
PNAS  2025  Vol. 122  No. 18 e2412243122� https://doi.org/10.1073/pnas.2412243122 1 of 11

RESEARCH ARTICLE | 

Significance

 We compared human brain 
recordings during natural sound 
listening to representations 
within an artificial (deep) neural 
network (DNN) designed to 
categorize sounds. Despite not 
being exposed to real neural 
data during training, the DNN’s 
representations closely 
resembled auditory cortex 
responses. We found that the 
complexity of a cortical site’s 
representation (i.e., its best-
matching DNN layer) increased 
across the auditory hierarchy and 
varied smoothly within regions, 
even those traditionally thought 
to represent uniform information 
types (e.g., primary auditory 
cortex). Finally, cortical sites with 
more complex representations 
required longer from sound 
onset to begin representing 
those features, even within 
regions of the auditory hierarchy, 
suggesting that both region 
and temporal dynamics are 
independently related to the 
complexity of a site’s 
representation.
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Efficient behavior is supported by humans’ ability to rapidly recognize acoustically 
distinct sounds as members of a common category. Within the auditory cortex, critical 
unanswered questions remain regarding the organization and dynamics of sound cate-
gorization. We performed intracerebral recordings during epilepsy surgery evaluation 
as 20 patient-participants listened to natural sounds. We then built encoding models 
to predict neural responses using sound representations extracted from different layers 
within a deep neural network (DNN) pretrained to categorize sounds from acoustics. 
This approach yielded accurate models of neural responses throughout the auditory 
cortex. The complexity of a cortical site’s representation (measured by the depth of 
the DNN layer that produced the best model) was closely related to its anatomical 
location, with shallow, middle, and deep layers associated with core (primary auditory 
cortex), lateral belt, and parabelt regions, respectively. Smoothly varying gradients of 
representational complexity existed within these regions, with complexity increasing 
along a posteromedial-to-anterolateral direction in core and lateral belt and along 
posterior-to-anterior and dorsal-to-ventral dimensions in parabelt. We then charac-
terized the time (relative to sound onset) when feature representations emerged; this 
measure of temporal dynamics increased across the auditory hierarchy. Finally, we found 
separable effects of region and temporal dynamics on representational complexity: sites 
that took longer to begin encoding stimulus features had higher representational com-
plexity independent of region, and downstream regions encoded more complex features 
independent of temporal dynamics. These findings suggest that hierarchies of timescales 
and complexity represent a functional organizational principle of the auditory stream 
underlying our ability to rapidly categorize sounds.

auditory cortex | intracerebral recordings | deep neural networks | encoding | natural sounds

 Humans encounter diverse sounds in daily life that require rapid categorization. Is a 
cell phone vibrating in the other room or did a bee get inside? Was that a whisper or 
just the wind? The brain recognizes sounds with vastly different acoustic signatures as 
functionally equivalent (e.g., a laugh and scream are human vocalizations) and also 
differentiates acoustically similar sounds across incongruent classes (e.g., a man hum-
ming and a flute playing the same note). The cortical mechanisms responsible for our 
ability to differentiate and identify sounds according to the spectrotemporal acoustic 
patterns that characterize classes of sound have been studied extensively as auditory 
categorization ( 1     – 4 ). There is widespread consensus for a hierarchical organization of 
the auditory cortex, with primary areas representing acoustic features and downstream 
regions progressively encoding representations better aligned with categories. Yet, the 
representational complexity of auditory cortical encoding has been difficult to quantify 
objectively, limiting our ability to characterize the progression of information through-
out this hierarchy.

 Prior work suggests early auditory responses can be explained by their responsivity to 
sounds’ spectrotemporal features and modulations thereof ( 5     – 8 ), with successful charac-
terization of speech encoding via a spectrotemporal modulation (STM) tuning framework 
applied to both primary and downstream auditory cortex ( 9 ,  10 ). Furthermore, STM 
models can be applied to reconstruct speech ( 11 ) and natural sounds from neural responses 
( 12 ). However, the majority of acoustic sensory input we receive falls within a fraction of 
STM space ( 13 ,  14 ), which only partially explains why this approach is unable to produce 
a fully generalizable model of neural responses outside of the primary auditory cortex  
( 2 ,  5 ,  15         – 20 ). More importantly, STM features measure acoustic properties and are thus 
not well-suited to describe responses in the higher-order auditory cortex, which responds 
to sound categories such as vocalizations ( 21 ) and music ( 16 ), exemplars of which may 
have highly distinct spectrotemporal features.D
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 Recently, task-optimized deep neural network (DNN) models 
have been used to explore representations throughout the auditory 
cortex, generating compelling evidence for a nonlinear hierarchi-
cally organized auditory network ( 15 ,  17 ,  18 ,  22     – 25 ) that trans-
forms incoming acoustic input into salient, behaviorally relevant 
representations (e.g. speech, music, environmental sounds). 
Critically, commonly used feedforward DNN architectures that 
incorporate nonlinear transformations at each layer result in stim-
ulus representations that become increasingly complex with DNN 
layer depth ( 26 ). In the case of a DNN trained to classify sounds 
into semantic categories, this transformation approximates a con-
tinuum from acoustic feature encoding in shallow layers to 
abstract, semantic category representations in deep layers ( 15 ,  27 , 
 28 ). This framework can be used to quantitatively estimate rep-
resentational complexity, i.e., the complexity of feature representa-
tions, across the auditory cortex.

 Here, in the context of epilepsy surgery evaluation, we acquired 
intracerebral electrophysiology from 20 patient-participants as 
they listened to a rich set of natural sounds that spanned multiple 
categories, including speech and nonspeech vocalizations, music, 
animal vocalizations, and environmental sounds ( 16 ). We extracted 
representational features from different layers within a sound- 
categorization DNN, which we will refer to as DNN features, and 
built encoding models to predict neural responses throughout the 
auditory cortex. This task-optimized DNN was trained to evaluate 
a sound’s spectrogram and classify it within a broad hierarchical 
taxonomy (e.g., human vocalizations such as speech and laughter, 
music genres and instruments, types of mechanical sounds, and 
so on) and thus was well suited to explore categorization of natural 
sounds in the human auditory cortex. Across recording sites, we 
used these encoding models to assess the relationship between 
neural representations and the representations within different 
layers of the DNN. Representational complexity was inferred by 
the layers of the DNN that best explained the neural responses, 

with deeper layers corresponding to more complex representa-
tions; we then characterized how complexity varied across and 
within core, belt, and parabelt regions. Finally, we used sliding 
encoding models to estimate the time relative to sound onset when 
a recording site begins encoding DNN features, termed the encod-
ing onset time, and then explored how representational complexity 
was related to both this property of temporal dynamics and ana-
tomical position within the auditory cortical hierarchy. By char-
acterizing how complexity and timescales vary (and covary) across 
the auditory cortex, we elucidate functional organizational prin-
ciples underlying the processing of natural sounds in the audi-
tory cortex. 

Results

 A total of 20 patient-participants performed a one-back auditory 
task using the freely available Natural Sounds stimulus set ( 16 ), 
which consists of 165 two-second sounds ( Fig. 1A  ). One-back 
repeats occurred on 17% of trials, and patients recorded their 
responses using a button box. The full stimulus set was presented 
in random order three separate times, and broadband high gamma 
activity (HGA, 70 to 150 Hz) aligned to stimulus onset was 
extracted and used in all analyses ( Fig. 1B  ).        

 Across these 20 patients, there were a total of 3145 intracerebral 
recording sites, of which 811 were auditory-responsive, defined 
as a statistically significant difference between HGA responses to 
stimuli compared to baseline (two-sample t  test across 594 trials, 
df: 1186, P  < 0.01, false discovery rate corrected). For this test, 
HGA values for each trial were averaged across baseline and 
response windows, which were both 800 ms long and began at 
−900 and 0 ms relative to stimulus onset, respectively; henceforth, 
the t-statistics from these tests will be referred to as auditory 
responsiveness. Of those 811 channels, 755 exhibited increased 
responses, while 56 channels showed decreased responses. There 
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Fig. 1.   Methods. (A) Patients performed an auditory 1-back task using Natural Sounds stimuli. The dashed black box in the auditory spectrogram represents 
the 975 ms input window for the DNN (see panel C). (B) Broadband high gamma activity (HGA) from an example channel. (C) YAMNet DNN model architecture. 
Arrow colors represent different blocks of DNN layer operations. Depthwise separable convolutions were also used between the grouped layers in the figure 
(L3-4, L5-6, L7-12, and L13-14). Using this pretrained DNN, layer activations for each stimulus were extracted and used to build encoding models to predict HGA.D
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were 388 channels localized to the auditory cortex, with 303 of 
these exhibiting auditory responses (core: 93 auditory-responsive/95 
total channels, medial belt: 10/10, lateral belt: 105/106, and par-
abelt: 95/177). All auditory-responsive channels in the auditory 
cortex exhibited increased responses. Due to the sparse coverage 
within medial belt, this region was excluded from all region-of- 
interest (ROI) analyses.  Fig. 2A   shows mean HGA responses across 
all auditory-responsive channels within each region (core, lateral 
belt, and parabelt).        

 First, we sought to establish whether a DNN trained to cate-
gorize sounds possessed similar representations to HGA recorded 
throughout the human auditory cortex. To this end, we built 
lasso-regularized linear regression encoding models to predict 
instantaneous HGA responses for all auditory-responsive chan-
nels, sampled every 50 ms from 50 to 2,000 ms poststimulus 
onset, resulting in 6,600 observations (40 timepoints × 165 stim-
uli). For each of the 165 sounds, we used the DNN YAMNet ( 27 , 
 28 ) to extract features by calculating the node activations at each 
layer ( Fig. 1C  ), with deeper layers containing features of increasing 
representational complexity. The DNN features were calculated 
using a window spanning from 975 to 0 ms before a given HGA 
sample (e.g., for the sample at 50 ms, the stimulus waveform was 
extracted from −925 to 50 ms with appropriate zero-padding; the 
acoustic spectrogram was then calculated and input to YAMNet). 
Due to computational constraints, we applied dimensionality 
reduction to these features using sparse random projection; we 
then used the resultant feature matrices as inputs to our encoding 
models, with separate models built for each layer. We refer to these 
as full models to differentiate them from sliding models (built at 
individual timepoints), which are introduced later. Model perfor-
mance was assessed using the coefficient of determination (R2 ), 
which corresponds to one minus the ratio of the sum of squared 
residuals over a null model’s sum of squared errors. The null model 

used here was one that predicts the time-dependent mean neural 
response (i.e., the mean across stimuli but not across time) rather 
than the global mean (i.e., the mean across stimuli and time) to 
ensure that models were not simply capturing the generic stimulus 
response dynamics.

  Fig. 2 B –D   shows example modeling results for two channels. 
 Fig. 2B   shows encoding accuracy across all layers of YAMNet for 
these two channels, with the blue (core) and orange (lateral belt) 
channels best predicted by shallower and middle layers respec-
tively.  Fig. 2D   shows predicted versus observed responses for two 
example stimuli, whose auditory spectrograms are shown in 
 Fig. 2C  ; predictions were generated using the peak models of each 
channel (i.e., the dots in  Fig. 2B  ).

 Neural responses throughout the auditory cortex could be pre-
dicted well, achieving R2  values up to 0.57; conversely, most 
auditory-responsive channels outside of the auditory cortex were 
poorly modeled using this encoding approach. Of the 303 
auditory-responsive channels in the auditory cortex, 204 channels 
(67%) achieved a peak R2  (i.e., maximum R2  across DNN layers) 
greater than 0.1. In contrast, only 4% (20/508) of auditory- 
responsive channels outside of the auditory cortex achieved a peak 
R2  over 0.1, suggesting that most responses outside of the auditory 
cortex do not encode the stimulus features captured by the DNN. 
Finally, channels with decreased stimulus responses relative to 
baseline (all of which were outside of the auditory cortex) could 
not be predicted well with these encoding models; all 56 such 
channels achieved a peak R2  less than 0.011.

 We then used linear mixed-effects models with patient as a 
random effect to compare encoding performance across hemi-
sphere and ROIs, controlling for auditory responsiveness by 
including it as a fixed-effects variable. Within auditory-responsive 
channels in the auditory cortex, peak R2  values were lower in 
parabelt compared to core [t(288) = 4.27, P  = 2.7 × 10−5 ]and 
lateral belt [t(288) = 4.84, P  < 10−5 ] regions, even when controlling 
for auditory responsiveness. This is partly due to the fact that 
relatively fewer parabelt channels could be predicted well (R2  > 
0.1) compared to core and lateral belt (core: 80/93, 86%; lateral 
belt: 83/105, 79%; parabelt: 36/95, 38%). However, these differ-
ences in proportions do not fully explain differences in model 
performance between ROIs; an LME model using only channels 
with R2  > 0.1 still found that parabelt performed worse than core 
[t(194) = 2.36, P  = 0.019] and lateral belt [t(194) = 2.65, 
﻿P  = 0.0087]. We also explored a threshold of R2  > 0.05; while the 
proportion of channels exceeding this threshold increased sub-
stantially (SI Appendix, Table S1 ), the LME modeling results were 
not impacted significantly (SI Appendix, Table S2 ). In other words, 
only a subset of parabelt channels appear to encode the DNN 
features embedded within YAMNet, potentially due to the func-
tional heterogeneity within this region: for example, YAMNet was 
trained to categorize speech sounds at the superordinate level of 
“Speech” and thus may not extract phonetic features that are 
known to be encoded within superior temporal gyrus [STG; ( 29 )]. 
Furthermore, the long window over which the DNN operates (a 
single category-level prediction for a 975 ms window) may result 
in slow-varying high-order DNN representations that are poorly 
reflected in instantaneous parabelt HGA responses. While a DNN 
that operates over shorter timescales might capture features with 
a higher correspondence to parabelt responses, building and train-
ing such a model was outside the scope of this work. A final 
possibility is that a one-back auditory task does not explicitly 
require sound categorization but can instead be completed using 
lower-level acoustic feature matching. Given these task demands, 
it is possible that parabelt regions were not activated with sufficient 
strength to demonstrate widespread encoding success ( 30 ). 
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Fig. 2.   Full encoding model results. (A) Mean HGA responses across all trials 
and channels within different regions of the auditory cortex. (B) Encoding 
model accuracies (R2) across DNN layers for two representative channels 
(blue: core, lateral belt: orange). Points show the layer that maximizes R2, 
and dashed lines show the weighted DNN layer, which is the weighted 
mean of each curve. (C) Acoustic spectrograms for two example stimuli. (D) 
Example responses to the stimuli in C, averaged across all presentations of a 
given stimulus, from the same channels as B (core: Top; lateral belt: Bottom). 
Dark and light lines correspond to observed responses and encoding model 
predictions respectively. Predictions were generated by the peak models (i.e., 
the points) in B. (E) Encoding model results across patients and channels. 
Neural prediction accuracy for the best model is shown by marker size. Color 
represents the weighted DNN layer (the dashed lines from panel B), with red 
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Nevertheless, the parabelt channels that were modeled well dis-
played interesting properties that we elucidate in subsequent 
analyses.

 Next, we estimated representational complexity, which we 
define as the complexity of features encoded by each channel. This 
was quantified as the DNN layer that produced the most accurate 
predictions of neural responses, with deeper layers having under-
gone more nonlinear transformations and thus corresponding to 
more complex features. While this could be done by selecting the 
DNN layer that maximizes R2  ( 24 ), this approach is susceptible 
to noise. Instead, we calculated the weighted DNN layer, defined 
as the weighted mean of R2  across DNN layers (i.e., the center of 
mass of the curves in  Fig. 2B  , shown as dashed lines). Note that 
we used this weighted DNN layer metric, calculated from full 
model results, for all remaining analyses that include representa-
tional complexity.  Fig. 2E   shows weighted DNN layers and peak 
R2  values plotted across patients and channels, revealing a rela-
tionship of increasing representational complexity in the 
higher-order compared to the lower-order auditory cortex. This 
effect was statistically validated using an LME model with patient 
as a random effect and channels with peak R2  > 0.1. Controlling 
for auditory responsiveness, core mapped to shallower DNN layers 
relative to lateral belt [t(194) = −5.57, P  < 10−5 ] and parabelt 
mapped to deeper DNN layers [t(194) = 3.20, P  = 0.0016; also 
see  Fig. 5 B  , rightmost panel]. There was also a hemispheric effect, 
with left hemisphere mapping to deeper DNN layers than right 
hemisphere when controlling for ROI [t(194) = 2.14, P  = 0.034]. 
Results were not qualitatively different when using a threshold of 
R2  > 0.05 (SI Appendix, Table S3 ).

 In addition to complexity differences between ROIs, we 
hypothesized that complexity gradients existed within each ROI 
along specific axes (see Methods for descriptions on how each axis 
was calculated). In core, the primary axis under consideration was 
oriented from posteromedial to anterolateral (PM–AL,  Fig. 3A  ), 
which is roughly parallel to the presumed axis from human A1 to 
R. An orthogonal secondary axis that was parallel to the supratem-
poral plane (STP), as well as a tertiary axis perpendicular to STP, 
were also investigated (axes not shown in  Fig. 3A  ). In lateral belt, 
axes with the same orientation as core were used, with the origin 
shifted to the lateral belt centroid. In parabelt, the three axes 
pointed from posterior to anterior (P-A) along the length of the 
STG, from ventral to dorsal (V-D), and from medial to lateral 
( Fig. 3B  , M-L axis not shown). Channels belonging to a given 
ROI were projected to each of that ROI’s axes, and correlations 
were calculated between these positions and representational 

complexity (i.e., weighted DNN layer). In both left and right core 
as well as right lateral belt, representational complexity increased 
as a function of position from posteromedial to anterolateral 
( Fig. 3A  ). Complexity also increased in right core from ventral to 
dorsal channels. In right hemisphere parabelt channels, complexity 
increased moving anteriorly as well ventrally ( Fig. 3B  ). Position 
along the M-L axis was not correlated with complexity in parabelt. 
The correlations shown in  Fig. 3  were also calculated for channels 
with R2  > 0.05; these results were similar to those using the R2  > 
0.1 threshold and can be found in SI Appendix, Table S4 .        

 We then tested whether these within-ROI complexity gradients 
were best explained by a linear or sigmoidal relationship. A linear 
relationship would demonstrate a smoothly varying degree of com-
plexity along the axis, while a sigmoidal relationship might indicate 
a more step-like transition, which would be consistent with 
homogenous-complexity subregions within an ROI (for example, 
transitioning from A1 to R within core). This test was performed 
by fitting both linear and sigmoid models to the channel position 
versus weighted DNN layer relationship (i.e., the scatter plots in 
 Fig. 3 ), and then comparing the two models using the Akaike infor-
mation criterion. The sigmoid model contained four parameters 
that described the lower and upper asymptotes, the x-position of 
the midpoint between asymptotes, and the slope at that midpoint 
(i.e., how step-like the transition is). We required the x-position to 
fall between 0 and 1 but placed no other constraints when fitting 
the sigmoid model. We found that a linear model better explained 
these relationships than a sigmoidal one in left core (PM–AL, rel-
ative likelihood of sigmoidal compared to linear = 0.241), right 
lateral belt (PM–AL, relative likelihood = 0.387), and parabelt (P-A 
relative likelihood = 0.135; V-D relative likelihood = 0.203). In 
right core, complexity gradients were better explained by a linear 
model along the ventral–dorsal axis (relative likelihood = 0.135); 
along the PM–AL axis, sigmoidal and linear models were approxi-
mately equivalent (sigmoid > linear, relative likelihood = 0.854). In 
summary, representational complexity appeared to vary linearly 
along anatomical axes in nearly all ROIs with a significant correla-
tion, with the exception of the PM–AL axis in right core (which 
had only slightly more support for a sigmoidal model).

 To investigate whether there were any patterns in the encoding 
results, we calculated the stimulus-specific R2  values from the best 
performing full model for each channel ( Fig. 4A  ). We then applied 
hierarchical clustering across both channels and stimuli and iden-
tified the most prominent cluster. The stimulus cluster consisted 
almost entirely of speech and music containing singing ( Fig. 4B  ). 
The cluster of channels, which showed stronger encoding results 

0 0.5 1
ventral-dorsal

A B

Fig. 3.   Complexity gradients within ROIs. (A) A gradient of increasing representational complexity (indexed by weighted DNN layer) was found along a 
posteromedial–anterolateral (PM–AL) axis in both Left and Right core (Bottom Left two plots); additionally, a gradient was found from ventral–dorsal position in 
core (Right hemisphere only). In lateral belt, a PM–AL gradient was found in Right hemisphere only (Top plots). (B) Representational complexity gradients were 
also found in parabelt (Right hemisphere only) along the posterior–anterior and ventral–dorsal axes, with complexity increasing in the anterior and ventral 
directions. Results are across all patients and channels with full model peak R2 > 0.1. Correlation significance was assessed using permutation testing with 
100,000 permutations (***P < 0.001, **P < 0.01, *P < 0.05, Bonferroni corrected).
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for speech/singing compared to other stimuli, was primarily local-
ized to the higher-order auditory cortex in both hemispheres.        

 Next, we sought to characterize the temporal dynamics of 
encoding by focusing on a property we call the encoding onset 
time, which describes the timepoint following sound onset when 
a channel begins encoding DNN features. We were interested in 
exploring how this property varied across the auditory cortex and 
how it related to representational complexity. We hypothesized 
that encoding onset times would be shortest in core and longest 
in parabelt and that this property would increase with representa-
tional complexity (i.e., channels with more complex feature encod-
ing would also have later encoding onset times). For each channel 
with full model peak R2  > 0.1, we identified the DNN layer that 
produced the best full model. This layer was then used to build 
sliding encoding models, where separate models were built for 
each timepoint (from 0 to 1,000 ms, sliding by 20 ms). As in the 
full model analysis, sliding models were trained to predict instan-
taneous HGA values, and input features consisted of layer activa-
tions from a window spanning −975 to 0 ms relative to each HGA 
sample. These input features underwent dimensionality reduction 
via sparse random projection before model fitting; see Methods 
for more details. We identified the encoding onset time as the 
timepoint where model performance reached 50% of its maxi-
mum value for a given channel. In this analysis, two channels were 
discarded because they had no timepoints where the sliding model 
R2  exceeded 0.1.

 Anatomical maps of encoding onset times are shown in  Fig. 5A  , 
with the earliest onsets appearing in core and the longest onsets 
in parabelt (see also the marginal distributions in  Fig. 5 B  , Top  
panel). A linear mixed-effects model (fixed effects: hemisphere 
and ROI, random effects: patient) confirmed that these visual 
trends were statistically significant [parabelt > core: t(193) = 4.08, 
﻿P  = 6.7 × 10−5 ]. Additionally, lateral belt was found to exhibit 
onset times that were later than core [t(193) = 2.31, P  = 0.022] 

and earlier than parabelt [t(193) = 2.34, P  = 0.020]. No hemi-
spheric effect was observed. LME results for channels with R2  > 
0.05 can be found in SI Appendix, Table S5 , as well as the effects 
of varying the onset threshold from 50% to 70%. The only qual-
itative difference when using these different thresholds was that 
for R2  > 0.1 and an onset threshold of 70%, encoding onset times 
no longer differed significantly between parabelt and lateral belt. 
A highly significant relationship was also observed between encod-
ing onset time and response latency (i.e., the first timepoint where 
the HGA response differed from baseline). The response latency 
for each channel was estimated by calculating its time-varying 
95% CI across trials, finding the first window that exceeded the 
baseline mean for at least three consecutive samples (equivalent 
to 30 ms), and taking the first timepoint in this window ( 31 ). This 
analysis was restricted to timepoints following stimulus onset (i.e., 
t ≥ 0 ms). Response latencies were highly correlated with encoding 
onset times (Spearman’s rho = 0.72; P  < 10−5 , permutation testing 
with 100,000 permutations).        

 Finally, we investigated the relationship between encoding onset 
times and representational complexity, shown in  Fig. 5B  . Features 
of higher complexity often span longer timescales, and neural pop-
ulations that represent these features may require a longer time 
from sound onset to synthesize and code this information. 
However, as was shown in our previous analyses, both weighted 
DNN layers and encoding onset times vary systematically across 
the auditory cortical hierarchy. To investigate the relationship 
between encoding onset times and representational complexity 
stratified by ROI, we built an LME model with the weighted DNN 
layer as the response variable, patient as a random effect, and hem-
isphere, log(encoding onset time), and ROI as fixed effects. Finally, 
given its relationship with encoding onset time, log(response 
latency) was included as a fixed effect; its inclusion in the model 
helps to isolate the primary relationship of interest by accounting 
for this potential confound. (See SI Appendix, Table S7 , for results 

Baby talk
Synthetic speech
Angry shouting
Hindi
Chinese
Speech, girl
Speech, boy
Speech, woman
Speech, man
Spanish
Italian
Russian
French

German
Whispering
Heavy metal
Classic rock
Rock music
Telephone ring
R&B music
Country music
Pop music
Radio static
Rap song
Song (musical)
Sports announcer

A B

C

Fig. 4.   Stimulus-specific encoding results. (A) R2 values across channels (columns) and stimuli (rows), with hierarchical clustering applied. The most prominent 
cluster is highlighted in red (stimuli) and orange (channels). (B) The stimuli belonging to this cluster were primarily speech and music that included singing. 
(C) Channels in this cluster were localized to the bilateral higher-order auditory cortex and showed more accurate predictions for speech/singing responses 
compared to other stimuli.
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when varying the R2  and onset thresholds; the only difference was 
the emergence of a hemispheric effect for R2  > 0.05 and onset 
threshold = 50%.) While no hemispheric effect was observed for 
R2  > 0.1 and onset threshold = 50%, we found highly significant 
effects of both encoding onset time and ROI, even when account-
ing for response latency (which also had a significant effect; see 
﻿SI Appendix, Table S7 ). First, the strong positive relationship 
between encoding onsets and representational complexity (inde-
pendent of ROI) indicates that channels that encode more complex 
features take longer for those features to be represented in the 
neural response, even within region [t(192) = 7.75, P  < 10−5 ; also 
see the correlations in  Fig. 5B  ]. Furthermore, the significant inde-
pendent effect of ROI (also apparent in  Fig. 5B  ) shows that rep-
resentational complexity increases across the auditory hierarchy, 
even for channels (across regions) with similar encoding onsets 
[t(192) = 8.39, P  < 10−5 ]. In other words, while parabelt channels 
with rapid onsets encoded less complex features than parabelt 
channels with slower onsets, their representations were still more 
complex than rapid onset core channels. Conversely, feature encod-
ing in slow-onset core channels was more complex than rapid-onset 

core channels but still less complex than parabelt channels. This 
suggests that throughout the auditory cortex, there is a strong link 
between the temporal dynamics of encoding and underlying rep-
resentational complexity, alongside an independent trend of 
increasing feature richness through the auditory processing 
hierarchy.  

Discussion

 In this work, we demonstrate that neural responses to natural 
sounds share similarities to representations embedded in a DNN 
model trained to categorize sounds. Notably, this DNN accepts 
acoustic spectrograms as inputs and outputs a semantic category 
label, was not exposed to any neural data during its training, and 
was trained on a separate stimulus set from the one eliciting the 
neural responses we measured. Nevertheless, the DNN representa-
tions could be used to predict neural responses with high accuracy 
using an encoding model approach, suggesting an overlap in the 
hierarchical representation of sounds across the DNN and human 
cortex. Furthermore, sites in increasingly higher-order cortical 
areas were best predicted by increasingly deeper layers of the 
DNN, suggesting areas further downstream in the auditory cor-
tical hierarchy represent auditory information with increasing 
representational complexity. This relationship even existed within 
specific regions, with smoothly varying gradients of representa-
tional complexity observed along relevant anatomical axes. Sliding 
encoding models revealed that early auditory areas begin encoding 
DNN features more rapidly (relative to sound onset) than higher-
order areas, which is consistent with existing models of auditory 
processing. Finally, we found that even when controlling for posi-
tion in the auditory hierarchy, channels with increasing complexity 
were slower to begin encoding DNN features, suggesting a rela-
tionship between representational complexity and the temporal 
dynamics of encoding that is independent of position within the 
auditory hierarchy.

 We showed that auditory cortical responses to natural sounds 
could be modeled using DNN layer activations and that 
higher-order areas in the auditory hierarchy are best modeled by 
increasingly deeper layers; both of these findings are aligned with 
prior studies ( 15 ,  24 ). This relationship between position within 
the auditory hierarchy and DNN layer depth is consistent with a 
broadly accepted model in which auditory core, which comprises 
the posteromedial two-thirds of Heschl’s gyrus and is considered 
to be the primary auditory cortex ( 32 ,  33 ), processes low-level 
acoustic features ( 2 ,  34   – 36 ). In this model, lateral belt comprises 
planum temporale along with the anterolateral aspect of Heschl’s 
gyrus ( 37 ,  38 ) and processes more complex or compositional 
acoustic features ( 35 ,  39   – 41 ). Finally, parabelt is situated in STG 
and the upper bank of the superior temporal sulcus (STS). While 
representations in this region are far more heterogeneous, they are 
best described as high level, abstract features ( 2 ,  16 ,  21 ,  29 ,  34 ).

 We also found gradients of complexity within each of core, 
lateral belt, and parabelt, with these effects lateralizing to the right 
hemisphere outside of core. Within parabelt, complexity increased 
linearly along a posterior-to-anterior as well as a dorsal-to-ventral 
dimension. These findings are consistent with other studies that 
have proposed a flow of information along these axes ( 33 ,  42         – 47 ). 
For example, multiple voice processing nodes have been identified 
in STG and extending into STS ( 21 ), with the most posterior node 
found to process physical speaker characteristics such as vocal tract 
length ( 43 ,  44 ) and the most anterior one shown to encode indi-
vidual voice identities ( 42 ,  45   – 47 ). Notably, these models describe 
discrete nodes within STG and STS, which would suggest a more 
step-like transition of complexity along the posterior–anterior axis. 

A

B

Fig. 5.   Encoding onset times. (A) The first timepoint where sliding model 
encoding accuracy exceeds 50% of its maximum, termed the encoding onset 
time, is shown across all patients and channels (with full model peak R2 > 0.1). 
Smaller onset times were observed in core and lateral belt while longer times 
appear in parabelt regions. (B) In all three ROIs (core, lateral belt, and parabelt), 
channels with later encoding onset times also encoded more complex 
representations (weighted DNN layer), with strong positive correlations 
observed between these two metrics. Marginal distributions show differences 
in representational complexity between all three regions (Right); encoding 
onset times (marginal distribution, Top) differed strongly between parabelt 
and both core and lateral belt; while differences were smaller between core 
and lateral belt, they were statistically significant. See main text for details. 
Correlation statistical significance assessed via permutation testing with 
100,000 permutations (***P < 0.001, Bonferroni corrected). Correlations did 
not differ qualitatively when varying the R2 and onset thresholds (SI Appendix, 
Table S6).
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However, we found that a linear model was better able to describe 
the gradient along this axis (as well as the gradient from dorsal to 
ventral), suggesting a more continuous and smoothly varying 
degree of complexity. Multiple studies have demonstrated a later-
alization of voice processing toward the right hemisphere ( 21 , 
 45   – 47 ), though this finding is extensively disputed ( 48 ). Our 
complexity measure was correlated with anatomic position only 
in the right hemisphere, which may be because conspecific vocal-
izations represent a particularly salient auditory category, and 
individual species may have evolved dedicated networks to process 
it ( 49 ). If the shared representations between parabelt sites and 
DNN layers are largely biased toward voice processing as suggested 
by our clustering analysis in  Fig. 4 , then this may account for these 
specific hemispheric differences. Notably, left parabelt/STG is 
often associated with speech processing ( 9 ,  34 ,  50   – 52 ), exhibiting 
a posterior-to-anterior flow of information (e.g., phonetic features 
to syllables/words) along the ventral stream ( 50 ,  52 ). While we 
could still predict left parabelt channels with high accuracy using 
DNN features, there was no relationship between DNN layer 
depth and anatomic position within this ROI. This may be because 
the DNN’s training goals did not require learning progressively 
compositional speech features since the speech-related categories 
it was trained to predict were quite coarse (e.g., speech, babbling, 
speech synthesizer, etc.).

 Notably, we found complexity gradients within the core region 
in both hemispheres along a posteromedial–anterolateral axis. 
Traditionally, core is believed to represent low-level acoustic fea-
tures such as relatively simple spectrotemporal representations, 
typically showing a preference for single frequency bands ( 36 ,  53 ) 
that are relatively narrow in bandwidth ( 54 ,  55 ). This region is 
often described as having two subregions, termed hA1 and hR 
(human homologs to monkey A1 and the rostral area R), which 
are positioned sequentially along the PM–AL axis. In this model, 
hA1 and hR exhibit mirrored tonotopic gradients, with hA1 tran-
sitioning from high to low frequencies and hR from low to high 
along the PM–AL dimension ( 53 ). Interestingly, our results appear 
to contradict this model, which would predict a similar representa-
tional complexity throughout the core region. One possibility is 
that this gradient is driven by an increase in integration window 
length, which would require deeper layers to model within the 
DNN, given the narrow 3 × 3 extent of the DNN’s convolutional 
filters. This possibility follows from the observation in primates 
that the core subregion R integrates over longer windows than A1 
( 56 ). However, this model would predict a stepwise or sigmoidal 
relationship across the hA1-hR boundary, which is inconsistent 
with our findings in left core of a linear relationship; the results 
in right core were ambiguous since the linear and sigmoidal mod-
els were similarly supported by the data.

 Finally, lateral belt areas have been shown to respond to more 
complex sounds such as band-passed noise ( 35 ,  40 ). This area is 
also parcellated into multiple subregions, including hML and hAL 
(human homologs to middle lateral and anterolateral belt regions), 
which are positioned sequentially along the PM–AL axis. Studies 
have found that hML contains a tonotopic gradient, suggesting 
relatively lower-level acoustic processing, while hAL overlaps with 
voice-sensitive regions and exhibits a strong preference for low 
frequencies (a prominent feature of human vocalizations) ( 37 ,  55 , 
 57 ). This latter finding suggests that hAL may engage in higher- 
order processing to support complex or abstract representations 
of voice ( 55 ). The complexity gradient we observed along the 
PM–AL axis of lateral belt was partially consistent with these 
findings, though we observed a linear gradient as opposed to a 

sigmoidal (i.e., step-like) one. It should be noted that for all analyses 
comparing linear and sigmoidal relationships for complexity gra-
dients within ROIs, it is possible that these findings may be 
impacted by spatial blurring due to factors such as individual dif-
ferences in anatomy and volume conduction; nevertheless, we 
believe they represent intriguing findings that warrant further 
investigation in future studies.

 Finally, we found that channels with increased representational 
complexity had later encoding onset times, defined as the amount 
of time from sound onset for a channel to begin representing those 
features. This relationship persisted even when accounting for 
gross anatomical location (ROI position within the auditory hier-
archy); this control is necessary, since our results showed that these 
onset times increased from core to lateral belt to parabelt; further-
more, other studies have shown that temporal properties such as 
integration windows also increase across the auditory hierarchy 
( 58   – 60 ). Further exploration revealed that this relationship was 
observable in all three of these regions. These significant correla-
tions throughout the auditory cortex support the general principle 
that more complex neural representations require longer time 
windows to integrate and combine simpler features into 
higher-order compositional representations, likely due (at least in 
part) to the longer temporal extent that these representations span.

 In considering the findings presented here, several caveats 
should be taken into account. First, as with nearly all studies 
involving intracranial recordings, our electrodes are implanted 
based on clinical necessity, which may cause a selection bias for 
recording sites. While the patients involved are not neurotypical, 
their perceptual performance often is, and the spatial and temporal 
resolution of these direct cortical recordings provide substantial 
value both in testing existing theories and offering findings that 
can then be tested using other experimental modalities and 
approaches. Furthermore, the large number of patients included 
in this study (N = 20) and the heterogeneity of their pathologies 
( Table 1 ) provide some assurance that any individual deviations 
would have minimal impact on the group results, assuming that 
those deviations are distributed randomly. Our sample included 
several pediatric patients, which raises the question of whether 
responses recorded from these participants are comparable to those 
of adults, as explored in a recent review of the developmental 
trajectory of voice perception ( 61 ). While the primary auditory 
cortex reaches maturity in childhood ( 62 ), the posterior segment 
of the STG is one of the latest to reach maturity and continues to 
develop into adolescence ( 63 ,  64 ). Though it is possible that cer-
tain regions, especially in the parabelt, were not structurally 
mature in some of our participants, results from several studies 
support maturity of perception and representation of auditory 
categories in childhood. For example, adult-like voice-selective 
responses have been identified in fMRI studies of children as 
young as 5 to 8 y old ( 65   – 67 ). Another caveat related to the nature 
of the recordings is the sparsity of sEEG recordings, both within 
individual regions and across hemispheres (only a subset of 
patients had bilateral implantations). This limitation would have 
the effect of reducing statistical power, and thus positive statistical 
results can be considered with this in mind. Finally, throughout 
the paper we have interpreted the DNN layer depth as a measure 
of representational complexity. While layer depth may seem like 
a rough proxy for this concept, it is a direct measure of the number 
of nonlinear transformations the input has undergone ( 26 ). Thus, 
we believe it is a straightforward and readily interpretable index 
of complexity, especially considering the way it has neatly mapped 
on to existing models of the auditory cortex.   
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Materials and Methods

Patient-Participants. Data were collected from 20 adult and pediatric patients 
(age 10 to 25 y old, 7 females) with epilepsy undergoing in-patient stereo-
electroencephalography (sEEG) monitoring at UPMC Children’s Hospital of 
Pittsburgh. Each patient had between 6 to 20 electrode trajectories, with each 
trajectory containing between 8 to 18 electrode contacts, which we refer to as 
channels. sEEG electrodes were implanted with a robot-assisted frameless stereo-
tactic technique, as previously described (68). All electrode locations were selected 
based purely on clinical considerations. Further demographic information can 
be found in Table 1.

The research protocol was approved by the University of Pittsburgh Institutional 
Review Board (STUDY20030060). All eligible patient-participants were identi-
fied from the clinical practice of coauthor TJA. The informed consent process for 
research took place prior to surgical implantation of electrodes and was separate 
from the clinical informed consent process for surgery. Patient-participants 18 y of 
age or older provided written consent for participation in research activities. For 
patient-participants younger than 18 y, written consent was provided by a parent 
and written assent was obtained for patient-participants who were 14 to 17 y old.

Data Collection. Patients performed an auditory one-back task while listening to 
a well-characterized stimulus set of natural sounds (16) consisting of 165 2 s clips 
of speech (English and non-English), human and animal vocalizations, music, 
and other environmental sounds (Fig. 1A). Environmental sounds consisted of 
a broad category that included sounds from manmade objects (engine revving, 
typing, alarm clock, dishes clanking) and nature (wind, thunder, stream). The 
165 stimuli were presented in random order, with a random 20% chosen to be 
followed by an immediate repeat (i.e., a one-back target), and an interstimulus 
interval that varied randomly from a uniform distribution ranging from 1 to 2 s.  
This resulted in 198 trials, which were split into two blocks. The process that 
generated this stimulus order was repeated three times, resulting in six blocks 

and 594 trials. Patients indicated the presence of a one-back target using a but-
ton box (RT Box, model v6). The experiment was run using Psychtoolbox-3 and 
custom MATLAB code.

Neural data were sampled at 1,000 Hz using a Ripple Grapevine Nomad 
neural interface processor (model R02000), with line noise notch filters at 60, 
120, and 180 Hz. Audio was split using a distribution amplifier (Rolls model 
DA134), with one stream presented to the patient at a volumed deemed loud but 
comfortable via Etymotic ER-3C insert earphones, and a second stream recorded 
synchronously with neural data using a Ripple Digital/Analog IO box (model 
R02010-0017) and sampled at 30 kHz. Digital stimulus triggers marking the 
onsets and offsets of each stimulus were sent using a Measurement Computing 
Data Acquisition device (model USB-1208FS) and were recorded via the IO box.

Preprocessing. Data were common average reference filtered and epoched to 
include 1,000 ms prestimulus onset to 3,000 ms poststimulus onset. Stimulus 
onsets were determined via cross-correlation between the original stimulus files 
and the audio recorded synchronously with neural data. Data in each channel were 
then z-scored relative to the baseline signal calculated across all trials.

High gamma activity (HGA, 70 to 150 Hz) was then extracted in the following 
way. For each channel, data were forward- and reverse-filtered (Butterworth, sixth 
order) in eight different bands, with center frequencies and bandwidths logarith-
mically spaced between 70 to 150 Hz and 16 to 64 Hz respectively. The analytic 
signal amplitude for each band was extracted using the Hilbert transform, and 
the resultant signal was z-scored across all trials relative to a baseline period 
of −900 to −100 ms relative to stimulus onset. The first and last 100 ms of 
the 1,000 ms baseline period were excluded to avoid contamination from edge 
effects and any rapid onset neural responses, respectively. After z-scoring, the 
signal was averaged across frequency bands and down-sampled to 100 Hz, and 
then z-scored across trials once more, again using a baseline window of −900 
to −100 ms. This measure represents HGA; for each channel, HGA samples that 
deviated more than five times the interquartile (IQR) range from the median were 

Table 1.   Participant demographic and clinical information

ID Age (yrs) Sex Handedness

Language-
dominant 
hemisphere

Epilepsy 
onset 
(years) Seizure locus

Epilepsy 
etiology

sEEG 
laterality

Electrode # 
(auditory 
responsive/all)

 P1  19  Female  Right  Unknown  14  Right SMA  Lesional  Bilateral  55/106

 P2  13  Female  Right  Unknown  3  Bilateral MTL  Unknown  Bilateral  27/104

 P3  14  Male  Right  Unknown  13  Tumor  Tumoral  Left  47/54

 P4  18  Male  Right  Left  13  Left multifocal  Autoimmune  Bilateral  39/127

 P5  14  Female  Left  Unknown  14  Right MTL  Unknown  Right  24/125

 P6  15  Male  Right  Unknown  14  Right posterior 
MTL

 FCD  Bilateral  55/117

 P7  15  Female  Right  Left  13  Left MTL  MTS  Left  63/119

 P8  10  Male  Right  Unknown  8  Bilateral 
multifocal

 Autoimmune  Bilateral  24/120

 P9  16  Male  Right  Unknown  0  Right frontal  Unknown  Right  51/226

 P10  19  Male  Ambidextrous  Left  17  Left MTG/STG  Tumoral  Left  23/56

 P11  16  Male  Left  Right  1  Right parietal + 
cingulate

 FCD  Bilateral  71/256

 P12  17  Male  Right  Unknown  14  Right posterior 
MTL

 FCD  Right  34/164

 P13  19  Male  Right  Unknown  2  Right STG  Unknown  Right  37/205

 P14  16  Male  Left  Unknown  12  Left frontal  Unknown  Bilateral  25/256

 P15  22  Male  Right  Right  12  Right multifocal  Unknown  Bilateral  51/243

 P16  17  Female  Right  Left  15  Left multifocal  Unknown  Bilateral  44/200

 P17  19  Female  Right  Unknown  12  Left MTL  MTS  Left  41/151

 P18  16  Male  Ambidextrous  Unknown  12  Left frontal  Unknown  Bilateral  8/218

 P19  25  Male  Left  Left  2  Left parietal  Lesional  Left  72/126

 P20  13  Female  Right  Unknown  11  Left MTL  Tumoral  Left  20/172
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labeled as outliers and discarded, where IQR and median were calculated using 
all timepoints from all trials for a given channel.

Anatomy. The pipeline for determining channel locations and generating anat-
omy plots consisted of the following steps. For each patient, a cortical surface 
was reconstructed from a preoperative T1-weighted MRI using Freesurfer (69). 
The output files were then imported into Brainstorm (70), a third-party tool 
developed in MATLAB that was used for all subsequent steps in this anatomy 
pipeline. A postoperative CT was coregistered to the MRI and then used to mark 
individual channel locations. Nonlinear MNI normalization was then performed in 
Brainstorm, which internally uses SPM12 for the procedure (71).Finally, the Julich 
Brain (v3.0) volumetric atlas (72) was imported for ROI analysis, using the MNI 
reverse field deformation to transform the atlas into the patient-specific spaces. 
The core/belt/parabelt taxonomy was used with the following definitions: core – 
Te1.0 and Te1.1; medial belt –TeI; lateral belt – Te1.2, Te2.1, and Te2.2; parabelt 
– Te3, STS1, and TPJ (37, 73–75). The combination of these regions constituted 
our definition of the auditory cortex. Due to sparse coverage in medial belt, this 
region was excluded from most analyses.

To define a channel’s precise location within an ROI along anatomically rel-
evant dimensions (e.g., in the analysis for Fig. 3), we calculated a set of three 
orthogonal axes for each of core, lateral belt, and parabelt (one for each hemi-
sphere, resulting in six total sets of axes). The axes for parabelt were determined 
using eigendecomposition. Using a three-dimensional point cloud of MNI voxels 
that belong to parabelt in the Julich atlas, we calculated the eigenvectors of this 
(demeaned) point cloud’s covariance matrix. The eigenvector associated with the 
largest eigenvalue points along the axis of highest variance, which in this case 
is oriented from posterior to anterior along the length of STG. The other two 
eigenvectors point roughly from ventral to dorsal and from medial to lateral. Each 
axis was then defined as a line pointing along a given direction and centered at 
the point cloud’s centroid. The edges of an axis were defined as 0-1 and were 
found by projecting the ROI’s voxels to the axis and finding the furthest points 
from the centroid. Eigendecomposition was also used to find the primary axis 
in core; the eigenvector with the largest eigenvalue points from posteromedial 
to anterolateral along Heschl’s gyrus. The secondary axis was calculated to run 
across Heschl’s gyrus by finding a vector perpendicular to the primary axis and 
parallel to the STP (defined as Te1.0, Te1.1, Te1.2, Te2.1, Te2.2, TeI, and TI); the 
tertiary axis was thus perpendicular to STP. In lateral belt, the core axes directions 
were used, with the origin shifted to the lateral belt centroid. Each channel in a 
given ROI was then projected to that ROI’s axes and normalized using the afore-
mentioned 0 to 1 scaling.

MNI normalization for one patient produced abnormal results due to a prior 
stroke in the frontal lobe, mapping channels to incorrect locations on the MNI 
brain and producing incorrect ROI labels (since ROI labeling is dependent on 
the MNI transformation). For this patient, ROI labels were manually corrected 
to include in ROI analysis; his channels were not displayed on any MNI brain 
surface plots.

Encoding Models. Encoding models were used to predict neural responses 
to novel auditory stimuli. Using the MATLAB package glmnet (76, 77), we built 
L1-regularized regression models for each channel. First, HGA was averaged 
across all presentations of a stimulus (termed a channel’s stimulus response). 
Instantaneous HGA values were sampled at 40 points per stimulus from ti = 50 
to 2,000 ms, sliding by 50 ms. Encoding model inputs consisted of DNN features 
spanning from ti-975 ms to ti (See the following section, DNN features, for more 
information.) Sparse random projection was used to reduce the dimensionality 
of the input features for computational tractability; this procedure projects a high 
dimensional matrix into a lower dimensional space while maintaining pairwise 
relationships between individual observations within some error bound E.  
The dimensionality of the projected feature matrix was determined using the 
Johnson–Lindenstrauss bound. This calculation takes the form of k = 4ln(N)/E2,  
where k is the new dimensionality, N is the number of observations, and E is the 
amount of acceptable error (set to 0.1 here). Note that k is not dependent on the 
dimensionality of the input but rather only depends on the number of observa-
tions. With 6,600 observations here (40 timepoints × 165 stimuli), this results 
in k = 3,518 features after sparse random projection for each DNN layer. The one 
factor that is dependent on the original feature matrix’s dimensionality before 
projection (call this d) is the density s of the projection matrix, where s = d−0.5.  

In words, a small proportion of elements in the projection matrix were randomly 
selected, with that proportion equal to d−0.5. A random half of these elements 
were set to −1, with the other half set to 1. The original feature matrix was then 
multiplied by the projection matrix (size d × k) to generate a reduced dimen-
sionality matrix that was used as the encoding model input. Separate random 
projections were used for each channel and layer; see SI Appendix, Table S8 for 
the dimensionalities of each DNN layer before projection and the densities of 
the projection matrices.

Encoding models were fit using a nested cross-validation, with the inner cross-
validation (10-fold) used to select the regularization parameter lambda; the outer 
cross-validation (five-fold) was used to test the resultant model by generating 
HGA predictions on stimuli that were held out of the training set. These models 
are referred to as full models to indicate that they were built using all timepoints 
and to differentiate them from sliding models (see below).

Model accuracy was assessed by calculating the coefficient of determination 
(R2) between observed and predicted HGA. This measure describes the fraction 
of the HGA variance explained by a model and is calculated by summing the 
squared residuals, dividing by the sum of squared residuals for a null model, and 
subtracting this ratio from one. We used a null model that predicted the time-
varying mean across stimuli (rather than the global mean across stimuli and time) 
to discount any models that were simply capturing the generic auditory stimulus 
response. When characterizing which DNN layers produced the best models for 
each channel, we calculated the weighted mean of the R2 curve across layers, 
which we refer to as the weighted DNN layer. Since R2 can sometimes produce 
negative values (if a model performs worse than the null model), and a weighted 
mean requires all weights to be nonnegative, we set any negative R2 values to 
zero when calculating the weighted DNN layer.

To investigate the temporal dynamics of encoding, sliding encoding mod-
els were built in the following way. For a given channel, we identified the DNN 
layer that produced its best performing full model (the layer that maximized R2). 
Instantaneous HGA was sampled every 20 ms from 0 to 1,000 ms (51 timepoints) 
and served as the model output. To create the encoding model input features, 
we first extracted the best layer’s node activations for acoustic spectrograms that 
spanned from −975 to 0 ms relative to each HGA sample. This feature matrix 
(that included all timepoints) then underwent sparse random projection using 
the same Johnson–Lindenstrauss bound formula, again with E = 0.1. With 8,415 
total observations per channel (51 timepoints × 165 stimuli), each sparse ran-
dom projected matrix had dimensionality k = 3,615. Next, separate models were 
built at each individual timepoint (by selecting that timepoint’s HGA samples 
for each stimulus, as well as the relevant rows from the input feature matrix). All 
other encoding model details were identical to the full model analysis (i.e., L1 
regularization, nested cross validation with 10 inner and 5 outer folds). Model 
performance was assessed separately at each timepoint using R2, where the null 
model corresponded to the mean HGA across stimuli at that timepoint.

DNN Features. Stimulus features were generated from the DNN model YAMNet 
(27), inspired by the success of image classification models such as AlexNet (78). 
This machine learning model was trained to predict sound classes on thousands 
of hours of labeled audio taken from AudioSet (28), a large-scale library of sounds 
scraped from YouTube that have been manually tagged with sound categories of 
a hierarchical ontology of classes. For example, a given sound might be simulta-
neously tagged as Music, Soul music, Singing, and Female singing. Note that this 
DNN model was built and trained by an unaffiliated machine learning research 
team, was held static in this research (i.e., no further training was performed), 
and did not have access to any neural data, including the data used in this study.

The YAMNet model consists of 16 layers (depicted in Fig. 1C), starting with an 
input layer 0, which accepts mel-spectrograms of sounds of width 975 ms, and 
layer 1 that performs standard 2D convolutions. Layers 2 to 14 are depthwise sep-
arable convolutional layers, where each layer consists of two convolutions: first, a 
grouped depthwise convolution is performed, where each filter is associated with 
and learned on a single channel (here, channel refers to the third dimension, or 
depth, in each DNN layer). The second convolution in a depthwise separable layer 
is a pointwise convolution, where each filter is 1 × 1 × number of channels, allow-
ing the layer to mix information across channels. Each individual convolution is 
followed by a batch normalization and a rectified linear unit (ReLU). The final layer 
consists of a global average pooling layer, a fully connected layer, and a softmax 
output that generates a probability distribution over the discrete sound classes.D
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For each of the 165 stimuli, 40 mel-spectrograms (width: 975 ms, leading 
edge: ti = 50:50:2,000 ms) were extracted; for samples where ti was less than 975 
ms, the stimulus waveform was zero-padded as necessary. These spectrograms 
were provided as input to the YAMNet model, and activations across all nodes 
within a given layer were calculated. These layer activations served as stimulus 
features; repeating this process for all 16 layers thus produced 16 unique feature 
sets, numbered 0 (the input spectrogram) to 15 (the probability that the sound 
belongs to each semantic class).

The YAMNet model has not been trained to mimic human neural representa-
tions of sound features. Rather, the training objective function dictates that the 
model iteratively adjusts its weights to solve the task while minimizing the 
cross-entropy, a measure of the distance between the output class probabilities 
and the ground truth labels. Any similarities that arise between internal model 
representations and human neural responses are thus an emergent property of 
the model. The DNN learns to extract an optimal set of stimulus features for audio 
classification and can thus be viewed as a tool for data-driven feature extraction.

Furthermore, the model imposes a natural and interpretable gradient from 
early layers that represent low-level acoustic properties, through middle layers 
with more complex acoustic representations, to the deepest layers that represent 
wholly abstract stimulus features (i.e., the sound category). Each layer performs 
a nonlinear transformation, introducing further complexity in the stimulus rep-
resentation with increasing layer depth. We can leverage these evolving stimulus 

representations to quantify the degree of representational complexity present at 
different cortical sites by identifying the DNN layers that are best able to explain 
the neural responses. Theoretically, an encoding model that can predict neural 
responses in the human auditory cortex with high fidelity using the activations 
(i.e., the responses) within a YAMNet hidden layer would demonstrate that there 
is shared information between the two systems.

Data, Materials, and Software Availability. Given the sensitive nature of 
patient data and the associated requirements for maintaining anonymity, the 
data cannot be shared publicly but will be made available upon request to the 
corresponding author.
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