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Supplementary Methods 
 
MTAG Moment Conditions. Here we examine the connection between the MTAG model and Genomic 

SEM. MTAG builds onto the LDSC framework, where K phenotypes and M SNPs are measured in N 

individuals, and modeled according to the equation: 

                      ,      (1.1) 

where  is the score for person i on phenotype k, x is the standardized genotype for person i on SNP j, 

βj,k  the true genotype effect size for SNPj on phenotype k, and ϵi,k is the residual for person i on phenotype 

k. Written in matrix form, we have: 

                         ,           (1.2) 

where Φ is an N× K matrix of scores for person i on phenotype k, X is an N×M matrix of standardized 

genotypes for person i on SNP j, B is an M×K matrix of true genotype effect sizes for SNP j on 

phenotype k, and Ei,k is an N×K matrix of residuals for person i on phenotype k.  

In this framework, LDSC is used to model βj,k as phenotype-specific random effects, varying over 

SNPs, with E(βj,k)= 0 and cov(βj,k)= Ω.  The diagonal elements of Ω contain the average heritability 

explained per SNP ( ; alternately referred to as genetic variance explained per SNP, i.e., ), 

and the off diagonal elements of Ω contain the genetic covariances between phenotypes on a per-SNP 

scale (s/M, where s is the genetic covariance between pairs of phenotypes). In other words Ω is 

equivalent to !
"
𝑆LDSC, where SLDSC is the genetic covariance matrix estimated with LDSC that is used in 

Genomic SEM. 

By drawing on multivariate GWAS summary statistics from K genetically correlated phenotypes, 

MTAG attempts to obtain an estimate of the effect size  for SNP j on target phenotype t that is more 

precise than the univariate GWAS estimate, , of this effect. In the notation of Turley et al. (2018)11, 

the MTAG moment condition specifies: 

φi,k = xi, jβ j ,k + εi,k
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where  is the GWAS estimate for the regression effect of SNP j on phenotype k, is the (k,t)th 

element of Ω (i.e., elements drawn from the tth column of Ω), and is the (t,t)th element of Ω. In other 

words, is the LDSC-estimate of per-SNP scaled genetic covariances between each phenotype and the 

target phenotype and is the LDSC estimate of the per-SNP genetic variance (i.e. per-SNP heritability) 

of the target phenotype. 

 

We can rewrite the MTAG moment condition in notation that is more germane to Genomic SEM. 

We write the GWAS estimate for the regression effect of SNP j on phenotype k as βGWAS j,k. We write the 

LDSC estimate of per-SNP scaled genetic covariance between phenotype k and target phenotype t as 

σk,t/M, and we write the LDSC estimate of per-SNP genetic variance in target phenotype t as . 

Finally, we write the effect size for SNP j on target phenotype t that MTAG attempts to estimate as βMTAG 

j,k. Under this notation, the MTAG moment condition takes the form: 

                                           .   (1.4) 

Cancelling M from the numerator and denominator of the quotient and rearranging yields: 

                                                                  .       (1.5) 

Standard covariance algebra holds that the covariance between variables x and y divided by the variance 

of x is equivalent to the unstandardized regression effect of x on y. We therefore obtain that the LDSC-

derived genetic covariance between k and t divided by the LDSC-derived genetic variance of t is 

equivalent to an LDSC-inferred structural regression effect of the genetic component of phenotype t on 

the genetic component of phenotype k, which we label . The moment condition therefore reduces 

to: 

   .      (1.6) 

Solving for , we obtain: 

      .            (1.7) 
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Genomic SEM Covariance Expectations. We can specify a model within Genomic SEM that satisfies 

these same moment conditions as MTAG. We write a model in which the genetic component Yk of each 

phenotype k, is regressed on the genetic component Yt of t, and Yt is regressed on SNP j: 

Yk = βLDSC t,k × Yt + ek ,         (2.1) 

Yt = βMTAG j,t × SNPj + ut ,   (2.2) 

or in path diagram form (for two phenotypes, t and k) as:  

 

 This model produces the following expectations with respect to the GWAS-estimated covariance 

between SNP j and phenotype k: 

                                             ,  (2.3) 

which rearranging yields: 

                                                  .     (2.4) 

As the covariance between SNPj and phenotype k divided by the variance of SNPj is equal to the 

regression effect of SNPj on phenotype k, we have: 

.        (2.5) 

Solving for , we obtain: 

        ,          (2.6) 
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which is the same equality obtained when solving for from the MTAG moment condition, in 

equation 1.7 above. 

 

Optimization. Both the MTAG moment condition and the specific Genomic SEM model specified to 

satisfy the MTAG moment condition yields: 

    .              (3.1) 

As there are K phenotypes, including the target phenotype, this yields a system of equations that 

is overidentified, in the sense that there are more knowns than free parameters. In, for example, the two-

phenotype circumstance (1 target phenotype, t, and one supporting phenotype, s), the free parameter 

is equivalent to two separate terms: 

 ,                 (3.2) 

                                                               and 

                                 .     (3.3) 

In both MTAG and Genomic SEM, free parameters are estimated by minimizing a fit function. 

The MTAG fit function minimizes the weighted squared discrepancies between the MTAG-implied 

GWAS estimates and the univariate GWAS estimates for all K phenotypes. In the notation of Turley et al. 

(2018),11 this is written as: 

 

 

,  (3.4)    

where W is a weight matrix,  is the vector of betas for the effect of SNPj on phenotype k estimated from 

univariate GWAS, and is the vector of SNP-phenotype betas that is implied by MTAG (by 

multiplying the MTAG estimate for the GWAS effect on target trait t by the LDSC-inferred structural 

regression effect of the genetic component of phenotype t on the genetic component of phenotype k).  
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This takes the same form as the WLS fit function in Genomic SEM, which minimizes the 

weighted squared discrepancies between all elements in the full genetic covariance matrix (combined 

both from elements derived from LDSC and elements derived directly from GWAS estimates) and those 

implied by the specified model, according to: 

                                                ,        (3.5) 

where W is a weight matrix, s is the half-vectorized empirical genetic covariance matrix (S), and  is 

the half-vectorized model-implied genetic covariance matrix (Σ(θ)). 

The weight matrices, W, in MTAG and Genomic SEM are very similar. In Genomic SEM, W is 

the inverse of the diagonal matrix DS that contains the diagonal elements of VS on its diagonal, where VS is 

the sampling covariance matrix of all of the elements in S, and SEs of parameter estimates θ are obtained 

via sandwich estimation using the full VS matrix. In MTAG, W is the inverse of a similar sampling 

covariance matrix of the MTAG-implied GWAS estimates. In the notation of Turley et al. (2018),11 this 

matrix is formed as: 

                ,          (3.6) 

where is the LDSC-derived genetic covariance matrix among the phenotypes on a per-SNP scale, is 

the vector of estimates from column t of  that contains the genetic covariances between each phenotype 

and the target phenotype, is the per-SNP genetic variance (per-SNP heritability) of the target 

phenotype, and Σj is the sampling covariance of the univariate GWAS effects, which is equivalent (after 

transformation) to the elements of the portion of the Vs matrix from Genomic SEM that contains sampling 

covariances of the GWAS effects (VSNP) obtained from the cross-trait LDSC intercepts. The term 

reduces to a matrix of genetic variances and covariances among the phenotypes mediated by their 

structural regressions on the genetic component of phenotype t, such that represents per-SNP 

scaled residual genetic covariances among the phenotypes after controlling for genetic variance in target 

phenotype t. The addition of these residual genetic covariances to the sampling covariance of the 

univariate GWAS effects in constructing the MTAG W matrix results in the fit function downweighting 

( )( ) ( )( )s W ss q s q¢- -

( )s q

1'
tt

j
tt

ww
w

-
æ ö
W- +Sç ÷
è ø

W ω t

W

ω tt

'
tt

tt

ww
w

'
tt

tt

ww
w

W-



the contribution of GWAS estimates for supporting phenotypes that have lower genetic correlations with 

the target phenotype. 

 
Supplementary Results 
 
ML Estimation. WLS estimation more heavily prioritizes reducing misfit in those cells in the S matrix that 

are estimated with greater precision. This has the desirable property of potentially reducing standard 

errors of the Genomic SEM parameter estimates, which may boost power for SNP discovery and increase 

polygenic prediction. However, because the cells in the VS matrix (that index the precision of cells in the S 

matrix) are contingent upon the sample sizes for the contributing univariate GWASs, WLS may produce a 

solution that is dominated by the patterns of association involving the better powered GWASs, and 

contain substantial local misfit in cells of S that are informed by lower powered GWASs. In other words, 

WLS relative to ML may more heavily prioritize minimizing sampling variance of the parameter 

estimates in the so-called variance bias tradeoff.37 We expect that this will only occur when the model is 

overidentified (i.e., df  > 0), such that exact fit cannot be obtained, and that divergence in WLS and ML 

estimates will be most pronounced when there is lower sample overlap and the contributing univariate 

GWASs differ substantially in power.  

In the case of our Genomic SEM formulation of GWIS, the model was just identified (df = 0) and 

results from ML were highly consistent with those from WLS (Supplementary Fig. 23). For 

anthropometric traits, results were also highly similar across ML and WLS, with ML estimation also 

confirming two latent factors with a modest genetic correlation (rg = .21, SE = .05, p < .001). In the case 

of psychiatric traits, we use summary statistics characterized by discrepant sample sizes and low levels of 

sample overlap for which the expectation is potentially divergent WLS and ML estimates. Indeed, WLS 

and ML findings were discrepant, with MDD loading strongest on the p-factor with ML estimation 

(Supplementary Fig. 24), but SCZ loading strongest on the p-factor with WLS estimation. The follow-up 

models used to calculate model fit failed to converge for ML estimation of both the p-factor and 

anthropometric traits. For neuroticism, results were highly consistent across WLS and ML estimation—as 

would be expected giving almost entirely overlapping univariate samples—revealing a common 

neuroticism factor with strong loadings for all indicators and good model fit (c2[54] = 4959.08, AIC = 

5007.08, CFI = .891, SRMR = .116; Supplementary Fig. 24).  

For SNP effect models estimated using ML, there was minimal enrichment of effects for the p-

factor, but effects were similar to WLS for neuroticism (Supplementary Fig. 25 for QQ plot). More 

specifically, there were no lead SNPs identified for the p-factor with ML estimation and 105 lead SNPs 

identified for neuroticism with ML estimation. For estimates of QSNP, there were 63 independent hits for 

the p-factor and 63 independent hits for neuroticism. Inspection of QSNP estimates for the p-factor 



indicated that these results were largely driven by SNPs that were highly significant for schizophrenia, but 

not the other indicators (Table S19). As expected based on higher sample overlap and less discrepant 

sample sizes for neuroticism compared to the p-factor, the association between p-values for ML and WLS 

were higher for neuroticism (r = .94) than for the p-factor (r = .15; Supplementary Fig. 26). However, the 

association between QSNP estimates was high for both the p-factor (r = .77) and neuroticism (r = .99; 

Supplementary Fig. 26). Biological annotation of ML-based results conducted using DEPICT revealed all 

null findings for the p-factor, and 6 prioritized genes, no gene sets, and 23 tissues for neuroticism. Loci 

identified for ML estimation of neuroticism and QSNP estimates for the p-factor and neuroticism were 

expressed in the nervous system (Supplementary Fig. S27).  

 

Model Comparisons: Neuroticism Example. As an example of how to use Genomic SEM to do model 

comparisons we examined different factor structures that might be fit to the 12 neuroticism items from 

UK Biobank. As a starting point, we performed an Exploratory Factor Analysis (EFA) in the fa R 

package using the oblimin rotation for a two-, three-, and four-factor solution. A follow-up CFA 

(Supplementary Fig. 5) within Genomic SEM was specified based on the EFA parameter estimates 

(standardized loadings > .4 were retained) for the two- and three-factor solutions, but not the four-factor 

solution as the fourth factor was defined only by the tense and irritability items (Table S2). The two-factor 

solution (c2[53] = 2758.18, AIC = 2808.18, CFI = .940, SRMR = .077) and three-factor solution (c2[51] = 

1879.31, AIC = 1933.31, CFI = .959, SRMR = .057) both provided excellent fit to the data. For both 

solutions, the factors were highly correlated (rg  ³ .67). As these were not nested models, they could not 

be compared using c2 difference tests.  

 There were 69 SNPs identified as significantly heterogenous for the common factor of 

neuroticism, indicating that these particular SNPs may be operating through factors defined by a smaller 

subset of items. In order to investigate this possibility, multivariate GWAS analyses were conducted for 

these 69 QSNP  hits using the two- and three-factor solutions identified above. The SNP was specified to 

predict all factors in each model. Of these 69 SNPs, 28 and 20 were genome-wide significant for QSNP for 

the two- and three-factor solutions, respectively (Table S3). For the two-factor solution, 6 SNPs had a 

genome-wide significant effect on the first factor and 4 SNPs were significant for the second factor. For 

the three-factor solution, 5 SNPs were significant for the first factor, 1 was significant for the second 

factor, and 9 were significant for the third factor. Taken together, these results indicate that a proportion 

of the SNPs identified as significantly heterogenous for the single factor solution may have large effects 

on individual factors defined by a smaller subset of the neuroticism items. Indeed, plots of item-level 

effects for SNPs identified as significant for one of the factors indicate high levels of consistency within, 

but not across, factors (Supplementary Fig. 6). For SNPs that continued to be significant for QSNP for even 



the three-factor solution, the effect may be even finer grained, with outlying effects on individual items. 

The iterative process outlined here of beginning with a common factor, and following up on SNPs 

identified as having high degrees of heterogeneity in more nuanced models, can be used to bin SNPs into 

categories of decreasing pleiotropic effects within a set of genetically correlated traits (Supplementary 

Fig. 6).  
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Supplementary Figure 1. Confirmatory factor analysis of genetic p-factor with Genomic SEM. 
Confirmatory factor analyses (CFA) were used to construct a genetically defined p-factor for 
unstandardized (panel a) and standardized estimates (panel b) using WLS estimation. SEs are shown in 
parentheses. The genetic covariance matrix (unstandardized) or genetic correlation matrix (standardized) 
and associated sampling covariance matrix were used as input for Genomic SEM. Indicators are presented 
as circle to reflect the fact that these are unobserved heritability estimates from LDSC. SCZ = 
schizophrenia; BIP = bipolar disorder; DEP = major depressive disorder; PTSD = post-traumatic stress 
disorder; ANX = anxiety.  
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Supplementary Figure 2. Confirmatory factor analysis of a genetic factor of neuroticism with 
Genomic SEM. Confirmatory factor analyses (CFA) were used to construct a genetically defined 
neuroticism factor for unstandardized (panel a) and standardized estimates (panel b) using WLS 
estimation. SEs are shown in parentheses. The genetic covariance matrix (unstandardized) or genetic 
correlation matrix (standardized) and associated sampling covariance matrix were used as input for 
Genomic SEM. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up feelings; emb = worry 
too long after embarrassment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 3. Confirmatory factor analysis of two and three-factor models of 
neuroticism. Confirmatory factor analyses (CFA) based on initial EFAs were used to construct a two-
factor (panel a) and three-factor (panel b) solution using WLS estimation. The displayed ordering of the 
variables is maintained across the factor solutions for comparative purposes. Standardized values are 
reported along with SEs in parentheses. The genetic correlation matrix (standardized) and associated 
sampling covariance matrix were used as input for Genomic SEM. Irr = irritability; Feel = sensitivity/hurt 
feelings; fed-up = fed-up feelings; emb = worry too long after embarrassment.  
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 4. Identifying SNPs with increasingly specific effects on neuroticism items. 
Panel a depicts the flow chart for the iterative process that can be undertaken to identify SNPs with 
increasingly specific effects on sets of traits. Any mention of significance is at the genome-wide level (p 
< 5e-8). Values inside and outside of the dotted red circle are negative and positive, respectively. Panels 
b-d depict polar plots for the item-level Z-statistics for exemplar SNPs identified as genome-wide 
significant for the one-factor solution (panel b), the first factor for the two-factor solution (panel c), and 
the third factor for the three-factor solution (panel d). The same coloring within item names denotes 
loading on the same factor. In panel b, a SNP identified as significant for a common factor shows highly 
consistent effects across items. In panels c and d, SNPs identified as significant for factors defined by 
only a subset of items show consistent effects with respect to magnitude and direction only within these 
factors.  
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Supplementary Figure 5. Heatmap of genetic associations among anthropometric traits. Genetic 
covariance (panel a) and correlation (panel b) matrices with parameters estimated from multivariate 
LDSC. Visual inspection indicates two clusters in the upper left and lower right corner of the heatmap. 
BMI = body mass index; WHR = waist-hip ratio; CO = childhood obesity; IHC = infant head 
circumference; BL = birth length; BW = birth weight. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6. Confirmatory factor analysis of multivariate genetic architecture of 
anthropometric traits using Genomic SEM. Confirmatory factor analyses (CFA) informed by an initial 
exploratory factor analysis were used to construct latent overweight and early life growth factors for 
unstandardized (panel a) and standardized estimates (panel b) using WLS estimation. SEs are shown in 
parentheses. The genetic covariance matrix (unstandardized) or genetic correlation matrix (standardized) 
and associated sampling covariance matrix were used as input for Genomic SEM. BMI = body mass 
index; WHR = waist-hip ratio; CO = childhood obesity; IHC = infant head circumference; BL = birth 
length; BW = birth weight. 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 7. Reproducing GWIS findings using Genomic SEM. Results from Genomic 
SEM in which the genetic component of educational achievement was simultaneously regressed on the 
genetic components of bipolar disorder and schizophrenia. The genetic covariance (unstandardized; panel 
a) and genetic correlation (standardized; panel b) matrices, and associated sampling covariance matrices, 
estimated from multivariate LDSC were used as input for Genomic SEM.  
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Supplementary Figure 8. Quantile-quantile plot of multivariate GWAS p-values for the p-factor 
and neuroticism. Expected −log10(p)-values are those expected under the null hypothesis. The shaded 
area indicates the 95% confidence interval under the null. The multivariate GWAS was conducted using 
Genomic SEM with WLS estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 9a. Manhattan plot for univariate Schizophrenia GWAS (Genomic SEM 
results superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 
10-8). Black triangles denote independent hits for the p-factor that were not in LD with independent hits 
for the univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were 
not in LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 9b. Manhattan plot for univariate Bipolar GWAS (Genomic SEM results 
superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). 
Black triangles denote independent hits for the p-factor that were not in LD with independent hits for the 
univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in 
LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 9c. Manhattan plot for univariate Major Depression GWAS (Genomic SEM 
results superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 
10-8). Black triangles denote independent hits for the p-factor that were not in LD with independent hits 
for the univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were 
not in LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 9d. Manhattan plot for Post-Traumatic Stress Disorder GWAS (Genomic 
SEM results superimposed). The gray dashed line marks the threshold for genome wide significance (p 
< 5 × 10-8). Black triangles denote independent hits for the p-factor that were not in LD with independent 
hits for the univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that 
were not in LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 9e. Manhattan plot for univariate Anxiety GWAS (Genomic SEM results 
superimposed). The gray dashed line marks the threshold for genome wide significance (p < 5 × 10-8). 
Black triangles denote independent hits for the p-factor that were not in LD with independent hits for the 
univariate GWAS. Purple diamonds denote independent hits for the univariate indicators that were not in 
LD with independent hits for the p-factor. Grey stars denote independent hits for QSNP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 10. Manhattan plots of hits from Genomic SEM. Genomic SEM (with WLS estimation) 
was used to conduct multivariate GWASs of the p-factor (panel a) and neuroticism (panel b). The gray dashed line 
marks the threshold for genome wide significance (p < 5 × 10-8). In both panels, black triangles denote independent 
hits for SNP effects from the GWAS of the general factor.  
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 11. Polar plots of item-level effects for genome-wide significant effects on 
common factors and for QSNP.  All plots display the betas for the items standardized with respect to the 
total variance in the phenotype. Values inside and outside of the dotted red circle are negative and 
positive, respectively. The top panel displays item-level betas for a SNP that was genome-wide significant 
and produced low QSNP estimates for the p-factor (panel a; factor p-value = 7.78e-13; QSNP p-value = 0.57) 
and neuroticism (panel b; factor p-value = 5.06e-12; QSNP p-value = 0.77). As expected, the estimates in 
the top panel are both large in magnitude and consistent in direction across the items. The bottom panel 
displays item-level effects that produced genome-wide significant QSNP estimates for the p-factor (panel c; 
factor p-value = 5.32e-3; QSNP p-value = 2.02e-8) and neuroticism (panel d; factor p-value = 2.40e-4; QSNP 
p-value = 1.66e-14). Unlike the top panel, these SNPs are characterized by discrepant effects across the 
items with respect to magnitude and direction. This indicates that the QSNP test of heterogeneity  is 
appropriately capturing discrepancy across genetic effects for the included phenotypes.  
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 12. Histograms of –log10 p-values for hits on p-factor. Histograms of –log10 
p-values for the 684 non-independent SNPs that were genome wide significant for the p-factor using 
WLS estimation, but were not identified as significant in any of the individual GWASs. The vertical red 
line indicates genome wide significance.  
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Supplementary Figure 13. Histograms of –log10 p-values for hits on neuroticism factor. Histograms 
of –log10 p-values for the 2,540 non-independent SNPs that were genome wide significant for 
neuroticism using WLS estimation, but were not identified as significant in any of the individual GWASs. 
The vertical red line indicates genome wide significance.  
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Supplementary Figure 14. Quantile-quantile plot for QSNP. Estimates are from WLS estimation for the 
p-factor (panel a) and neuroticism (panel b). Expected −log10 p-values are those expected under the null 
hypothesis. The shaded area indicates the 95% confidence interval under the null. As some QSNP estimates 
for neuroticism were quite large, p-values < 5-20 were set to 5-20.   
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Supplementary Figure 15. Heatmap of univariate betas for neuroticism indicators for QSNP hits. The 
heatmap depicts univariate item-specific betas for the 69 lead SNPs for QSNP identified using WLS 
estimation for neuroticism. Items are on the x-axis. SNPs are on the y-axis. Cells depicted in red, white, 
and blue indicate negative, near zero, and positive betas, respectively. As expected, individual rows 
indicate substantial heterogeneity across the indicators for hits on QSNP.  
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Supplementary Figure 16. Association between SNP effects on the common factor and QSNP effects. 
The association between the p-values for SNP effects on the common factor (x-axis) and the p-values for 
QSNP (y-axis) are plotted for WLS estimation of the p-factor (panel a) and neuroticism (panel b). The red 
line reflects the regression line for the common factor p-value predicting itself (i.e., a slope of 1), with 
dots above the line estimated as less significant for QSNP. The correlation between these two outcomes was 
.02 for the p-factor and .05 for neuroticism.  
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Supplementary Figure 17. QSNP –log10 p-values for common-factor and indicator-specific hits. 
Results are depicted for WLS estimation of the p-factor (panel a) and neuroticism (panel b). There were 
684 non-independent SNPs identified as genome-wide significant for p-factor, but not the univariate 
GWAS, and 1,022 indicator-specific SNPs. For neuroticism, there were 2,540  non-independent hits 
specific to the common factor and 6,523 hits specific to the indicators. The average –log10 QSNP p-value 
was 0.61 for hits only on the p-factor and 1.81 for hits specific to the univariate indicators. For 
neuroticism, the average –log10 QSNP p-value was 0.95 for hits unique to the common factor and 5.95 for 
hits unique to the indicators. Thus, QSNP values were generally more significant for those SNPs not 
identified as significant for the common factor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 18. MTAG predicting Genomic SEM specified as MTAG. Panel a depicts the 
MTAG beta predicting the Genomic SEM formulation of MTAG beta (b = .998, intercept = -1.56E-7, R2 

= .994). Panel b depicts MTAG Z-statistic predicting the Genomic SEM formulation of MTAG Z-statistic 
(b = .999, intercept = 2.65E-4, R2 = .999). For both panels, the red line reflects the regression line for 
MTAG predicting itself (i.e., a slope of 1).  
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Supplementary Figure 19. Comparison of parcel p-values for low versus high QSNP estimates. 
Histograms shown for SNPs that produced genome wide significant hits for at least one of the parcels 
split across high (QSNP p-value < 5e-8; 1,090 SNPs; panel a) and low (p > 5e-3; 3,685 SNPs; panel b) QSNP 

estimates as estimated using WLS for the common neuroticism factor. For those SNPs characterized by a 
larger degree of heterogeneity, as indexed by QSNP, there was a corresponding heterogeneity in the p-
values at the level of the parcel.  
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Supplementary Figure 20. UK Biobank p-factor. Standardized output of phenotypic p-factor 
constructed from UKB phenotypes for out of sample prediction using p-factor polygenic scores. PSY = 
psychotic experiences; DEP = depressive symptoms; PTSD = symptoms of post-traumatic stress disorder; 
ANX = anxious symptoms.  
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Supplementary Figure 21. Relative power and out-of-sample prediction for neuroticism. Panel a 
represents relative power of GWAS summary statistics for individual neuroticism items (yellow), parcels 
(blue), and factor of parcels, sum score, and factor of items (purple) from in the UKB discovery sample. 
Relative power is indexed by the proportion (expressed as a percentage) in the average c2 – 1 across summary 
statistics relative to the lonely item (panel), which is the item with the smallest average c2 value. We subtract 
1 because the mean of the null c2 distribution is equal to its degrees of freedom. Panel b represents relative 
prediction in the Generation Scotland sample for polygenic scores (PGSs) derived from GWAS sumstats for 
individual neuroticism items (yellow), parcels (blue), and factor of parcels, sum score, and factor of items 
(purple). The proportional R2 (%) is relative to the R2 for the lonely item PGS. PGSs were constructed using 
the same set of SNPs for all predictors. The summary statistics for Genomic SEM were estimated using WLS. 
Error bars indicate 95% confidence intervals. For both panels, the red line is drawn at 100%, to indicate 
distance from the lonely item baseline. The superior performance of Genomic SEM analysis of the common 
factor of items relative to the sum score of the items is likely, in part, a reflection of the fact that the sum score 
in UKB was created using listwise deletion, resulting in a reduced sample size of 274,008. Conversely, 
Genomic SEM uses all available information from neuroticism items, with sample sizes of ~325,000 each. In 
more severe cases of sample non-overlap, we would expect even larger power benefits of Genomic SEM-
derived summary statistics relative to individual items or sum scores. Indeed, in instances of minimal sample 
overlap, it is not possible to compute sum scores, but Genomic SEM can still be used to integrate GWAS 
summary data across phenotypes. 
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Supplementary Figure 22. Biological annotation of Genomic SEM results for p-factor, neuroticism, 
and QSNP of neuroticism. Results from tissue enrichment analyses conducted using DEPICT based on 
Genomic SEM results for the p-factor (panel a), neuroticism (panel b) and QSNP estimation for neuroticism 
(panel c) using WLS estimation. The red, dashed line indicates the false discovery rate at .05. As expected, 
the majority of enriched tissues were in the nervous system for both common factors and QSNP estimates.  
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Supplementary Figure 23. ML Estimates from GWIS and anthropometric trait Genomic SEM 
models. Results are presented for standardized output for the multiple regression model of GWIS (panel 
a) and the confirmatory factor model of anthropometric traits (panel b). SEs are shown in parentheses. 
The genetic correlation matrix (standardized) and associated sampling covariance matrix were used as 
input for Genomic SEM. BMI = body mass index; WHR = waist-hip ratio; CO = childhood obesity; IHC 
= infant head circumference; BL = birth length; BW = birth weight. 
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Supplementary Figure 24. ML estimates for neuroticism and p-factor Genomic SEM models. 
Results are presented for standardized output for the confirmatory factor models of the p-factor (panel a) 
and neuroticism (panel b). The genetic correlation matrix (standardized) and associated sampling 
covariance matrix were used as input for Genomic SEM. SEs are shown in parentheses. SCZ = 
schizophrenia; BIP = bipolar disorder; DEP = major depressive disorder; PTSD = post-traumatic stress 
disorder; ANX = anxiety. Irr = irritability; Feel = sensitivity/hurt feelings; fed-up = fed-up feelings; emb 
= worry too long after embarrassment. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Genomic SEM 
 

37 

a b

c d

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 25. Quantile-quantile plot of multivariate GWAS p-values for p-factor and 
neuroticism (ML estimation). Estimates are from ML estimation for the p-factor (panel a), neuroticism 
(panel b), QSNP estimates for the p-factor (panel c), and QSNP estimates for neuroticism (panel d). Expected 
−log10 p-values are those expected under the null hypothesis. The shaded area indicates the 95% 
confidence interval under the null. As some QSNP estimates for neuroticism were quite large, p-values < 5-

20 were set to 5-20.   
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Supplementary Figure 26. Associations between ML and WLS p-values. Scatter plot comparing p-
values between WLS (y-axis) and ML (x-axis) estimation for the p-factor (panel a), neuroticism (panel b), 
QSNP for the p-factor (panel c), and QSNP for neuroticism (panel d). The red line reflects the regression line 
for ML predicting itself (i.e., a slope of 1), with dots above the line estimated as less significant for WLS. 
The correlation between the two sets of common factor p-values (top panel) was .15 for the p-factor and 
.94 for neuroticism. The correlation between the two QSNP statistics (bottom panel) for neuroticism was > 
.99 and .77 for the p-factor . Thus, the rank-ordering is largely maintained across the estimation methods, 
but may diverge, in particular, for factor effects.  
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Supplementary Figure 27. Biological annotation of QSNP of p-factor, neuroticism, and QSNP of 
neuroticism using ML estimation. Results from tissue enrichment analyses conducted using DEPICT 
based on Genomic SEM results for QSNP of the p-factor (panel a), neuroticism (panel b) and QSNP estimation 
for neuroticism (panel c) using ML estimation. The red, dashed line indicates the false discovery rate at .05. 
As expected, the majority of enriched tissues were in the nervous system for both common factor and QSNP 

estimates.  
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Supplementary Figure 28. Associations between regression coefficients from logistic regression 
model and linear probability model. 200 datasets were simulated with 100,000 observations each in 
which a continuously distributed liability was specified to be a linear function of a biallelic autosomal 
SNP and a normally distributed residual. Population effect sizes were randomly generated for each 
simulation, from within the range of 0 to .04 SD units per effect allele. The outcome was then 
dichotomized using a randomly generated threshold for each simulation within the range of -1.96 and 
1.96 standard deviations from the mean of the liability distribution (i.e. the population prevalence of cases 
ranged between 2.5% to 97.5%). The population minor allele frequency of the SNP was randomly 
generated for each replication from within the range of 0 to .5. Panel a depicts the association between the 
betas obtained from a logistic regression of a SNP predicting the dichotomous outcome (x-axis) and from 
the betas obtained from a linear probability model (LPM) applied to the same data (y-axis; r = .70). Panel 
b depicts the same x-axis and the LPM output converted to logistic betas on the y-axis (r > .99). Panel c 
depicts the z-statistics (the coefficient divided by its standard error) for the logistic betas (x-axis) and 
LPM betas (y-axis, r > .99). The red lines depict the regression line (slope = 1, intercept = 0) for the 
logistic betas (panel b) and logistic z-statistics (panel c) predicting themselves. Thus, LPM output must be 
rescaled before effect sizes (i.e., regression coefficients) can be used for multivariate GWAS in Genomic 
SEM. However, LPM Z statistics can be used directly for LDSC to produce heritabilities and genetic 
covariances (the liability scale estimates should still be requested). 
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Supplementary Figure 29. Associations between betas standardized using reference panel or sample 
MAF. 30,000 SNPs were randomly selected from the mood UK Biobank phenotype and converted to 
approximate logistic regression effects and scaled relative to unit-variance scaled liability using either 
MAFs from a reference panel (1000 Genomes Phase 3; x-axis) or MAFs from the sample (UK Biobank; 
y-axis). Regardless of the MAFs used for standardization, the correspondence between the betas was very 
strong (r = .987, slope = 1.044, intercept = -6.54e-6). Although the use of either sample or reference MAF 
may be appropriate for different reasons, these results indicate that the decision will produce very similar 
estimates.   
 
 
 
 
 
 
 
 
 
 
 
 



Genomic SEM 
 

42 

FG

uV1

1

uV2

1

uV3

1

uV4

1

uV5

V1g V2g V3g V4g V5g

SNPi!SNP	#
$%SNPi,c

1

uF1 &F	#

&V1	# &V2	# &V3	# &V4	# &V5	#

λV1
λV2 λV3 λV4

λV5
$%SNPi,V1

$%SNPi,V2
$%SNPi,V3 $%SNPi,V4 $%SNPi,V5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 30. Genomic SEM models for estimating QSNP. Red lines and parameters are 
fixed from Step 1, and black lines and parameters are freely estimated in Step 2.  
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Supplementary Figure 31. Associations between model c2 values computed from summary data and 
model c2 values computed from raw data. Raw data-based estimates of model c2 were computed 
directly from the data using lavaan. Summary data-based estimates of model c2 were computed using the 
S and V matrices with WLS (left) and ML (right) estimation. The red line in the middle and left panel 
reflects the regression line for the raw data-based model c2 predicting itself. The blue line in the right 
panel reflects the regression line for the WLS c2 predicting itself.  
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Supplementary Figure 32. Distributions of calculated and theoretical c2 statistics. Comparison 
between distribution of c2 values for model estimated from S and V matrices using WLS (left column) 
and ML (middle column) against a theoretical c2 distribution. The right column compares the distributions 
of WLS (blue bars) and ML (green bars). 
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Supplementary Figure 33. Associations between CFI values derived from summary data and CFI 
values derived from raw data. Summary data-based estimates of CFI are depicted for models estimated 
using WLS (left column) and ML (middle column). We also present comparisons of the CFI from models 
estimated with ML and those estimated with WLS(right column). All CFI estimates were bounded at 1.  
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Supplementary Figure 34. Null distributions of QSNP for 1,000 simulations per model. Red lines for 
all panels depict the chi-square distribution with the relevant df. The top, middle, and bottom panels 
depict the sampling distributions for 3, 4, and 5 df, respectively. The left-most column shows estimates 
for WLS, the middle column estimates for ML and the right-most column overlays the WLS (depicted in 
light blue) and ML (light green) QSNP estimates.  
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Supplementary Figure 35. Associations between QSNP and theoretical c2 distributions. Associations 
shown for models estimated using WLS (left column) and ML estimates (middle column). Red lines 
depict the c2  distribution plotted against itself, with values below the line indicating under-estimated 
effects. The right column depicts WLS and ML plotted against one another. The blue line depicts WLS 
plotted against itself, with values above the line indicating QSNP estimates that were estimated as larger for 
ML.  
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Supplementary Figure 36. Genomic SEM simulation results. Results from 100 runs of Genomic SEM 
using data simulated at the level of the SNPs. Results are presented for unstandardized (panel a) and 
standardized (panel b) estimates. Parameters outside of the parentheses indicate those provided in the 
generating population. In parentheses, we provide for WLS (in italics) and ML (in bold) estimation the 
average point estimate and the ratio of the mean SE estimate across the 100 runs over the empirical SE 
(calculated as the standard deviation of the parameter estimates across the 100 runs). The ratio of mean 
and empirical SEs was close to 1 in all cases, although slightly above 1 (i.e., conservative) for 
standardized estimates of residual variance. These SE estimates are expected to be upwardly biased in the 
standardized case due to genetic variance estimates being rescaled to exactly 100%.  
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Supplementary Figure 37. Model fit indices from Genomic SEM simulations. Model fit indices were 
compared across the 100 runs of Genomic SEM using simulated data. Depicted in blue are model fit 
indices for runs specified to match the generating population (i.e., one common factor with freely 
estimated factor loadings). Depicted in green are indices for models specified to have equal factor 
loadings across all indicators. Depicted in red are indices for a model in which the third indicator loading 
was fixed to 0. Indices favored the model that matched the generating population for model chi-square, 
AIC, and CFI in 100% of cases, with the exception that 99 models favored the matching model for AIC 
with WLS estimation. Indices are presented for WLS (panel a) and ML (panel b) estimation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




