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A B S T R A C T

Executive functions (EFs) are regulatory cognitive processes that support goal-directed thoughts and behaviors
and that involve two primary networks of functional brain activity in adulthood: the fronto-parietal and cingulo-
opercular networks. The current study assessed whether the same networks identified in adulthood underlie
child EFs. Using task-based fMRI data from a diverse sample of N¼ 117 children and early adolescents (M
age¼ 10.17 years), we assessed the extent to which neural activity was shared across switching, updating, and
inhibition domains, and whether these patterns were qualitatively consistent with adult EF-related activity. Brain
regions that were consistently engaged across switching, updating, and inhibition tasks closely corresponded to
the cingulo-opercular and fronto-parietal networks identified in studies of adults. Isolating brain activity during
more demanding task periods highlighted contributions of the dorsal anterior cingulate and anterior insular
regions of the cingulo-opercular network. Results were independent of age and time-on-task effects. These results
indicate that the two core brain networks that support EFs are in place by middle childhood, in agreement with
resting-state findings of adultlike brain network organization. Improvement in EFs from middle childhood to
adulthood, therefore, are likely due to quantitative changes in activity within these networks, rather than
qualitative changes in the organization of the networks themselves. Improved knowledge of how the brain's
functional organization supports EF in childhood has critical implications for understanding the maturation of
cognitive abilities.
1. Introduction

Cognitive maturation involves transitioning from stimulus-driven and
reflexive actions to more deliberate thoughts and behaviors (Luna et al.,
2004; Rueda et al., 2004; Thelen, 1995). Executive functions (EFs) –

regulatory processes that monitor goal-directed cognitive operations –

are critical for the developmental transition to adultlike thoughts and
behaviors. Because of the importance of EFs for psychiatric health and
cognitive skill formation in both childhood and adulthood (Best et al.,
2011; Buckner, 2004; Salthouse et al., 2003; Zelazo and Müller, 2002),
neuroscientists have been interested in understanding the neural mech-
anisms underlying normative maturation in EFs (Aron, 2008; Banich,
2009). An exciting open question in this area is how the brain changes
over development to support better performance across a variety of ex-
ecutive domains.
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1.1. Neural architecture and factor structure of executive functions in
adulthood

Substantial individual differences and developmental differences are
evident across separable EF domains, which include (a) response inhibi-
tion, or the ability to refrain from executing a practiced response; (b)
switching, which requires performance adaptations in response to
changing rules or goals; and (c) updating, which involves replacing in-
formation in working memory based on new demands (for reviews, see
Best and Miller, 2010; Diamond, 2002; Huizinga et al., 2006). Although
these domains are statistically distinguishable, they also covary strongly,
suggesting that domain-general executive resources underlie ability in
any one specific domain. This pattern of relationships between EF do-
mains is often referred to as the “unity and diversity” model (Miyake
et al., 2000).

Consistent with the “unity” of adult EFs, neuroimaging studies in
nited States.
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adulthood have identified a core set of brain networks that are consis-
tently activated in response to an array of tasks tapping different EF
domains. Lesion studies and early functional magnetic resonance imag-
ing (fMRI) work provided initial evidence that the prefrontal cortex
(PFC) was fundamental to attention, working memory, and inhibition
(for a review, see Collette et al., 2006). More recent investigations
employing multiple tasks have uncovered complex and distributed net-
works of brain regions active during EF tasks. Specifically, the fronto--
parietal network includes bilateral inferior or middle frontal gyrus (IFG,
MFG), dorsolateral prefrontal cortex (dlPFC), inferior parietal lobule
(IPL), superior parietal lobule (SPL), and pre-motor areas (Cacioppo
et al., 1984; Collette et al., 2006; Congdon et al., 2010; Nee et al., 2012;
Niendam et al., 2012; Owen et al., 2005), and the cingulo-opercular
network includes dorsal anterior cingulate cortex (dACC) and bilateral
anterior insula and is reliably active during error processing and task
maintenance (Dosenbach et al., 2006, 2008; 2007; Menon and Uddin,
2010).

Resting-state fMRI analyses suggest that findings from EF task-based
studies identify networks of regions that are also intrinsically connected,
as region-to-region correlations in spontaneous BOLD activity also cluster
into dissociable fronto-parietal and cingulo-opercular networks across
many samples (Crittenden et al., 2016; Dosenbach et al., 2007; Power
et al., 2011; Yeo et al., 2011). Overall, neuroimaging studies of adults
have revealed a highly consistent set of regions that co-activate in
response to executive demands. This detailed characterization sets a
standard for evaluating the consistency of children's EF-related brain
activation.

1.2. From childhood to adulthood: Qualitative or quantitative changes?

When does this core set of brain regions develop to support EF task
performance? Empirical results that answer this question will undoubt-
edly inform the design and evaluation of interventions to support chil-
dren with EF deficits. One possible mechanism for age-related
improvements in EF is that the networks of regions that support optimal
deployment of executive function are not yet in place in childhood and
that the maturation of EF results from the progressive establishment of an
adultlike EF network over development. Support for such a qualitative
account would come from findings that patterns of brain activity during
executively demanding tasks are more diffuse among children or entirely
distinct from patterns observed among adults. One example of qualita-
tive, age-related changes in neural organization is early visually guided
behaviors, which initially rely on subcortical activity before transitioning
to predominantly posterior, and then anterior, cortical activation
(Johnson, 1990). Alternatively, a relatively consistent set of brain regions
might undergo quantitative maturation before reaching their apex in
adolescence or adulthood. This account of brain-behavior development
would reflect strengthening or refinement of region-to-region connec-
tions and would be evidenced by engagement of a consistent set of brain
regions across developmental stages (Johnson, 2001, 2011). Declarative
memory, for example, is mediated by activation in the medial temporal
lobes and PFC from childhood through adulthood, with memory
enhancement linked to age-related differences in the strength – but not
location – of BOLD activity (Ofen et al., 2007).

Behavioral studies of the factor structure of EF performance in
childhood provide indirect support for quantitative maturation, i.e., that
the neural architecture underlying successful engagement of executive
resources is in place by middle childhood. Notably, the “unity and di-
versity” model seen in adults, with a highly heritable factor that con-
tributes to EF ability across domains and tasks (Miyake et al., 2000), is
evident as early as 8 years old (Engelhardt et al., 2015). This suggests that
common causal processes act on individual EFs in childhood, which is
consistent with reliable, cross-task brain activity observed in adults.

Additionally, neuroimaging studies of EFs in childhood have found
that individual tasks consistently engage temporal cortex, parietal cortex,
and subcortical regions (e.g., Bunge and Wright, 2007; Church et al.,
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2017; Crone and Dahl, 2012; Ordaz et al., 2013; Yaple and Arsalidou,
2018). In conjunction with resting-state analyses (Power et al., 2012),
single-domain studies highlight children's engagement of the
fronto-parietal and cingulo-opercular regions described above. However,
a major limitation of neuroimaging studies of childhood EFs is that they
typically employ only a single EF task. Consequently, it is difficult to
generalize findings across samples employing different tasks and to
identify the extent to which task-related brain activity is task- or
domain-specific versus general across EF domains.

To date, meta-analyses of children's fMRI data have been the only
avenue for addressing these questions. An early meta-analysis of 25
studies found evidence for consistent activation of bilateral prefrontal
cortex, bilateral insula, and left parietal regions across tasks and age, as
well as age-related changes in the lateralization of insula activity during
individual EF tasks (Houd�e et al., 2010). More recently, a meta-analysis
of 53 studies of single EF tasks found evidence for cross-domain
engagement of bilateral frontal, bilateral insula, and right parietal clus-
ters, as well as evidence for domain-specific activation during switching
and updating tasks (McKenna et al., 2017). The regions identified in
meta-analysis are largely consistent with the adult “core control system”

described by Dosenbach et al. (2006, 2007), though with less consistency
regarding the contribution of parietal regions.

However, meta-analyses cannot completely control for between-
samples differences that may confound the results. For example, the
greater number of studies examining the updating and inhibition do-
mains, relative to the switching domain, may have biased previous
findings regarding the relationships between these core constructs
(McKenna et al., 2017). This work has not been able to directly test for
adultlike functional EF networks within the same group of individuals or
across evenly represented domains. Thus, previous single-task studies
and meta-analyses provide circumstantial evidence suggesting that
children activate a common set of brain regions during a variety of EF
tasks and that these regions are the same as those activated by adults.

1.3. Goals and methodological advantages of the current study

The goal of the current study was to provide the first direct test of
whether the common neural architecture of EFs seen in adulthood is
present by middle childhood. We hypothesized that the same functional
brain networks that have been implicated in the adult literature (i.e.,
fronto-parietal and cingulo-opercular networks) would activate across
three tasks tapping three distinct EF domains: switching, inhibition, and
updating. To address this goal, we measured neural response to three EF
tasks in a large, population-representative, and well characterized sample
of children. This approach has several methodological advantages over
previous meta-analytic approaches, including (a) the removal of
between-study differences as a source of confounding variance; (b) the
ability to apply greater quality control methods, including performance-
based exclusionary criteria to isolate EF-related from non-EF-related ac-
tivity; and (c) the ability to control for performance differences that may
impact task-related fMRI signals. This is important because trial-by-trial
variation in response time (RT), or “time-on-task” effects, positively
corresponds to activation in regions implicated in EFs, such as bilateral
insula and right dlPFC (Yarkoni et al., 2009). We addressed this issue by
controlling for time-on-task effects at the whole-brain level and by
separately examining the BOLD correlates of RT across tasks. Finally, we
were able to conduct a formal comparison of activity in our sample to a
priori regions defined by the adult literature.

2. Materials and methods

2.1. Participants

As part of the neuroimaging arm of the Texas Twin Project (Harden
et al., 2013), 127 twins or multiples in 3rd through 8th grade participated
in an MRI session. Ten participants were excluded from the analyses due
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to incidental findings (N¼ 1), equipment malfunction (N¼ 2), refusal to
continue (N¼ 3), or failure to meet movement and performance cutoffs
across all collected tasks (N¼ 4). The final sample consisted of 117
participants with mean age of 10.17 years (SD¼ 1.37, range¼ 7.96 to
13.85); 57 participants were female. Participants reported diverse racial
and ethnic backgrounds: 43.6% were non-Hispanic white, 14.5% were
Hispanic, 5.1% were African American, 5.1% were Asian, 1.7% were
another race, and 29.9% reported multiple races or ethnicities. The
sample comprised 52 twin pairs (21 monozygotic, 16 same-sex dizygotic,
and 15 opposite-sex dizygotic) and 13 individuals whose co-twins were
not scanned. Zygosity was determined by a latent class analysis of re-
searchers' and parents' ratings of twins' physical similarity. The current
study does not examine twin relations.

Developmental or learning disorder diagnoses were reported by
parents for eight participants. Six participants had attention deficit hy-
peractivity disorder, one of whom also reported non-specific reading
disability; two had Asperger syndrome; and one had dyslexia. Four of the
participants that reported a diagnosis had taken neurostimulant medi-
cation the day of scanning; another participant had taken a selective
serotonin reuptake inhibitor and an adrenergic agonist. Results of the
primary analyses with and without these individuals are described
below.

2.2. MRI data acquisition

All procedures followed the human subjects research regulations
overseen by the University of Texas at Austin Institutional Review Board.
Twins were scanned consecutively on the same day. Parents provided
informed consent for their children's participation, and participants
provided informed assent. Participants were compensated for their time.
Images were acquired on a Siemens Skyra 3-T scanner with a 32-channel
head matrix coil. We collected T1-weighted structural images with an
MPRAGE sequence (TR¼ 2530ms, TE¼ 3.37ms, FOV¼ 256,
1� 1� 1mm voxels), as well as T2-weighted structural images with a
turbo spin echo sequence (TR¼ 3200ms, TE¼ 412ms, FOV¼ 250,
1� 1� 1mm voxels). During tasks, we collected functional images using
a multi-band echo-planar sequence (TR¼ 2000ms, TE¼ 30ms, flip
angle¼ 60�, multiband factor¼ 2, 48 axial slices, 2� 2� 2mm voxels,
base resolution¼ 128� 128). Tasks were run on PsychoPy version 1.8
(Peirce, 2007); stimuli were projected at a resolution of 1920� 1080 to a
screen that participants viewed via a mirror attached to the head coil.
Participants wore Optoacoustics headphones and provided responses
using a two-button response pad.

2.3. fMRI tasks

Task order was fixed to maximize the likelihood of retaining usable
data across EF domains and to avoid confounding sequence effects with
individual differences (Tucker-Drob, 2011). Tasks were ordered as fol-
lows: resting state (not presented here), switching task, updating task,
inhibition task, switching task, updating task, resting state. The total scan
time was approximately 1.25 h.

Switching task. Participants performed up to two runs of a cued
switching task (Supplementary Fig. 1a; Baym et al., 2008). Runs con-
sisted of 46 trials in which participants were cued to pay attention to the
shape or color of a target stimulus that would appear later. The two
possible rules (shape and color) and two responses choices were dis-
played for the duration of the trial. A red box indicating which rule to
follow appeared for the first 1.5 s of the trial. On 37 of the 46 trials, the
target stimulus appeared .5 s after the red box disappeared, and the target
remained on the screen for 2 s, during which time the participant could
indicate which of the response choices matched the target. The response
period was followed by a 1 s fixation cross. In 9 trials interspersed
throughout the run, a target did not appear and a red fixation cross was
displayed for .5 s, followed by a white fixation cross for .5 s. The cue-only
trials allowed us to separate neural signals during the cue period from
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those during the target stimulus period (Ollinger et al., 2001). All trials
were followed by a jitter of 0–8 s. The total run time was 5min and 22 s.
In the first run, the cued rule was consistent with the previous rule on 22
trials (repeat trial), and these were interspersed with 23 trials where the
cued rule switched (switch trial). In the second run, there were 23 repeat
rule trials, and 22 switch rule trials.

Updating task. Participants completed up to two runs of an N-back
task (Supplementary Fig. 1b; adapted from Jaeggi et al., 2010). Each run
consisted of 64 shape stimuli evenly divided into a 1-back and 2-back
block. Block order was fixed. Prior to each block, participants viewed
an instruction picture for 4 s that indicated whether they should look for
shapes that matched one shape prior (1-back) or two shapes prior
(2-back). During the blocks, each stimulus appeared for 1.5 s, followed by
a 1 s inter-stimulus interval. Participants pressed a button when they
believed the stimulus matched one or two shapes prior, according to the
block-specific instructions. A 20 s fixation followed each block. Each
block had a total of 7 matches (21.9% of trials). Updating runs lasted
3min and 32 s.

Inhibition task. To assess response inhibition, we administered one
run of a visual Stop Signal task (Supplementary Fig. 1c; Verbruggen and
Logan, 2008). Runs consisted of 96 “go” trials in which participants were
instructed to indicate whether a horizontal arrow pointed to the left or
the right, interspersed with 32 “stop” trials (25% of total trials) in which
a red X appeared on top of the arrow, cueing the participant to withhold a
respond. Across all trials, arrows were displayed for 1 s, with a 1 s in-
terval, followed by a jittered fixation of 0–4 s. For the first stop trial of
each run, the X appeared .25 s after the arrow and remained on the screen
for the duration of the arrow stimulus. If the participant correctly stopped
on a given stop trial, the time between the appearance of the arrow and X
on the next stop trial increased by .05 s; if the participant failed to inhibit
a response, the time between the appearance of the arrow and X on the
next stop trial decreased by .05 s. The duration of the delay between
arrow and X was cumulative; time was added to or subtracted from the
previous stop trial's duration of delay. Participants completed only one
run because of the relatively long task duration (6min) required to build
up a prepotent response.

2.4. Analyses

Behavioral analyses. To evaluate task performance, we selected one
accuracy measure and one response time (RT) measure for each task.
Variables of interest for the switching task were proportion of correct
trials and mean RT for correct trials. Performance measures for the
updating task were mean RT for correct trials and hits minus false alarms,
or the difference between correct identification of N-back matches and
misidentification of non-matches. Performance was collapsed across 1-
and 2-back blocks. To correct for positive skew of the hits minus false
alarms distribution, we applied a square root transformation. For the
inhibition task, performance was evaluated using proportion of correct
go trials and stop signal RT (SSRT), which estimates the time it takes to
detect and correctly respond to (by inhibiting a response) a stop cue. The
SSRT is determined by subtracting the mean time between presentation
of the arrow and the red X from the mean RT for go trials.

We applied performance thresholds that corresponded to adequate
task comprehension across participants, with the goal of increasing the
likelihood that commonalities or differences in task activation accurately
reflected the way brain regions are engaged, rather than reflecting in-
dividual differences in performance across tasks. Runs were excluded if
performance did not meet the following criteria: for the switching task, at
least 60% accuracy; for the updating task, at least four correct matches on
1-back blocks, 2 correct matches on 2-back blocks, and no more than 9
false alarms (indicating a match when there is none); for the inhibition
task, selecting the correct arrow direction on 70% of trials or more,
selecting the wrong direction on fewer than 10% of trials, stop accuracy
between 25% and 75%, and stop signal reaction time greater than 50ms
(Congdon et al., 2012). Seventy-two runs (12.9% of total collected) were
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omitted for poor performance. Performance data were averaged across
usable runs.

Analyses that included behavioral or demographic data were con-
ducted in R version 3.2.3 (R Core Team, 2014). Statistical tests were
conducted on standardized values. To account for the nonindependence
of data drawn from individuals nested within families, we used the nlme
R package to run regressions as linear mixed models with random
intercepts.

fMRI preprocessing. Imaging data were preprocessed with the fMRI
Expert Analysis Tool in FMRIB Software Library (FSL) version 5.9 (www.
fmrib.ox.ac.uk/fsl). High-resolution T1-weighted structural images un-
derwent skull stripping and brain extraction using Freesurfer version
5.3.0 (Reuter et al., 2010). Functional data were registered to the
structural image with a boundary-based algorithm (Greve and Fischl,
2009), and structural images were registered to MNI space with the
FMRIB Linear Image Registration Tool (Jenkinson and Smith, 2001).
Additional pre-statistics processing included spatial smoothing using a
Gaussian kernel of FWHM 5mm; grand-mean intensity normalization of
the 4D dataset by a single multiplicative factor; and high pass temporal
filtering (Gaussian-weighted least-squares straight line fitting, with 50 s
sigma).

First-level analyses for individual task runs were conducted with the
FSL's Improved Linear Model, which extends the voxelwise general linear
model by estimating and correcting for time series autocorrelation
(Woolrich et al., 2001). Data were modeled with a double-gamma HRF
convolution. The highpass filter was set at 100 s for the switching and
inhibition runs and to 200 s for the updating runs, the latter representing
twice the duration of stimuli presentation. First-level models included six
motion regressors; temporal derivatives for each regressor (except for the
updating task, due to its block design); a trial-level response time re-
gressor; and nuisance regressors that censored individual volumes
identified to have excessive motion, defined as framewise displacement
greater than .9 mm (Siegel et al., 2014). Two runs (.3% of total collected)
were excluded from further analysis due to excessive motion during 60%
of frames or more. Of the remaining usable runs, 11.0% of volumes were
censored due to movement exceeding .9 mm. Thirteen additional runs
(2.3% of total collected) did not pass visual inspection at the registration
stage and were omitted from subsequent analyses. In total, we retained
195 usable runs across 110 participants for the switching task, 170 usable
runs across 100 participants for the updating task, and 100 usable runs
across 100 participants for the inhibition task.

EF vs. baseline contrasts. For our primary analyses, we selected
contrasts that we anticipated would capture robust EF-related activation
for each task. The contrast for the switching task was the cue period during
correct switch trials (i.e., when participants were cued to focus on a rule
that differed from the previous trial) vs. baseline (fixation cross during the
between-trial jitter and at the end of the run). For the updating task, the
contrast was 2-back blocks vs. baseline (fixation cross following each task
block). For the inhibition task, the selected contrast was correct stop trials
vs. baseline (blank screen during the between-trial jitter and at the end of
the run).

Second-level analyses, which average contrast estimates over runs for
each participant, were carried out by specifying a fixed effects structure
within FMRIB Local Analysis of Mixed Effects (FLAME, Beckmann et al.,
2003). Third-level group analyses for each task were also executed using
FLAME. Statistical maps were thresholded with a cluster-forming
threshold of z> 3.1 (corresponding to p< .001), and whole-brain mul-
tiple comparisons were corrected using a cluster-level probability of
p< .05 generated from Gaussian random field theory. We applied these
relatively conservative cluster-based thresholds in line with recent rec-
ommendations (Eklund et al., 2016) and to account for the increased
likelihood of identifying false positives at that arises from the nesting of
multiple individuals within the same family.

Primary summed mask analysis. We first aimed to test the extent to
which patterns of EF-related activation at the whole-brain level over-
lapped across tasks. Within the thresholded and familywise error (FWE)-
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corrected z-stat map for each task, we assigned a value of 1 to voxels
present in clusters that exhibited significantly greater BOLD activity for
the executive condition relative to baseline; voxels that failed to meet this
criterion were assigned a 0. We added the binarized maps for each task
together, resulting in a single map displaying voxels from clusters
engaged by only one task, across two tasks, and across all three tasks.

Thresholding by percent of active voxels. In order to probe the stability of
the primary results, we conducted an exploratory analysis in which task-
overlapping activation was plotted across a range of voxelwise thresh-
olds. Instead of applying cluster-based thresholding using a z-stat cutoff,
we thresholded the top 15% of activated voxels in the task-specific, FWE-
corrected maps. The thresholded maps were then summed as normal.
Next, we thresholded the top 14% of activated voxels for each task, then
the top 13%, and so on, down to the top 1% of activated voxels for each
task.

Neuroanatomical ROI comparison. Clusters of activation derived from
the primary summed mask analysis for the entire sample were compared
to the location of 13 adult ROIs based on previous work examining task-
control (i.e., EF) activity (Dosenbach et al., 2006). The coordinates for
regions identified in the 2006 paper were refined in a later publication
that included more comprehensive and precise functional ROIs (Dos-
enbach et al., 2010); we used the more recent coordinates to define adult
ROIs in the current study. These ROIs, listed along with their coordinates
in Supplementary Table 1, included five regions from the
cingulo-opercular network and eight regions from the fronto-parietal
network. In order to estimate distances between the literature-derived
ROIs and the clusters of task-overlapping activity in the child sample,
we used the FSL cluster tool to identify coordinates for the center of each
cluster within the summed mask. The distance between each
literature-derived and data-driven ROI was computed as:

distance ðmmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxchild � xadultÞ2 þ ðychild � yadultÞ2 þ ðzchild � zadultÞ2

q

where x, y, and z correspond to the MNI coordinates for the child centers
of activity and adult ROIs.

Correlations between task activation, age, and accuracy. To address the
possibility that overlapping activity across tasks could be driven by
within-sample differences in age or performance, we next includedmean-
centered age as an independent variable in the task-specific GLMs. The
resulting maps were binarized and summed, revealing areas of the brain
in which age significantly correlated with EF-related activation across the
three tasks. We repeated this approach with a separate analysis that
incorporated mean-centered accuracy as an independent variable.

Stricter EF contrasts. To evaluate the generalizability of our results,
we next applied a set of contrasts comparing more demanding task pe-
riods to less demanding periods for each task. For the switching task, the
selected contrast was correct switch trials vs. correct repeat trials during the
cue period. For the updating task, the contrast was 2-back blocks vs. 1-
back blocks. For the inhibition task, the contrast was correct stop trials
vs. correct go trials. Because of the more constrained nature of these
contrasts, relative to contrasts including baseline, the cluster-forming
threshold was lowered to z> 2.3, and the cluster-correction threshold
was raised to p< .01.

Response time vs. baseline contrasts. To compare time-on-task effects
to the results of the principal analyses, we applied response time vs.
baseline contrasts to the switching and inhibition tasks. Modeling trial-by-
trial RT as a regressor in the GLM for each task not only decreases the
likelihood that activation observed for other conditions of interest is
confounded by corresponding fluctuations in RT, but also can be lever-
aged to identify brain areas whose activation corresponds to RT differ-
ences (Yarkoni et al., 2009). The updating task could not be incorporated
into this analysis due to the nature of the block design. The thresholded
(z> 3.1) and FWE-corrected (p< .05) response time vs. baseline maps for
the switching and inhibition tasks were binarized and summed to iden-
tify brain areas whose activation corresponded to variation in RT.

http://www.fmrib.ox.ac.uk/fsl
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Subsample analyses. Applying the EF vs. baseline contrasts described
earlier, we conducted a group comparison to evaluate activation differ-
ences across younger (�10.5 years, N ¼ 62) and older (>10.5 years,
N¼ 55) subgroups. Activation differences for males (N¼ 60) and females
(N¼ 57) were also investigated. We next looked at cross-task EF acti-
vation within a subsample of individuals free of learning or develop-
mental disorder diagnoses (N¼ 109). In a final analysis, cross-task
activation was evaluated for a subsample of unrelated individuals,
addressing the possibility that task-overlapping activity could be attrib-
uted to the sampling of multiple individuals from the same family. This
analysis included one twin from each pair and half of the unpaired in-
dividuals (total N¼ 58). The analyzed and un-analyzed sample halves
were matched on age, sex, IQ, and number of usable tasks.

3. Results

3.1. Task performance

Descriptive statistics for task performance are provided in Table 1. As
expected, performance covaried across tasks: The average zero-order
correlation for accuracy between any two of the three tasks was .46;
the average zero-order correlation for response time was .24. We report
standardized regression coefficients from mixed models that included
participant family as a random effect and performance, age, and sex as
fixed effects. Performance relations with age are depicted in Supple-
mentary Fig. 2a. Age was significantly associated with switching accu-
racy (ß¼ .43, SE¼ .10, p< .001), updating hits minus false alarms
(ß¼ .25, SE¼ .10, p< .05), and updating response time (ß¼�.25,
SE¼ .10, p< .05). Age did not significantly predict switching response
time (ß¼�.16, SE¼ .11, p¼ .13), inhibition accuracy (ß¼ .16, SE¼ .11,
p¼ .15), or inhibition response time (ß¼�.19, SE¼ .11, p¼ .09). Per-
formance relations with sex are depicted in Supplementary Fig. 2b. Task
performance differed by sex for updating response time, such that males
responded .07 s more quickly than females on average (ß¼�.23,
SE¼ .10, p< .05). Inhibition response time also significantly differed by
sex, such that females' stop signal RTs were, on average, .02 s faster than
males' (ß¼ .21, SE¼ .10, p< .05).
3.2. Neuroimaging results: Full sample

EF vs. baseline contrasts. The results of the task-specific analyses are
shown in Fig. 1. Cluster information for these maps is provided in Sup-
plementary Tables 2–4.

Summed mask results. To examine the extent to which EF-related ac-
tivity overlapped across tasks at the group level, we binarized the
thresholded and cluster-corrected positive z-stat map for each task, then
added the maps together to visualize areas of activation common across
the three tasks (Fig. 2). Significant task-positive activity common across
all three EF domains was observed in the dorsal anterior cingulate cortex
(dACC), bilateral anterior insula, right dorsolateral prefrontal cortex
Table 1
Descriptive statistics for scanner performance.

Performance
measure

Description n M SD Range

Switching accuracy Proportion correct 110 .84 .10 .62, 1.00
Switching RT Mean RT, correct

trials
110 1.11

s
.15 .79, 1.42

Updating accuracy Hits minus false
alarms

100 7.71 3.95 �8, 13

Updating RT Mean RT, correct
trials

100 .84 s .16 .50, 1.33

Inhibition accuracy Proportion correct,
go trials

100 .87 .08 .71, .99

Inhibition RT Stop signal RT 100 .25 s .05 .14, .39

RT¼ response time.

Fig. 1. Brain activity for switching, updating, and inhibition domains. Warm
colors correspond to clusters for which percent signal change was significantly
greater in the EF condition relative to baseline; cool colors correspond to clus-
ters for which percent signal change was significantly lower in the EF condition
relative to baseline. Maps were thresholded at z > 3.1 with a cluster probability
of p < .05.
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Fig. 2. Overlapping task-positive brain activity across three EF tasks, overlaid with adult ROIs. Selected contrasts were cue period during correct switch trials vs. baseline
for the switching task, 2-back blocks vs. baseline for the updating task, and correct stop trials vs. baseline for the inhibition task. Prior to binarizing and summing across
tasks, individual task maps were thresholded at z > 3.1 with a cluster probability of p < .05. Adult ROIs in pink were drawn from Dosenbach et al. (2006, 2010).
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(dlPFC), right middle frontal gyrus (MFG), bilateral frontal eye fields
(FEF), bilateral superior parietal lobule (SPL), and bilateral inferior pa-
rietal lobule (IPL). Table 2 provides details on these regions, including
center of gravity coordinates and cluster sizes from FSL's cluster tool.

Thresholding by percent of active voxels. We next applied the summed
mask approach to task-specific maps thresholded on the basis of the top
15% of activated voxels, down to the top 1% of activated voxels. The
summed masks from this exploratory analysis are shown in a video
graphic available at https://doi.org/10.1016/j.neuroimage.2018.10.
024. The top voxel activity results were highly consistent with the
cluster-based results, demonstrating a preservation across thresholds of
overlapping activity in areas consistent with adult control regions. Even
when only the top 1% of active voxels for each task were included in the
summed mask, there were large areas of overlap centered upon bilateral
insula, dACC, and bilateral SPL.
Inline Video. Thresholding by percent of active voxels. Available at https://doi.org/10.1016/j.neuroimage.2018.10.024.
Selected contrasts were cue period during correct switch trials vs. baseline for the switching task, 2-back blocks vs. baseline for the updating task, and correct stop trials vs.
baseline for the inhibition task. Prior to binarizing and summing across tasks, individual task maps were thresholded by percent of active voxels, ranging from the top
15% (less stringent) to the top 1% (more stringent).
Neuroanatomical ROI comparison. Our primary aim with respect to the
adult literature-derived ROIs was determining whether they converged
with clusters exhibiting cross-task activity in our developmental sample.
Fig. 2 displays the literature-derived ROIs in pink, overlaid on activity
common across two or more of the EF tasks at the original cluster-based
thresholds. Ten of the 13 ROIs fell within areas of task-overlapping ac-
tivity. Adult ROIs that fell within or bordered activity common across all
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tasks were bilateral anterior insula, dACC, bilateral inferior parietal
sulcus (IPS), right frontal, right dlPFC, and right IPL. The left dlPFC and
left frontal ROIs from the adult literature fell within a cluster of activity
common across the switching and updating contrasts. Neither of the
bilateral anterior prefrontal cortex ROIs nor the left IPL ROI converged
with cross-task activity at the designated cluster thresholds.

To quantitatively compare the location of adult ROIs to children's
task-common activity, we computed the distance between the 13 a priori
ROIs and the centers of 11 clusters of activity from our child sample. The
majority of centroids representing overlapping activity in our child
sample were within 15mm of the adult-based ROIs (see Supplementary
Table 5). Specifically, child activation in dACC, bilateral anterior insula,
right MFG, right IPL, and left SPL lay 10mm or less from corresponding
adult regions. Child activation in right dlPFC, left IPL, and right SPL were
10–14mm from corresponding adult regions. The regions derived from
the child data that were more distal from adult ROIs were bilateral FEF,
each approximately 25mm from the adult frontal ROIs.

Age & accuracy correlations. To determine whether age differences
within the sample accounted for overlapping activation across EF tasks,
we included mean-centered age as an independent variable in the GLM
for each task. Age negatively correlated with BOLD activity during the
updating task in right ventral striatum (cluster peak coordinates: 8, 16,

https://doi.org/10.1016/j.neuroimage.2018.10.024
https://doi.org/10.1016/j.neuroimage.2018.10.024
https://doi.org/10.1016/j.neuroimage.2018.10.024


Table 2
Task-overlapping centers of activity for EF contrasts.

Region MNI coordinates Cluster size
(voxels)

x y z

Dorsal anterior cingulate cortex 0 11 48 638
Left anterior insula �31 20 3 243
Right anterior insula 35 20 3 480
Right dorsolateral prefrontal cortex 37 33 28 107
Right middle frontal gyrus, posterior
aspect

44 6 32 149

Left frontal eye field �25 �5 51 127
Right frontal eye field 26 �1 49 32
Left inferior parietal lobule,
supramarginal gyrus

�45 �39 43 75

Right inferior parietal lobule,
supramarginal gyrus

49 �41 47 118

Left superior parietal lobule �30 �49 45 234
Right superior parietal lobule 33 �48 46 401

Cluster size and coordinates were determined by applying the FSL cluster com-
mand to the summed activation map. We report cortical clusters comprising 20
voxels or more. Voxel size: 2�2�2mm.
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�10; 231 voxels) and left ventromedial PFC (�10, 30, �6; 107 voxels).
There were no significant clusters of age-correlated activity shared by the
three tasks.

Accuracy positively correlated with BOLD activity during the
switching task in right lingual gyrus (12, �78, �10; 96 voxels) and
during the inhibition task in right anterior insula (42, 24, �4; 130 vox-
els). Updating accuracy negatively correlated with activation during the
updating task in left ventral striatum (�6, 14, �8; 121 voxels). There
were no significant clusters of accuracy-correlated activity shared by the
three tasks.

Stricter EF contrasts. We conducted a summed-mask analysis using
the following contrasts for the switching, updating, and inhibition do-
mains, respectively: correct switch trials vs. correct repeat trials during the
cue period, 2-back block vs. 1-back block, stop trials vs. correct go trials. As
displayed in Fig. 3 and detailed in Table 3, significant activity shared
across all tasks was observed in small clusters within dACC, right anterior
insula, right FEF, left inferior frontal sulcus, and left IPL. The center of
dACC activation was 7mm from the corresponding adult dACC region.
Activation in the right insula, left inferior frontal sulcus, and left IPL were
8, 12, and 19mm, respectively, from the right insula, left frontal, and left
IPL adult ROIs. Right FEF activity was greater than 20mm from any adult
region. At a more stringent cluster-forming threshold of z> 3.1, there
were no significant clusters common across the three tasks.

Response time vs. baseline contrasts. We next applied the summed-
mask approach to the response time vs. baseline contrasts for the
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switching and inhibition tasks. Clusters of significant activity corre-
sponding to trial-by-trial response time across tasks were observed in
dACC, right primary motor cortex, right superior frontal gyrus, and right
thalamus (Fig. 4, Table 4).

3.3. Neuroimaging results: Subsamples

Group comparisons: Age and sex. To evaluate age-related differences
in EF activity, we conducted a group comparison between younger and
older subsamples split at age 10.5 years. There were no regions for which
EF vs. baseline activation differed across the age groups in all three tasks.
We conducted an additional group comparison to identify EF-related
activation differences between males and females. As in the age-group
analysis, there were no areas that showed sex differences across the
three tasks. Task-specific results for the group comparisons are depicted
in Supplementary Fig. 3.

Comparison of full sample to undiagnosed participants and unre-
lated participants. Supplementary Fig. 4a depicts task-unique and task-
common activity for the full sample. After excluding eight participants
diagnosedwith developmental and/or learning disorders, the centers and
spread of activation were nearly identical to those of the full sample
(Supplementary Fig. 4b, Supplementary Table 6). To determine whether
the robustness of our primary results was driven by the inclusion of
multiple individuals from the same family, we repeated the analysis with
a subsample of unrelated individuals. As depicted in Supplementary
Fig. 4c and detailed in Supplementary Table 6, the task-overlapping map
from the analysis of unrelated individuals was consistent with that of the
full sample.

4. Discussion

Executive functions are foundational processes that underlie the
development of complex reasoning and mediate environmental risk for
negative outcomes (Best et al., 2011; Nesbitt et al., 2013; Zelazo and
Müller, 2002). Understanding the neurobiological organization of EFs as
they undergo rapid maturation in childhood is key to developing in-
terventions that promote EF development, ameliorate executive deficits,
and identify risk factors for impending cognitive and psychiatric im-
pairments. An outstanding question is whether the functional brain
networks that support domain-general EFs in adulthood are in place by
middle childhood or whether they are substantively different. Motivated
by well documented findings of task-overlapping activity in the adult
literature (Crittenden et al., 2016; Dosenbach et al., 2006), meta-analyses
of single-task studies of children's EF-related activation (Houd�e et al.,
2010; McKenna et al., 2017), and behavioral studies showing consistency
in the factor structure of EF performance across development, we
Fig. 3. Overlapping task-positive brain
activity across stricter EF contrasts.
Selected contrasts were correct switch
trials vs. correct repeat trials during the cue
period for the switching task, 2-back
blocks vs. 1-back blocks for the updating
task, and correct stop trials vs. correct go
trials for the inhibition task. Prior to
binarizing and summing across tasks,
individual task maps were thresholded
at z > 2.3 with a cluster probability of p
< .01. Circles in the top panel of (a)
emphasize right frontal eye field and
anterior insula clusters; those in the
bottom panel of (a) emphasize the dor-
sal anterior cingulate cluster. Circles in
the top panel of (b) emphasize the left
inferior frontal sulcus cluster; those in
the bottom panel of (b) emphasize the
left IPL cluster. L ¼ left, R ¼ right.

mailto:Image of Fig. 3|tif


Table 3
Task-overlapping centers of activity for stricter EF contrasts.

Region MNI coordinates Cluster size
(voxels)

x y z

Dorsal anterior cingulate cortex �1 21 42 80
Right anterior insula, superior aspect 34 18 5 29
Right anterior insula, inferior aspect 36 18 �11 20
Right frontal eye field 22 7 48 36
Left inferior frontal sulcus �33 9 28 36
Left inferior parietal lobule,
supramarginal gyrus

�45 �42 54 32

Cluster size and coordinates were determined by applying the FSL cluster com-
mand to the summed activation map. We report cortical clusters comprising 20
voxels or more. Voxel size: 2�2�2mm.

Fig. 4. Overlapping brain activity corresponding to response time across two EF
tasks. The contrast applied to both tasks was mean-centered response time vs.
baseline. Prior to binarizing and summing across tasks, individual task maps
were thresholded at z > 3.1 with a cluster probability of p < .05.
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examined brain activation across three EF domains in a single,
population-representative sample of children. This approach provided an
opportunity to make inferences about task-general EF processing that
past approaches have not been capable of.

4.1. Activity shared across EFs in childhood centers upon fronto-parietal
and cingulo-opercular regions

We found that children engaged a common set of brain regions across
EF domains. The largest clusters of cross-task activation were observed in
Table 4
Task-overlapping centers of activity for response time contrasts.

Region MNI coordinates Cluster size
(voxels)

x y z

Dorsal anterior cingulate cortex 0 6 47 421
Right thalamus 12 �16 9 48
Right precentral gyrus (primary motor cortex),
lateral portion

37 �17 55 46

Right superior frontal gyrus, posterior portion 12 �1 65 20

Cluster size and coordinates were determined by applying the cluster command in
FSL to the summed activation mask. We report clusters comprising 20 voxels or
more. Voxel size: 2�2�2mm.
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dACC, bilateral anterior insula, and bilateral SPL. Additional overlap
occurred in right posterior MFG, right dlPFC, bilateral FEF, and bilateral
supramarginal gyri of the IPL. Regions of co-activation in this sample of
children and early adolescents were consistent with the two EF networks
that have been well characterized in adults. Specifically, regions
comprising the adult cingulo-opercular network (dACC, bilateral anterior
insula) and the fronto-parietal network (right dlPFC, bilateral MFG,
bilateral SPL, bilateral IPL) co-activated in response to EF demands in our
sample. Additionally, bilateral frontal eye fields at the intersection of the
middle frontal and precentral gyri exhibited significant activation across
all three tasks. Although FEFs are absent from task-related EF networks in
studies of adults, these regions are functionally correlated to regions in
the adult fronto-parietal network during resting state (Cole et al., 2013;
Fox et al., 2005; Gordon et al., 2016; Grinband et al., 2008; Power et al.,
2011; Yeo et al., 2011). Our findings indicate that established patterns of
neural activity underlying adult EFs are qualitatively similar to those
observed in middle childhood. Thus, the development of EFs frommiddle
childhood to adulthood likely involves quantitative changes in activity
within EF-related networks, rather than qualitative changes in the or-
ganization of the networks themselves.

Employing stricter contrasts for the tasks revealed a specialized set of
regions that were engaged across more demanding task periods. Clusters
were centered upon dACC and right anterior insula, as well as right FEF,
left IFS, and left IPL. In adults, the dACC and anterior insula have been
found to constitute a “core task-set system” based on their involvement
across distinct trial periods and executive domains (Dosenbach et al.,
2006; Menon and Uddin, 2010). Dosenbach et al. (2006) identified these
as the only regions whose activity overlapped when combining thresh-
olded ROI maps representing initiation of cognitively demanding tasks,
maintenance of task rules, and performance-related feedback. A recent
meta-analysis that examined children's BOLD signal responses to solving
mathematical problems also reported robust activation of the right insula
across task contexts (Arsalidou et al., 2018). As the insula is not tradi-
tionally included in neural models of mathematical problem solving, the
authors interpreted this finding as evidence that the insula, in conjunc-
tion with the dACC, is involved in motivated behaviors. Considered
together, the current results and those of previous meta-analyses support
the proposition that, in both childhood and adulthood, co-activation of
cingulo-opercular regions is necessary for the execution of highly
demanding tasks. Overall, the results of the primary and sensitivity an-
alyses imply that well documented increases in EF abilities from middle
childhood to adulthood operate via a stable and common functional ar-
chitecture, though a comparison of child and adult groups or a longitu-
dinal investigation of the same individuals over time is necessary to test
this directly.

Importantly, our key findings were independent of commonalities
driven by response time, as trial-by-trial RT was included as a regressor in
first-level analyses. This was a critical advantage of the current study, as
meta-analyses of the neural basis of EFs in childhood are unable to
dissociate activation attributable to executive processes per se from
activation attributable to response time. The importance of this step was
underscored by our finding that within-person differences in RT corre-
sponded to cross-task activity in a region consistently linked to executive
processing, the dACC. RT-related activation in this region and primary
motor cortex is consistent with RT effects observed in adult samples
(Grinband et al., 2008; Yarkoni et al., 2009), though many clusters of
task-overlapping activity remained unique to the EF contrasts. In sum-
mary, we found that activity in a region critical to EF, the dACC, related
to a standard behavioral outcome, but that activity in these regions also
occurred above and beyond performance differences across individuals.

Commonalities in children's brain activation across switching,
updating, and inhibition tasks may serve as the neural corollary for
behavioral evidence that individual differences in EF task performance
are best captured by a hierarchical model in which variance is shared
across domain-specific EF factors, suggesting that common causal pro-
cesses act on individual EFs (Engelhardt et al., 2015; Miyake et al., 2000).
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Indeed, variance shared across EF domains is attributable primarily to
genetic factors; a general factor of EF has been found to be nearly 100%
heritable in samples of 7- to 14-year-olds (Engelhardt et al., 2015) and
young adults (Friedman et al., 2008), with negligible contributions from
environmental sources. Executive function thus constitutes one of the
most genetically influenced phenotypes early in life, and our finding that
the neural architecture of EFs is effectively in place when the heritability
of EF is at its peak may help to clarify the pathways by which genetic
variation leads to individual differences in abilities supported by EF.

4.2. Implications for future research

The convergence of our results across brain activity and behavioral
models clearly suggests that the organizational foundation for EFs is in
place by middle childhood. The question that logically follows is: What
mechanisms underlie the large gains in executive skills from middle
childhood forward? One possibility is that changes in EF performance
result from functional changes in the task-common regions we have
described. For example, strength of co-activation between pairs or sub-
sets of regions may increase with repeated engagement in EF-demanding
situations over development (Johnson, 2011). In a study of typical
development of intrinsic functional connectivity of the default mode
network, Chai et al. (2014) demonstrated that resting-state connectivity
between default regions and many of the EF-relevant regions highlighted
in the current study becomes more negative from childhood to adult-
hood. The authors suggested that the development of these intrinsic
correlations underlies age-related improvements in EF abilities. In the
current study, we focused on global patterns of activation rather than
inter-regional relatedness, but examining finer-tuned synchronicity be-
tween regions that exhibited significant activation across our tasks will
likely prove fruitful.

Another possibility is that structural maturation of brain regions and
their connections mediates behavioral improvement in EFs. Exploring
this possibility, Baum et al. (2017) examined age-related changes in
white matter-based connectivity and EF abilities in a cross-sectional
sample of children through young adults. The degree to which white
matter connectivity was stronger within functional modules (e.g., so-
matosensory regions, fronto-parietal regions) mediated developmental
increases in performance on an EF task. The integration of functional and
structural neuroimaging approaches would shed light on the mechanisms
by which various neural properties interact to support the development
of EFs.

Other extensions of this work may focus on the role of cingulo-
opercular and fronto-parietal regions in the onset and maintenance of
atypical thoughts and behaviors, as EF deficits have been implicated in
nearly every developmental disorder (Carlson et al., 2013; Zelazo and
Müller, 2002). The current results could provide a baseline against which
studies of atypical development may be compared. For example, the re-
gions highlighted in the current paper (in particular, dACC and bilateral
anterior insula) show robust activation in the face of different executive
demands. Hypo- or hyperactivation of these regions may therefore
correspond to poor EF performance, as well as symptom burden. A recent
meta-analysis of adult neuroimaging studies examined brain activity in
response to EF tasks, comparing healthy controls to participants with
various psychiatric disorders (McTeague et al., 2017). Regardless of
disorder type, EF-related activity among diagnosed groups consistently
differed from that of healthy controls in left anterior insula, right
ventrolateral PFC, right IPS, right motor regions, and anterior dACC. The
authors proposed that brain networks that support adaptive cognitive
control, like the fronto-parietal network, are especially vulnerable to
disruptions that may manifest as psychopathology. Alternatively, diver-
gence from established EF-related regions may be symptomatic of psy-
chiatric or developmental disorders (Menon, 2011).

The current results tell us about developmental norms with respect to
children's functional brain organization. Future research that looks
beyond group means may lead to greater understanding of the practical
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consequences and correlates of individual differences in engaging re-
gions common across or unique to EF domains. For example, it may be
that the regions we have identified here are required for successfully
engaging in a task, whereas task-unique activation exhibits greater
variability that may meaningfully relate to differences in age-varying
task performance or other behavioral outcomes (Braver et al., 2010;
Yarkoni and Braver, 2010). In our primary analyses, contrasts for the
event-related tasks (switching and inhibition) included correct trials
alone, as a means of targeting successful engagement of EFs. More
extensive associations between BOLD activity and task performance may
be detected with contrasts that combine across correct and incorrect
trials.

4.3. Limitations

We acknowledge a number of limitations in the current study,
including a lack of collection of the same set of tasks in adults. However,
adult EF activity has been well established across multiple tasks within
large samples (e.g., Crittenden et al., 2016; Dosenbach et al., 2006). By
capitalizing on extant adult datasets, we were able to estimate the spatial
proximity of hubs of activity in our sample to that of well characterized
adult ROIs. The idiosyncrasies inherent to the tasks we selected consti-
tute another limitation. In particular, the inhibition task led to strongly
right-lateralized activation, potentially explaining fewer left hemisphere
overlaps across all three tasks. However, our tasks benefited from strong
performance in the current sample, which is critical when interpreting
developmentally normative brain activation during tasks, as
error-related BOLD responses can differ systematically from more
task-relevant signals (Church et al., 2010; Murphy and Garavan, 2004).

Another potential limitation involves the mapping of children's
structural scans into a stereotactic space derived from scans of young
adults. Reports of misclassification of children's brain tissue when
normalizing structural images to a common stereotactic space have led to
concerns that age-related structural differences generate spurious age-
related differences in brain activation (Richards and Xie, 2015). It is
possible, for example, that inconsistencies between locations of children
and adult task-overlapping activation are driven by age-related structural
differences. However, a separate body of empirical work has demon-
strated that, after transforming images into a common stereotactic space,
differences between children as young as 7 years of age and adults in the
location and variability of anatomical structures are minor, especially
relative to the spatial resolution of group fMRI images (Burgund et al.,
2002). Furthermore, such differences are unlikely to produce spurious
differences in functional activation (Kang et al., 2003).

4.4. Conclusion

The goal of this study was to evaluate the consistency of children's
brain activation in response to various EF demands and to determine
whether co-activated regions followed the organization observed among
adults. The study benefited from a large, representative sample measured
on multiple tasks, conferring greater precision than that afforded by
meta-analyses. The results indicated that, by middle childhood, a com-
mon set of fronto-parietal and cingulo-opercular regions support execu-
tive processing across EF domains. The results shed light on the
neurobiological bases of a set of abilities that are critical for everyday
functioning and lifelong wellbeing, indicating the organization is estab-
lished by middle childhood. Further exploration of correlates of task
overlapping and task unique EF-related signals presents an exciting op-
portunity to understand cognitive maturation in typical and atypical
development.
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