
Gene × Environment interactions involving EFs. For 
instance, do the Gene × Socioeconomic Status interac-
tions observed for intelligence and achievement (Tucker-
Drob et al., 2013) act on EFs? Alternatively, are genetic 
influences on EFs expressed equally across the range of 
socioeconomic status but differentially related to intelli-
gence and achievement across socioeconomic strata? 
Third, it will be important to test for gene-environment 
correlations, whereby the types of environments experi-
enced come to be nonrandomly associated with geneti-
cally influenced individual differences in EFs. If dynamic 
amplification processes involving gene-environment cor-
relations serve as the basis for the strikingly high herita-
bility of EF, as has been postulated to be the case for the 
heritability of cognitive ability (Tucker-Drob et al., 2013), 
such processes would need to unfold primarily very early 
in childhood, as our results indicate that heritability has 
already approached a maximum by middle childhood. 
Finally, future research will be necessary to test the extent 
to which interventions to boost EFs attenuate or magnify 
genetic variation in EFs. Investigating such questions has 
the potential to reveal key mechanisms underlying the 
development of a range of psychological and social out-
comes, and such discoveries may better inform interven-
tions and policies that promote psychological and social 
well-being.
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