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Abstract
Perception changes rapidly and implicitly as a function of passive exposure to speech that samples different acoustic distri-
butions. Past research has shown that this statistical learning generalizes across talkers and, to some extent, new items, but 
these studies involved listeners’ active engagement in processing statistics-bearing stimuli. In this study, we manipulated 
the relationship between voice onset time (VOT) and fundamental frequency (F0) to establish distributional regularities 
either aligned with American English or reversed to create a subtle foreign accent. We then tested whether statistical learn-
ing across passive exposure to these distributions generalized to new items never experienced in the accent. Experiment 1 
showed statistical learning across passive exposure but no generalization of learning when exposure and test items shared the 
same initial consonant but differed in vowels (bear/pear → beer/pier) or when they differed in initial consonant but shared 
distributional regularities across VOT and F0 dimensions (deer/tear → beer/pier). Experiment 2 showed generalization to 
stimuli that shared the statistics-bearing phoneme (bear/pear → beer/pier), but only when the response set included tokens 
from both exposure and generalization stimuli. Moreover, statistical learning transferred to influence the subtle acoustics 
of listeners’ own speech productions but did not generalize to influence productions of stimuli not heard in the accent. In 
sum, passive exposure is thus sufficient to support statistical learning and its generalization, but task demands modulate this 
dynamic. Moreover, production does not simply mirror perception: generalization in perception was not accompanied by 
transfer to production.
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Introduction

Encountering a talker with an idiosyncratic speaking style 
or a non-native accent can diminish speech comprehension 
(e.g., Bradlow & Bent, 2008). But experience often leads 
to improvements that generalize to other contexts (e.g., Xie 

& Myers 2017). Sometimes, such encounters even impact 
subtle characteristics of one’s own speech (e.g., Pardo et al., 
2017). Although instances of such adaptation and conver-
gence are well documented, many questions regarding their 
bases remain unanswered.

A literature examining dimension-based statistical learn-
ing provides a means with which to fill these gaps (e.g., Ide-
maru & Holt, 2011; Liu & Holt, 2015; Schertz et al., 2016; 
Wu & Holt, 2022). This work posits that subtle differences 
across talkers can be characterized as shifts in the underly-
ing acoustic regularities – the statistical distributions – of 
speech. The somewhat different speech patterns of American 
English compared to Scottish English (Escudero, 2001), for 
example, can be modeled as distribution shifts across mul-
tidimensional acoustic space, and the impact of listening 
across these distributions on perception (as well as produc-
tion) can be tracked.

Such distributional shifts can be studied experimentally. 
For example, Idemaru and Holt (2011) selectively sample 
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beer-pier utterances across an acoustic space defined by voice 
onset time (VOT, the timing of articulators’ release vs. voicing 
onset) and fundamental frequency (F0, related to pitch). A 
Canonical sampling mirrors the F0xVOT distributions typi-
cal of American English: utterances with short VOT tend to 
have low F0 and be heard as/b/whereas those with long VOT 
tend to have higher F0 and be heard as/p/. American English 
adults’ perception mirrors these regularities, with VOT serv-
ing as a strong cue to/b/-/p/category identity and F0 contribut-
ing to a lesser extent (Wu & Holt, 2022). Reversing this cor-
relation creates a subtle accent. In a passive exposure version 
of the paradigm (Hodson et al., 2023; Murphy et al., 2024), 
listeners hear a sequence of beer and pier utterances convey-
ing one of these distributional regularities followed by one 
of two F0-differentiated test stimuli with ambiguous VOT. 
With only F0 available to convey category identity, test stimu-
lus categorization indexes listeners’ reliance on F0 in speech 
categorization. In a pattern now well replicated across many 
studies, F0 robustly signals beer versus pier when distribu-
tions mirror American English norms but F0 reliance is mark-
edly reduced in the context of the accent (Holt, 2025). This 
points to implicit learning of statistical speech regularities 
that has an immediate influence on the mapping of acoustics 
to speech, thus informing how listeners adapt to idiosyncratic 
or accented speech.

Generalization has been a valuable tool in examining the 
grain of representation across which this learning operates. 
For example, if learning operates across talker-specific rep-
resentations, there should be no generalization to talkers not 
experienced in the accent. However, learning does generalize 
to new talkers (Liu & Holt, 2015). Likewise, generalization 
is evident across lexical items. For example, Idemaru and 
Holt (2020) report generalization across word contexts with 
differing vowels (beer-pier → bear-pear, and vice versa) and 
differing vowel-consonant frames (beer-pier → bill-pill), 
although generalization effects were weaker than effects for 
the token experienced in the accent (see also Liu & Holt, 
2015; Lehet & Holt, 2020; Zhang et al., 2021). In contrast, 
generalization is not apparent across the acoustic dimensions 
that convey speech regularities, like F0 and VOT. Idemaru 
and Holt (2014) find that beer-pier learning does not gener-
alize to influence deer-tear although each samples a similar 
F0xVOT acoustic space.

Collectively, these studies point to phoneme-sensitive learn-
ing. However, in contrast to the passive exposure paradigm 
described above (Hodson et al., 2023; Murphy et al., 2024), 
generalization studies have relied exclusively on active tasks 
with overt, trial-by-trial categorization of both statistics-bear-
ing “exposure” speech stimuli and the “test” stimuli that meas-
ure statistical learning and subsequent generalization. Corre-
spondingly, in these prior studies, the response set includes 
responses that match the statistics-bearing speech (e.g., bear-
pear) as well as responses to test generalization (beer-pier). 

This might be important. Wu and Holt (2022) observe that 
individual differences in the strength of category activation 
– as indexed by categorization accuracy for statistics-bearing 
exposure stimuli – predict the magnitude of down-weighting 
of F0 upon introduction of the accent. If active categoriza-
tion were to more robustly drive category activation than mere 
exposure, there may be task-driven learning and/or generaliza-
tion outcomes. Hodson et al. (2023) examined this possibil-
ity, finding common patterns of F0 down-weighting for active 
trial-by-trial categorization of exposure stimuli and passive 
exposure to them. Yet there remains an open question: is active 
categorization across statistics-bearing stimuli necessary for 
generalization? This paper tackles this question.

Experiment 1 examines generalization of statistical 
learning across passive exposure with a single response set 
(beer-pier) across all conditions. Listeners hear a sequence 
of utterances conveying canonical or reverse distributions, 
then categorize sequence-final, F0-differentiated beer-pier 
test stimuli across three conditions: No Generalization (beer-
pier → beer-pier), same Phoneme Generalization (bear-pear 
→ beer-pier, for which active categorization paradigms 
observe generalization), and same Dimension Generaliza-
tion (deer-tear → beer-pier, for which no generalization is 
observed in active tasks). To anticipate the results, we repli-
cate the null effect in the Dimension Generalization condition. 
But, unlike past studies, we do not observe generalization in 
the Phoneme Generalization condition in Experiment 1. In 
Experiment 2 we examine whether this difference arises from 
learning differences across passive exposure. We focus our 
investigation on exposure and test stimuli that share initial 
and final phonemes, and introduce a mixed response set (beer-
pier+bear-pear) in the critical condition. The mixed response 
set restores generalization, despite the passive exposure.

As a secondary measure in each experiment, we elicit 
speech productions to attempt to replicate recently reported 
transfer of statistical learning from perception to production 
(Murphy et al., 2024) and to examine generalization in pro-
duction. To foreshadow, we robustly replicate Murphy and 
colleagues (2024) for statistics-bearing stimuli: the learning 
arising with perceptual experience with an accent transfers 
to impact listeners’ speech productions. Intriguingly, this 
transfer is limited to stimuli heard in the accent. Generaliza-
tion in perception is not reflected in production.

Experiment 1

Methods

Experiment 1 examined statistical learning across passive 
exposure to speech regularities and its generalization. Par-
ticipants listened to a sequence of speech tokens possessing 
a (Canonical, Reverse) short-term distributional regularity 
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and reported whether a final test stimulus was beer or pier. 
They then heard the same test stimulus again and repeated 
it aloud (Fig. 1). Test stimuli were always beer-pier, differ-
entiated only by F0. Across conditions experienced by all 
listeners, the stimuli that conveyed distributional regularities 
across passive exposure varied: beer-pier (requiring No Gen-
eralization), bear-pear (Phoneme Generalization), deer-tear 
(Dimension Generalization).

Participants

In keeping with past studies, we assumed a small effect size 
of d = 0.3 for generalization in speech perception (Idemaru 
& Holt, 2020; Liu & Holt, 2015). A power analysis per-
formed using the program PANGEA (Westfall, 2015) indi-
cated that a sample size of 90 participants would provide 
power > 0.8 to detect a three-way interaction between Test 

Fig. 1  Experiment protocol. A. Stimuli. An acoustic space defined 
by voice onset time (VOT) and fundamental frequency (F0) conveyed 
beer-pier and bear-pear (solid blue, no line) and deer-tear (solid 
blue, aqua line) tokens sampled in a manner Canonical of American 
English or Reversed to convey an accent. B. Trial structure. A repre-
sentative trial from the Experiment 1 Control condition illustrates the 

trial structure across each experiment, and all groups. C. Experiment 
conditions. The speech tokens that convey the short-term speech 
regularity (Exposure, blue) and the test stimuli that elicit perception 
(Perception, red) and production (Production, gray) are depicted for 
each condition of each experiment
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Stimulus F0, Canonical/Reverse statistical regularity, and 
the three-level generalization factor, at α = 0.05. As a provi-
sion against data loss in online studies, we collected online 
data from 110 adult (55 females) native English-speaking 
participants located in the USA. Eighteen participants’ 
data did not enter into analyses due to silent or highly noisy 
production recordings that precluded acoustic analysis of 
speech productions (N = 17) or perceptual responses indicat-
ing task noncompliance (N = 1). Data from 92 participants 
(49 females, mean age 28.1 years, SD = 4.8 years) entered 
the analysis.

Stimuli

Figure 1A illustrates the speech stimuli. Fundamental fre-
quency (F0) and voice onset time (VOT) varied, with other 
acoustic dimensions held constant, to create perceptual 
spaces corresponding to beer-pier, bear-pear, and deer-tear. 
Each of the six target words was spoken by an adult female 
native American English speaker, with specific tokens cho-
sen to have similar duration (400 ms for beer-pier and deer/
tear, 500 ms for bear-pear) and F0 contour. Beginning with 
these natural speech exemplars, we edited in the time domain 
to create 5-ms VOT steps (McMurray & Aslin, 2005). Next, 
we manipulated the F0 onset of each of these stimuli using a 
custom Praat script (Praat 6.1; Boersma & Weenink, 2023) 
such that onset F0 varied from 220 to 320 Hz in 10-Hz steps, 
with F0 contour interpolated smoothly across voicing to 
word offset. Amplitude normalization assured each stimulus 
possessed the same root mean-squared amplitude.

Exposure stimuli (blue, Fig.  1A) sub-sampled these 
acoustic spaces to create distinct short-term speech regu-
larities. The Canonical English sampling (Fig. 1A, left) 
followed acoustic speech regularities typical of American 
English: stimuli with shorter VOT (< 25 ms) tend to have 
lower F0 and be labeled as/b/or/d/(light blue) whereas those 
with longer VOT (> 25 ms) tend to have higher F0 and be 
labeled as/p/or/t/(dark blue). A statistically defined “accent” 
reversed this distributional relationship from American Eng-
lish norms (Fig. 1A, right). Here, for the Reverse condi-
tion, shorter VOTs signal/b/or/d/but F0 is higher frequency. 
Longer VOTs signal/p/or/t/but F0 is lower frequency. Beer-
pier and bear-pear tokens (blue, no line) shared identical 
F0xVOT values whereas deer-tear tokens (blue, aqua line) 
sampled distributions shifted + 5 ms in VOT to account for 
natural English VOT patterns (Cho & Ladefoged, 1999).

Additionally, two test stimuli possessed a perceptually 
ambiguous, 25-ms VOT and varied only in F0 (230 or 
310 Hz; Fig. 1A, red symbols). Test stimulus categoriza-
tion measured listeners’ reliance on F0 in category deci-
sions related to learning (when test stimuli match exposure 
stimuli, e.g., beer-pier → beer-pier) and generalization 

(bear-pear → beer-pier and deer-tear → beer-pier). These 
same test stimuli elicited speech productions in the auditory 
repetition task. Exposure and Test stimuli were chosen on 
the basis of responses provided by nine raters and had been 
previously shown to drive statistical learning in perception 
(Murphy, 2024).

Procedure

Online participants recruited via Prolific.co were automati-
cally directed to an experiment hosted on Gorilla (www. goril 
la. sc, Anwyl-Irvine et al., 2021). Using the Chrome browser 
on a computer (no mobile devices), participants provided 
consent, completed a demographics survey, and underwent 
both a brief check of headphone compliance test (Milne 
et al., 2021) and a check that the computer microphone was 
recording utterances.

Figure 1B shows the trial structure. Participants listened 
passively to a sequence of eight perceptually unambigu-
ous exposure stimuli that conveyed either a Canonical or a 
Reverse short-term regularity. Each sequence included four 
tokens from each of the two distributions (Fig. 1A, dark 
and light blue symbols), randomly selected and concat-
enated with 300-ms silent intervals separating utterances. 
Clipart images corresponding to the word expected from 
the perceptually unambiguous VOT appeared at the onset 
of each sound. Next, after 600 ms, participants heard one of 
the two test stimuli (High or Low F0; Fig. 1A, red symbols) 
and categorized it as beer or pier via a keyboard response 
with on-screen text to guide the mapping. Then, 300 ms 
later, the same test stimulus played again, and an image 
of a microphone prompted participants to repeat the word 
aloud. Participants had 2,500 ms to repeat the test stimulus 
and utterances were saved digitally for subsequent acoustic 
analysis of F0.

As summarized in Fig. 1C, beer-pier test stimuli elicited 
perceptual categorization responses and speech productions 
across each of three conditions. The statistics-bearing expo-
sure stimuli of the No Generalization condition matched the 
beer-pier test stimuli, thereby measuring statistical learn-
ing without requiring generalization. In contrast, bear-pear 
exposure sequences in the Phoneme Generalization condi-
tion necessitated generalization of statistical learning to 
beer-pier test stimuli sharing a common initial phoneme. 
Finally, in the Dimension Generalization condition, the deer-
tear regularities differed in initial phoneme from the beer-
pier test stimuli but overlapped across F0xVOT acoustic 
dimensions.

For each condition, participants experienced 30 Canoni-
cal trials followed by 30 Reverse trials. Among these, 24 
of 30 stimuli involved exposure stimuli followed by one of 
the two beer-pier VOT-ambiguous, F0-differentiated test 
stimuli described above; responses to these stimuli entered 

http://www.gorilla.sc
http://www.gorilla.sc
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analyses. Six additional VOT-unambiguous stimuli served 
as a data-quality check of online participants, with a priori 
exclusion of participants who gave the same response to 
these unambiguous stimuli (no participants were excluded 
on this basis). Unambiguous beer, bear, and deer stimuli 
had a 230-Hz F0 and 10-ms VOT (deer: 15-ms VOT) while 
unambiguous pier, pear, and tear stimuli had a 310-Hz F0 
and 40-ms VOT (tear: 45-ms VOT). As in prior studies (Wu 
& Holt, 2022), categorization of these perceptually unam-
biguous stimuli was consistent with expectations from 
English (Long VOT, 96%/p/; Short VOT, 93%/b/). A Latin 
square design assured balanced presentation of conditions 
across participants.

Statistical analyses

Perceptual categorization. We modeled the influence of sta-
tistical learning on perceptual categorization of test stimuli 
using mixed-effects models (lme4; Bates, Mochler, Bolker, 
& Walker, 2015) in R (version 4.1.3, R Core Development 
Team, 2022) with the binary (beer, pier) categorization 
response as the dependent variable. The full statistical model 
involved fixed effects across Statistical Regularity (Canonical, 
Reverse), Test Stimulus F0 (Low F0, High F0), and Condition 
(No Generalization, beer-pier; Phoneme Generalization, bear-
pear; Dimension Generalization, deer-tear) as well as two- and 
three-way interactions. Random effects included by-subject 
random intercepts and random slopes for Statistical Regular-
ity and Test Stimulus F0 over subjects. Statistical Regularity 
and Test Stimulus F0 fixed effects were center coded (− 0.5 
or 0.5). A simple-effects coding scheme was applied to the 
three-level Condition effect whereby the No Generalization 
condition served as the reference level to which the Phoneme 
Generalization and Dimension Generalization conditions were 
compared. Three-way interactions among Statistical Regular-
ity, Test Stimulus F0, and Condition were examined with post 
hoc tests of the Statistical Regularity by Test Stimulus F0 inter-
action for each Condition. Satterthwaite approximates using 
the LmerTest package (version 3.1–3, Kuznetsova, Brockhoff, 
& Christensen, 2017) provided p values.

Speech production. Transfer of statistical learning in 
listening to repetition productions was modeled across by-
participant z-score normalized utterance F0 (as in Murphy 
et al., 2024). In brief, the F0 (computed across the first 40 
ms) was measured for each utterance. F0 values ± 3 stand-
ard deviations from a participant’s mean F0 were removed 
from analysis. Next, we normalized F0 on a by-individual 
basis to account for F0 variability arising across talkers 
(Titze, 1989). Therefore, for production analyses, a z-score 
of 0 indicates the mean F0 for a participant across all pro-
ductions. Positive and negative z-scores correspond to 
continuous standard deviation units above and below the 
mean, respectively, that we submitted to standard linear 

effects models. Fixed and random effect structures, and the 
approach to post hoc tests, were identical to perceptual sta-
tistical learning analyses.

Results

Perceptual categorization

Figure 2 presents perceptual categorization of F0-differen-
tiated beer-pier test stimuli as a function in Canonical and 
Reverse conditions. Table 1 displays results of a logistic 
mixed effects model fit to these data.

Across all conditions, there were more pier responses for 
High F0, as is typical in American English (Lisker, 1986), 
reflected in a main effect of Test Stimulus F0 (z = 17.52, 
p < 0.001) and a main effect of Statistical Regularity (z 
= 17.53, p < 0.001). Importantly, these factors significantly 
interacted (z = 15.43, p < 0.001), indicating that statistical 
learning across passive listening impacted reliance on F0 in 
categorization.

Simple-effects coding comparing perceptual responses 
from the No Generalization condition to responses from the 
Phoneme Generalization and Dimension Generalization 
revealed significant main effects (Phoneme: z = 4.22, p < 
0.001; Dimension: z = 3.17, p = 0.002) indicative of an over-
all difference in perceptual response across conditions. Two-
way interactions were significant between each condition 
and Test Stimulus F0 (Test Stimulus F0 by Phoneme: z = 
8.97, p < 0.001; Test Stimulus F0 by Dimension: z = 7.48, 
p < 0.001) but not Statistical Regularity. Importantly, two 
significant three-way interactions indicated that perceptual 
down-weighting differs for both the Phoneme Generalization 
(z = − 18.70, p < 0.001) and Dimension Generalization (z 
= − 19.27, p < 0.001) conditions relative to the No Gener-
alization condition.

Based on these two significant three-way interactions, we 
tested statistical learning/generalization in each condition 
with separate, post hoc logistic mixed effect models. The 
two-way interaction between Test Stimulus F0 and Statisti-
cal Regularity was significant only in the No Generalization 
model (z = 23.72, p < 0.001), but not the Phoneme (z = 0.57, 
p = 0.567) or Dimension (z = 0.94, p = 0.348) Generaliza-
tion models. Thus, Experiment 1 reveals evidence of statisti-
cal learning but not of generalization of the learning.

Speech production

Figure 2 shows z-score normalized F0 measured from par-
ticipants’ beer-pier speech productions as a function of the 
Statistical Regularity. Table 2 provides results of the Linear 
Mixed-Effects Model.
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Fig. 2  Experiment 1 perception and production results. The top row 
depicts percent pier categorization responses to High and Low F0 
beer-pier test stimuli in the context of Canonical and Reverse short-
term regularities. The bottom row shows z-score normalized funda-
mental frequency (F0) of beer-pier speech productions elicited in 
repetition of High and Low F0 test stimuli in the context of Canoni-

cal and Reverse short-term regularities. A. No Generalization (beer-
pier exposure, beer-pier test) B. Phoneme Generalization (bear-pear 
exposure, beer-pier test). C. Dimension Generalization (deer-tear 
exposure, beer-pier test). Larger symbols and thick lines represent 
sample mean and standard error. Smaller symbols and transparent 
lines indicate individual participants’ behavior

Table 1  Experiment 1 perceptual categorization of test stimuli across conditions

Reference levels are Statistical Regularity (Reverse), Test Stimulus F0 (Low F0), Condition (No Generalization). Phoneme Generalization and 
Dimension Generalization result from simple effects coding comparing the respective conditions to the No Generalization condition

Β SE z p

Intercept 0.22 0.08 2.74 0.006
Statistical Regularity 0.24 0.05 4.48  < 0.001
Test Stimulus F0 2.40 0.14 17.53  < 0.001
Phoneme Generalization 0.24 0.06 4.22  < 0.001
Dimension Generalization 0.18 0.06 3.17 0.002
Statistical Regularity x Test Stimulus F0 1.45 0.09 15.43  < 0.001
Statistical Regularity x Phoneme Generalization − 0.10 0.11 − 0.85 0.396
Statistical Regularity x Dimension Generalization − 0.14 0.11 − 1.28 0.199
Test stimulus F0 x Phoneme Generalization 1.01 0.11 8.97  < 0.001
Test stimulus F0 x Dimension Generalization 0.83 0.11 7.48  < 0.001
Statistical Regularity x Test Stimulus F0 x Phoneme Generalization − 4.20 0.22 − 18.72  < 0.001
Statistical Regularity x Test Stimulus F0 x Dimension Generalization − 4.28 0.22 − 19.27  < 0.001
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Overall, speech productions elicited by the High (compared 
to the Low) F0 beer-pier test stimuli had higher F0 (t = 15.35, 
p < 0.001). A significant two-way interaction between Test 
Stimulus F0 and Statistical Regularity (z = 5.11, p < 0.001) 
indicated transfer of statistical learning to production. Sim-
ple effects coding comparing production F0 s from the No 
Generalization Condition to production F0 s from Phoneme 
Generalization and Dimension Generalization revealed sig-
nificant main effects of each Condition (Phoneme: z = 7.05, 
p < 0.001; Dimension: z = 5.10, p < 0.001). Significant two-
way interactions were also evident between each Condition 
and Test Stimulus F0 (Test Stimulus F0 by Phoneme: t = 
6.56, p < 0.001; Test Stimulus F0 by Dimension: t = 6.19, 
p < 0.001). As with the perceptual categorization results, two 
significant three-way interactions indicated that transfer of 
statistical learning to production differed in both the Pho-
neme Generalization (t = − 5.65, p < 0.001) and Dimension 
Generalization (t = − 6.74, p < 0.001). Conditions relative to 
the No Generalization Condition. Also similar to perception, 
the post-hoc analyses only revealed a significant interaction 
between Test Stimulus F0 and Statistical Regularity in the No 
Generalization condition (t = 9.44, p < 0.001), but not in the 
Phoneme Generalization (t = 0.87, p = 0.383) or Dimension 
Generalization (t = − 0.82, p = 0.410) condition.

The results are clear: perceptual statistical learning across 
passive exposure failed to generalize in perception. While 
this replicates the finding of no generalization in the Dimen-
sion Generalization (deer-tear → beer-pier) condition (Ide-
maru & Holt, 2014), it contrasts with Phoneme Generaliza-
tion (bear-pear → beer-pier) observed in active tasks that 
involve trial-by-trial overt speech categorization (Idemaru 
& Holt, 2020). Naturally, since no generalization was uncov-
ered in perception, transfer of generalization was not seen 
in production.

Experiment 2

Methods

Experiment 1 replicated the null effect of dimension gen-
eralization (Idemaru & Holt, 2014) but failed to find evi-
dence of phoneme generalization, contrary to prior reports 
(Idemaru & Holt, 2020). One interpretation of these 
results is that statistical learning across passive listening 
is not sufficient to support generalization. But before this 
conclusion is drawn, we must rule out the influence of 
another factor. Recall that in Idemaru and Holt’s (2020) 
task, participants responded to all tokens, meaning that 
both the statistics-bearing stimuli and the generalization 
stimuli were part of the response set. If overlap between 
exposure and test stimuli is critical for extracting statis-
tics or applying statistics to new stimuli, then a mixed 
response set should restore phoneme generalization, even 
with passive exposure. Experiment 2 tested this possibil-
ity. First, we aimed to replicate the main findings of sta-
tistical learning and its transfer to production, observed in 
Experiment 1, in a different pair, bear-pear. We used this 
pair as exposure stimuli to test phoneme generalization to 
a different pair, beer-pier, presented in a mixed response 
set comprised of both bear-pear and beer-pier tokens with 
equal frequency.

Participants

Based on the power analysis of Experiment 1, we tested 
95 participants (48 female) with 87 participants (45 female, 
 Mage = 31.3, SD = 6.0 years) entering analyses after applica-
tion of the Experiment 1 exclusion criteria.

Table 2  Experiment 1 speech production F0 across conditions

Reference levels are Statistical Regularity (Reverse), Test Stimulus F0 (Low F0), Condition (No Generalization). Phoneme Generalization and 
Dimension Generalization result from simple effects coding comparing the respective conditions to the No Generalization condition

β SE t p

Intercept 0.01 0.01 1.03 0.302
Test Stimulus F0 0.69 0.04 15.35  < 0.001
Statistical Regularity 0.02 0.03 0.63 0.533
Phoneme Generalization 0.14 0.02 7.05  < 0.001
Dimension Generalization 0.10 0.02 5.10  < 0.001
Test Stimulus F0 x Statistical Regularity 0.16 0.03 5.11  < 0.001
Test Stimulus F0 x Phoneme Generalization 0.26 0.04 6.56  < 0.001
Test Stimulus F0 x Dimension Generalization 0.24 0.04 6.19  < 0.001
Statistical Regularity x Phoneme Generalization − 0.02 0.04 − 0.47 0.641
Statistical Regularity x Dimension Generalization − 0.06 0.04 − 1.45 0.148
Test Stimulus F0 x Statistical Regularity x Phoneme Generalization − 0.44 0.08 − 5.65  < 0.001
Test Stimulus F0 x Statistical Regularity x Dimension Generalization − 0.53 0.08 − 6.74  < 0.001
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Stimuli

Experiment 2 relied on the beer-pier and bear-pear stimuli 
from Experiment 1 (Fig. 1A).

Procedure

Experiment 2 consisted of six blocks (30 trials each) of trials 
alternating with Canonical and Reverse regularities. The first 
two blocks reproduced the No Generalization (beer-pier→beer-
pier) condition of Experiment 1 (Replication: No Generaliza-
tion). The remaining four blocks conveyed statistics across bear-
pear utterances and involved both bear-pear (Mixed Response: 
No Generalization) and beer-pier (Mixed Response: Phoneme 
Generalization) test trials, randomly intermixed such that there 
was uncertainty about the target of categorization on each trial 
and the mixed response set involved beer, pier, bear, and pear. 
As in Experiment 1, in each block six VOT-unambiguous trials 
assured online participants’ data quality; no participants were 
excluded on the basis of responses to these trials. Performance 
was high and consistent with English regularities (Long VOT, 
93%/p/; Short VOT, 88%/b/). Responses from these trials did 
not enter analyses, resulting in 24 Canonical and 24 Reverse 
trials for each condition.

Statistical analyses

Perceptual categorization The statistical approach was simi-
lar to Experiment 1. Our first goal was to replicate statistical 
learning and its transfer to production in the No Generaliza-
tion condition, observed in Exp 1. This model included the 
subset of data from the beer-pier→beer-pier blocks. The 
model included Test Stimulus F0 (High F0, Low F0), Statis-
tical Regularity (Canonical, Reverse) and their interaction, 
as well as a maximal random effects structure consisting of 
by-subject random intercept, random slopes for Test Stimu-
lus F0, Statistical Regularity, and the interaction between 
Test Stimulus F0 and Statistical Regularity over subjects. As 
in Experiment 1, Statistical Regularity and Test Stimulus F0 
fixed effects were center coded (− 0.5 or 0.5).

Next, we examined generalization using blocks with Mixed 
Response conditions. The model’s dependent variable was 
coded as voiced (beer, bear) or voiceless (pier, pear). Three 
fixed effects, Test Stimulus F0 (High F0, Low F0), Statisti-
cal Regularity (Canonical, Reverse) and Condition (Mixed 
Response: No Generalization; Mixed Response: Phoneme 
Generalization), were included alongside their two-way and 
three-way interactions. The random-effects structure was 
similar to the structure used in the Replication task analysis 
with the addition of a random slope for Condition. All fixed 
effects were centered coded (− 0.5, or 0.5).

Speech production Acoustic speech analysis followed the 
Experiment 1 approach with by-participant z-score normal-
ized production F0 s as a continuous dependent variable 
analyzed with linear mixed-effects models. As with the per-
ceptual categorization analysis, separate models assessed 
production changes in the Replication and the Mixed 
Response tasks. Fixed effects and their interactions were 
identical to those included in the corresponding perceptual 
categorization models. Both models included by-participant 
random intercept and random slopes for Test Stimulus F0 
and Statistical Regularity. The Mixed Response model also 
included a random slope for Condition. Neither model toler-
ated the addition of random slopes for the interaction terms. 
All fixed effects were center coded (− 0.5 or 0.5).

Results

Perceptual categorization

As in Experiment 1, we analyzed perceptual responses 
for evidence of statistical learning and its generalization 
to novel tokens (Fig. 3, top row). Analysis of perceptual 
responses from the Replication task revealed a significant 
main effect of Test Stimulus F0 (z = 8.18, p < 0.001), a 
significant main effect of Statistical Regularity (z = 2.00, 
p = 0.045) and, importantly, an interaction between the 
two (z = 13.87, p < 0.001), showing statistical learning in 
perception.

Table 3 reports the results from the analysis of percep-
tual response from the Mixed Response blocks. A signifi-
cant main effect of Test Stimulus F0 indicated that, overall, 
participants tended to perceive High F0 test stimuli as pier 
or pear and Low F0 as beer or bear (z = 18.58, p < 0.001). 
The main effect of Condition was also significant, indicat-
ing a difference in/b/versus/p/response rates in the Mixed 
Response: No Generalization and the Mixed Response: 
Phoneme Generalization conditions (z = − 5.70, p < 0.001). 
This difference appears to be driven by a bias towards pier 
responses in the Mixed Response: Phoneme Generaliza-
tion condition, a finding also reported by Idemaru and Holt 
(2020). A significant two-way interaction between Statisti-
cal Regularity and Test Stimulus F0 indicated statistical 
learning in perception in the Mixed Response blocks (z 
= 12.50, p < 0.001).

There was also a significant three-way interaction between 
Statistical Regularity, Test Stimulus F0, and Condition (z 
= 10.20, p < 0.001). To unpack this interaction, we fit sepa-
rate post hoc models to each of the two Conditions, separately. 
In the Mixed Response blocks, there is evidence of statisti-
cal learning in the form of a significant two-way interaction 
between Statistical Regularity and Test Stimulus F0 in both 
the No Generalization model (z = 11.47, p < 0.001) as well 
as the Phoneme-Generalization model (z = 3.49, p < 0.001).



Psychonomic Bulletin & Review 

Speech production

We next examined transfer of statistical learning to pro-
duction using z-score normalized F0 measured from beer-
pier and bear-pear productions (Fig. 3, bottom row). First 
examining the Replication condition, the model reveals 
the expected main effect of Test Stimulus F0 (t = 9.55, p < 
0.001), as well as a significant two-way interaction between 
Test Stimulus F0 and Statistical Regularity indicating the 
transfer of statistical learning to production (t = 14.55, p < 
0.001), thereby replicating the transfer observed in Experi-
ment 1.

Table 4 reports the transfer of speech production results 
from the Mixed Response blocks. Mirroring the perceptual 
results, the analysis revealed a main effect of Test Stimulus 
F0 (t = 13.64, p < 0.001), as well as a main effect of Condi-
tion on production F0 s (t = − 14.81, p < 0.001). The latter 
finding is in line with previous research on intrinsic F0, a 

Fig. 3  Experiment 2 perception and production results. The top row 
depicts percent pier/pear categorization responses to High and Low 
F0 beer-pier (A, C) or bear-pear (B) test stimuli in the context of 
Canonical and Reverse short-term regularities. The bottom row shows 
z-score normalized fundamental frequency (F0) speech productions 
elicited in repetition of these same test stimuli. A. Replication: No 

Generalization (beer-pier exposure, beer-pier test) is a replication of 
Experiment 1. B. Mixed Response Condition trials with No Generali-
zation (bear-pear exposure, bear-pear test). C. Mixed Response Con-
dition trials requiring Phoneme Generalization (bear-pear exposure, 
beer-pier test)

Table 3  Perceptual categorization of voiced/voiceless test stimuli in 
mixed response task

Reference levels are Statistical Regularity (Reverse), Target stimulus 
F0 (Low F0), Condition (Phoneme-Generalization)

Β SE z p

(Intercept) 0.26 0.12 2.18 0.029
Statistical Regularity 0.02 0.08 0.21 0.833
Test Stimulus F0 2.78 0.15 18.58  < 0.001
Condition − 1.16 0.20 − 5.70  < 0.001
Statistical Regularity x Test Stimu-

lus F0
2.23 0.18 12.50  < 0.001

Statistical Regularity x Condition 0.18 0.13 1.38 0.168
Test Stimulus F0 x Condition − 0.18 0.14 − 1.23 0.218
Statistical Regularity x Test Stimu-

lus F0 x Condition
2.72 0.27 10.20  < 0.001
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tendency for high vowels like the/i/in beer to have higher 
F0 s than low vowels like the/e/in bear (Chen et al., 2021; 
Whalen & Levitt, 1995). Transfer of statistical learning was 
evident in the significant two-way interaction between Sta-
tistical Regularity and Test Stimulus F0 (t = 6.64, p < 0.001). 
There were significant interactions between Statistical Regu-
larity and Condition (t = 3.01, p = 0.003) as well as Test 
Stimulus F0 and Condition (t = − 6.41, p < 0.001).

Critical for our determining whether generalization trans-
fers to influence speech production, we found a significant 
three-way interaction between Statistical Regularity, Test 
Stimulus F0, and Condition (t = 4.63, p < 0.001). Post hoc 
analyses revealed that the two-way interaction between Test 
Stimulus F0 and Statistical Regularity was significant in the 
Mixed Response: No Generalization model (t = 8.18, p < 
0.001) but the perceptual generalization observed for the 
Mixed Response: Phoneme-Generalization condition did not 
transfer to production (t = 1.44, p = 0.151).

To summarize, Experiment 2 replicates statistical learn-
ing across passive exposure to beer-pier and its transfer to 
speech production. It extends this finding to bear-pear, when 
no generalization is required. Importantly, inclusion of a 
mixed response set rescued phoneme-level generalization 
of perceptual statistical learning, although with a smaller 
magnitude of influence on the generalization pair than the 
pair experienced across the regularity. This generalization 
of learning did not transfer to influence speech production.

General discussion

Does generalization of statistical learning emerge only with 
learning in an active task? Potentially consistent with this pos-
sibility, Wu and Holt (2022) argued that when speech conveys 
sufficient perceptual information to activate a phonetic category 
(e.g., via unambiguous VOT), it may generate predictions of 

the typical mapping of other secondarily diagnostic acoustic 
dimensions, like F0, to the category representation. In the 
Reverse condition, these expectations are not met and the mis-
match may power error-driven learning that down-weights F0 
to minimize future mismatches. Inasmuch as active engagement 
in a categorization decision might boost category activation, it 
thus may promote learning and its successful generalization. 
Yet, Hodson et al. (2023) report statistically equivalent learning 
outcomes across passive exposure to statistics-bearing speech 
stimuli and active engagement in a categorization decision 
across these same stimuli. This latter result suggests that learn-
ing across passive exposure may be just as potent as learning 
across stimuli that demand active categorization. Experiment 
2 confirms that statistical learning across passive listening is 
sufficient to support generalization to stimuli never heard in 
the accent. Notably, this pattern was not evident in Experiment 
1. The difference was that in Experiment 2, a response set 
included both statistics-bearing and new stimuli with the same 
initial phoneme. This restored generalization of the learning 
that accrued across passive listening to the accent.

But why should response set matter? Although specu-
lative, the most reasonable explanation for the influence 
of response set on generalization may relate to attention 
and goal-setting, in line with recent findings that show the 
importance of explicit attentional goals in implicit statisti-
cal learning (Zhang & Carlisle, 2023). If participants detect 
no relationship between exposure and test stimuli, they 
may tune out exposure stimuli. Under this view, attention 
is important for learning not because it forces the learner to 
actively process each statistics-bearing stimulus, but rather 
because it sets a higher-level behavioral goal in the cogni-
tive-perceptual system. Our results demonstrate the impor-
tance of task demands and goals in the context of statistical 
learning, even when it emerges implicitly across passive 
exposure. This argues for further research to examine how 
implicit and explicit task demands influence the nature of 
information learned across passive exposure.

The present study also lays groundwork for understanding 
the structure of representation shared between speech percep-
tion and production. We replicated the transfer of statistical 
learning from perception to production reported in Murphy 
et al. (2024) twice (Experiment 1 and 2, beer-pier→beer-pier). 
Additionally, the present work extends evidence of transfer to a 
novel word pair (Experiment 2, bear-pear→bear-pear). These 
results demonstrate that there are rapid and implicit changes to 
the production system as a result of statistical learning across 
the patterns of other talkers’ speech. They are interesting, par-
ticularly, in light of the finding that most instances of auditory 
repetition are carried out through the “lexical,” as opposed 
to the “nonlexical” route (Nozari et al., 2010; Nozari & Dell, 
2013). This means that upon hearing a word, the individual 
retrieves the corresponding stored lexical representation and 
activates the production chain, rather than simply mapping 

Table 4  Mixed response task productions by test stimulus F0 and 
condition

Reference levels are Statistical Regularity (Reverse), Target stimulus 
F0 (Low F0), Condition (Phoneme-Generalization)

β SE t p

(Intercept) − 0.03 0.01 − 2.34 0.021
Statistical Regularity − 0.04 0.03 − 1.36 0.177
Test Stimulus F0 0.60 0.04 13.64  < 0.001
Condition − 0.58 0.04 − 14.81  < 0.001
Statistical Regularity x Test 

Stimulus F0
0.24 0.04 6.64  < 0.001

Statistical Regularity x Condition 0.11 0.04 3.01 0.003
Test Stimulus F0 x Condition − 0.24 0.04 − 6.41  < 0.001
Statistical Regularity x Test Stimu-

lus F0 x Condition
0.34 0.07 4.62  < 0.001
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input to output phonology without fully engaging the produc-
tion system. In our case, the perceptual judgment performed 
before production makes it even more likely for participants 
to use the lexical route. Nevertheless, we observe changes to 
production. This implies that the results do not reflect a simple 
imitation of the input. As such, the present data build from 
Murphy et al. (2024) to provide new insights into phonetic 
convergence (Pardo et al., 2022) and to extend how other talk-
ers’ speech affects one’s own productions (e.g., Bourguignon 
et al., 2014, 2016; Lametti et al., 2014).

Yet, even when bears affected beers in perception, they did 
not influence production. In Experiment 2, exposure to bear-
pear distributional regularities led to statistical learning that 
generalized to beer-pier (with a mixed response set). But this 
learning did not exert an influence on production. The mag-
nitude of generalization (bear-pear→beer-pier) was smaller 
than the magnitude of statistical learning across matched tri-
als (bear-pear→bear-pear), so it is possible that generaliza-
tion was not robust enough to drive transfer to production. 
Alternatively, representations subject to learning in perception 
may differ from those in production, as has been indicated 
by previous findings that show changes in production can 
occur independently of changes in perception (Baese-Berk 
et al., 2024; Kato & Baese-Berk, 2020; Sheldon & Strange, 
1982). Future studies of transfer in dimension-based statistical 
learning are well-poised to address this intriguing possibility 
because the approach makes it possible to quantify listeners’ 
and speakers’ detailed reliance on subtle acoustic dimensions, 
and to manipulate exposure to distributions across them in 
both passive and active tasks. At this stage, observance of 
generalization of statistical learning in the absence of transfer 
to production is important in establishing that production is 
not simply a mirror of perceptual experience, according with 
other studies of statistical learning across speech production 
and perception (e.g., Kittredge & Dell, 2016; Schwartz et al., 
2012). Learning-related adjustments to the representations 
within the production system appear to be necessary.

In conclusion, passive exposure is sufficient to produce 
generalization of statistical learning in perception, but subtle 
task demands affect generalization. Inasmuch as the utility 
of implicit statistical learning over passive exposure is its 
ability to impact behavior, this highlights how important it 
will be to direct research toward better understanding how 
statistical learning statistical learning supports, and is influ-
enced by, task goals and demands.
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