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Abstract
Studies of interaction effects are of great interest because they identify crucial interplay between predictors
in explaining outcomes. Previous work has considered several potential sources of statistical bias and sub-
stantive misinterpretation in the study of interactions, but less attention has been devoted to the role of the
outcome variable in such research. Here, we consider bias and false discovery associated with estimates of
interaction parameters as a function of the distributional and metric properties of the outcome variable. We
begin by illustrating that, for a variety of noncontinuously distributed outcomes (i.e., binary and count out-
comes), attempts to use the linear model for recovery leads to catastrophic levels of bias and false discovery.
Next, focusing on transformations of normally distributed variables (i.e., censoring and noninterval scaling),
we show that linear models again produce spurious interaction effects. We provide explanations offering
geometric and algebraic intuition as to why interactions are a challenge for these incorrectly specified mod-
els. In light of these findings, we make two specific recommendations. First, a careful consideration of the
outcome’s distributional properties should be a standard component of interaction studies. Second, research-
ers should approach research focusing on interactions with heightened levels of scrutiny.

Translational Abstract
There is great scientific interest in the degree to which responses to some common stimulus vary across peo-
ple. Many tests of such variation involve the statistical analysis of interaction terms. We use a variety of evi-
dence (geometric, algebraic, simulation) to argue that incorrect inferences may be made in many cases if
details of the outcome variable are not closely monitored. In particular, we show that false positives will
result in many cases if a model is not well-suited to the nature of the outcome variable. We offer illustra-
tions from the literature of places where such confusion can occur. We believe that an increased understand-
ing of this problem would lead to improved scientific inquiry and more efficient use of research funds.
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Lived experience suggests substantial heterogeneity in how peo-
ple react to a common intervention, treatment, or exposure.1 This
suggests the hypothesis that some features (of the stimuli,

environment, or person) may explain this heterogeneity. For exam-
ple, which psychological factors account for variation in the suc-
cess of smoking cessation programs (Halpern et al., 2016)? Does
the level of public regard moderate the effect of racial discrimina-
tion on depressive symptoms (Seaton & Iida, 2019)? Are the
effects of growth mindset interventions modified by environmental
features (Claro et al., 2016; Yeager et al., 2019)? These few exam-
ples are a small portion of the larger literature probing for such
heterogeneities in empirical settings. We believe, along with
others (Bryan et al., 2021), that such questions are crucial.
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1 This is a paraphrase of what we heard Jeremy Freese call the First Law
of Sociology—“some do, some don’t”—but psychologists also use it (Haaf
& Rouder, 2019).
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The standard tool for analysis of such heterogeneity is the inclusion
of interaction terms in statistical models. However, analysis of such
models is fraught. We are not the first to note problems with interac-
tion models; such issues have been remarked upon regularly over the
last several decades (e.g., Loftus, 1978; Lubinski & Humphreys,
1990; Rohrer & Arslan, 2021; Tabery, 2008). We briefly discuss pre-
viously noted methodological issues below. In this article, we focus
specifically on issues in interaction studies that arise from measure-
ment properties of the outcome variables. In particular, we explore
problems resulting from a mismatch between the measurement prop-
erties of the outcome variable and the distributional assumptions of
the statistical model. Statistical models for interactions rely upon
strong assumptions regarding the distribution and measurement prop-
erties of the outcome variable. When these assumptions are not met,
conventional regression models may produce biased interaction effect
estimates and high rates of Type I error; that is, such models tend to
produce spurious positive findings due to misspecification. Our work
here builds specifically on previous studies emphasizing the role of
outcome scale in subsequent interpretation (Loftus, 1978), but with a
focus on bias and false discovery.

Previously Expressed Concerns Regarding Analysis of
Statistical Interactions

Imagine that one is interested in understanding the interaction
of two predictors (x and z) in the study of some outcome (y). The
outcome is a function of the predictor variables and model param-
eters. In particular, we assume that Eðy j x; zÞ ¼ f ðb0 þ b1xþ
b2zþ b3xzÞ for some function of f. Interest is in an estimate of b3;

therefore, we denote such estimates cb3 . Previous studies have
emphasized several potential problems. One problem is that inter-
actions may yield false positives if interactions between additional
covariates (w) are not also included in the model (Keller, 2014). If
w is a covariate of interest, then analysis of the interaction xz
should be based on models that also include xw and zw. A second
problem is that if the true data generating model is based on x2,
interaction studies focusing on xz may lead to false positives if x
and z are correlated (Lubinski & Humphreys, 1990; MacCallum &
Mar, 1995). There are also specialized concerns that might arise
due to the specifics of a given context; for example, there are
unique concerns associated with analysis of gene-environment
interaction (Dudbridge & Fletcher, 2014).
In addition, there are concerns related to interpretation and gen-

eralizability of model results. The substantive implications of find-
ings of interactions may be highly contingent on the nature of x
and z. In particular, a focus on nonexogenous environments can
lead to multiple viable interpretations (Fletcher & Conley, 2013).
Under certain configurations, statistical power of interaction stud-
ies will be substantially lower than in studies of main effects (see
Section 16.4 of Gelman et al., 2020). We highlight these issues for
two reasons. First, they help to emphasize that there are numerous
challenges to the statistical analysis of interactions. Second, much
of the previous scholarship on the estimation of interactions has
focused specifically on the variables on the “right-hand side” of
the equation; relatively less focus has been paid to outcome varia-
bles. We focus explicitly on the “left-hand side” and show that
characteristics of the outcome can have major implications for our
ability to recover the relevant parameters.

Outcome Types

We consider a range of outcomes that collectively span a broad
range of outcomes of interest in psychology. Below we briefly
describe the outcomes and the occasions where they may be used
in psychological research. We also emphasize analytic approaches
used to study them. While most of these outcome types have spe-
cialized approaches developed for their analysis, it is also not
uncommon to see them analyzed via the linear model (a point we
illustrate below). There are a range of reasons why the linear
model may be used—including computational feasibility, intuitive
interpretation of results, and the lack of complete information
about the outcome that would allow for deployment of a superior
alternative—but we also emphasize that the linear model can pro-
duce high levels of false positives in many cases.

Given that the linear model is used for analysis of the full range
of outcomes, we consider analysis of all outcomes via both tai-
lored approaches (when available) and a (misspecified) linear al-
ternative. The linear model is a valuable tool, and its simplicity
makes it appealing for many purposes. Nonetheless, we show that
the linear model can lead to highly misleading results when used
to study interactions as a function of the geometry of the outcome
variable.

Binary Outcomes

Binary outcomes are common in analysis of, for example, men-
tal health diagnoses (Ancelin et al., 2017; Culverhouse et al.,
2018; Stringa et al., 2020). Such outcomes may be analyzed via
logistic or Probit regression, two variants of the generalized linear
model (Nelder & Wedderburn, 1972). Here, we focus on the logis-
tic regression approach. The linear model can also be used in the
form of what is frequently called the linear probability model
(Gomila, 2020). This approach ignores the key feature of the out-
come (i.e., it only takes values 0 and 1) for the potential computa-
tional gains associated with ordinary least squares estimation of
the linear model and for the convenience of being able to work
with straightforward coefficient estimates. With the linear proba-
bility model, coefficient estimates describe the change in probabil-
ity associated with a change in the predictor (rather than the more
complicated odds ratio interpretation required for working with
coefficients from logistic regression).

To motivate evaluation of this type of outcome, we note two
recent instances in which statistical interactions were estimated for
binary outcomes using a linear probability model. As a first exam-
ple, consider a recent analysis of behavioral nudges meant to
increase COVID vaccination uptake (Dai et al., 2021). The investi-
gators used linear models to examine heterogeneity of nudge effi-
cacy on a binary measure of vaccination status as a function of, for
example, flu vaccination status. As a second example, consider the
testing of an interaction between genetics and exposure to trauma
in the prediction of a binary index of major depressive disorder
(Coleman et al., 2020). Importantly, this study considers the logis-
tic and linear approaches in tandem, which provides a useful illus-
tration of the underlying potential for misinterpretation. The two
forms of analysis lead to divergent results: Coleman and coauthors
find a significant interaction effect when using the linear model
but not logistic regression. Their visualization (see their Figure 2)
underscores the difference: For the linear model, the regression
line representing the association between genetics and probability
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of major depression is considerably steeper for the trauma exposed
group compared to the unexposed group, whereas for the logistic
model, the regression lines representing the association between
genetics and the log-odds of major depression are parallel for
trauma exposed and unexposed groups. We show how such a
result can arise as a function of the prevalence of the outcome; in
particular, binary outcomes with prevalences far from 50% have
high rates of false positive interactions when the linear model is
used (this point has been previously raised in the empirical logit
analysis setting; Donnelly & Verkuilen, 2017).

Count Outcomes

Count outcomes occur when interest is in the number of times
something occurred; they are used to quantify, for example, drug/
alcohol use (Angosta et al., 2019; Meyers et al., 2019) or fre-
quency of medical care (Richardson & Ratner, 2005; Minkovitz
et al., 2005). Such outcomes may be analyzed via Poisson regres-
sion, a specific version of the generalized linear model (Nelder &
Wedderburn, 1972). However, analysis via the Poisson model can
be challenging due to, for example, the problem of overdispersion
(Gardner et al., 1995) and, therefore, analysis via alternatives such
as the negative binomial model is common.
Count outcomes can also be analyzed via the linear model. It

has been suggested that the linear model should be relatively ro-
bust for analysis of count data given that the linear model is less
sensitive to overdispersion (Knief & Forstmeier, 2021). As a spe-
cific empirical example, large-scale genetic association studies
have used linear approaches to analyze associations between sub-
stance use and single nucleotide polymorphisms (Liu et al., 2019).
Such analysis is common, and it has been previously noted that
“the majority of published research on addictive behaviors contin-
ues to report analyses based on ordinary least squares” (Neal &
Simons, 2007, p. 441). Or, consider related guidance in a different
field: “Surprisingly, despite the ubiquity of count data in linguis-
tics, Poisson regression is used only very little, and most statistics
textbooks targeted at linguists do not even mention the approach”
(Winter & B€urkner, 2021, p. 2). Here, we illustrate a potentially
crippling issue that arises when using the linear model with count
data. When data are generated via the Poisson model, spurious
interactions can arise as a function of the magnitudes of the main
effects of predictors. This issue is resolved when the appropriate
model is used but, given the known difficulties associated with
application of the Poisson model, caution will be required in inter-
action analyses of this type.

Censored Outcomes

An observation is censored if it is only partially known; here,
we consider censoring of continuous variables. Classic examples
of censoring include, for example, time-delimited observations of
survival. In the psychological context, censored outcomes can
occur when a scale is limited and values above or below a thresh-
old are effectively capped. In many cases, censoring can be readily
observed (by, for instance, simply viewing a histogram). Scores
constructed via latent variable models can also be censored; for
example, indices of academic ability can have ceilings or floors
leading to limited information on significant proportions of obser-
vations (e.g., Koedel & Betts, 2010). Ceiling effects may be partic-
ularly severe in the context of dementia screening instruments

used in neuropsychological settings and the context of minimum
competency assessments used in statewide educational testing pro-
grams, both of which have been specifically designed to be sensi-
tive to borderline and impaired or delayed levels of performance.
Similarly, mental health scales designed for use in clinical popula-
tions, such as depressive symptoms scales (Djukanovic et al.,
2017; Page et al., 2007), may exhibit floor effects, especially when
used in samples from the general population. Floor effects are also
commonly observed in biomarker research, such as hormone
research, in which nontrivial portions of participants exhibit bio-
marker levels that are below the lower limits of detection (Grot-
zinger et al., 2018). Censored data may be modeled via the Tobit
model (Tobin, 1958). Commonly, however, the censoring is
ignored and the linear model is be used.

One challenge to discussion of censoring is that large quantities
of research do not report sufficient information (e.g., density plots
or histograms) of key outcomes so that an assessment of censoring
can be undertaken. Thus, while censoring may exist in a large
number of cases, and can often be diagnosed by the researchers
who conduct the primary analyses, it is difficult for readers of
published research to independently verify. As a consequence, it is
hard to know how often the linear model is used with censored
variables. We can sometimes infer its existence, however. For
example, a gene-by-environment interaction analysis (de Castro-
Catala et al., 2017) considered the degree to which depressive
symptoms may be moderated by the predictors of interest. Depres-
sive symptoms are based on sum scores of symptoms on a self-
report questionnaire; based on the reported descriptive statistics,
we estimate that nearly 10% of the observations would have been
censored below.2 This is reason for concern. When censored out-
comes are analyzed via the linear model (which ignores censor-
ing), even relatively low levels of censoring can lead to the
identification of spurious interaction estimates.

Noninterval Outcomes

Many psychological constructs are measured via aggregating
scores across multiple tests or item responses to produce composite
indices. For example, the number of correct responses on an
achievement test or the number of symptoms indicated on a depres-
sion scale can be summed to produce a composite score, or aggre-
gated using more advanced methods (e.g., empirical Bayes) for
estimating factor scores in the context of factor analytical or item
response theory models (van der Linden, 2016). Previous work has
commented on the challenges associated with identification of inter-
actions when working with such latent variables (Embretson, 1996;
Kang & Waller, 2005). We focus on the fact that neither the raw
sum scores nor the outcomes produced by latent variable models
necessarily have interval scales. The interval interpretation allows us
to suppose that a one-unit change across the scale consistently has
the same meaning. This interpretation is valid for many physical
measures (e.g., a 1-m change in length always means a change by a
standard amount) but does not necessarily hold for psychological
measures (Michell, 2008). Data may have structure necessary for
interval interpretations (Domingue, 2014), but in many cases we do

2 A score of zero would be equivalent to a z-score of �1.3 given the
mean and SD for the SCL-90-R (Table 1 in de Castro-Catala et al., 2017).
Alternatively, the measure could be heavily skewed but that introduces
other problems for interaction studies (Domingue et al., 2022).
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not have strong evidence of such structure. A failure to have this
equal interval property can have implications for a variety of scale
uses (e.g., Ballou, 2009).
In particular, this lack of an interval scale can lead to identifica-

tion of spurious interactions. For instance, when a test has an
unbalanced distribution of easy and difficult items (relative to the
ability distribution of the sample), the relationship between the
latent ability and the composite index may become nonlinear (see
Figure 3 of Tucker-Drob, 2009), and, subsequently, a spurious
interaction may result (see Figure 4 of Tucker-Drob, 2019). Here,
we consider a concerning example wherein a spurious interaction
is introduced due to the noninterval scale. Similar to spurious
interactions due to censoring, it is generally challenging, if not
impossible, to know the degree to which the scale departs from the
equal interval assumption. Given that the degree of departure is
typically unknown, appropriate analysis is typically impossible.
Thus, in this case, practitioners need to be especially wary about
the problem because it is not easy to diagnose and fix via alterna-
tive modeling strategies.

Key Contributions

We focus on describing bias and Type I error across the four out-
comes, which we divide into two categories. We first examine non-
continuous outcomes (binary and count outcomes). We show that
application of linear modeling techniques in such a scenario results
in disastrous levels of Type I errors. Second, we consider continu-
ously measured outcome variables that do not meet classical
assumptions of the linear model (censored and noninterval out-
comes). We show that such outcomes—when viewed as transformed
versions of classic linear outcomes—similarly produce undesirable
levels of Type I error when analyzed with the linear model. We also
provide geometric and algebraic guidance for why Type I error rates
are so high. Evidence from both settings suggests a need for height-
ened scrutiny of the characteristics of the outcome in interaction
studies.

Methods

Running Example

We consider a running example so as to describe results in a
common way. We suppose that we observe some outcome y and
interest is in predictors x and z as well as their interaction. We’ll

assume that ðxi; ziÞ � MVNðl;RÞ where l ¼ 0
0

� �
and R ¼

1 q
q 1

� �
. We focus on q = 0 so as to clarify that the issue is about

the product term even if x and z are not associated. We define a
quantity, C, that plays a key role throughout. This quantity is
defined as

Ci ¼ b0 þ b1xi þ b2zi þ b3xizi: (1)

In interaction studies, interest is typically in estimates of b3. Spe-
cific choices for the relevant parameters (i.e., b0;b1; b2) and sam-
ple size (N) are documented throughout but we view them as
suggestive; they are chosen to help us illustrate the pronounced

problems of bias and false positives across many specific configu-
rations of parameters.

If Eðyi j xi; ziÞ ¼ Ci, then the linear model (LM) is appropriate
for estimation of the b parameters. We focus here on cases
wherein Eðyi j xi; ziÞ 6¼ Ci. We first consider transformations of C
appropriate for discrete outcomes. We do this by supposing that
Eðyi j xi; ziÞ ¼ gðCiÞ for different g. Suppose, for example, that we
are interested in binary outcomes; in that case, we may assume
that Eðyi j xi; ziÞ ¼ rðCiÞ where r is the logistic sigmoid,
rðxÞ ¼ 1=ð1þ e�xÞ. We consider outcomes belonging to the fam-
ily of generalized linear models (GLM; Nelder & Wedderburn,
1972) with nonidentity link (binary and count outcomes). We then
suppose that Eðyåi j x; zÞ ¼ Ci but instead of observing yå we
observe some transformed version y (i.e., gðyåi Þ ¼ yi for some
transformation g). We focus on transformations g that induce met-
ric limitations in yi.

Four Approaches for Illustrating Bias and False
Discovery

We take four approaches to illustrating bias and false discovery.

1. The first two approaches are based on visualizations for
select values of the relevant parameters. We first consider
figures that plot y or Eðy j x; zÞ as a function of xz. Such
figures capture the breakdowns in symmetry that induce
false positives.

2. We then consider plots showing y or Eðy j x; zÞ for select
values of z over the range of x. These plots illustrate the
fact that the best fit conditional regression lines for differ-
ent values of z are not parallel (thus, indicating an interac-
tion effect) as we vary the key parameters.

3. We next consider Taylor series expansions of the true
model. Taylor series expansions allow for representation
of a function as a function of an infinite sum of the func-
tion’s derivatives. Use of this technique requires certain
smoothness conditions on the function (and thus won’t be
applicable in all cases). However, where applicable, this
technique allows us to offer additional insight into the
algebra leading to Type I errors. Derivations of key
expansions are shown in Appendix A. In addition, these
expansions reveal how product terms end up in the linear
approximation even when they are not in the true generat-
ing model, which is useful in understanding the extent
which the issues raised in this article are specifically
about challenges to the identification of interactive effects
(see Appendix B).

4. Finally, to demonstrate the ubiquity of the problem, we
calculate bias and Type I error rates via simulation studies
as a function of the relevant model parameters and sample
size.

This sequence allows us to visualize the geometry of correla-
tions between xz and the outcome, illustrate the differences in lin-
ear fits that suggest the existence of an interaction, offer an
algebraic rationale for why this comes about, and provide guid-
ance on how large a problem this is under different conditions.
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Simulation Details

In all cases, interest will focus on estimates of b3. We denote

such estimates as cb3 when the correct model is used, and dbLM3
when the LM is used but emphasize that in fact b3 = 0 (i.e., we
always study false positives). We consider sample sizes of 250 to
1,000.3 Note that the problems identified for samples of 1,000
would only be magnified in larger samples. For any given configu-
ration of conditions, we consider results from analysis of 10,000
simulated data sets. All analyses were conducted in R. Estimation
of linear, logistic, and Poisson models was done via base R func-
tions; estimation of Tobit models via a tailored package (Henning-
sen, 2020). Code to replicate all analyses is available on GitHub.4

Results

Transformations of C

Binary Outcomes

We begin with a discussion of binary outcomes. We embed some
additional didactic components into this discussion given that the
remaining outcome types will follow a similar format. Suppose yi is
a binary outcome; we suppose that yi is a Bernoulli random variable

with Prðyi ¼ 1Þ ¼ ð1þ expð�CÞÞ�1. That is, we assume that data
are generated via the logistic model but the key observation regard-
ing false discovery and the LM is not sensitive to this fact (e.g.,
data could be generated from the Probit model). Such data may be
analyzed either logistic regression (i.e., the GLM with the logistic
link) or via the LM. The latter approach, commonly known as the
“linear probability model,” is based on ignoring the fact that yi is bi-
nary. Use of the LM in this case makes the simplifying assumption
that yi � NormalðCi;r2

yÞ. Why make this assumption? There are

several rationales. Application of the LM may be useful given that
parameter estimates are straightforward to interpret and there may
also be computational reasons for its use (e.g., estimation in the
context of relatively large data sets with hierarchical structure can
become computationally expensive and the LM may help to offset
this fact).
While there may be merit in application of the LM with binary

outcomes in some cases, we emphasize one key point. Interaction
analysis with the LM may be a flawed approach depending on the
prevalence of the outcome. We have discussed this issue in exam-
ples related to gene–environment interactions elsewhere (Dom-
ingue et al., 2020; Trejo et al., 2018) but here show it in its general
form. We focus specifically on the problem induced by changes in
the intercept (b0), which is related to the prevalence of the out-
come (i.e., given that x and z have zero mean, EðyÞ ¼ 1

1þ e�b0
).

Figure 1 considers a scatterplot of Eðy j x; zÞ and xz. When b0 = 0,
there is a clear structure to the attached plot but we emphasize that
there is no linear association between Eðy j x; zÞ and xz (note the
small correlation). However, as b0 increases, the symmetry in the
scatterplot breaks down; the resulting asymmetry leads to a large
correlation (upper left in each panel) and thus false positives (i.e.,
spurious interaction estimates).
Why does this occur? To illustrate the underlying geometry

driving this correlation, Figure 2 shows Eðy j x; zÞ as a function of
x along with the implied logistic (solid lines) and linear (dashed

lines) fits for two different values of z (z = 61). When b0 = 0, the
geometry of the Eðy j x; zÞ values is such that both the logistic and
linear fits for z = 61 are clearly parallel (thus, indicating b3 = 0).
However, as b0 increases, both the slope and intercept of the linear
fit exhibit a dependence on z, and the geometry of the Eðy j x; zÞ
values is such that there is an implied interaction. This is due to
the fact that the z = 1 values in blue are observed at a location
where the true underlying sigmoid is quite flat; thus, leading to an
inference that b3 , 0. Note that when b0 = 4, the fit line for z = 1
has become effectively horizontal; as b0 continues to increase, the
red line will begin to take the same shape and the spurious interac-
tion under the linear model will diminish (we will observe this
similar pattern in Figure 3).

To complement the geometric presentation in Figure 2, we now
consider an algebraic illustration of the problem. Suppose that
Eðy j x; zÞ ¼ rðb0 þ b1xþ b2zÞ, where r(·) is the standard logistic
sigmoid. Using a Taylor series expansion, we can rewrite the
right-hand side:

Eðy j x; zÞ ¼ 1
2
þ 1
4
ðb0 þ b1xþ b2zÞ �

1
48

ðb0 þ b1xþ b2zÞ3

þ � � � :
(2)

After expanding the cubic term and multiplying by the leading
coefficient, there is an interaction term including x and z:
� 1

8 b0b1b2xz. By modeling this expectation as Eðy j x; zÞ ¼
b0 þ b1xþ b2zþ b3xz, we should expect false discovery of an
interaction effect due to this term. That is, we might anticipate
b3 ¼ � 1

8 b0b1b2xz 6¼ 0 if we omit higher-order terms. Moreover,

if b1b2 > 0, we would anticipate dbLM3 , 0 which is indeed what
we observe in Figure 3. Balanced classes (or b0 = 0) improve the
situation but do not fully solve this problem, as the cubic term in
the Taylor series still expands to contain the higher order interac-

tion terms 1
16b

2
1b2x

2z and 1
16b1b

2
2xz

2 that the LM may attribute to
an interaction between x and z.

With both this geometric and algebraic intuition at hand, we
focus on the associated bias in estimates from the LM. We simu-

late data via Prðyi ¼ 1Þ ¼ ð1þ expð�CÞÞ�1 and based on addi-
tional notes discussed in Simulation Details. Crucially, we set b3 =
0 in all simulations such that there is never a true interaction. We
denote the LM-based estimates of the interaction coefficient asdbLM3 ; interest is in this estimate as a function of variation in b0.
Given that x and z are centered at 0, expected prevalence of the
outcome is 1

1þ e�b0
(e.g., expected prevalence is .88 for b0 = 2). In

3 To offer context for this choice of sample size, we surveyed 150
studies published between January 1, 2016 and October 20, 2020 focusing
on depression (based on the Pubmed query: (depression[Title])
AND (heterogeneity[Title] OR moderation[Title] OR
interaction[Title])). Of the ascertained studies, 30% were
empirical studies along the lines of what we consider here. The sample
sizes ranged widely (min = 22, median = 576, IQR = 292–2,279, max =
134,357); our choice of 250–1,000 is meant to reflect the center of this
distribution.

4 See https://github.com/ben-domingue/interaction-problems. Note also
that an early version of this manuscript was available as a preprint.
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the left panel of Figure 3, we can see that LM estimates of b3 are
unbiased when b0 = 0 but heavily biased when b0 � 2; in our
simulated data sets, the 10th through 90th percentiles of estimates
are far from zero. As suggested above in Figure 2, this bias decreases
for large values of b0 (but note that the outcome will become
extremely rare in such scenarios). Note that the degree of bias is inde-
pendent of sample size.
The right panel of Figure 3 shows the implications in terms of

Type I error for two selected values of b0. When b0 = 0, levels of
false discovery are appropriate (as expected given the right panel).
However, for b0 = 2, false discovery is uniformly problematic and
increasing sample size only increases the level of false discoveries.
Here, we also consider GLM estimates; note that they have uni-
formly correct Type I error (given a = .05). Selection of the correct
link function here (rather than relying on the linear model)
resolves the problem.
We end this section by emphasizing that false discovery when

using the linear model to detect interactions effects on unbalanced

binary outcomes is a fundamental problem. The parameter bias
introduced by modeling interactions for binary outcomes using a
linear model is not resolved by increasing sample size (to the con-
trary, increasing sample size will typically increase the Type I
error rate). Further, the degree and direction of bias will depend
upon specifics regarding the main effects b1 and b2 (if b1b2 , 0

then we will observe dbLM3 > 0 in contrast with what we observed
in Figure 3). We begin to unpack these dependencies in the left
panel of Figure 4. When b1 ¼ b2 ¼ 1 and prevalence is above .75,
bias leads to elevated Type I error rates across all sample sizes
considered. When samples are relatively large, bias is a problem
even for prevalence approaching .5. The fact that larger samples
lead to higher levels of Type I error is clearly apparent in the fact
that the red regions extend lower for a given vertical strip when
sample size is larger. To show that there is also sensitivity to other
parameters, we consider b1 = .25 and b2 = .75 in the right figure
panel. Here, bias leads to less problematic Type I error for smaller
samples no matter the underlying prevalence. Thus, rather than

Figure 2
Illustration of the Geometry Driving False Discovery Due to Variation in b 0 When the Linear
Model is Used (b 1 = b 2 = 1, b 3 = 0, N = 1,000) for Analysis of Binary Outcomes

� � � �

Note. Blue and red dots represent those data points within half a unit of their respective z values (i.e., z such
that jz� 1j, 0:5 are in blue and z such that jzþ 1j, 0:5 are in red. Fitted lines for 61 are similarly shaded).
Solid lines are fits from logistic regression model while dashed lines are fits from linear model. See the online
article for the color version of this figure.

Figure 1
Scatterplot of Eðy j x; zÞ and xz for Different Values of b 0 (b 1 ¼ b 2 ¼ 1; b 3 ¼ 0;N ¼ 1,000)
When y is a Binary Outcome

� � � �

Note. See the online article for the color version of this figure.
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providing guidelines or rules of thumb regarding when a LM may
be appropriate, we generally encourage the implementation of
more appropriate link functions (e.g., logistic or probit).

Count Outcomes

We now pivot to another outcome in the GLM framework and
focus on the scenario where yi is a count outcome. We suppose that
data are generated via the Poissonmodel; thus,Eðyi j x; zÞ ¼ expðCiÞ.
False discovery is again a catastrophic problem if the linear model is
used in this setting. We begin to illustrate this fact via Figure 5. We
first show a scatterplot of Eðy j x; zÞ and xz; however, this time we
introduce variation in b2 to emphasize the fact that spurious

interactions can arise as a function of the main effect coefficients in
this case. Note that there is no linear correlation apparent in the scat-
terplot when b2 is relatively small. However, increase in b2 induces
an association despite the fact that b3 = 0. We illustrate the geometry
leading to this false discovery in Figure 6. We continue to vary b2
and hold b1 = .2. As b2 increases, seeming variation inEðy j x; zÞ as a
function of z is introduced. This would imply b3 = 0 in the incor-
rectly specified linear approach.

As an algebraic illustration, we can again consider a Taylor
series expansion. Suppose that Eðy j x; zÞ ¼ expðb1xþ b2zÞ ¼
expðb1xÞexpðb2zÞ. We can use Taylor series expansion to write
this as

Figure 3
Variation in Bias (Left) and Type I Error Rate (Right) Associated With Estimates
of b 3 When b 3 = 0 for Binary Outcomes (for b 0 = 0, b 1 = b 2 = 1)

�

�
�
�

�
�

�

Note. Left: Estimates db LM
3 based on the LM for two sample sizes as a function of b 0.

Shaded regions capture span of estimates between 10th and 90th percentile while the solid
line shows median estimates. Right: Levels of Type I error as a function of sample size for
two values of b 0. See the online article for the color version of this figure.

Figure 4
Type I Error Rate as a Function of Sample Size and Prevalence When Using LM to Analyze Binary
Outcomes

� � � �

Note. In all cases, b 3 = 0 while b 0 varies (such that stated prevalence is equivalent to eb 0

1þeb 0
). The b 1 and b 2

coefficients are as shown for each panel. Blue regions indicate areas where Type I error is appropriate whereas
red indicates regions wherein bias is leading to elevated levels of Type I error. See the online article for the
color version of this figure.
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Eðyjx;zÞ¼ð1þb1xþðb1xÞ2=2þ���Þð1þb2zþðb2zÞ2=2þ...Þ
¼1þb1xþb2zþb1b2xzþ...: (3)

If we mistakenly assume that Eðy j x; zÞ ¼ b1xþ b2zþ b3xz, we
would anticipate b3 ¼ b1b2 if we omit higher order terms. Thus, if
either b1 or b2 does not equal zero, false discovery will result
when the LM is deployed for analysis.
Implications of this problem for bias and false discovery are

shown in Figure 7. At left, bias in dbLM3 increases as a function of b2;
the performance of the LM for analysis of count outcomes will be
sensitive to the magnitude of the main effects. At right, we
observe that the bias introduced by b2 induces Type I errors. Anal-
ysis of larger samples will be plagued by false positives in such an
instance. However, analysis of the appropriately specified GLM
(i.e., Poisson regression) yields the correct Type I error rate. Note
that we see higher than expected levels of false discovery by the

LM even when b2 = 0, but the false discovery rate is unaffected by
sample size. While the Taylor series expansion suggests we
should not see false discovery when b2 = 0, the transformation of
Ci induces heteroskedasticity in the outcome. This leads the stand-
ard LM to underestimate standard errors, which manifests as false
discovery.

Transformations of yå

Censored Outcomes

We first consider transformations g of yå (whereEðyåi j x; zÞ ¼ Ci)
that lead to scales with a ceiling or floor (Garin, 2014). We focus on
a floor but the same concerns would apply to ceilings. To simulate
data, we utilize the Tobit model (Tobin, 1958).We suppose that

yåi � NðCi;r
2
yåÞ: (4)

However, we do not observe yåi ; rather, we observe

Figure 5
Scatterplot of Eðy j x; zÞ and xz for Different Values of b 2 (b 0 ¼ 1; b 1 ¼ 0:2;N ¼ 1,000) When yi
is a Count Outcome

� � �

Note. See the online article for the color version of this figure.

Figure 6
Illustration of the Geometry Driving False Discovery Due to Variation in b 2 When the Linear
Model is Used (b 0 ¼ 1; b 1 ¼ 0:2;N ¼ 1,000) for Analysis of Count Outcomes

� � �

Note. Blue and red dots represent those data points within half a unit of their respective z values (i.e., z such
that jz� 1j, 0:5 are in blue and z such that jzþ 1j, 0:5 are in red. Fitted lines for 61 are similarly shaded).
Solid lines are fits from Poisson regression model while dashed lines are fits from linear model. See the online
article for the color version of this figure.
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yi ¼ gðyåi Þ ¼
yåi yåi > c
c yåi � c

�
(5)

for some constant c. Note that the censoring violates the smooth-
ness conditions required to conduct the Taylor series expansion.
Thus, we do not consider such an analysis here.
We begin to illustrate the reason for Type I errors when the LM

is deployed due to the existence of floors in Figure 8. We show y
as a function of xz in gray versus yå in red. When the floor is suffi-
ciently low, few points are affected and recovery with the censored
data yields the correct inference. This is due to the fact that we
observe the full shape of (xz, y). However, when the floor begins
to censor a significant number of cases, we no longer observe the
bottom half of the shape. When these points are raised toward the
y mean, they are down-weighted in the sum leading to the correla-
tion coefficient and thus lead to the resulting (spurious) positive
correlation between xz and y.
The implications for fitted trajectories for different values of z

are shown in Figure 9. Trajectories for relatively large values of z
are unaffected (i.e., the solid and dashed blue lines are similar in

all cases). However, as c increases, there is an increasing effect on
the red line; when c is at its largest, the trajectory based on
observed values is flatter than the trajectory based on uncensored
values thus suggesting an interaction under the naive LM.

Figure 10 extends this geometric logic to an analysis of bias and
Type I error as a function of c. On the left, we first consider LM-

based estimates dbLM3 . As c increases, so does bias in dbLM3 . This
translates into an increase in Type I error which we consider on
the right. Bias leads to highly elevated levels of false discovery
even for modestly sized samples and the relatively low values of c
that would not result in substantial amounts of censoring. The bias
leads to catastrophic Type I error as the censoring affects a larger
proportion of outcomes (i.e., c = – 1); in such a case, increasing
sample size serves only to increase the salience of the problem. In
contrast, Tobit estimates produce Type I errors at the expected rate
for both values of c irrespective of sample size.

Noninterval Outcomes

As a final example, we consider the impact of distortions that
lead to noninterval scales on our ability to make accurate

Figure 7
Variation in Bias (Left) and Type I Error Rate (Right) Associated With db LM

3
When b 3 = 0 for Count Outcomes (for b 0 ¼ 0; b 1 ¼ 0:5)

�

�

�
�

�
�

�

Note. Left: Estimates of b 3 based on the LM for two sample sizes as a function of b 2.
Shaded regions capture span of estimates between 10th and 90th percentile while the solid
line shows median estimates. Right: Levels of Type I error as a function of sample size for
two values of b 2. See the online article for the color version of this figure.

Figure 8
Scatterplot of y or y å and xz for Different Values of c (b 0 ¼ 0; b 1 ¼ b 2 ¼ 1;s2

y ¼ 0:25;
N ¼ 1,000) When yi is a Censored Outcome

Note. See the online article for the color version of this figure.
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inferences. To do this, we consider a monotonic but nonlinear
transformation of yåi . Such a transformation is motivated by, for
example, the work of Michell (1986) which surfaces the issue of
measurement scales in the context of psychological constructs.
Scales are frequently assumed to be interval but need not be. In
particular, we consider “Lord’s transformation” (Briggs & Bete-
benner, 2009) which stretches the scale for larger values of yåi .
That is, we suppose that Eðyåi j x; zÞ ¼ Ci but that we observe

yi ¼ gðyåi Þ ¼ 1:05ðy
å
i �aÞ=k: (6)

Here, we consider a = 0 and allow k to vary. This transformation
has the effect of making a one-unit difference in y have differential
meaning in the yå metric (see illustration in Figure 11). When k is
small, distances between smaller values of yå are compressed
while distances between larger values are inflated. Differences

between the distances quickly dissipate as k increases. The trans-
formation’s effect has similarities to the effect of a floor in that, in
both cases, differences between small values of yå are being mini-
mized (i.e., false positives are generated here for the same reason
as in Figure 8). Given these similarities, we provide additional fig-
ures in the online supplemental materials but do not discuss them
further.

First, we look to a Taylor series expansion of Equation 6 about

zero. Supposing that a = 0, we have Eðy j x; zÞ ¼ 1:05
1
kC. Looking

at the first three terms, we see:

Eðy j x; zÞ ¼ 1:05
1
kC

¼ 1þ ln1:05
1
k

� �
Cþ 1

2
ln1:05

1
k

� �2

C2 þ � � � :
(7)

Figure 9
Illustration of the Geometry Driving False Discovery Due to Variation in c When the Linear
Model is Used (b 0 ¼ 0; b 1 ¼ b 2 ¼ 1;s2

y ¼ 0:25;N ¼ 1,000) for Analysis of Censored Outcomes

Note. Blue and red dots represent those data points within half a unit of their respective z values (i.e., z such
that jz� 1j, 0:5 are in blue and z such that jzþ 1j, 0:5 are in red. Fitted lines for 61 are similarly shaded).
Solid lines are fits from Tobit regression model while dashed lines are fits from linear model. See the online ar-
ticle for the color version of this figure.

Figure 10
Variation in Bias (Left) and Type I Error Rate (Right) Associated With db LM

3
When b 3 = 0 for Outcomes With a Floor (b 0 ¼ 0; b 1 ¼ b 2 ¼ 1;s2

y ¼ 1)

�

�

Note. Left: Estimates of b 3 based on the LM for two sample sizes as a function of c.
Shaded regions capture span of estimates between 10th and 90th percentile while the solid
line shows median estimates. Right: Levels of Type I error as a function of sample size for
two values of c. See the online article for the color version of this figure.
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Expanding the third term, we produce a term of ln21:05
k2

b1b2xz. If

b1b2 6¼ 0; this term will thus lead to false discovery of an inter-
action coefficient when the LM is used. Given that k appears in
the denominator, this problem is exacerbated at smaller values
of k.
Figure 12 focuses on the bias and Type I error induced by this

transformation. We do not consider estimates that are adjusted for
the outcome’s specific distributional properties because the spe-
cific function governing how the observed data map to an interval
scale is typically not something that is directly known (Domingue,
2014). This increases the salience of the following observation
about the LM estimates because they would likely be used in place
of a hypothetical alternative that adjusts for the role of Lord’s

transformation. We can see a clear sensitivity in estimates of b3 to
the value of k. For small values of k, there are larger deviations
from the true interval scale which leads to an increase in bias. This
then translates into a higher level of Type I error rate when k is
relatively small. Implementing an ordinal link function (B€urkner
& Vuorre, 2019)—for example, an ordered logit—may be worth
considering in this scenario.

Discussion

The study of interactions is of clear interest in a wide range of
settings. However, the specific properties of the outcome variable
in question can make accurate inference challenging. To illustrate
this point, we considered two broad types of outcomes: outcomes
based on a transformation of C and outcomes based on a transfor-
mation of some intermediate variable yå where Eðyåi j x; zÞ ¼ Ci.
In both cases, there are a variety of problems that may threaten in-
ference; some of these issues are relatively easy to diagnose and
resolve, others less so. Here, we separately discuss implications
for interaction analysis of both types of outcomes before conclud-
ing with general thoughts on the study of interactions.

For outcomes based on transformations of C, there are clear
gains to using the correctly specified alternative. In all cases, the
correctly specified approach led to correct levels of Type I error
whereas the LM-based approach led to highly elevated levels of
Type I error. There are considerations—including computational
feasibility, interpretability, and other concerns (Battey et al., 2019;
Gomila, 2020)—that may lead one away from the GLM
approaches. In certain scenarios (e.g., binary outcomes with preva-
lences near 50%), the benefits of the linear model may be worth
considering (Knief & Forstmeier, 2021). However, the potential
for spurious interaction results from the linear model should be
seriously considered by researchers making model specification
decisions. We would urge heightened scrutiny when attempting to
model interaction effects using alternatives that may be incorrectly
specified.

For outcomes based on transformations of yå, our results suggest
that common problems will serve to increase Type I error. Some

Figure 11
Effect of Transformation When a = 0 for Various Values of l

�

Note. See the online article for the color version of this figure.

Figure 12
Variation in Bias (Left) and Type I Error Rate (Right) Associated With db LM

3
When b 3 = 0 for Outcomes Observed Following Lord’s Transformation
(b 0 ¼ 0; b 1 ¼ b 2 ¼ 1;s 2

y ¼ 1;a ¼ 0)

�

�

�
� �

Note. Left: Estimates of b 3 based on the LM for two sample sizes as a function of l . Shaded
regions capture span of estimates between 10th and 90th percentile while the solid line shows
median estimates. Right: Levels of Type I error as a function of sample size for two values of l .
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of these problems are perhaps fairly easy to identify (i.e., the exis-
tence of a floor) and can frequently be addressed using standard
solutions (i.e., models for censored data). Other problems (i.e.,
noninterval scales) may be hard to identify and nevertheless have
deleterious effects on statistical inference. There is no straightfor-
ward general mechanism for identifying and correcting this issue.
We expect that in many instances, the primary analyst can employ
their knowledge of the measurement protocol combined with con-
tent knowledge about the constructs of interest and data visualiza-
tion (e.g., histograms, LOESS plots) to make an informed
appraisal of quality of the measurement, and possible implications
for interaction testing. Another possibility would be to consider
analyses that only require the outcome be ordinal (B€urkner &
Vuorre, 2019). The lack of a straightforward resolution is, in our
view, a rationale for statistical humility when studying outcomes
with challenging measurement properties of the kind that abound
in social science. In particular, a single study should rarely be
viewed as dispositive evidence regarding heterogeneity absent of
very large samples and very high-quality measurement.
Much of what we discuss is not novel in the sense that these

findings are anticipated by other studies focusing on power and
false discovery in the context of misspecified models or other
issues. That said, we view the issues of interactions as warranting
special attention. Consider, for example, power studies that may
be performed in proposals of future research. Our findings suggest
the need for carefully constructed power analyses if the goal is to
derive appropriate guidance about sample sizes, for example. Such
studies may be constructed using recently developed techniques
(Jaccard & Brinberg, 2021). However, also note that many of the
problems identified here produce bias such that they will only
become worse with larger samples. In other words, more data will
not resolve these problems; informed decisions about appropriate
measurement and modeling will require conceptual understanding.
One potential response to these findings is that the problem of bias
is easily avoided if correctly specified models are used. On the one
hand, we agree and think this an underappreciated issue in the con-
text of interaction studies. On the other hand, especially when con-
sidering latent variables as outcomes (a common occurrence in
psychology), it may be nontrivial to identify the correct model.
Turning to the issue of false discovery, we make two key points.

First, the issues of false discovery raised here cannot be dealt with by
utilizing robust standard errors. The problems illustrated in Figures
2, 6, and 8 show that it is the parameter estimates themselves—not
merely the standard errors—which are flawed (for a related argument
about the limitations of robust standard errors, see King & Roberts,
2015). We have focused on Type I errors because they directly call
attention to the high rates of false positives in interaction studies
using outcomes that present measurement challenges. The second
(closely related) point is that biased parameter estimates, like those
observed here, may lead to a large quantity of spurious findings in
research focusing on interactions. This is a concern and should lead
to increased attention to the nature of the outcome variable in studies
of statistical interactions.
We acknowledge limitations. We do not consider analysis using

techniques such as structural equation modeling or mixed models.
There are also outcome types that we do not consider (e.g., skewed
outcomes; Domingue et al., 2022). In addition, we do not consider
spline-based approaches that may allow for nonparametric analy-
sis of outcome response surfaces as a (potentially nonlinear)

function of predictors. Despite the fact that our simulations only
speak conclusively to some cases, they demonstrate the need for
increased caution in studies of interactions, especially when focal
interest is on tests of statistical significance. Finally, some of the
issues that we discuss may be more general problems that afflict
main effect estimates in certain settings. Our Taylor series expan-
sions help clarify how xz product terms are produced in linear
approximations of the true nonlinear response surfaces (see Ap-
pendix B). Future research may use this technique to further probe
the scenarios in which similar concerns arise when considering
main effects.

What should researchers do about the problems highlighted in
this article? First, it is important to reemphasize that the false dis-
covery of interactions highlighted here are the results from param-
eter bias arising from model misspecification; these problems will
not be resolved by increasing sample sizes (in fact, Figure 4 makes
clear that increasing sample size will typically exacerbate Type I
error rates). Such bias arises from a confluence of several data
characteristics that are not easily reducible to consultation of
standard rubrics or guidelines about when a linear model may be
acceptable. Rather, we encourage researchers to implement link
functions that may be better suited to the characteristics of their
data (e.g., logistic or probit for binary and ordered categorical out-
comes; Poisson for count outcomes; Tobit for censored outcomes
that may otherwise be normally distributed). We stress that, while
in some cases the appropriate link function may be challenging to
identify, in many cases there will be available options for a link
function that will resolve the concerns discussed here. Such link
functions are universally available across statistical software.
There are also several widely used software options (e.g., MPlus
TYPE = COMPLEX and TYPE = TWOLEVEL, SAS PROC
GLIMMIX and PROC NLMIXED, R lme4) for implementation of
link functions in conjunction with other advanced modeling
approaches when these issues co-occur with other data complex-
ities (e.g., nesting of observations within clusters; the need to
implement sample weights). In some cases, there nevertheless may
be complexities of study design that require modeling adjustments
that lead to interest in linear approximations. In such cases, we
would urge both caution and a reliance on simulation studies to
guide subsequent inferences. Such simulation studies would need
to consider not just the sample size in conjunction with the metric
properties of their outcomes, but also the magnitudes of main
effects. Continuously distributed noninterval outcomes may be
especially concerning as they are difficult to identify. When they
are a potential concern, we suggest considering ordinal (B€urkner
& Vuorre, 2019) approaches.

If the “some do, some do not” formulation holds true—and, we
believe that it often does—interaction studies will clearly be of in-
terest. Yet, poorly designed interaction studies can lead fields into
dead-ends: Spurious interactions will be detected and true interac-
tions will be obscured, reversed, or overestimated. Consider, for
example, the era of candidate gene-by-environment studies (Dun-
can & Keller, 2011) which is now viewed as a vast literature con-
sisting almost entirely of false positives. A failure to steer clear of
dead-ends can lead to wasting large quantities of resources—both
in terms of finite research dollars and even scarcer researcher time.
Thus, we encourage researchers pursuing questions focused on
studies of heterogeneity using statistical interactions to take a
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more realistic perspective on the quality of inference likely to
result from their particular data context.
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Appendix A

Taylor Series Expansions

We use Taylor series expansions to approximate a function
f(x) as an infinite sum of polynomials

P1
n¼0 anx

n. Below we
derive values for the constants an for different choices of f
that are relevant here. In the main text, we consider the
expansion where we replace the argument x with C. In partic-
ular, we identify the implied terms in the infinite series that
involve a linear product of the predictors (i.e., the xz term
where x now refers to the predictor from Equation 1, not the
argument in the above discussion of f).

Expansion for Binary Outcomes

Suppose that f is the logistic function such that f(x) = (1þ e–x).
We then have:

f 0ðxÞ ¼ ð1þ e�xÞ�2ðe�xÞ (8)

f 00ðxÞ ¼ 2ð1þ e�xÞ�3ðe�2xÞ � ð1þ e�xÞ�2ðe�xÞ (9)

f 000ðxÞ ¼ 6ð1þ e�xÞ�4ðe�3xÞ � 4ð1þ e�xÞ�3ðe�2xÞ � f 00ðxÞ:
(10)

Using these, we first compute derivatives at x = 0.

f 0ð0Þ ¼ 1
4

(11)

f 00ð0Þ ¼ 0 (12)

f 000ð0Þ ¼ � 1
8

(13)

Using these (and the fact that f ð0Þ ¼ 1
2Þ, we can construct the

Taylor series expansion around x = 0:

f ðxÞ ¼ f ð0Þ þ f 0ð0Þ
1!

xþ f 00ð0Þ
2!

x2 þ f 000ð0Þ
3!

x3 þ � � � (14)

f ðxÞ ¼ 1
2
þ 1
4
xþ 0x2 � 1

48
x3 þ � � � : (15)

We use this expansion in Equation 2.

Expansion for Count Outcomes

Here, we use the well-known expansion of f(x) = ex around
x = 0:

ex ¼
X1
n¼0

xn

n!
: (16)

This expansion is used in Equation 3.

Expansion for Noninterval Outcomes

Suppose that f(x) = abx. We again take derivatives:

f 0ðxÞ ¼ ðblnaÞabx (17)

f 00ðxÞ ¼ ðblnaÞ2abx (18)

and then compute values

f ð0Þ ¼ 1 (19)

f 0ð0Þ ¼ blna (20)

f 00ð0Þ ¼ ðblnaÞ2: (21)

Using these facts, we can write

f ðxÞ ¼ 1þ ðblnaÞxþ 1
2
ðb ln aÞ2x2 þ � � � : (22)

which we use in Equation 7.

(Appendices continue)
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Appendix B

Distinguishing Interactions From Main Effects Via the Taylor Series

We use the generic notion of Taylor series expansions to
illustrate some key elements related to the unique problem of
interactions when a linear model is assumed. We will assume
Eðy j x; zÞ ¼ f ðCÞ and that we approximate f via a Taylor
series, f ðCÞ ¼ a0 þ a1Cþ a2C

2 þ � � �. Suppose first that
C ¼ b0 þ b1x; i.e., b2 ¼ b3 ¼ 0 and z has no effect on y. We
would then have:

Eðy j x; zÞ ¼ a0 þ a1ðb0 þ b1xþ b2zþ b3xzÞ
þ a2ðb0 þ b1xþ b2zþ b3xzÞ2 þ � � � (23)

¼ a0 þ a1ðb0 þ b1xÞ þ a2ðb0 þ b1xÞ2 þ � � � (24)

¼ a0 þ a1b0 þ a1b1xþ a2b
2
0 þ 2a2b0xþ a2b

2
1x

2 þ � � � :
(25)

Note first that z appears nowhere; given that z always
appears in a b2z product in the Taylor series expansion, if b2 =
0 we will not detect spurious main effects of z.
Suppose now that b2 = 0 but b3 = 0. In this case, the higher-

order C terms will inevitably produce product terms. For example,

C2 ¼ b20 þ 2b0b1xþ 2b0b2zþ b21x
2 þ 2b1b2xzþ b22z

2: (26)

We emphasize the 2b1b2xz term. As long as b1b2 6¼ 0, if a
misspecified linear regression model Eðy j x; zÞ ¼ b0 þ b1xþ
b2zþ b3xz is then fit to resulting data, then these interaction
terms from the expansion will lead to nonzero estimates of b3
even though b3 = 0. That is, well-powered studies will

necessarily result in nonzero b3 estimates (the problem of
spurious interactions we focus on here). Matters are some-
what more complicated in the case of binary outcomes gener-
ated via the logistic regression model; in that case, a2 = 0 but
higher-order terms will still include xz terms that may induce
spurious interactions (under certain assumptions about b0,
see discussion in main text).

Reverting back to the assumption that b2 ¼ b3 ¼ 0, we
make some final remarks related to x given that Eðy j x; zÞ ¼
ða0 þ a1b0Þ þ ða1b1 þ 2a2b0Þxþ � � �. Suppose a misspecified
regression model of Eðy j x; zÞ ¼ b0 þ b1x is deployed.
Estimates of b1 will retain sensitivity to, for example, b0 given
the 2a2b0 term in the expansion. In general, the degree to
which the misspecified regression produces reasonable results
seems dependent on the degree to which a linear approximation
is appropriate (i.e., is Eðy j x; zÞ � ða0 þ a1b0Þ � ða1b1 þ
2a2b0Þx small over the range of x?). This assumption regarding
linearity (or, perhaps even more importantly, monotonicity) is
an important consideration that is beyond the scope of our arti-
cle. For our purposes, we think the potential shortcomings of
estimates of b1, in this case where a linear model is misspeci-
fied, are distinctive from the interaction case wherein the exis-
tence of main effects will induce spurious interaction coefficients
(i.e., the analysis of C2 above).
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