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Statistical learning (SL) is typically assumed to be a core mechanism by which organisms learn covarying
structures and recurrent patterns in the environment, with the main purpose of facilitating processing
of expected events. Within this theoretical framework, the environment is viewed as relatively stable,
and SL “captures” the regularities therein through implicit unsupervised learning by mere exposure.
Focusing primarily on language—the domain in which SL theory has been most influential—we review
evidence that the environment is far from fixed: It is dynamic, in continual flux, and learners are far from
passive absorbers of regularities; they interact with their environments, thereby selecting and even
altering the patterns they learn from. We therefore argue for an alternative cognitive architecture, where
SL serves as a subcomponent of an information foraging (IF) system. IF aims to detect and assimilate
novel recurrent patterns in the input that deviate from randomness, for which SL supplies a baseline. The
broad implications of this viewpoint and their relevance to recent debates in cognitive neuroscience are
discussed.
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Reappraising the Role of Statistical Learning in
Cognition

Statistical learning (SL) has been taken to be a central mechanism
by which organisms learn recurrent patterns in their environment
(see Santolin & Saffran, 2018, for a review), from temporal
regularities in audition (e.g., Saffran et al., 1996), to spatiotemporal
regularities in vision (e.g., Fiser & Aslin, 2001) and haptics (Conway
& Christiansen, 2005), cross-situational sound–meaning relations
(e.g., Yu & Smith, 2007), implicit regularities in probabilistic
classification (e.g., Knowlton et al., 1994), and cross-modal motor
sequences (e.g., Kemény & Németh, 2017). Research on SL typically
assumes that learning of such regularities in sensory input is implicit
and unsupervised, occurring with mere exposure, not requiring
feedback (e.g., Santolin & Saffran, 2018), in contrast to supervised
learning in which reward feedback drives changes in behavior.1

Across this extensive literature, the role of SL is to detect and
assimilate the covarying structures in the environment, with the
main purpose of facilitating the processing of likely events in the
upcoming sensory input (e.g., Frost et al., 2015; Turk-Browne et al.,
2005; C. Yan et al., 2023). The assimilation of regular structures in
time and space, therefore, is typically assumed to be the goal of SL.
In the last 3 decades, an extensive body of research has focused on
mapping how learners acquire such statistical knowledge (e.g.,
Henin et al., 2021; Mareschal & French, 2017; Schapiro et al., 2017;
Siegelman et al., 2019; see Frost et al., 2019, for discussion). Here,
we argue for an alternative cognitive architecture, in which SL
instead is a subcomponent (albeit a key subcomponent) of an
information foraging (IF) system. The purpose of the IF system is
to detect changes in the environment, for which SL provides
continually updated baselines. The proposed cognitive architecture
is schematically portrayed in Figure 1.
We should emphasize at the outset of our discussion that there

is no formal agreed-upon definition of what SL phenomena
include and, therefore, what computational mechanisms they
involve. Some approaches argue that all (or almost all) learning is,
in fact, statistical (see Frost et al., 2019, for review). Hence, to be
clear, throughout this article we use the term “SL” to specifically
denote the well-researched robust learning mechanisms that
allow organisms to implicitly and unintentionally assimilate
recurrent patterns in their sensory input by mere exposure, in an
unsupervised manner, a mechanism which has been taken to be a
central device in mirroring the regularities of the environment. An
implicit tenet underlying this approach is that the environment is,
to a large extent, set and stable in terms of its structure, allowing
organisms to map its structural regularities through an implicit SL
process.
The IF approach builds on a fundamentally different view of the

environment. Its starting point is that across domains, statistical
regularities in sensory input are typically dynamic and continu-
ously changing. Hence, the primary goal of the system is to detect
these changes. The IF system thus aims to detect novel recurrent
patterns in the input that deviate from randomness and from past
baseline regularities, in the service of efficient and continuously
adaptive processing. In support of this proposal, we draw
primarily on examples from language, because this is the domain
for which SL theory has been most influential, but as we discuss
further on, the motivation and principles we describe apply more
generally.

The IF approach to cognitive architecture we put forward departs
from the conventional SL view across a range of important
dimensions, as summarized in Table 1, which also provides a
roadmap for this article. In the following, we explicate each of
these dimensions in detail, provide behavioral and neurobiologi-
cal evidence in support of the proposed architecture, discuss how
the IF approach aligns with important higher cognitive functions
such as curiosity and creativity, and outline a blueprint for a novel
research agenda to investigate IF.

The Ever-Changing Nature of the Linguistic
Environment

While the building blocks of a given language and their basic
patterns of co-occurrence in speech, sign, or print are typically
characterized as well-defined and rigid, their actual realization in
conversational context is messy, variable, and muddled, requiring
constant adaptation and accommodation. While there are of course
stable aspects to the linguistic environment at abstract levels of
description, deviations from central tendencies constantly occur at
the level of the actual input. These deviations signal high
informational value. Efficient language processing thus requires
that the constant changes in regularities be perceived rapidly,
allowing effective comprehension of the novel linguistic input.
This can be easily demonstrated in the domains of speech, print, or
sentence processing.

In spoken language processing, the inventory of speech sounds
comprising a language can be relatively well-defined, but the
statistical regularities in speech streams are characterized by varying
phonetic realizations. Speakers’ productions diverge due to variation
in physical characteristics (sex, age, size), social characteristics
(gender, social identity), dialect, accent, speech rate, vocabulary, and
cultural backgrounds. Listeners must not only constantly accommo-
date this variation to achieve phonetic constancy (see Luthra, 2024,
for a recent overview), but also simultaneously leverage the
information it provides for purposes ranging from talker identifica-
tion (e.g., Perrachione et al., 2009), to learning talker-specific
phonetic idiosyncrasies that improve later perception (e.g., Norris
et al., 2003; Nygaard & Pisoni, 1998), to making a surprising array
of physical and social inferences (e.g., Krauss et al., 2002; Munson
& Babel, 2007).

The predictability of word sequences significantly varies across
different age groups and in different linguistic environments. In
everyday conversations, speakers shift swiftly between different
registers and codes, adapting their style of talking to their
interlocutors, whether that be authority figures, like a police officer or
our boss, or more affiliative dialogic partners, like parents, children,
or friends (see Goulart et al., 2020). In such different linguistic
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1 Some neural network models—for example, simple recurrent networks
(Elman, 1990) and large language models (LLMs) such as GPT-3.0 (Brown
et al., 2020)—learn statistical patterns in language through self-supervised
learning, where the networks make predictions for what should come
next and use the subsequent actual input as indirect feedback on the
correctness of those predictions, adjusting their weights accordingly (see
Contreras Kallens et al., 2023, for discussion). Thus, self-supervised learning
is arguably a form of unsupervised learning and could be a plausible
candidate mechanism supporting SL. Interestingly, LLMs are able to
reproduce or emulate human language more closely, when they also receive
supervised learning from human feedback in addition to self-supervised
learning (as in GPT-Instruct and ChatGPT; Ouyang et al., 2022).
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environments, interlocutors’ language further tends to rapidly
adapt to context-specific parameters of the interaction at every
level, potentially mitigating those sources of variability (Garrod &
Pickering, 2004). In many cases, conversational partners’ speech
becomes more similar in terms of articulatory, acoustic, and prosodic
details (e.g., Kim et al., 2011; Lee et al., 2018; Pardo, 2006), syntax
(e.g., Bock, 1986), semantics (e.g., Dideriksen et al., 2023), and

kinetic alignment of head and hands (Trujillo et al., 2023). But in other
cases, interlocutors will deviate from one another to provide new
information when it is helpful to solve a particular task (e.g.,
Dideriksen et al., 2023; Trujillo et al., 2023; see Fusaroli et al., 2014,
for discussion). Speakers and listeners appear to attune exquisitely to
novel information in conversation, with speakers producing words
referring to new information for the first time with greater clarity than
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Table 1
Main Contrasting Features of SL and IF Approaches to Cognitive Architecture

Feature The statistical learning view The information foraging view

Role in cognitive system SL stands alone SL is a subcomponent of IF, providing a baseline
for detecting changes.

Nature of the environment Relatively stable regularities Dynamic, structural properties in flux
Nature of the learner Passive, absorbing regularities via implicit passive

learning
Active, exploring, interacting with and altering the
environment

Aim of the system Assimilate regularities Information foraging
Target of perception Expected events Unexpected events
End state When regularities are assimilated None; continuous foraging
Selectivity Nonselective learning regardless of information

value
Selective learning of informative regularities

Neurobiological characteristics Increased activation with increased regularity Indifferent to high regularity and to randomness
Individual differences Sensitivity to regularity Sensitivity to nonrandom changes in regularity

Note. SL = statistical learning; IF = information foraging.

Figure 1
Cognitive Architectures According to the SL View (Panel A) Versus IF View (Panel B)

(A)

(B)

Note. On the conventional SL view, the focus is on implicit learning of regularities of a relatively stable environment. On the IF view, the SL learning system
subserves the IF system by providing a baseline, and is informed by it regarding changes in regularities. Following informative changes in regularities, the IF
system diverts attention to novel dimensions of the environment; that is, the focus of IF is change or deviations from prior regularities, rather than regularity
itself. The second crucial aspect of IF is that while much learning may be implicit, the IF learner actively interacts with its environment, selecting or even
altering available information. SL = statistical learning; IF = information foraging.

STATISTICAL LEARNING SUBSERVES A HIGHER PURPOSE 3



words referring to given (old) information (e.g., Fowler & Housum,
1987). Speakers (and writers) also appear to strive to maintain
“uniform information density” over time, via word choices and
prosodic structure (e.g., Aylett & Turk, 2004; A. F. Frank & Jaeger,
2008; Genzel & Charniak, 2002; Gibson et al., 2019), even to the
level of discourse properties (Asr & Demberg, 2015). Speakers and
listeners are sensitive to dynamic changes in discourse-relevant
semantic and phonological neighborhoods even as they alter those
neighborhoods themselves (e.g., by settling on a shared vocabulary in
a novel task, as in Brown-Schmidt & Tanenhaus, 2008—see Brown-
Schmidt et al., 2015, for a review). Hence, the statistical properties of
the speech environment are anything but fixed or stable, and the main
game in conversational context is to perceive and adapt to the ever-
changing novel structure—not to simply assimilate stable aspects of
the environment.
A similar state of affairs characterizes reading. Predictability

of letters within words is to a large extent stable, constrained by
orthographic and phonotactic rules (e.g., Siegelman, Kearns, &
Rueckl, 2020), and linguistic form enables some general predictions
at higher levels of abstraction (e.g., Snell & Theeuwes, 2020).
However, beyond this, readers are constantly faced with novel
regularities. The predictability of printed words, which drives ocular
movements during text reading, changes significantly as a function
of variation in writing style, the period when the text was written,
and the type of text being processed, from movie subtitles to
newspapers. Efficient processing thus requires the reading system
to detect and adjust to such changes as rapidly as possible. Recent
research tracking eye movements indeed shows that readers
rapidly perceive and adapt to specific syntactic structures
characteristic of the writing style (S. Yan & Jaeger, 2020), and
to expected sequences of word-lengths from sentence onset in a
given text, to optimize ocular movements (Snell & Theeuwes,
2020). For example, when presented with sentences of uniform
word-length, readers adjust their preferred saccade length
incredibly rapidly; just a few exemplars of a given word-length
suffice (Cutter et al., 2017, 2018). Such context-dependent
adjustments are well-documented for speech as well. If listeners
hear speech segments that are intentionally made ambiguous,
with the lexical context providing disambiguation, they rapidly
recalibrate their specification of the segments accordingly (e.g.,
Norris et al., 2003). Language users also attune rapidly to changes
in phonotactics when they produce speech (Dell et al., 2000) or
simply listen to it (e.g., in the context of a lexical decision task;
Onishi et al., 2002).
In the same vein, syntactic structures in spoken and written

language are anything but uniform, reflecting the immense
creativity characterizing human linguistic interaction (Christiansen
& Chater, 2022). These distributional changes have a direct
impact on online sentence processing (Wells et al., 2009). In
addition, readers must also contend with the different distribu-
tions of syntactic regularities associated with different genres of
writing (Snell & Theeuwes, 2020), from academic treatises and
newspaper articles to fictional books and blog postings (Goulart
et al., 2020).
To summarize, while linguistic input allows for predictions at

various levels of abstraction, speakers, listeners, and readers must
constantly adapt to novel, ever-changing structures in the input
stream, rather than merely encoding stable ones.

The Active Nature of the Learner

The main appeal of SL is in the robustness and power of implicit
learning mechanisms, which are already operating in newborns
(e.g., Bulf et al., 2011), and which do not require overt attention
(Saffran et al., 1997). In the latter seminal study of Saffran and
colleagues, children showed learning of transitional probabilities of
speech sounds heard in the background while they drew pictures. In
typical experimental studies of SL, learners are not informed about
the existence of statistical regularities, nor warned of a subsequent
test of their knowledge of them. The exposure phase involves
passive listening or viewing of continuous input streams, yet
participants (on the average) consistently show learning of the
recurrent patterns in the input. These results paint the statistical
learner as an efficient passive absorber of environmental regulari-
ties, which are assimilated via robust implicit learning mechanisms.
In Figure 1, this view is reflected in the “sea sponge metaphor”: The
learner is immersed in statistical regularities and assimilates them
(see Tandoc et al., 2024, for a similar description).

The IF perspective does not dispute the existence of implicit
unsupervised learning of recurrent patterns; indeed, such learning
has been demonstrated from humans and other primates to songbirds
(e.g., Lu & Vicario, 2014; Santolin & Saffran, 2018) and serves as a
key subcomponent of IF. Crucially, though, the focus of IF is on
the learner as an active explorer, an information forager, who
registers recurrent patterns, but actively intervenes in regularity
learning by exploring, interacting with, and altering its environ-
ment. In Figure 1, this view is depicted in the octopus metaphor, in
contrast to the passive sea sponge. Regularities inform the learner
where to forage—away from highly predictable patterns and away
from randomness related to simple noise (i.e., the environment is
not only dynamic but also noisy), allowing it to direct attention and
action to times, places, and nonspurious events with potentially
high informational content or reward. Deviations from regularity
are one important source (among many) that guide perception,
attention, and action in service of adaptive learning. Note that
while the sponge is a metaphor for the system(s) comprising
passive SL through mere exposure, the octopus is a metaphor for
both SL system(s) and the mechanisms supporting IF. These
comprise the organism itself—its body and perceptual/cognitive
systems can be actively and intentionally directed toward information
seeking and learning.

Our take is that regularity learning, like all aspects of cognition,
is inextricably linked to perception, action, and the environment
(Sheya & Smith, 2019), as well as neural and genetic activity
(G. Gottlieb, 2007; J. Gottlieb & Oudeyer, 2018). Theoretical
perspectives such as dynamical system approaches to develop-
ment (e.g., Smith & Thelen, 2003) and probabilistic epigenesis
(G. Gottlieb, 2007), emphasize bidirectional interactions among
all these levels. Hence, a learner is not simply shaped by the
environment and its regularities. An active learner alters the
environment through their actions, whether in speech communi-
cation as we have described above, or, say, learning words or
linking them to objects. For example, as Smith, Yu and colleagues
have documented, an infant’s actions modulate the multimodal
context for language learning. When infants hold and manipulate
an object, they change the visual and haptic context, and such
actions, as well as where they direct attention in the visual world,
can also modulate the language produced by adults around them
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(e.g., Slone et al., 2023; Suanda et al., 2017, 2019). Similar
interactions with people around them influence other domains of
learning (e.g., Karmazyn-Raz & Smith, 2023; Smith et al., 2018;
Suarez-Rivera et al., 2019; Yu et al., 2021).
How the learning of regularities is contingent on active responses

has been recently shown in the singleton paradigm, where
participants search for a shape singleton target and are asked to
respond to it. Li et al. (2024) reported that if a target’s location is
predicted by the location of a target in the preceding trial, the
execution of an arbitrary key response for both trials of the pair is
needed for learning the across-trial statistical regularity. Passively
attending to target locations did not result in any learning of the
target’s spatial contingencies.
To clarify, the active nature of the learner does not imply

conscious awareness or meta-awareness. It implies that learners do
not automatically absorb the recurrent patterns in sensory input, but
continuously interact with their environment and change it, whether
consciously or not. The earliest ways in which infants shape their
environments are subtle and likely occur in the absence of any
awareness (when an object or entity in the visual world captures an
infant’s attention, adults are more likely to speak about it). However,
over experience, infants increasingly leverage this to intentionally
shape adults’ behavior by directing their gaze or body (by pointing,
approaching, or handling) selectively at aspects of the world they
find interesting, especially deviations from regularity—including
deviations they themselves cause.

Aim of the System

Given the ever-changing environment, the IF approach to
cognitive architecture assumes that the priority of cognitive systems
lies in continuously detecting novel co-occurrences and other coherent
covariations in the input. It regards organisms as “information
foragers” (see Pirolli & Card, 1999, for coining this concept), where
“information” means that a meaningful change in patterns of co-
occurrences in sensory input has occurred. Our approach in this
context is related in part to the information theoretic notion of
information (Shannon, 1948), which ties the informational load that
events carry to the inverse of their predictability. By this view, highly
predictable events carry very little information. However, in the
context of regularity learning, random events are also uninformative.
Hence, an information forager discounts random events as well as
highly predictable events since both carry little information. If the
primary aim is to detect the novel regularities in the environment,
this requires a mechanism that generates a reference against which
changes in input regularities can be perceived. Conventionally, SL has
been seen as a mechanism aiming to perceive and assimilate stable
structural regularities in the environment. In the IF approach, SL
mechanisms that track statistical regularities have a different core
purpose: They provide the baseline from which a change in co-
occurrence can be detected. To be clear, we consider the detection
of novel regularities and the generation of baseline references as
functionally distinct at the cognitive level of description. As
discussed further below, extant data raise the question of whether
they can be implemented within one computationally and neurobio-
logically unified mechanism.
Consider a typical visual SL task that presents a continuous

stream of shapes or artificial letters appearing in triplets, where
elements within triplets are fully predictable, and elements

following triplet boundaries are less predictable (e.g., Fiser &
Aslin, 2002; Saffran et al., 1996; Siegelman & Frost, 2015; Turk-
Browne et al., 2005). Conventional SL theory assumes that
learning serves to facilitate processing of the predictable stimuli
(see e.g., Siegelman et al., 2018; Turk-Browne et al., 2010). Some
recent findings, however, suggest that learners in such tasks track
novelty. For example, a study that tracked electroencephalogram
activity during the continuous presentation of triplets of visual
stimuli revealed that increased pattern repetitions resulted in
increased beta-band activity, which has been associated with
sensory prediction (e.g., Arnal & Giraud, 2012) and top-down
modulation (e.g., Hipp et al., 2011). Importantly, however, this
top-down modulation was present at triplet transitions, where a
novel shape is about to appear, and not within triplets, where shapes
are predictable (Bogaerts et al., 2020). As we further discuss in detail,
the suggestion that probabilistic knowledge can upweight surprising
rather than predictable events, favoring novelty over familiarity, is now
acknowledged across different domains of cognitive neuroscience.

The Target of Perception

SL theory assumes that learning regularities in the environment
enables their exploitation by facilitating perception of and action
upon expected events. As such it considers likely recurrent events to
be the foremost target of perception and learning. In contrast, an IF
approach holds that while predictable events can be favored by
various top-down mechanisms, unexpected patterns of events
constitute informational novelty, and are, therefore, the main target
of perception. Indeed, as early as Pavlov (1927), orienting behavior
has been taken as a primary mechanism aimed at detecting the
slightest change in the environment. Further, it was argued that
recurrent presentations of stimuli result in neuronal representations
that encapsulate the stimuli’s specific features, so that all sensory
input could be compared with the existing neuronal models, and a
mismatch between novel input, and the models would result in
an orienting reaction (Sokolov, 1963). The competition between
baseline habituation and novelty has been shown to drive orienting
behavior and foraging for visual information (e.g., Sirois &
Mareschal, 2004).While there is extensive variability in the definition
of what constitutes “novelty” in this context (see, e.g., Gati & Ben-
Shakhar, 1990, for discussion), the view that neuronal models of
recurrent and expected events serve as a baseline to flag novel and
unexpected recurrent events converges with our view (and see, e.g.,
Egner et al., 2010; Kumar et al., 2017; Meyer & Olson, 2011; Richter
et al., 2018, for evidence of surprisal detection in the neural domain).

Recent work on attention provides additional support for the
IF approach. The learned distractor suppression literature shows
that when the distractors in a series of search displays frequently
occur in the same location, they capture attention significantly less
(see Theeuwes et al., 2022, for review). These results suggest that
attention is modulated by distributional regularities in the environ-
ment, prioritizing novelty. Only distractors occurring at unexpected
locations compete strongly for attention. Learned suppression of
predictable distractors has also been observed for distractor features.
For example, a distractor in a specific color loses its ability to capture
attention with repeated exposure (Vatterott & Vecera, 2012; see Geng
et al., 2019, for review). In addition, if distractors are highly frequent
this can eliminate capture, even if their location and features are
unpredictable (Bogaerts et al., 2022; Won et al., 2019). Consistent
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with our approach, it seems that when distractors become part of the
baseline, and are no longer novel or surprising, they become less
salient. Similar effects may be at play in the speech domain.
Understanding what a stranger has said is easier in a “cocktail party”
scenario when simultaneous, competing speech is produced by a
highly familiar talker (one’s spouse) versus when the competing
voice is that of a novel talker (Johnsrude et al., 2013). Moreover,
frequently occurring sounds lead to reduced perception of similar
sounds, an effect that has been extensively studied in the selective
adaptation literature (Eimas & Corbit, 1973; see Samuel, 1986, for a
review).

The System’s End State

The successful assimilation of the structural regularities present in
the environment is typically viewed as the SL system’s end state.
While SL naturally assumes that the learned regularities can be
continuously updated given gradual changes, the view is that the
system has done its job, when it has learned the current regularities
in a given domain. This view is well reflected in the experimental
tasks devised to probe SL, which by and large, do not engage in
change, perception of change, adaptability to change, and continuity
(see Frost et al., 2019, for a review). Rather, participants are
typically presented with an input sequence and then tested on
whether they have learned the regularities that were embedded
therein. Learning is inferred when there is evidence that participants
have assimilated the structural regularity embedded in the input
stream, whether visual or auditory (e.g., Siegelman et al., 2017).
While, admittedly, these tasks were initially designed to provide a
proof of concept that the statistical regularities in the input stream
can be learned, in our view, they implicitly entrenched theoretical
approaches to SL to consider it as a system whose end state is to map
the existing structure of a stable environment.
In contrast, IF assumes ongoing foraging for novel information,

and thus that there is no end state. In the domain of language, given
the dynamic changes in the input, IF requires the perceiver to be
constantly adapting to what is different. For example, phoneme
perception is immediately impacted upon encountering a new voice
that shifts in mean acoustic spectra (Holt, 2005; Huang & Holt,
2012), or when hearing a foreign accent in which acoustic input
dimensions differ in their correlation (Hodson et al., 2023; Idemaru
& Holt, 2011). Indeed, as we discuss further below, given that most
SL experiments involve stimuli that are often very novel, these
experiments may be better construed as implicating, at least initially,
sensitivity to new structure.
Of course, at the end of the day, organisms do represent

knowledge about stable structural properties of the environment,
language included, and this knowledge facilitates perception and
action. From the IF perspective we are proposing, SL mechanisms
are continuously at work, and if baseline regularities are recurrently
registered across time, without much change, this information will
be represented (subserving interaction with the environment; see,
e.g., Schapiro et al., 2017) and updated to reflect gradual changes
that may emerge over time. One could argue that, given this, IF
subserves the SL system rather than the other way around. However,
since the statistical regularities in sensory input are dynamic and
continuously changing, adaptation to these novel changes is the
system’s primary goal. Importantly, how much knowledge of stable
real-world linguistic regularities is acquired from mere exposure to

input regularities through implicit and unsupervised SL mechanisms,
and towhat extent additional kinds of learning (e.g., supervised)might
be necessary, remains to be determined (see Bröker et al., 2024, for
review).

For example, concurring with our IF octopus metaphor, the
alignment of statistical input regularities with active behavior amplifies
learning above and beyond what is possible across passive exposure
alone. An illustrative example comes from novel nonspeech sound
clusters designed to mimic the statistical structure and complexity of
English consonant categories. These categories are not acquired
with passive exposure (e.g., Emberson et al., 2013; Roark et al.,
2022; Wade & Holt, 2005). Nonetheless, they are rapidly learned
across the same time course when they are embedded in an unrelated
active task structured such that the sounds are not essential to the
task, but learning their structure supports success. This learning
robustly generalizes to novel exemplars (Roark et al., 2022), alters
cortical representations (Leech et al., 2019), and persists over days
(Gabay et al., 2023), even without knowledge that categories exist.
The structure is discovered via its utility in supporting behavior.
Active engagement in a rich, multimodal perceptual environment
(typical of most natural behaviors) may encourage foraging for
information that directs learners to specific statistical regularities
among the essentially infinite informational contingencies that exist
even in simple real-world environments (Roark et al., 2022). Thus,
regularity that is difficult to extract across passive listening is readily
learned, perhaps in a form of “self-supervised” learning (Lim et al.,
2019), by virtue of coarse alignment of statistically structured input
with behaviorally relevant actions, objects, and events.

In this context, both endogenous generation of feedback as in self-
supervised learning and exogenous (supervised) feedback fit with
the view that the learner actively engages with the environment. We
assume that the division of labor between the different learning
mechanisms is likely to differ across domains (e.g., reading, syntax,
second-language acquisition), and potentially across individuals.
For example, explicit instruction and feedback play a significant role
in reading acquisition (see Rastle et al., 2021), which is not the case
for native spoken language acquisition.

Selectivity

In conventional SL theory and in typical SL research, the
structural regularities in the environment are defined independently
of whether they are informative to the learner and of the specific
context of learning (e.g., Fiser & Aslin, 2002; Lelonkiewicz et al.,
2020). Indeed, implicit passive learning of regularities present in
sensory input (whatever computational mechanisms are assumed) is
taken to be nonselective, in the sense that the system is set to
assimilate and absorb the statistical co-occurrences present in the
input through mere exposure, whatever the regularity is, regardless
of its informational value to the learner. While having a mechanism
that registers recurrent regularities nonselectively might have some
advantages in terms of simplicity, we argue that passive, nonselective
SLmechanisms are limited in their usefulness for driving higher order
behavior. Instead, their importance comes from their role as a
baseline-providing subcomponent of a higher order IF system, which
is selective. The IF system must be selective, because any given
environment presents the learner with a myriad of possible
regularities, and it is the current context that determines which are
“informative” and which are not for a given organism.
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The importance of selectivity and the role of contexts has not
gone completely unnoticed within the domain of SL research. For
example, a good demonstration that learners are not passive
absorbers of regularities in sensory input and that the informa-
tiveness of the signal modulates learning is children’s ability to
assimilate regularities such as ABB (e.g., generalizing le-di-di to
ko-ga-ga; see Marcus et al., 1999). Marcus et al. (2007) showed
that when children hear ABB in speech sounds, they learn the
patterns, but when they hear ABB in nonspeech sounds, such as
sine-wave tones, they do not. Importantly, in a subsequent study,
Ferguson and Lew-Williams (2016) demonstrated that if children
were previously exposed to a video of two persons communicating
in tones (a communicative context), learning does occur for tones,
just as it does for speech sounds (see Saffran et al., 2007, for a
related finding with images children found interesting [dogs] vs.
not [shapes, used by Marcus et al., 2007]). This shows that there
are preferences regarding what regularities should be attended to
and what regularities can be ignored. The context determines what
in the environment carries important information for a given species
and what does not. In this example, regularities such as speech
sounds that subserve communication within humans appear to be a
primary filter for selection.
This tension between informative and noninformative regularities

has also been acknowledged in the domain of perception with a
similar argument; it is computationally infeasible to sample all
available information in the very complex real-world environment
(Braunlich & Love, 2022). Learning is selective because IF requires
learners to eventually ignore regularities in the input that are
uninformative (with respect to goals relevant for the organism to
thrive in its niche) and focus on the informative ones. Note that
making sense of which variations in the input are informative and
which are not in itself requires learning. In fact, an essential part
of development can be regarded as mastering this distinction. For
example, very young infants are sensitive to subcategorical
(subphonemic) variations in speech (allowing them to distinguish
nonnative speech sound contrasts, such as the /r/–/l/ distinction for
Japanese infants), but during the first year of life they learn to
divide acoustic-phonetic space in ways that are optimized for the
language they are immersed in, and they lose the ability to
distinguish most contrasts that are not relevant for that language
(e.g., Werker et al., 1981). In the domain of reading, proficiency
has been shown to be related to the extent to which a reader relies
on systematic (e.g., orthography to phonology) regularities versus
spurious (e.g., arbitrary semantic cues such as imageability)
regularities that are characteristic of the orthography (Siegelman,
Rueckl, et al., 2020).
Successful SL will result in lasting representations aligned with

language regularities. This internal knowledge provides another
form of selectivity for IF. In lexically mediated perceptual learning
(Norris et al., 2003), informativeness is seen in at least two ways.
First, shifts in phoneme boundaries seem typically to be learned in
a talker-specific way (segregating novel statistics experiences in
speech from a particular talker from baseline, rather than assuming
the overall baseline for the language has changed; e.g., Eisner &
McQueen, 2005). Second, learning is blocked when an alternative
explanation is available for phoneme boundary shifts (e.g., seeing
that the speaker has a pen in her mouth; Kraljic et al., 2008). In
dimension-based SL in speech, individual differences in acoustic
cue weighting (a reflection of long-term speech representations)

predict how local speech input regularities shift speech categoriza-
tion (Wu & Holt, 2022). Thus, SL under control of IF is selective,
can be adaptively conservative in its scope, and can involve foraging
of internal representational space as well as local input.

Neurobiological Characteristics

In the conventional view, SL serves to provide the organism with
an internal mirror of external regularities in the environment, so that
greater external regularity should lead to faster learning. From a
neurobiological perspective, the assumption of this view is that the
more regularity there is in the input, the more neural activity there
should be in the medial temporal lobe (MTL) as well as in early
sensory cortices, leading to faster assimilation of the external
statistics (e.g., Schapiro et al., 2017). IF systems operate
differently, because both full randomness and full regularity are
uninformative, as they do not represent meaningful novelty. This
view of a “Goldilocks” range of information concurs with behavioral
findings showing that children direct attention to events that are
neither too simple nor too complex (e.g., Kidd et al., 2012; see also
Forest et al., 2022, for adults). Hence, the neural architecture of an IF
system should not be responsive to randomness, nor to completely
predictable patterns. Indeed, neuroimaging studies have identified
neural populations that track uncertainty nonmonotonically following
an inverted U-shaped function (with stronger response for moderately
unexpected inputs, but low response for both highly expected and
highly random inputs), in both the visual and auditory cortices
(Hasson, 2017; Nastase et al., 2014). These neural systems do not
respond to full randomness or full regularity as these are alike in
terms of informativeness (or lack thereof); instead, they are tuned to
the moderate regularities in the sensory input.

Extensive neuroscience work has investigated the interconnection
of the reward system and salience network (Seeley et al., 2007) with
the violation of expectation. For example, substantial research has
tied the amygdala, insula, and dorsal anterior cingulate cortex to
computations flagging novelty and surprise (e.g., Kolling et al.,
2016; see Vassena et al., 2017, for review), thus potentially
mediating IF. A different body of evidence comes from work on
reinforcement learning and the dopaminergic system showing that
novel and/or infrequent information is encoded by dopaminergic
neurons in the striatum (e.g., Schultz et al., 1997). This research,
however, has mainly focused on prediction errors regarding
upcoming reward given changes in its probability (e.g., Behrens et
al., 2007), and not on general deviation from baseline regularity in
implicit unsupervised learning. Hence, the question of whether
and to what extent IF is rewarding beyond paradigms of supervised
learning requires further investigation.

A hint comes from neuroimaging of the learning of nonspeech
categories, described above. Recall that these regularities are not
learned with passive exposure but are robustly acquired when the
regularity aligns with behavior in an active task (Gabay et al., 2023;
Roark et al., 2022; Wade & Holt, 2005). Examining such learning
with fMRI reveals that the posterior striatum (especially caudate
and putamen) is sensitive to statistical regularity. When actions and
events in an active task incidentally align with sound categories that
are defined by well-structured statistical regularities, the posterior
striatum is recruited to a greater degree than it is among participants
who engage in the same task with statistically less well-structured
categories. The magnitude of striatal activation is associated with
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better behavioral learning outcomes. Thus, when statistical regulari-
ties align with actions and events in the environment, “self-
supervised” learning signals available via the posterior striatum may
boost learning beyond what is possible through passive exposure
alone (Lim et al., 2019).
Along with our present IF approach, a recent framework tying

learning and memory to curiosity (the prediction, appraisal, curiosity,
and exploration [PACE] framework; Gruber & Ranganath, 2019)
demonstrates how, in general, prediction errors and detection of
novelty increase attention and exploration through modulation of
activity in dopaminergic circuits. Hence, while SL research has
typically focused on the role of the MTL in registering regularities
mainly through hippocampal activation (e.g., Schapiro et al., 2017), an
IF approach would incorporate a larger set of neurobiological
mechanisms that simultaneously consider (a) sensitivity to deviation
from regularity, (b) reward systems, and (c) memory.

Individual Differences

Both SL and IF accounts assume that there are individual
differences in pattern sensitivity (see Frost et al., 2015; Siegelman et
al., 2017 for discussion). Since the environment is not only dynamic
but also noisy, the challenge to any learning system, SL and IF alike,
is to distinguish meaningful patterns related to regularities, from
those related to noise. Separating noise from signal requires
something akin to a time window across which random noise will
average out based on not having any predictive value, whereas
regularity of the signal will remain. If the sampling window is too
short, the system will change/reorient/relearn with every bit of
fluctuating noise. If the time window is too wide, shifting patterns
could go unnoticed. One possibility is that such a sampling window
may be implemented in a literal fashion, as in a time series analysis.
However, this may not be a likely solution, because learners cannot
hold on to multiple input patterns before processing them, and our
limited memory abilities leaves little room for backtracking (cf. the
now-or-never bottleneck, Christiansen & Chater, 2016). Instead, we
lean toward a more metaphorical interpretation of the sampling
window, such as what might be observed in recurrent networks
trained on sequences. Here, there is no explicit sampling window,
but coherent signals will triumph over noise because consistent
patterns (relative to dynamic contexts) will be the primary driver of
weight changes over time. Interestingly, work by Karuza et al.
(2016) indeed suggests that the assimilation of structure leads to
decreased environment sampling, causing learners to overlook
pattern shifts and to display a bias toward their initial experiences
(see also Bruner & Postman, 1949). We assume that individuals
differ in this respect, that is, how they optimize their “sampling
window” in a given context.
Although research from an SL perspective targets individual

sensitivity to detecting regularities (e.g., Misyak et al., 2010;
Siegelman & Frost, 2015), IF targets individual sensitivity to
detecting changes in regularity. Given that the environment is
typically dynamic rather than stable, individuals are expected to
differ in their perceptual sensitivity to the ongoing dynamic changes
in regularities in sensory input, and their efficiency in acting on these
changes. This again would be tied to differences in optimizing the
sampling window in a given context. Whereas it is possible that
sensitivity to stable regularities goes hand in hand with sensitivity to
change, it is also possible that these would be two dissociable

dimensions of interindividual variance. Note that IF also assumes
substantial individual differences in sensitivity to informativeness.
These differences are found not only across development (efficient
IF requires the ongoing learning of which regularities to assimilate
and which to ignore) but also differentiate individuals at a given
point in development (see Forest et al., 2023; Saffran & Kirkham,
2018, for reviews of changes in regularity learning across develop-
ment). Thus, we posit that substantial individual differences should be
revealed in the ability to perceive and learn which continuously
encountered variations in the input are relevant or informative and
which are not.

This perspective also offers novel avenues for understanding the
wide individual differences in response to interventions in clinical
populations. ADHD (attention deficit hyperactivity disorder), for
example, has been tied to heightened novelty seeking which leads to
the suboptimal reward-related decision-making characteristic of this
population (Lieder et al., 2019). For autism, findings have been
mixed. Comparing trial-by-trial performance in a serial detection
task, neurotypical participants were found to overweight recent
statistics and quickly update their internal sensory models, which
is adaptive in changing environments, whereas individuals with
autism were found to rely atypically heavily on long-term statistics
(Lieder et al., 2019). Other studies, however, provided evidence
for faster rather than slower updating of internal models by
individuals with autism (Goris et al., 2022; Lawson et al., 2017).

Role in the Cognitive System

Here, we come to an important distinction regarding cognitive
architecture and an important clarification: Per our Figure 1, IF
does not preclude mechanisms of SL and does not aim to replace
SL as a theoretical construct. Rather, while conventional SL theory
regards SL as a stand-alone mechanism, from our perspective, SL
computations form a subcomponent of IF, with SL playing a
critical role in providing baselines against which change can
be detected. This distinction is a corollary of the view of the
environment as being fundamentally dynamic, with the changes in
regularities as the main target of perception. To identify such
changes, a baseline of current covariation is needed, from which
novel information can be detected. Hence, per our view, SL is a
primary mechanism that nonselectively attunes the system to
regularities in sensory input, but in service of the higher purpose
of novelty detection. While we have argued so far that IF is a
necessary component of learning regularities, as we outline below,
from a wider perspective, we consider IF to be a unifying principle
that underlies more complex behavior such as curiosity, exploration,
and creativity. This perspective opens a novel set of questions
regarding how SL and IF interact, and what outputs they produce, to
enable efficient perception and action in a dynamic and ever-
changing environment.

One System or Two?

An important theoretical question is whether registering recurrent
regularities in the input for establishing baselines (SL), and
sensitivity to changes in regularities that deviate from baseline (IF),
require two independent and distinct systems, or whether one system
can account for both. In other words, we ask whether a mechanism
that registers recurrent regularities in sensory input as established by
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SL research could also at the same time allow for the fast
accommodation of changes therein.
One could argue, for example, that a unified Bayesian perspective

could, in principle, accommodate both SL and IF. In a Bayesian
framework, if the environment is inherently everchanging, then the
prior distribution of the perceived regularities would become less
and less informative. With a relatively less informative distribution,
deviating evidence (i.e., changes in regularity) has substantial
weight, thereby significantly changing the posterior distribution and
leading to increased sensitivity to novelty, aligning with our IF
approach. In contrast, if the environment is stable and characterized
by recurrent regularities, this would result in increasingly strong
priors for expected events. Strong priors would lead to facilitation in
the perception and/or processing of likely events in the input (e.g.,
Friston, 2005, 2009, 2010; Kok et al., 2012), aligning with the
conventional SL approach and its empirical findings. The main
appeal of such an architecture is that one unified system generates
different behaviors to the extent that the environment is stable versus
ever-changing in a given domain.
While this Bayesian approach has the advantage of parsimony, it

predicts, for example, that the more exposure a learner has to a
repeated set of regularities, the less weight a surprising deviation
from this pattern will have in updating the posterior distribution.
This is because repeated regularities produce increasingly strong
priors, so that substantial evidence is eventually required for
updating beliefs about the structural properties of the input.2 This
goes counter to the prediction we would make based on our IF
account. IF argues that effective novelty detection and behavioral
adaptation on the basis thereof, take place when there is a violation
of structure in a sofar stable patterned environment (which has
served as a baseline). In general, humans and other organisms adapt
very rapidly to changing statistics while seeming to provisionally
segregate changing statistics from regularities learned over the long
term (e.g., Dell et al., 2000; Kraljic & Samuel, 2005; Onishi et al.,
2002) and link them causally to contexts (e.g., Kraljic & Samuel,
2011). Evidence shows that detection and adaptation to deviation
from recurrent regularities is exceedingly fast regardless of lengthy
past experience. For example, participants were found to adjust their
preferred saccade length (which reflected their prolonged reading
experience) when presented with sentences containing words with a
uniform word-length, when they had only one trial to adapt (Cutter
et al., 2018).
While we opted to exemplify this problem using Bayesian terms,

we should emphasize that virtually any learning system will face a
challenge when it has been immersed in very strong regularities, and
those regularities begin to change: Systems will respond sluggishly
to changes in a previously highly regular environment. For example,
a neural network (e.g., a simple recurrent network; Elman, 1990,
1991) may require substantial experience to overcome previous
learning, and it might well lose significant aspects of prior learning if
they are no longer reinforced (so-called catastrophic interference;
Bower et al., 1994; McCloskey & Cohen, 1989)—a phenomenon
that is not generally observed in biology. This suggests that a
system that targets the tracking of stable regularities, and a system
that prioritizes novelty detection over stable regularities, might
operate with different computational mechanisms.
This discussion resonates with our initial claim that a theory

of learning regularities should first consider the nature of the
environment that is the object of learning. We take it as evident

that a computational mechanism tracking regularities in the input
could naturally assimilate gradual and slow changes, as original
patterns will recur but at lower and lower frequency, and novel
patterns will emerge at a higher and higher frequency. However, if
the input is characterized by abrupt changes in regularities which
would flag informational novelty, and the target of perception is
precisely these changes, then slow adaptive learning mechanisms
would probably not suffice.

This perspective raises important questions that should be the
focus of future empirical and computational research efforts: What
is the overlap in mechanisms that underlie the assimilation and
updating of baseline regularities and those involved in detecting
novel regularities? How do they interact with one another and
with what brain networks? Are different behavioral phenomena
indicating sensitivity to novel regularities (spanning different
cognitive domains and different timescales of adaptation) all tapping
into one and the same IF system? Finally, are representations
of baseline regularities overwritten/adjusted by IF, or do the
representations of baseline regularities and those of novel regularities
coexist? As we outline in the following section, these questions
regarding regularity learning are echoed across other domains in
cognitive science.

Parallel Debates Across Cognitive Neuroscience

Since von Helmholtz’s (1863), cognitive neuroscience has grappled
with how sensory input and prior knowledge (expectations) interact
to establish a percept (e.g., Friston, 2009; Geisler & Kersten, 2002;
Heilbron & Chait, 2018). Contemporary studies examine how
expectations are established (Jabar & Fougnie, 2022), how they shape
behavior and neural response (Egger et al., 2019), and, importantly,
how they change in a world with dynamic, fluctuating regularities
(Hodson et al., 2023). Whereas this article centers on SL, parallel
debates on the importance of novelty are seen in multiple domains of
cognition.

The most relevant framework is that of predictive processing.
This theoretical approach to cognition views the brain as a Bayesian
inference machine, where predictions regarding sensory input are
continuously made to minimize free energy, a proxy for uncertainty
and surprise, thereby facilitating perception and action (e.g., Friston,
2005, 2009, 2010). While we have discussed the problem of
exceedingly fast adaptation with reference to a Bayesian perspective
regarding enhanced sensitivity to changes in regularities, parallels
between current theories of predictive processing and our IF view
certainly exist. Predictive processing, similar to IF, regards learners
as active in the sense that they continuously make inferences, and it
highlights the role of explorative behavior in learning (e.g., Friston
et al., 2016, 2017; see Schwartenbeck et al., 2013, for discussion).
Like IF, predictive processing centers on adaptation, offering
computational mechanisms for it through the notion of minimizing
prediction errors and a continuous process of updating priors.
Given this, both frameworks reject the idea of an end state, when
the environmental regularities have been assimilated. However, an
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2 It should be noted that the magnitude of surprise can be greater when
encountering a highly unexpected input in the context of a strong prior
(characterized by a narrow distribution) compared to a weak prior
(characterized by a broad distribution). This is due to the potentially larger
discrepancy between the unexpected input and the concentrated probability
mass of a strong prior.
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important basic difference remains. While models of predictive
coding also offer computational accounts for novelty seeking,
curiosity, and creativity (e.g., Schwartenbeck et al., 2013; see Clark,
2013, for discussion), in essence, they center on the notion of
minimizing surprisal, while IF centers on the prioritization of
changes in regularity. This distinction echoes our above
discussion on one versus two systems.
In the domain of visual perception, the contrast between

prioritizing expected input (as in the SL approach) versus
upweighting novel and surprising input (as in the proposed IF
approach) is discussed in the context of sensory perception of
unitary events versus sensory-motor predictions. This debate,
dubbed the perceptual prediction paradox (see Press et al., 2020),
outlines the difference between, say, perceiving a cup, which
requires fast recognition of a familiar object, versus sensing the
cup slipping from one’s grip, which requires fast detection of
deviation from what is expected regarding this object in terms of
sensory information.
From a neurobiological perspective, a key signature of expectations

is a weakened neural response to stimuli that are anticipated (see de
Lange et al., 2018; Heilbron & Chait, 2018, for reviews). There
are, however, different accounts of the specific neural mechanism
responsible for this suppression, which directly relate to whether
perception tilts toward the input we expect, or if it instead prioritizes
unexpected and novel input (see Press et al., 2020 for discussion).
According to sharpeningmodels, neural populations that are not tuned
to the anticipated stimulus are particularly affected by expectations,
resulting in a neural response that is overall diminished in magnitude
but carries a more precise representation of the stimulus (e.g., Bell
et al., 2016; Kok et al., 2012). This “sharpening” process biases
perception in accordance with the perceiver’s expectations and is
consistent with data demonstrating that predicted events are perceived
with greater clarity and detected or processed faster, as typically
assumed in SL theory. In contrast, damping models propose that
neural populations that are tuned toward an expected stimulus are
suppressed, leading to reduced cortical activation for expected input
(Blakemore et al., 1998; Summerfield & de Lange, 2014). This leads
to the prioritization of novelty, as the brain now favors the processing
of surprising information, per an IF approach.
How these two seemingly incompatible explanations (and the

data supporting each) can be reconciled is still a matter of debate (see
Richter et al., 2022 for discussion). While some theoretical accounts
hypothesize that sharpening and damping can occur in parallel in
different neural populations (Friston, 2005), others propose different
time courses for sharpening and damping so that initial processing
favors the expected, but later processing highlights signals that
depart from these expectations to allow us to accommodate change
(e.g., Press et al., 2020). These proposals for reconciliations,
however, are silent regarding how the trade-off between prediction
and novelty detection is modulated by context, per our IF approach.
The alignment of input statistics with active behavior may play
an important role in such modulation (Lim et al., 2019; Roark
et al., 2022).
Integrating SL into an IF framework sets a novel research agenda

for understanding how input patterns acquired by SL may lead to
predictions about upcoming input, and how departures from these
patterns are flagged and accommodated in behavior and neural
response. In the IF framework, future SL research will benefit
from cross-fertilization with cognitive neuroscience literatures

that examine the nature of predictive processes and novelty
detection. Such research should focus on the precise neural
systems that are implicated in dynamically tracking ever-changing
regularities in sensory input, and to what extent they are related to
reward networks driving curiosity and exploration.

Information Foraging and Higher Cognitive Functions

We consider the prioritization of novel information to be a
domain-general feature and a unifying principle that explains a wide
range of behaviors. Starting from early life, cognitive development
is often cast in terms of constructing internal models that serve as a
baseline for the detection of important novel information (Atzil et
al., 2018). As Twomey and Westermann (2018) suggested, infants
drive their cognitive development by searching for structure in their
environment, and maximal learning emerges when stimulus novelty
is maximized in reference to their internal models. However, we
propose that IF is also an explanatory principle for more complex
behaviors. For example, foraging for information has been a
cornerstone principle in the study of curiosity and its neurobio-
logical underpinning (see, e.g., J. Gottlieb & Oudeyer, 2018; Kidd
& Hayden, 2015; Loewenstein, 1994, for review). Within this
research area, novelty is taken to act as an intrinsic reward in
exploration (e.g., J. Gottlieb et al., 2013), and such curiosity-driven
explorations overall lead to improvement of prediction, a reduction
in uncertainty, and assimilating more complex structures (Oudeyer
& Smith, 2016). As long as 3 decades ago, tracking ocular
movements, Berlyne (1966) found that when presented with pairs of
stimuli, participants spend less and less time inspecting recurrent
patterns and more and more time looking at novel patterns. While at
the time, this was labeled “perceptual curiosity,” it coincides well
with our IF approach. In general, current theories of curiosity
converge on the assumption that the automatic bias toward novel and
surprising events is rooted in the motivation to reduce uncertainty in
the environment (van Lieshout et al., 2020), so that the model of the
environment is continuously updated. This has been extensively
shown in how young children forage for visual information. Infants
tend to focus on familiar visual stimuli as long as they offer learning
progress, but they switch to novel stimuli when learning progress
drops (Poli et al., 2020; and see Addyman & Mareschal, 2013, for
how redundancy governs spontaneous orientation). Indeed, if the
environment is not stable but ever-changing, such updating is a
primary priority. From this perspective, highly predictable events
are uninformative and do not contribute to uncertainty reduction
for updating our models of the world. Similar to our approach,
novelty-based theories of curiosity suggest that new and highly
uncertain stimuli drive curiosity, and, in general, the causal
structure of the environment and its predictability will determine
whether high or moderate uncertainty should drive curiosity (Dubey
& Griffiths, 2020).

Discussions in the domain of creativity parallel the proposed
contrast between SL and IF. In creativity research, “creative
foraging,” as a theoretical construct, is taken to balance two main
processes, exploitation and exploration (Hart et al., 2018; Hills et al.,
2015). Exploitation is operationally defined as taking advantage of
the specific regularities within a search space, repeatedly applying
identical or similar computations. Opposite to exploitation is
exploration, defined as moving to a novel search space, applying
novel computations, to increase gain. While exploitation would
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maximize reward if the environment is stable, a maximizing
organism would not detect superior reward associated with
different regions of space or different computations (indeed,
exploitation may limit reward, if resources are depleted, especially if
multiple organisms compete for resources; e.g., Gallistel, 1993).
While exploitation is driven by predictable outcomes akin to SL,
exploration, and in essence, curiosity behavior, is driven by the
promise of information gain that would come in unpredictable novel
search spaces (Linquin & Lombrozo, 2020). In fact, exploration is
defined only with reference to exploitation, just as novelty in IF is
defined with reference to baseline statistical regularity.

Concluding Remarks and Future Directions

Our present theoretical perspective on IF and its role in cognitive
architecture lays the groundwork and raises new questions for future
research on the processing of regularities. Critically, experimental
investigations of IF should focus on paradigms that involve changes
in regularity, tracking participants’ perception of these changes in
real time, mapping the precise parameters that determine efficient
detection of deviations from baseline (e.g., Hodson et al., 2023;
Ryskin et al., 2017; Wang & Theeuwes, 2020; Weiss et al., 2009).
When it comes to laboratory experiments with artificial stimuli, this
will require tracking behavior in significantly longer experimental
sessions than conventional SL research (see, e.g., M. C. Frank et al.,
2013), where participants are processing input streams that vary
in regularity as the session proceeds. In the domain of language,
where the statistical co-occurrences of linguistic elements can be
determined by considering large databases, experimental work can
focus on presenting participants with input streams that conform or
not with the distributional properties that characterize their linguistic
environment. This approach can be used to measure the manipula-
tion’s impact on performance, for speech, print, or any linguistic input
(e.g., Idemaru & Holt, 2011; Isbilen et al., 2022; and see Elazar et al.,
2022, for discussion). In the same vein, from the perspective of
individual differences, studies should focus on individual sensitivity
to a change in statistical regularities, individual plasticity in adapting
to novel structural properties, and individual efficiency in determining
which regularities are informative and which are not, given the
particular context of learning.
To map the neurobiological underpinning of IF, research could

focus on the range of neural mechanisms that are tuned to track
deviation from baseline, and mechanisms that flag alterations
in patterns of quasiregularity. A recent example is the role of
norepinephrine in tracking unexpected uncertainty and deviation from
regularity (Zhao et al., 2019). Importantly, such investigation should
go beyond simple oddball paradigms and their concurrent mismatch
negativity responses (e.g., Näätänen & Alho, 1995). As we point out
above, and in contrast to conventional SL, mechanisms of IF most
probably involve complex interactions with systems that govern
exploration, attention, and reward. Establishing the neurocircuitry
that is implicated in the foraging of change, and the necessary
conditions for its consolidation in memory, is an important priority.
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