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Statistical learning dynamically shapes
auditory perception
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Humans implicitly pick up on probabilities of stimuli and events, yet it remains unclear how statistical
learning builds expectations that affect perception. Across 29 experiments, we examine the influence
of task-irrelevant distributions—defined across acoustic frequency—on both tone detection in noise
and tone duration judgments. The shape and range of the frequency distributions impact suppression
and enhancement effects, as does a given tone's position within the range. Perception adapts quickly
to changing distributions, but past distributions influence future judgments. Massed exposure to a
single frequency impacts perception along a range of subsequently encountered frequencies. A novel
bias emerges as well: lower frequencies are perceived as longer and higher ones as shorter.
Probability-driven learning dynamically shapes perception, driven by interacting influences of sensory
processing, distributional learning, and selective attention that sculpt a gain function involvingmodest
enhancement of more-likely stimuli, and robust suppression of less-likely stimuli.

We implicitly pick up information about the probability of white versus red
cars on the road, the spatial position of objects in a room, and how likely
different soundsmight bewithin a soundscape—for instance, hearing a cow
moo in a barnyard versus a hospital. The detailed distributional structure of
sensory input leads us to expect some events and to be surprised by others.

How does distributional learning influence perception? Many studies
have focused on learning across probabilistic input, whereby organisms
implicitly discover regularities across continuous input dimensions1–3. For
example, unsupervised learning of clustering in speech soundsmay scaffold
infants’ language acquisition4–6. Other studies have focused on the outcome
of distributional learning, manipulating stimulus probability to oper-
ationalize expectation and characterizing the influence of expectation on
perception and neural representation7,8.

Some theoretical accounts of these expectation-driven effects predict
that perception will prioritize high-probability expected input (consistent
with Bayesian inference9). Indeed, frequent, expected stimuli are better
detected than rare stimuli10,11 and perceptual decisions about expected sti-
muli are speedier and more accurate7,8. This enhanced perception might be
achieved via adjustments of weights on sensory channels that modulate
gain, sharpening representation of frequent relative to rare input. Alter-
nately, perceptual enhancements might be mediated by expectation-
congruentmemory representations7,12. Neuroimaging studies have revealed
that representationof expected stimuli is enhancedvia suppressedactivity in
voxels tuned away from expected stimuli12,13.

Other accounts conclude, instead, that distributional learning accent-
uates infrequent, unexpected events14. This prioritization is accomplishedby
suppressing expected input15–19, leading to improved detection of rare
stimuli20.A third account posits that expectation can lead to enhancement in
some contexts and suppression in others, with initial perceptual biases that
tilt toward expected stimuli but can be canceled out by highly surprising
input14. But complicating matters, probability distributions experienced
across a perceptual dimension may influence the bottom-up salience21,22 or
task relevance23 of a dimension, each with the potential to impact percep-
tion. In sum, there is no consensus about how likelihood influences
perception.

We propose that opposing theoretical perspectivesmay persist, at least
in part, as a byproduct of empirical focus on dichotomous frequent-versus-
rare likelihoods that necessarily limit the resolution with which the rela-
tionship between expectation and gain can be estimated. More complex
probability distributions sampled across a continuousperceptual dimension
have the potential to reveal granular, graded influences of expectation built
from distributional learning across probability.

Here,we shape expectation by sampling stimuli probabilistically across
the primary representational axis of the auditory system, acoustic frequency.
Crucially, acoustic frequency is task-irrelevant across our 29 studies. This
decouples expectation from task utility, unveiling the influence of dis-
tributional statistical learning across a task-irrelevant dimension on per-
ception. We test how this learning impacts perception across unimodal,
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bimodal, and equiprobable distributions varying in statistical volatility and
sampling density. Given evidence that distinct task goals can influence the
impact of short-term input regularities on perception24, we use two tasks
inspired by classic psychoacoustics literatures. One task examines the
detection of near-threshold tones in continuous noise. In an influential
study, Greenberg and Larkin25 led listeners to expect a single constant-
frequency tone to appear innoise, but tone frequencyvariedonaminorityof
trials. Detection accuracy was superior for the expected, high-probability
frequency with graded diminishment of detection accuracy as a function of
distance from the expected frequency. This graded sensitivity has been
interpreted as a frequency-selective attentional filter centered at the dis-
tribution mode26. Here, detection accuracy of near-threshold tones in noise
provides a graded metric of the perceptual gain function arising from
expectation built from distributional learning that supports directional
assessment of enhancement versus suppression.

Complementing this, the speed of tone duration decisions reveals the
influence of distributional learning across task-irrelevant acoustic fre-
quency.Capitalizing on classic studies of Schröger and Wolf 27 developed as
a model of auditory distraction, participants decide whether a sound is
“long” or “short” across toneswith distinct and equiprobable durations. The
tones’ acoustic frequency is task-irrelevant but carries a distributional reg-
ularity that impacts responses, with slower duration decisions consistent
with longer processing time for tones with low-probability frequencies. Our
parallel tests of tone-in-noise detection and tone duration decisions allowus
to examine the influence of distributional learning on perceptual tasks
possessing distinct processing demands.

To foreshadow, our distributional learning approach reveals influences
of expectation that would be unobservable across simple frequent-versus-
rare likelihoods. We find that distributional learning is not simply fre-
quentist accumulation of events: equally likely events are differentially
perceivedas a functionof their positionwithin aprobabilitydistributionand
are influenced by filter properties of both the sensory system and selective
attention. We observe exquisite sensitivity to distribution shifts and robust
carryover of influence frompreviously experienced distributions atmultiple
timescales. The influence of distributional learning on perception arises
rapidly after a shift in distributions, but our data also provide evidence for
‘stubbornpredictions’ that linger28. In fact,massed exposure to a single point
along the frequency dimension results in sustained diminishment of per-
ceptual sensitivity of subsequently encountered frequencies as a function of
their distance from that single point. This would seem maladaptive for
perceptual precision but instead may reflect a mechanism that centers
attentional gain around the most likely region(s) along a perceptual
dimension. Across studies, the impact of distributional learning on per-
ception is most consistent with a sharpening of representations through
suppression of processing units tuned to less-likely stimuli13.

Results
Given the large number of experiments and results, we report only test type,
exact p values, and power for each statistical test in themain text; all tests are
corrected for multiple comparisons. Table S3 provides details on each
reported analysis, including the relevant filename of the subject-wise data
and analysis files available at https://osf.io/xdgnw/.

Distributional learning alters the detection of tones in noise
We first ask whether distributional learning across a continuous sensory
dimension affects the most basic perceptual process: detection. Does the
probabilitywithwhich a soundoccurs influence the ability tohear it innoise?

For each detection study, individual detection thresholds are estab-
lished immediately before the experiment using three iterations of a stan-
dard staircase technique adapted for online testing (Zhao et al.29; see
Materials and Methods, Fig. 1a, left). Thereafter listeners detect a tone
presented at threshold in continuouswhite noisewithin one of two intervals
(Fig. 1a, right).

Exp 1a establishes baseline detection accuracy when a single acoustic
frequency (1000Hz) is 100% probable. Exp 1b-f draw from a pool of five

easily differentiable frequencies (800,920, 1000, 1080, 1200Hz) spaced~13x
the just-noticeable difference in frequency30. In Exp 1b-d, one highly
probable frequency comprises 75% of the 320 trials. The remaining four
tones each occur on just 6.25% of trials, creating a unimodal distribution
across frequency. Exp 1e has a bimodal probability distributionwith 800Hz
and 1200Hz frequencies each presented on 40.6% of trials, with each other
frequency presented on 6.25% of trials. Exp 1f is identical to Exp 1e, except
that the frequency for threshold estimation is 1080Hz, rather than 1000Hz
as in Exp 1a-e. Figure 1c illustrates these distributions across the acoustic
frequency dimension.

In Exp 1, stimulus probability strongly modulates tone detection in
noise acrossExp1b-fwith better detection of high-probability frequencies at
the distributionmode (Fig. 2a; ANOVA, Freq ×Exp interaction, p = 1.761×
10−31, η2 = 0.169). Detection of only 1000Hz (Exp 1a: 100% probability;
average accuracy 77.9%) does not differ from detection of the highest-
probability frequency in unimodal distributions (Exp 1b-d: 75%probability;
average accuracy 75.3%; ANOVA, p = 0.242, η2 = 0.012). But detection of
the modal frequencies in the bimodal distributions (40% probable) is lower
than when a single frequency is 80% or 100% probable (Exp 1e-f: 40.6%
probability; average accuracy 70.3%; ANOVA, p = 0.006, η2 = 0.053 versus
Exp 1b-d, ANOVA, p = 0.003, η2 = 0.101 versus Exp 1a).

Proximity to the high-probability tone also influences detection (Fig.
2a). The low-probability frequencies of Exp 1b-d share the sameprobability,
yet those closer to a high-probability frequency are better detected than
those further away (ANOVA, p = 0.014, η2 = 0.022). When the high-
probability frequency is centered in the range of frequencies defining the
distribution, this graded detection accuracy difference is symmetric (near >
far tohigh-probability frequency,ANOVA,p = 0.004,η2 = 0.259).When the
high-probability frequency is nearer to the distribution edge (Exp 1b and
Exp 1d), there is an asymmetric detection curve (ANOVA, p = 0.015,
η2 = 0.034): a sharp detection decrement toward the distribution edge is
contrasted with a more gradual ‘ski slope’ decrement toward the middle of
the frequency range (see inset, Fig. 2a). In sum, equiprobable rare tones are
detected more accurately if they are adjacent to the distribution mode, but
this advantage is modulated by the position of the high probability tone
relative to the range of the frequency distribution.

These results must be understood in the context of the operating
characteristics of the auditory system, for which there is a critical bandwidth
of approximately 1/6 of an octave within which the cochlea has limited
ability to resolve stimuli31. At 1000Hz, the critical bandwidth is ~130Hz.
Thus, taking Exp 1c (1000Hz mode) as an example, these sensory filter
properties likely contribute to the ‘rescue’ of detection of low-probability
tones with frequencies situated close to the distribution mode (920,
1080 Hz). Thus, the predictions of a filter model of attentional gain would
overlap in this case with purely sensory predictions from auditory critical
bandwidths. However, auditory critical bands cannot account for the
asymmetry of the shallow ‘ski slope’ decrement toward the middle of the
frequency range, compared to the steep decrement toward the edges of the
range in Exp 1b andExp 1d. The location of the high probability tonewithin
the range of experienced frequencies also has an influence. If effects were
driven solely by auditory critical bands, we should not observe such con-
textual influence.

More complex probability distributions also modulate detection (Fig.
2b). Exp 1e shows that a bimodal probability distribution with higher-
probability (40.6%) frequencies at the edges of the distribution (800 and
1200Hz) induces a ‘dual spotlight’ across the frequency dimension. Lis-
teners detect the higher-probability tonesmore accurately than neighboring
low-probability tones (920 and 1080Hz, linear contrast, Bonferroni-
corrected p = 3.590 × 10−5, Cohen’s d = 0.757) with a marginal difference
compared to the middle 1000Hz tone (linear contrast as above, p = 0.072,
Cohen’s d = 0.418).

Note that for Exp 1e, detection of 1000Hz tones has a numerical (but
not significant) detection advantage compared to the other low-probability
tones (Fig. 2b). Two ‘spotlights’ centered at the high-probability tone fre-
quencies would yield a “V” rather than this observed “W” detection profile.
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We speculated that the numerical detection advantage for 1000Hz might
arise from experience with 1000Hz in the 120-trial threshold-setting pro-
cedure that precedes Exp 1e. Exp 1f falsifies this hypothesis. Changing the
initial threshold-setting frequency to 1080Hz elicits a similar “W” profile
and, importantly, replicates the overall ‘dual spotlight’ at 800 and 1200Hz
(linear contrast as above, p = 4.62 × 10−8, Cohen’s d = 0.985, Fig. 2b).

In summary, Exp 1 demonstrates that distributional learning mod-
ulates sound detection. Replicating and extending classic studies in
psychoacoustics25, tones with higher-probability frequencies are better
detected in noise than lower-probability frequencies. The impact of dis-
tributional learning is graded across frequency, with better detection of low-
probability frequencies that lie closer to high-probability frequencies than
equally improbable, but more distant, frequencies. This effect is further
influenced by the overall distributional context: the protective effect of
proximity to the high-probability tone depends on its position within the
range of encountered frequencies. Moreover, bimodal distributions with
two higher-probability frequencies at the edges of the frequency range elicit
a ‘dual spotlight’.

Distributional learning across a task-irrelevant dimension
impacts perceptual decisions
Listeners track probabilities across acoustic frequency despite the irrele-
vance of frequency to the Exp 1 detection task. Previous findings show that
similar probability distribution manipulations affect perceptual decision
response times27,32. We next ask whether statistical learning over a

probability distribution defined across task-irrelevant frequency impacts the
time course of decisions about a sound’s duration.

In Exp 2a-c, participants report whether a tone is long or short, with
50ms and 90ms tones presented equiprobably across 400 trials (Fig. 1b; see
Materials and Methods). Task-irrelevant tone frequency varies across five
frequencies (800–1200Hz) in the manner of Exp 1 (Fig. 1c). There are four
improbable tone frequencies (each 5% of trials), and a single probable fre-
quency (80% of 400 trials, Exp 2a: 920Hz; Exp 2b, 1000Hz; Exp 2c:
1080 Hz). In Exp 2d, 800 Hz and 1200Hz are presented on 40.6% of trials
with the other frequencies each presented on 6.25% of trials to create a
bimodal distribution (320 trials). In Exp 2e, the five tones are equiprobable
(20%) across the first half of the study and then switch to the bimodal
distribution of Exp 2d (640 total trials).

Across Exp 2a-c, the probability of a tone’s frequency significantly
impacts the speed of duration decisions (ANOVA, p = 7.620 × 10−7,
η2 = 0.017, Fig. 3a). Response times (RTs) are slower for tones with low,
compared to high, probability frequencies (linear contrast, unpooled error,
p = 1.628 × 10−17, Cohen’s d = 0.516). Further, RTs for duration decisions to
equiprobably rare frequencies are graded as a functionof their distance from
the high-probability distribution mode. Compared to RTs to the most
probable frequency, those to the adjacent low-probability frequencies are
slower (Holm-corrected post-hoc comparison, p = 4.316 × 10−12, Cohen’s
d = 0.387) and frequencies furthest away from the high-probability fre-
quency are yet slower than the frequencies nearer the high-probability one
(Holm-corrected p = 5.137 × 10−6, Cohen’s d = 0.258). (These patterns hold

Fig. 1 | Tasks and distributional regularities. a The tone-in-noise detection task
involved two phases: adaptive threshold estimation followed by the tone-in-noise
detection task. Threshold estimation trials began with continuous noise and a
fixation cross (750 ms), after which a 1000-Hz tone was presented with equal
probability in one of three 250-ms detectionwindows (250 ms ISI), each indicated by
a number (1, 2, or 3) on the screen. A prompt appearing 250-ms after the third
detection window elicited participants’ report of the interval containing a tone. Tone
intensity followed the 3-down, 1-up procedure to estimate 79% accuracy (see
Methods). The noise continued through the tone-in-noise detection task, shown in
the right of (a). For each trial, 500 ms preceded a 250 ms fixation cross and another

500 ms period. A 250-ms sinewave tonewith intensity+ 0.75 dB above the threshold
estimated in the adaptive thresholding task appeared in one of two 250-ms intervals
(250 ms ISI), indicated by a “1” and a “2” on the screen, respectively. Participants
reported which interval contained the tone. Tone frequency varied according to the
distributions in (c). b In the duration-decision task, each trial involved a 1000-ms
fixation followed by a 50 or 90 ms sinewave tone (equal probability) and participants
reported “long” or “short” with a button press. c Probability distributions for each
experiment, as a function of acoustic frequency. Blue distributions indicate tone-in-
noise detection experiments. Orange distributions indicate duration-decision
experiments.
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true for each Exp 2a-c study, p < 0.05 Holm corrected). This replicates and
extends classic observations from psychoacoustics27 andmirrors the graded
influence on Exp 1 detection accuracy (Fig. 2a).

However, unlike the dual spotlight for tone detection in Exp 1e-f,
there is no significant RT advantage for making duration decisions about
the higher-probability 800 and 1200 Hz tones in Exp 2d (Fig. 3b;
ANOVA effect of frequency, p = 0.526, η2 = 0.010). To examine thismore
closely, Exp 2e introduces a distribution change: five initially equiprob-
able (20%) frequencies (320 trials) shift to mirror the Exp 2d bimodal
distribution mid-study (320 trials; see Fig. 1c). This allows us to char-
acterize potential frequency-duration interactions that may exist, inde-
pendent of probability. Indeed, and unexpectedly, when tone frequencies
are equiprobable in the first half of trials, decision RTs are longer for
800 Hz and 1200 Hz compared to other frequencies (ANOVA on Fre-
quency, p = 0.031, η2 = 0.026; post-hoc linear contrast p = 0.002, Cohen’s
d = 0.205) (Fig. 3c).

Investigating this reveals a novel frequency-duration perceptual bias:
duration decisions for lower-frequency tones (800, 920Hz) are more
accurate and faster for long (90ms) compared to short (50ms) tones
whereas those for the highest frequency tone (1200Hz) are more accurate
and faster for short compared to long tones (Supplementary Fig. 1;
ANOVA, Frequency × Duration interaction, RT: p = 0.003, η2 = 0.029;
Accuracy (Acc): p = 3.738 × 10−5, η2 = 0.037). This perceptual bias is mir-
rored, but only qualitatively, in Exp 2d (Supplementary Fig. 1; p > 0.05,
η2 = 0.010, with lower frequencies related to longer durations and higher
frequencies with shorter durations). Notably, the bias is largest at the edges
of the frequency distribution (800 and 1200Hz) where it interacts with the
bimodal distribution modes of Exp 2d, e, helping to explain why the dual
spotlight observed in Exp 1e-f detection is not apparent in Exp 2d duration
decisions. When we inspect the data from Exp 2a-c (Supplementary Fig. 1)
we also observe the longer-lower/shorter-higher bias in the context of the
unimodal distributions (ANOVA, Frequency × Duration interaction, RT:
p = 3.968 × 10−6, η2 = 0.020; Acc: p = 0.003, η2 = 0.020). In other words,
listeners found it easier to identify long durationswhen toneswere relatively
lower in frequency; conversely, it was easier to identify short durationswhen
the sound was a relatively higher frequency tone. This impacted response
time and interacted with the probability manipulation.

Fig. 3 | Distributional learning across a task-
irrelevant dimension impacts perceptual deci-
sions. Each panel plots mean response time as a
function of tones’ acoustic frequency. The histo-
grams to the left show distributional regularities for
each experiment. Marker size scales with tone
probability. Error bars are standard error of the
mean. a Response time to report tone duration is
impacted by the probability of tones’ acoustic fre-
quency across Exp 2a-c. The influence is graded,
with faster decision times for equivalently low-
probability tones closer to the distributionmode (see
inset). bUnlike the dual spotlight for tone detection
in Exp 1e-f, there is no significant response time
difference for the two more probable modes in Exp
2d, a consequence of a frequency-duration percep-
tual bias (see Supplementary Fig. 1). c Exp 2e eval-
uated the frequency-duration bias across an
equiprobable distribution in the first half of the
study (orange, dashed) with a switch to the bimodal
distribution at study midpoint (yellow, solid). The
bias is largest at the edges of the distribution where it
interacts with the bimodal distributional regularity
(see Supplementary Fig. 1).

Fig. 2 | Distributional learning alters the detection of tones in noise. Each panel
plots mean detection accuracy as a function of tones’ acoustic frequency. The his-
tograms to the left show distributional regularities for each experiment. Marker size
scales with tone probability. Error bars are standard error of the mean. a Detection
accuracy for a single-point distribution at 1000 Hz in Exp 1a approximates the
expected detection accuracy estimated by the preceding threshold procedures and
serves as a reference baseline for single frequency detection. For Exp 1b-d the dis-
tribution mode is detected best, with equivalently low-probability tones detected
more poorly as a function of distance from the mode (see inset). b Bimodal dis-
tributions produce a ‘dual spotlight’ with detection accuracy best at the modes. Exp
1e-f differ only in the frequency used to estimate the threshold (1000 and 1080 Hz,
respectively).
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In summary, distributional learning across a task-irrelevant dimension
affects perceptual decisions. The speed with which participants report the
duration of a tone is impacted by the probability of the tone’s frequency. As
with tone detection in noise in Exp 1a-f, learning across the probability
distribution produces a graded influence on perceptual decisions: decisions
across equivalently low-probability tones differ as a function of the tone’s
distance in frequency from a high-probability tone. Moreover, Exp 2
demonstrates that seemingly intrinsic biases across acoustic dimensions
may influence and/or disguise the impact of short-term statistical input
regularities (for other examples see refs. 33–35). These “intrinsic” biases
might arise from distributional learning across longer timescales or perhaps
sensory processing (see Discussion), and interact with short-term dis-
tributional regularities as shown in Exp 2a-e.

Perceptual sensitivity and decisions rapidly update in volatile
statistical contexts
Studies of statistical learning often investigate static distributions. But real-
world environments can be volatile: for example, listeners often encounter
talkers speaking different accents with different distributional regularities.
The perceptual weight of different speech cues can rapidly alter in response
to shifts in distributional regularities36,37. It is not clear whether fundamental
processes like detection and perceptual decisions are modulated by statis-
tical volatility across task-irrelevant sensory dimensions.

Here, across six studies, we examine distributions composed of two
tones: one high probability frequency and one low probability frequency
(Fig. 1c), akin to dichotomous probability distributions often used in studies
of expectation and attention22. In Exp 3a-b (detection) and Exp 4a-b

(duration decision) we examine static two-frequency distributions to assure
that effects of distributional learning observed across 5-tone distributions in
Exp 1 and Exp 2 hold even in the simplest 2-tone sensory context over 320
trials. Exp 3a and Exp 4a examine detection and duration decisions,
respectively, with 1000Hz occurring across 75% of trials and 1155Hz
occurring over the remaining 25% of trials. Exp 3b and Exp 4b examine
detection and duration across the complementary probability distribution.
In Exp 3c and Exp 4c, we model a dynamic statistical context where these
two-frequency distributions alternate every 160 trials. Participants experi-
ence four 160-trial blocks, with 1000Hz high-probability (75%) and
1155Hz low-probability (25%) in the first block, and probabilities alter-
nating across frequencies in subsequent blocks.

Across Exp 3a and Exp 3b, we find equal and opposite effects of
frequency probability, with the high probability tone detected on average
~6%more accurately than the lowprobability tone (Fig. 4a;ANOVA,Freq×
Prob interaction, p = 3.361 × 10−6, η2 = 0.073). In Exp 4a and Exp 4b, RTs to
the high probability tone frequency are on average ~28ms faster than those
to the low-probability frequency (Fig. 4b, ANOVA, p = 1.375 × 10−6,
η2 = 0.010).We also observe the perceptual ‘low-frequency--long-duration/
high frequency --short-duration’ bias of Exp 2 even in this dichotomous
probability distribution, with faster RTs for long-low/short-high duration-
to-frequency pairings (ANOVA, Freq × Duration interaction, RT:
p = 9.34 × 10−6, η2 = 0.013; Acc: p = 6.318 × 10−5, η2 = 0.023). In summary, a
2-tone frequency probability distribution affects tone in noise detection. It
also affects individuals’ speed in making perceptual decisions across a dif-
ferent, task-relevant input dimension, but this effect is modulated by pre-
existing perceptual biases.

Fig. 4 | Perceptual sensitivity and decisions rapidly update in volatile statistical
contexts. For Exp 3a-c, mean detection accuracy as a function of acoustic frequency
is plotted in blue; for Exp 4a-cmean response times in the duration-decision task are
plotted in orange. Marker size scales with tone probability. In (a) and (b) the insets
show the probability distributions. In (c) and (d) color indicates the tone frequency
and marker size indicates its probability. Error bars are standard error of the mean.
a Probability distributions defined across just two acoustic frequencies impact tone
detection, with more accurate detection for high-probability tones in Exp 3a-b.

b Two-tone distributions defined across task-irrelevant acoustic frequency also
impact the response time to make duration decisions, with slower decisions to low-
probability tones in Exp 4a-b. cAs tone probability shifts every 160 trials across four
blocks in Exp 3c, detection is more accurate for the high-probability, compared to
low-probability, tones.d Similarly, in Exp 4c, the speed of duration decisionsmirrors
volatile probability changes: lower probability tone frequencies elicit slower
decisions.
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In the statistically volatile context established in Exp 3c, there is a
detection advantage for themore probable frequency, with significant ‘flips’
in detection accuracy due to short-term reversals in tone probability for the
first three blocks of Exp 3c (Fig. 4c; ANOVA, Freq × Block interaction,
p = 2.495 × 10−5, η2 = 0.099, each block p < 0.05). In the final block, there is
no significant difference in detection accuracy across frequencies.

Likewise, transient changes in probability distribution affect the effi-
ciency of perceptual decisions in Exp 4c (Fig. 4d, ANOVA, Freq × Block
interaction, p = 5.253 × 10−7, η2 = 0.040). RTs are slowest for the less
probable frequency in all blocks (all p < 0.05 Bonferroni corrected). Even in
this dynamic context we again observe the systematic frequency-duration
perceptual bias discovered in Exp 2 (ANOVA, Freq ×Duration interaction,
RT: p = 0.019, η2 = 0.039; Acc: p = 0.019, η2 = 0.077).

In summary, probability distributions defined across two acoustic
frequencies elicit implicit statistical learning that impacts perception. The
influence is rapid: probability exerts its influence across just 160 trials. As
input statistics change, implicit statistical learning influences sound detec-
tion and perceptual decision making.

The influence of distributional learning is consistent with a gain
mechanism exhibiting hysteresis
We observe strong influences of distributional learning across unimodal
probability distributions on detection accuracy and the speed of duration
decisions (Exp 1 and Exp 2) that holds for dichotomous probabilities and
follows volatile statistics across an experiment (Exp 3 and Exp 4). Here in
Exp 5 (detection) and Exp 6 (duration decisions), we borrow from the
distribution-switch design established in Exp 2e (Fig. 1c). This distribution
manipulation enables us to investigate how distributional learning influ-
ences detection and duration decisions across a changing statistical context.

Moreover, by establishing perception across equiprobable distributions as a
baseline, we reveal granular and graded changes in detection and decision
making that emerge as distributional learning builds expectations, including
enhancement and suppression of expected stimuli.

With equiprobable frequencies in the first half of Exp 5a, detection
accuracy is consistent across frequency (Fig. 5a; overall ~65%, with unex-
pectedly better detection for 800Hz, ANOVA, p = 0.009, η2 = 0.129). In the
second half of Exp 5a, probabilities shift to mirror Exp 1b (1000Hz 75%; all
others 6.25%). This shift drives changes in accuracy which differ across
frequencies (p = 8.511×10−7,η2 = 0.142).The1000Hz tones,whicharenow
more probable, are better detected than theywere in the first (equiprobable)
half of Exp 5a (p = 0.002, Cohen’s d = 0.648), whereas the frequencies
nearest (marginal p = 0.058, Cohen’s d = 0.554) and furthest (p = 0.027,
Cohen’s d = 0.727) from 1000Hz, which are now less probable, are more
poorly detected than they were in the first half of the study (all Bonferroni-
corrected linear contrasts with pooled error).

In Exp 5b, we reverse the distribution order. With a unimodal dis-
tribution centered on 1000Hz in the first half of Exp 5b, detection generally
resembles Exp 1c (Fig. 5b), with better accuracy for high-probability
1000 Hz compared to low-probability frequencies (Bonferroni-corrected
linear contrast, p = 1.023 × 10−7, Cohen’s d = 1.255), but with only a
numerical detection advantage for frequencies nearest (920 and 1080Hz)
versus furthest (800 and 1200Hz) from the probable center frequency
(p = 0.262, Cohen’s d = 0.267, Bonferroni corrected). When tone fre-
quencies become equiprobable mid-study, again the probability shift drives
differential changes in accuracy (p = 1.815 × 10−4, η2 = 0.056). Here, the
influence of the unimodal distribution carries over to confer a detection
advantage to 1000Hz, which was formerly highly probable, compared to
other frequencies, whichwere formerly less probable (Bonferroni-corrected

Fig. 5 | The influence of distributional learning is consistent with a gain
mechanism exhibiting hysteresis. In Exp 5a-b, mean detection accuracy as a
function of acoustic frequency is plotted in blue; in Exp 6a-b,mean response times in
the duration-decision task are plotted in orange. The histograms to the left show
distributional regularities for each experiment. Marker size scales with tone prob-
ability. In each panel, the darker color (dotted line) indicates behavior in the first half
of the experiment; the lighter color (solid line) indicates behavior in the second half,
when distributional regularities shift. Error bars are standard error of the mean.
a Exp 5a establishes detection accuracy across an equiprobable distribution, then
shifts to a unimodal distribution centered on 1000 Hz. Detection accuracy improves

for the distribution mode with increased probability and decreases for frequencies
with decreased probability. b Exp 5a switches from a unimodal distribution centered
at 1000 Hz to an equiprobable distribution. Note the hysteresis at 1000 Hz, where
detection remains elevated even into the second half of the study. c In Exp 6a,
duration-decision times are flat with equiprobable frequencies in the first half.
Introduction of a unimodal distribution centered at 1000 Hz leads to faster duration
decisions at the mode. d In Exp 6b the unimodal distribution shifts to equiprobable
at the study midpoint and response times shift substantially; note that this effect
interacts with the frequency-duration bias identified in Exp 2.
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linear contrast, p = 1.383 × 10−4, Cohen’s d = 0.577). Detection of 1000Hz
tones decreased in accuracy from the first to the second study half due to the
probability shift (p = 1.162 × 10−5, Cohen’s d = 0.496), but detection accu-
racy for the formerly low-probability tones did not change, despite a more
than 3-fold probability increase (p = 1, Bonferroni corrected).

In sum, statistical learning across a unimodal distribution provokes a
persistent effect on detection. For example, in Exp 5b, the initially highly
probable 1000Hz tone continued to be detectedmore accurately than other
tones even after tone frequencies became equiprobable. Conversely, the
tones adjacent 1000Hz, which were initially relatively improbable, con-
tinued to be detected poorly even after the shift to the equiprobable dis-
tribution. Next, we use this distribution shift design to examine duration
decisions.

Exp 6a begins with equiprobable frequencies and shifts mid-study to a
unimodal distribution centered at 1000 Hz (80%, each other frequency 5%;
Fig. 1c). Exp 6b reverses this order. In the first half of Exp 6a, RTs in the
duration-decision task across equiprobable frequencies are similar (Fig. 5c,
ANOVA, p = 0.163, η2 = 0.018). When probabilities shift to a unimodal
distribution centered on 1000Hz mid-study, RTs drop overall (ANOVA,
p = 0.011, η2 = 0.061). Although there is a numerical ‘V-shaped’ RT
advantage for the now-probable 1000Hz compared to increasingly more
distant frequencies, this pattern does not differ significantly from the first
half of the experiment (ANOVA, p = 0.245, η2 = 0.005).

In the first, unimodal probability half of Exp 6b, decision response
times exhibit the “V” shape around the high-probability 1000 Hz tone also
observed in Exp 2b (ANOVA, effect of frequency, p = 6.847 × 10−8,
η2 = 0.080, Fig. 5d). Decisions about low-probability frequencies near to
1000Hz are only numerically slowed compared to 1000Hz itself (this and
following test Bonferroni-corrected linear contrasts, p = 0.058, Cohen’s
d = 0.227) but faster than to those further away from 1000Hz (p = 0.014,
Cohen’s d = 0.299).

When all frequencies become equiprobablemid-study in Exp 6b, there
is a change in the degree to which frequency modulates decision RTs
(ANOVA, p = 0.024, η2 = 0.017), but the 1000Hz decision advantage per-
sists in the second half (Fig. 5d). Even though 1000Hz is now20%probable,
RTs are not significantly different than in the first experiment half when it
was 80% probable (linear contrast, p = 0.720, Cohen’s d = 0.025). Like
detection in Exp 5b, there is carryover from experience with the unimodal
distribution in the first half of the study, such that decision RTs are still
modulated by frequency (ANOVA, p = 8.306 × 10−5, η2 = 0.068). RTs to
report decisions for 1000Hz continue to be significantly faster than for the
now-equally-probable far frequencies (p = 0.020, Cohen’s d = 0.199),
althoughnot significantly faster thannearby frequencies (p = 0.668,Cohen’s
d = 0.054). Finally,we again observe the duration-frequencybias established
in the prior duration-decision studies (ANOVA, Freq × Duration interac-
tion, RT: p = 1.608 × 10−4, η2 = 0.013; Acc: p = 0.006, η2 = 0.021).

In summary, the impact of distributional learning on both detection
and perceptual decisions emerges quickly and exhibits hysteresis, persisting
even after the unimodal probability distribution flattens so that tones are
equiprobable.

The detailed shape of statistically driven gain is modulated by
range, distribution, and sampling density
In Exp 7, wemake amore in-depth exploration of how expectations built up
from distributional learning are impacted by statistical context, including
frequency range and sampling density. Across six tone-in-noise detection
studies, Exp 7 provides detailed information about the shape of the gain that
emerges from distributional learning and how it evolves after an abrupt
change in distributional statistics. We use these within-experiment dis-
tributional changes to estimate the emergence of enhancement and sup-
pression of frequencies via distributional learning.

Exp 7a-f incorporate a mid-study change in distribution from equi-
probable to unimodal or vice versa. The studies vary the range anddensity of
7 tone frequencies that define the distributions (Fig. 1c) from narrow (Exp
7a,b; 5.5 semitone range), intermediate (Exp 7c,d; 9.47 semitones range), to

wide (Exp 7e-f; 11.36 semitone range). In each range, frequencies are
symmetrically arranged around 1000Hz (like Exp 1c). As in prior studies,
we group frequencies according to their distance (near, middle, and far)
from the center frequency, which changes from highly probable to equi-
probable or vice versa. In Exp 7a,c,e, the 7 frequencies are equiprobable
(14.3%) until the experiment mid-point when 1000Hz tones comprise the
majority (71.4%) of trials and the other six tones are lower probability
(4.8%).This order is reversed inExp7b,d,f. Below,wefirst describedetection
accuracy patterns separately for Exp 7a,c,e (equiprobable to unimodal) and
Exp 7b,d,f (unimodal to equiprobable), and then aggregate detection data
across the unimodal conditions from each experiment to maximize power
to detect effects of statistical context.

In Exp 7a,c,e, an equiprobable distribution precedes a switch to a
unimodal distribution centered on 1000Hz (see Fig. 6a–c). Across these
three studies, detection accuracy in the equiprobable first halves does not
vary across frequency (ANOVA, p = 0.399, η2 = 0.003), nor is it modulated
by the different frequency ranges across Exp 7a,c,e (ANOVA, p = 0.115,
η2 = 0.035), and there is no interaction of frequency and range (p = 0.119,
η2 = 0.011). Average detection accuracy across these equiprobable dis-
tributions is 64%, which does not differ significantly from that of the
5-frequency equiprobable distribution of Exp 5 (ANOVA, p = 0.219,
η2 = 0.039).

The introduction of the unimodal distribution differentially affects
detection, depending on distance of tones from 1000Hz (ANOVA,
p = 1.622 × 10−11, η2 = 0.030). When 1000Hz shifts from equiprobable
(14.3%) to highly probable (71.4%), there is a small but reliable increase in
detection accuracy (ANOVA, p = 0.002, η2 = 0.026). It is notable that this
five-fold increase inprobability (and~16-fold increase in relativeprobability
compared to low-probability frequencies) only confers an average 3.7%
detection improvement. This mild enhancement is not significantly influ-
enced by the range of frequencies (ANOVA, p = 0.365, η2 = 0.005). Exam-
ining the off-center frequencies that drop in probability (14.3% to 4.8%)
upon introduction of a unimodal distribution, we observe a significant
decrease in detection accuracy of 4.7% (ANOVA, p = 4.798 × 10−9,
η2 = 0.051), themagnitudeofwhichdoesnot differ significantly across range
(ANOVA, p = 0.337, η2 = 0.003). In brief, when probabilities switch from
equiprobable to unimodal we observe a modest increase in detection
accuracy for the center frequency that increased in probability and a
decrease in detection accuracy for the off-center frequencies that decreased
in probability.

Turning next to Exp 7b,d,f (Fig. 6d–f), what happens when initial
experience with a unimodal distribution shifts mid-study to equiprobable
presentation? As now expected from prior results, detection of the high-
probability mode of a unimodal distribution is considerably more accurate
than detection of improbable frequencies (linear contrast, p = 5.198 × 10−30,
Cohen’s d = 1.332, Fig. 7d–f). Detection of low-probability frequencies is
impacted by proximity to the high-probability center frequency (ANOVA,
p = 0.010, η2 = 0.016); accuracy is higher for frequencies nearest the high-
probability center frequency compared those at middle (p = 0.023, Cohen’s
d = 0.269) or far frequencies (p = 0.023, Cohen’s d = 0.274, both contrasts
Holm corrected). However, the relatively preserved detection accuracy for
tones near the high-probability frequency compared to those is observed
only in Exp 7b for the narrow range (near vs. middle, p = 0.014, Cohen’s
d = 0.512, near vs. far,p = 1.161×10−3,Cohen’sd = 0.697, all linear contrasts
Bonferroni corrected). It is worth noting that the tones sampling narrow
distributions remain highly differentiable at ~8× larger than typical just-
noticeable frequency differences.

The effects on detection of proximity to the high-probability 1000Hz
mode are modulated by the switch to an equiprobable distribution
(ANOVA, p = 3.279 × 10−11, η2 = 0.023). We observe a continued, but
smaller, detection advantage for the formerly-high-probability center fre-
quency compared to formerly improbable frequencies (linear contrast,
p = 1.194 × 10−8, Cohen’s d = 0.552). This change is driven by a decrease
(difference of 7.1%, ANOVA, p = 1.137 × 10−12, η2 = 0.085) in detection
accuracy for the center frequency as it becomes 5 times less probable, as well
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as a smaller (difference of ~2%, ANOVA, p = 0.007, η2 = 0.006) increase in
accuracy as off-center frequencies become 3 times more probable; this is
potentially compatible with a relative release from suppression. This resi-
dual advantage does not vary significantly with distance from the center
frequency (ANOVA, p = 0.213, η2 = 0.002) or interact with the range of
frequencies presented (ANOVA, p = 0.202, η2 = 0.004). In sum, there is

hysteresis from experience with the unimodal distribution such that the
formerly high-probability frequency remains better detected than other
frequencies.

Next, we ask if hysteresis is also observed in detection accuracy for
1000Hz in a unimodal distribution after prolonged initial exposure to an
equiprobable distribution (second half of Exp 7a,c,e) compared to when the

Fig. 6 | The detailed shape of statistically-driven
gain is modulated by range, distribution, and
sampling density. See Fig. 1c for histograms of
distributional regularities. Marker size scales with
tone probability. In each panel, the darker color
(dotted line) indicates behavior in the first half of the
experiment; the lighter color (solid line) indicates
behavior in the second half, when distributional
regularities shift. Each panel plots mean detection
accuracy as a function of acoustic frequency. Error
bars indicate standard error of the mean. The top
row shows Exp 7a,c,e for which the equiprobable
distribution preceded the unimodal distribution.
The bottom row shows Exp 7b,d,f for which a
unimodal distribution preceded the switch to an
equiprobable distribution. Panels (a) and (d) plot
the narrow distribution (5.5 semitone range), Panels
(b) and (e) plot the intermediate distribution
(9.47 semitone range), and Panels (c) and (f) plot the
wide distribution (11.36 semitone range). In each
panel, the insets show detection accuracy for the
high-probability tone (in the unimodal half of the
experiment) and equiprobable low-probability
tones near, intermediate, and far from the high-
probability 1000-Hz tone.
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experiment beginswith a unimodal distribution (first half of Exp 7b,d,f).We
find that pre-exposure to 336 trials of the flat probability distribution
diminishes detection rates for the high-probability 1000Hz tone in the
subsequent unimodal distribution by 5.8% relative to when the identical
unimodal distribution is encountered first (ANOVA, p = 6.394 × 10−4,
η2 = 0.064). The persistent damping effect of first encountering the equi-
probable distribution is not significantly affected by the range of frequencies
encountered (ANOVA, p = 0.768, η2 = 0.003).

Finally,we aggregate detectiondata for off-center frequencies across the
unimodal conditions from Exp 7a,c,e (when the unimodal distribution was
precededby equiprobable) andExp7b,d,f (when itwasfirst) tomaximize the
power to detect influences of frequency range and distance from the higher-
probability center frequency. Frequency range influences detection in
unimodal probability distributions (ANOVA, p = 0.005, η2 = 0.039). Speci-
fically, a wide frequency range impairs overall off-center detection accuracy,
compared to when the frequency range is narrow (post-hocHolm corrected
for the following three contrasts, p = 0.006, Cohen’s d = 0.471). The middle
frequency range falls in between and differs significantly from detection in
wide (p = 0.037, Cohen’s d = 0.354) but not narrow ranges (p = 0.429,
Cohen’s d = 0.118). Moreover, the shape of the drop-off in detection accu-
racy from the high-probability center frequency is significantly graded only
in the narrow frequency range, with a significant difference between the near
and mid frequency band conditions (linear contrast, p = 0.015, Cohen’s
d = 0.388), and a non-significant decrease between the middle and far fre-
quencies (linear contrast, p = 0.316, Cohen’s d = 0.229).

To summarize Exp 7, we again observe that listeners’ ability to detect a
tone in noise is modulated by dynamic changes in statistical distributions.
Decreases in probability aremet with diminished detection and increases in
probability improve detection. However, as we previously observed, the
degree of proximity to a more-probable center frequency in unimodal
distributions partially rescues detectability of low-probability frequencies.
The impact of distributional learning on detection reflects both the prob-
ability distribution and the range over which it is defined.

Experience with a single-frequency point distribution results in
suppressive reduction in perceptual sensitivity to other
frequencies
Theprior experiments leave open the possibility that perceptual interactions
across adjacent trials may account for the graded impact on detection, for
example through spectrally contrastive influences among tones with dif-
ferent frequencies38. Exp 8makes a critical test ofwhether patternsof relative
gain, characterized in the prior experiments, involves enhancement of the
high-probability frequency, suppression of low-probability frequencies, or a
combination of enhancement and suppression.

To do so, Exp 8 establishes a context in which participants detect only
1000Hz tones in noise, or an equiprobable distribution of 20 tones finely
sampling frequency between800 and 1200Hz thatdoes not include 1000Hz
(Fig. 1c). In Exp 8a, the first 320 trials involve 20 different equiprobable
(6.25%) tone frequencies (35-cent intervals from 800-1200Hz, excluding
1000Hz) and the second 320 trials present exclusively 1000Hz tones (100%
probability). Exp 8b begins with 320 1000-Hz trials, then transitions to the
20-frequency equiprobable distribution (excluding 1000Hz) across 320
trials. Excluding 1000Hz from the stimulus set provides a control for
possible perceptual interactions across adjacent trials that may have an
influence and establishes a baseline against which to evaluate evidence of
enhancement and suppression.

We first askwhether the consistent experiencewith 1000Hz in thefirst
half of Exp 8b yields accumulating detection accuracy improvements (Fig.
7b). It doesnot: accuracy in thefirst quarter of trials (first half of thefirst half)
is 78% (aligned with expectations from listener-specific thresholding) then
decreases slightly to plateau at 75% for the remaining trials in the first half of
the study (ANOVA, p = 0.015, η2 = 0.068). Similarly, neither Exp 1a
(ANOVA, p = 0.210, η2 = 0.050) or Exp 8a (ANOVA, p = 0.451, η2 = 0.050)
exhibit improved detection across a block of trials with only 1000Hz tones.
There is a similar initial detection decrement of ~5% across the first quarter
of the 20-equiprobable-frequency trials of Exp 8a with no further change
(ANOVA, p = 9.669 × 10−6, η2 = 0.049). This same pattern emerges in the
initial equiprobable blocks of Exp 7a,c,e (ANOVA, p = 1.375 × 10−5,
η2 = 0.058). Detection accuracy for equiprobable distributions that are
experienced in the first half of a study does not differ over experiments
(ANOVA, Exp 5a, 7a,c,e, and 8a; p = 0.387, η2 = 0.024).

Turning next to the nature of the gain, we first examine whether initial
experience with the 20-tone equiprobable distribution in Exp 8a (which
does not include 1000Hz) impacts subsequent detection in the 1000-Hz-
only block (Fig. 7a). It does not: detection of 1000Hz in the second half of
Exp8adidnot differ fromeitherExp1a (Tukey-correctedpost-hoc contrast,
p = 0.315, Cohen’s d = 0.333) or the first half of Exp 8b (Tukey corrected
p = 0.837, Cohen’s d = 0.104), each of which involved blocks of trials with
only 1000Hz at the beginning of the study.

In contrast, massed exposure to 1000Hz in the first half of Exp 8b
drives a dramatic, long-lasting, and frequency-specific detection decrement
for the subsequently encountered20 equiprobable frequencies, as compared
to detection across equiprobable frequencies in Exp 8a (ANOVA, interac-
tion of Distance-from-1000-Hz × Exp, p = 2.618 × 10−4, η2 = 0.007). Spe-
cifically, as shown in Fig. 7b, detection of frequencies at far (2 to
3.9 semitones) and intermediate (1 to 2 semitones) distances from 1000Hz
were detected much less accurately after massed experienced with 1000Hz
(Exp 8b, linear contrasts; far: p = 2.427 × 10−3, Cohen’s d = 0.330; inter-
mediate: p = 9.784 × 10−4, Cohen’s d = 0.346), compared to equiprobable
presentation at the beginning of the study (Exp 8a). This suppressive effect

Fig. 7 | Experience with a single-frequency point distribution results in sup-
pressive reduction in perceptual sensitivity to other frequencies. Exp 8 makes a
critical test of whether the gain characterized in the prior experiments involves
enhancement of the high-probability frequency, suppression of low-probability
frequencies, or a combination of enhancement and suppression. The histograms to
the left show distributional regularities for Exp 8a and Exp 8b. Marker size scales
with tone probability. Mean detection accuracy is shown as a function of acoustic
frequency, with standard error of themean indicated by error bars. a In Exp 8a (dark
blue, dashed line), detection trials included 20 equiprobable tones (800–1200 Hz,
excluding 1000 Hz) in the first half of the study. In the second half, tones were
exclusively 1000 Hz. b In Exp 8b (light blue, solid line) the first half of the study
involved only 1000 Hz whereas the second half shifted to 20 equiprobable fre-
quencies (800–1200 Hz, excluding 1000 Hz). The inset shows detection in the
context of equiprobable distributions for each experiment, as a function of distance
from 1000 Hz. Note that detection is somewhat ‘rescued’ around 1000 Hz and that
detection of frequencies distant from 1000 Hz is suppressed in Exp 8b relative
to Exp 8a.
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was rescued by proximity to the now-absent 1000Hz in the second half of
Exp 8b, with frequencies within about a semitone from 1000Hz eliciting
detection accuracies roughly on par with those from Exp 8a (p = 0.332,
Cohen’s d = 0.311). Thus, a half-hour of 1000-Hz exposure induces a lasting
attentional filter that impacts the ability to detect frequencies varying from
800 to 1200Hz, even though 1000Hz was never again encountered.

One might expect that any initial learning across the 1000-Hz-only
distribution would be overwhelmed by the mid-study shift to the high-
uncertainty 20-frequency equiprobable distribution. However, we see the
opposite: across the second half of Exp 8b, there is no significant change in
overall detection accuracy (ANOVA p = 0.165, η2 = 0.008), nor any change
across time in relative accuracy of detection across frequencies (ANOVA,
p = 0.568, η2 = 0.006). The large advantage for detection of frequencies near
1000Hz compared to intermediate and far frequencies persists to the final
80 trials of Exp 8b (linear contrast, p = 0.002, Cohen’s d = 0.257). This effect
is further evidenced by comparing the second half of Exp 8b with the first
half of Exp 8a. Here, there is strong suppression of frequencies at far and
intermediate distances from1000Hz inExp8b compared to thedetectionof
the same frequencies in the equiprobable half of Exp 8a. As for the within-
experiment comparison, this difference is observed through the entirety of
the second half of the study, again extending even to the last quarter of trials
(linear contrast, p = 0.008, Cohen’s d = 0.440). The absence of 1000Hz over
this period rules out the possibility that trial-wise perceptual interactions or
the experience of a relative probability difference for a particular frequency
were strong contributors to the hysteresis observed in Exp 5 and Exp 7. See
Supplementary Fig. 2.

Discussion
Is perception guided toward what we expect, or by what surprises us? Here,
across 29 experiments, we examine two perceptual tasks for which dis-
tributional regularities accumulate over a task-irrelevant dimensionwithout
instruction, directed attention, or feedback. We find that distributional
learning drives dynamic shifts in perception across tasks. It affects sound
detection: a faint tone of a particular frequency is better detected in noise if it
occurs frequently than if it occurs rarely. Distributional learning also affects
duration decisions, which are faster for tones that possess a frequency that
has been more common in recent experience. Across tasks, our results
converge to indicate that effects of expectation are largely driven by sup-
pression of less-probable, unexpected stimuli that are, to a lesser degree,
supported by modest enhancement of highly probable stimuli.

Our examination of expectation built across distributions (rather than
dichotomous probabilities) affords a wider vantage point for understanding
how perceptual gain is modulated by expectation. Our results reveal an
influenceonperception that is graded as a functionof thedistributionmode,
the range of the distribution, and the position of a stimulus within the
distribution. The detailed shape of the distribution is important, as well, as
shown by the bimodal profile of tone detection evoked by a bimodal fre-
quency distribution. Strikingly, equally probable rare events are perceived
differently as a function of their perceptual distance from the distribution
mode(s).Decades ago,Greenberg andLarkin25 examined tone detection in a
similar paradigm (albeit with overt instructions about tone probability
instead of distributional learning) and interpreted the graded gain to be
indicative of a frequency-selective attentional filter situated at the high-
probability mode with increasingly suppressive sidebands with greater
distance from the mode. Indeed, in the time since there has been sustained
interest8,22 in isolating the influence of expectation - operationalized by
manipulating the probability of stimuli—from attention—defined accord-
ing to the utility or relevance of these stimuli to a task7,12. Under these
definitions, the present tasks are attention-neutral and involve manipula-
tions of expectation only. Yet, our results suggest that expectation built
across distributional learning establishes a selection filter that impacts how
(and whether) subsequent stimuli are perceived. Whether this is described
as a dimension-selective attentional filter (as proposed by Greenberg and
Larkin25) or more neutrally as an experience-driven predictive filter, the
present results are distinct from manipulations of task utility or relevance

that have been previously attributed to attention interacting with
expectation22,23.

In the time domain, the influence of distributional learning on per-
ception is persistent: effects of a unimodal distribution provoke lasting
influence with a continued advantage for tones that were previously prob-
able and a lasting disadvantage for the tones that were previously improb-
able, even after exposure to a uniform distribution. Even so, there remains
sensitivity to volatile distribution changes with both detection and percep-
tual decisions dynamically adjusting when dichotomous probabilities flip.
Future work will be needed to resolve the interpretive tension between the
rapid adjustment we observe across changing dichotomous probabilities in
Exp 3 and Exp 4 versus the lingering influence of bimodal (Exp 5,6,7) and
point (Exp 8) distributions. Candidate contributors include the magnitude
of differences in stimulus probabilities, dichotomous versus more fully
sampled distributions, lower information conveyance by uniform dis-
tributions, and the relative volatility experienced across a listening session.
The present paradigms provide a basis for further discovery, with impli-
cations for ‘stubborn predictions’ examined in other literatures28.

The impact of these distributional regularities on perception is evident
for both detection and perceptual decisions, emphasizing the breadth of
influence of distributional learning across distinct task demands24. Even so,
detection provides a unique window through which to observe effects of
distributional learning and resulting expectations, as it has a natural baseline
set by individuals’ thresholds. The detection results make it especially clear
that the net impact of distributional learning is to prioritize the high-
probability distribution mode—not by enhancing detectability of the
expected stimulus, but instead by suppressing detectability of rare, unex-
pected stimuli. We observe this repeatedly across experiments. Despite
considerable headroom for detection accuracy to improve in the context of a
threshold set at ~79% accuracy we do not observe substantial enhancement
of detection of the high-probability tone. Indeed, in the original Greenberg
and Larkin25 study, exposure to tens of thousands of trials of a high-
probability frequency did not enhance detection above the initially estab-
lished perceptual threshold. This lack of enhancement at the mode is
somewhat surprising given the literature on perceptual learning39–41, where
intensive practice with attentionally-demanding perceptual paradigms can
drive improved detection. But, in contrast to most perceptual learning
approaches, the influences we observe accrue across a task-irrelevant per-
ceptual dimension, without directed attention, reward, or feedback.

Itwould seem inefficient for a systemto track distributional regularities
irrelevant to the task at hand. However, ‘optimal’ selectivity to a task-
relevant dimension may not always be adaptive for perception: in natural
environments with shifting demands, it may be effective to ‘keep an ear out’
by tracking evolving regularities with potential utility for future behavior42.
Moreover, the reduction in sensitivity to subsequently encountered fre-
quencies that we observe following massed exposure to a single frequency
would seem to be amaladaptive loss of perceptual sensitivity. Instead, itmay
reflect gain mechanisms that suppress sensitivity to region(s) along a per-
ceptual dimension that are less likely to be encountered. In the sense that one
cannot be surprised by something if one is not sure it has occurred14, the
suppressive effects we observe for low-probability stimuli distant from a
distribution mode are substantial enough that these stimuli would seem to
be less likely to contribute to subsequent distributional learning. Distribu-
tional effects on perception thus may have the potential to snowball,
exaggerating regularities relative to the true distribution of events.

Our results emphasize that layered histories of experience with dis-
tributional regularities impact behavior. For example, unimodal distribu-
tions have lingering effects even after a switch to equiprobable stimulus
presentation. At a longer timescale, we observe a consistent frequency-
duration bias in our perceptual decision experiments. The effect is persistent
across decision experiments (evenwhen only two frequencies were present)
and appears to be associated with the ordinal position of frequencies in the
distribution range rather than absolute frequency. Although acoustic fre-
quency and duration would seem to be good candidates for orthogonal
acoustic input dimensions—and indeed, older studies had suggested
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this43,44—the ubiquity of interactions between acoustic dimensions is seen
clearly in auditory category learning studies in which rotating the sampling
of acoustic category exemplars in an ostensibly orthogonal acoustic space
produces radically different learning outcomes due to prior expectations
about the relationship between the dimensions33–35.

Life-long exposure to the distributional statistics of natural sound
environments may drive at least some of the ubiquitous bias to perceive
relatively lower frequencies as longer, and relatively higher frequencies as
shorter45,46. Pinning down the etiology of this endogenous bias will be
challenging, asmultiple environmental and acoustic factorsmay contribute.
From different decay characteristics for struck strings on the piano
(undamped bass notes decay much more slowly than treble notes47) to the
longer reverberance for lower versus higher frequencies48 there are complex,
and likely consistent, regularities across acoustic frequency and duration
that individuals may learn about over a lifetime of listening. Just as
important, theremaybe sensory contributions such that the longer duration
of cochlear filters at lower frequencies may facilitate identification of lower-
frequency tones as long duration, consistent with the bias we observe across
experiments49. For example, an auditoryfilter centered at 800 Hz is expected
to have a longer duration than a filter centered at 1200Hz. Thus, longer-
lasting peripheral excitation at lower frequencies may facilitate the identi-
fication of lower-frequency tones as long duration.

Sensory factors may play a role in the subtle influence across fre-
quenciesobserved for tonedetection, aswell.Asnoted above, auditoryfilters
created by the cochlea are characterized by a bandwidth that varies across
frequency31. For the present results, this means that an influence of a high-
probability tone frequency will not be limited to only that frequency.
Instead, influence is expected to extend to frequencies in a graded manner
with distance from the high-probability frequency. Thus, the ‘rescue’ of
detection accuracy for low probability tone frequencies that lie closer to the
distribution mode may partly reflect sensory contributions.

Our results also exhibit a subtle, consistent tendency for detection to be
less accurate at higher frequencies (Figs. 2, 5, 6).Critical bandwidth increases
across the 800-1200Hz frequency range we examine. This may contribute
to less accurate detection near the top of that range because wider band-
widths would permit more noise power to enter the filter (see ref. 50, p. 77).

However, auditory critical bands cannot fully account for our results.
For example, the location of the high probability tone within the range of
experienced frequencies also has an influence. This is evident in the shallow
‘ski slope’decrement toward themiddleof the frequency range, compared to
the steep decrement toward the edges of the range in Exp 1b and Exp 1d. If
effects were driven solely by sensory factors, we should not observe such a
contextual influence.

Thepresent results are potentially informedby rich literatures studying
neural response across stimuli that vary in probability. Repeated exposure to
a stimulus changes neural firing patterns in visual51 and auditory52 cortex.
Two neural phenomena - the mismatch negativity53 (MMN), and stimulus
specific adaptation54 (SSA)—are extensively studied in the auditory domain
using an ’oddball’ paradigm in which common and rare stimuli are inter-
mixed in a sequence. This probability manipulation reveals exaggerated
neural response to low-probability sounds, seeming to run counter to the
principally suppressive behavioral effects we observe for low-probability
tones. However, these neural phenomena can be observed in active freely
moving states55 as well as under anesthesia56 and in disordered
consciousness57; we do not yet have a strong understanding of how they
relate to auditory behavior. There is much more to understand in relating
exaggerated neural response to low-probability sounds with slower deci-
sions and less accurate detection. Nonetheless, these neurobiological lit-
eratures support the possibility that effects of distributional learning can
emerge robustly in primary auditory cortex, and possibly even auditory
midbrain58–60.

Schröger and Wolf 27, who pioneered the duration-decision task we
use here, argued from human electroencephalography results that, at least
for perceptual decisions, effects may arise from a memory-based mechan-
ism that detects deviance fromexpectations and orients attention to the rare

stimulus frequency. This leaves fewer resources for perceptual decision
making, slowing response times. However, in a case of convergent experi-
mental design, Mondor and Bregman61 used a very similar duration-
decision paradigm to argue that the reaction time advantage for probable or
cued frequencies instead arises from allocation of selective attention to the
probable (not the improbable) frequency. This echoes the interpretational
challenges of the larger literature on expectation and attention effects (see
Introduction) and is mirrored, as well, in literatures attempting to resolve
patterns of behavioral repetition priming and neural repetition
suppression62,63. Our results demonstrate the utility of building expectation
with distributional learning across task-irrelevant perceptual dimensions in
advancing these debates.

Organisms as diverse as humans and honeybees are exquisitely sen-
sitive to patterns that unfold across sensory input. We find that distribu-
tional learning affects fundamental aspects of perception: the very ability to
detectwhether a stimulus is present and tomake a simple judgment about it.
Listeners rapidly and implicitly apprehend distributional regularities of how
often stimuli occur, even when the regularities emerge across sensory
dimensions irrelevant to the task at hand. This statistical learning across
input distributions arises rapidly even in the context of statistically dynamic
contexts and has a substantial and lasting influence on perception driven by
collaborative influences of sensory processing, distributional learning, and
selective attention in sculpting a gain function involving modest enhance-
ment and robust suppression.

Methods
Experiment materials, code, and analyses can be found at
https://osf.io/xdgnw/
Participants (ages 18–35 yrs) were recruited online and compensated via
Prolific.co. All self-reported normal hearing. Supplementary Table 1 pro-
vides experiment-wise demographic details. Based on power analyses of
pilot data collected using the same tasks, we targeted the recruitment of 30
participants/experiment.

Sinewave tones and white noise were generated in the lossless FLAC
format using the Sound eXchange sound processing software (SoX, http://
sox.sourceforge.net/) at 44.1 kHz and 16-bit precision.

All experiments were conducted online following best-practices
described by Zhao et al.29 using PsychoPy (2022.1.2, pavlovia.org) for
tone-in-noise detection experiments and Gorilla64 for duration-decision
experiments. Online participants used the Chrome browser on their own
laptop or desktop computer (no smartphones or tablets) with a brief lis-
tening test assuring headphone compliance65. Figure 1 illustrates the trial
structure for each task. Supplementary Table 2 provides experiment-level
details.

In the tone-in-noise detection task, continuous white noise com-
menced +40 dB relative to the level just detectable using participants’
own computer and headphones, as determined by a brief system-
calibration procedure29. Adaptive thresholding commenced with the
onset of a 300-s white noise (200-ms cosine amplitude onset/offset
ramps) that looped continuously through the end of the study. Adap-
tive thresholding entailed detecting a 250-ms (10-ms cosine onset/
offset ramps), 1000-Hz sinewave tone (1080-Hz in Exp 1 f) in a three-
interval forced choice task (Fig. 1a). The first 6 trials served as practice,
with feedback and −13.75 dB SNR. Thereafter, there was no feedback
across three 40-trial adaptive thresholding runs. Each run began at
−13.75 dB SNR with tone intensity decreasing 1.5 dB after each correct
detection until the SNR reached −19.75 dB, or until an incorrect
response. Subsequently, tone intensity decreased −0.75 dB after three
correct responses and increased+0.75 dB after each incorrect response.
Threshold tone-in-noise detection was computed as the mean of the
mode tone intensity across the three runs29 which estimates threshold at
79.4% correct detection66.

Adaptive thresholding established a by-participant threshold tone
intensity for the tone-in-noise experiment. The first experiment block was
practice, with−13.75 dB SNR, feedback, and tone frequencies thatmatched
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the initial experiment distributional regularity (Fig. 1a). After practice, tone
intensitywas set to+0.75 dBabove the threshold estimate for the remainder
of the experiment. Participants reported which of two intervals contained
the tone (Fig. 1a). Participants were not informed about the task-irrelevant
distributional regularities across acoustic frequency (Fig. 1c). The entire
protocol tookabout 30min, except in experimentswithdouble the trials (see
Supplementary Table 2). We report mean detection accuracy.

In the duration decision task, each trial involved a single sinewave tone
presented in quiet at a comfortable level. Toneswere 50 or 90ms,with equal
probability and random presentation. Participants reported whether the
tonewas “long”or “short”with akeypress andwerenot instructed about the
task-irrelevant distributional regularities across acoustic frequency (Fig. 1b).
Each experiment began with a practice block involving feedback and a
distributional regularity that mirrored the main experiment. There was no
feedback for the remainder of the experiment. Supplementary Table 2
provides experiment-wise details. The entire protocol took about 30min,
except in experiments with double the trials. Analyses focused on decision
response time, measured from tone offset to response. Trials for which
response time was shorter than 300ms or longer than 1500ms (non-
inclusive) were excluded from analyses (see Supplementary Table 1 for
percent of trials excluded).

Data were preprocessed using JMP Pro 17.0.0, and statistical analyses
were conducted in JASP (JASP team, Amsterdam, Netherlands, version
0.19.3, Apple Silicon). We report Greenhouse-Geisser corrected degrees of
freedom and p values for ANOVAs for which the assumption of sphericity
was violated, as determined by a Mauchly test. Multiple comparison cor-
rection for linear contrasts was carried out using Bonferroni correction, and
for post-hoc tests using Holm correction. Study-wise analysis details are
provided in Supplementary Table 3.

Data availability
Data are available at https://osf.io/xdgnw/.

Code availability
Code for analysis is available at https://osf.io/xdgnw/.
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