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Abstract 

 

Statistical learning (SL) is typically assumed to be a core mechanism by which organisms learn 

covarying structures and recurrent patterns in the environment, with the main purpose of facilitating 

processing of expected events. Within this theoretical framework, the environment is viewed as 

relatively stable, and SL ‘captures’ the regularities therein through implicit unsupervised learning by 

mere exposure. Focusing primarily on language— the domain in which SL theory has been most 

influential—we review evidence that the environment is far from fixed: it is dynamic, in continual flux, 

and learners are far from passive absorbers of regularities; they interact with their environments, thereby 

selecting and even altering the patterns they learn from. We therefore argue for an alternative cognitive 

architecture, where SL serves as a subcomponent of an information foraging (IF) system. IF aims to 

detect and assimilate novel recurrent patterns in the input that deviate from randomness, for which SL 

supplies a baseline. The broad implications of this viewpoint and their relevance to recent debates in 

cognitive neuroscience are discussed. 
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Reappraising the role of statistical learning in cognition 

Statistical learning (SL) has been taken to be a central mechanism by which organisms learn 

recurrent patterns in their environment (see Santolin & Saffran, 2018, for a review), from temporal 

regularities in audition (e.g., Saffran, Aslin, & Newport, 1996), to spatio-temporal regularities in vision 

(e.g., Fiser & Aslin, 2001; Shapiro & Turk-Browne, 2015) and haptics (Conway & Christiansen, 2005), 

cross-situational sound-meaning relations (e.g., Yu & Smith, 2007), implicit regularities in probabilistic 

classification (e.g., Knowlton, Squire, & Gluck, 1994), and cross-modal motor sequences (e.g., Kemény 

& Németh, 2017). Research on SL typically assumes that learning of such regularities in sensory input 

is implicit and unsupervised, occurring with mere exposure, not requiring feedback (e.g., Santolin & 

Saffran, 2018), in contrast to supervised learning in which reward feedback drives changes in behavior1. 

Across this extensive literature, the role of SL is to detect and assimilate the covarying structures in the 

environment, with the main purpose of facilitating the processing of likely events in the upcoming 

sensory input (e.g., Turk-Browne, Jungé, & Scholl, 2005; Frost, Armstrong, Siegelman, & Christiansen, 

2015; Yan, Ehinger, Pérez-Bellido, Peelen, & de Lange, 2023). The assimilation of regular structures 

in time and space, therefore, is typically assumed to be the goal of SL. In the last three decades, an 

extensive body of research has focused on mapping how learners acquire such statistical knowledge 

(e.g., Mareschal & French, 2017; Schapiro, Turk-Browne, Botvinick, & Norman, 2017; Siegelman, 

Bogaerts, Armstrong, & Frost, 2019; Henin et al., 2021; see Frost, Armstrong, & Christiansen, 2019 

for discussion). 

Here we argue for an alternative cognitive architecture, in which SL instead is a subcomponent 

(albeit a key subcomponent) of an information foraging (IF) system. The purpose of the IF system is to 

detect changes in the environment, for which SL provides continually updated baselines. The proposed 

cognitive architecture is schematically portrayed in Figure 1.  

 
1 Some neural network models—e.g., SRNs (Elman, 1990) and Large Language Models [LLMs] such as GPT-
3.0 (Brown et al., 2020)—learn statistical patterns in language through self-supervised learning, where the 
networks make predictions for what should come next and use the subsequent actual input as indirect feedback 
on the correctness of those predictions, adjusting their weights accordingly (see Contreras Kallens et al., 2023, 
for discussion). Thus, self-supervised learning is arguably a form of unsupervised learning, and could be a 
plausible candidate mechanism supporting SL. Interestingly, LLMs are able to reproduce or emulate human 
language more closely when they also receive supervised learning from human feedback in addition to self-
supervised learning (as in GPT-Instruct and ChatGPT; Ouyang et al., 2022).  
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Figure 1: Cognitive architectures according to the SL view (panel A) versus IF view (panel B). On the 

conventional SL view, the focus is on implicit learning of regularities of a relatively stable environment. On the 
IF view, the SL learning system subserves the IF system by providing a baseline, and is informed by it regarding 
changes in regularities. Following informative changes in regularities, the IF system diverts attention to novel 
dimensions of the environment; that is, the focus of IF is change or deviations from prior regularities, rather than 
regularity itself. The second crucial aspect of IF is that while much learning may be implicit, the IF learner 
actively interacts with its environment, selecting or even altering available information. 

 
We should emphasize at the outset of our discussion that there is no formal agreed-upon definition 

of what SL phenomena include and, therefore, what computational mechanisms they involve. Some 

approaches argue that all (or almost all) learning is, in fact, statistical (see Frost et al., 2019, for review). 

Hence, to be clear, throughout this paper we use the term “SL” to specifically denote the well-

researched robust learning mechanisms that allow organisms to implicitly and unintentionally 

assimilate recurrent patterns in their sensory input by mere exposure, in an unsupervised manner, a 

mechanism which has been taken to be a central device in mirroring the regularities of the environment. 

An implicit tenet underlying this approach is that the environment is, to a large extent, set and stable in 

terms of its structure, allowing organisms to map its structural regularities through an implicit SL 

process.  

The IF approach builds on a fundamentally different view of the environment. Its starting point is 

that across domains, statistical regularities in sensory input are typically dynamic and continuously 
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changing. Hence, the primary goal of the system is to detect these changes. The IF system thus aims to 

detect novel recurrent patterns in the input that deviate from randomness and from past baseline 

regularities, in the service of efficient and continuously adaptive processing. In support of this proposal, 

we draw primarily on examples from language because this is the domain for which SL theory has been 

most influential, but as we discuss further on, the motivation and principles we describe apply more 

generally.  

The IF approach to cognitive architecture we put forward departs from the conventional SL view 

across a range of important dimensions, as summarized in Table 1, which also provides a roadmap for 

this article. In the following, we explicate each of these dimensions in detail, provide behavioral and 

neurobiological evidence in support of the proposed architecture, discuss how the IF approach aligns 

with important higher cognitive functions such as curiosity and creativity, and outline a blueprint for a 

novel research agenda to investigate information foraging.  

 

 The Statistical Learning View The Information Foraging View 
Role in cognitive system SL stands alone SL is a subcomponent of IF, 

providing a baseline for detecting 
changes. 

Nature of the environment Relatively stable regularities Dynamic, structural properties in 
flux 

Nature of the learner  Passive, absorbing regularities via 
implicit passive learning 

Active, exploring, interacting with 
and altering the environment 

Aim of the system Assimilate regularities Information foraging 
Target of perception Expected events Unexpected events 
End state When regularities are assimilated None; continuous foraging 
Selectivity  Nonselective learning regardless of 

information value 
Selective learning of informative 
regularities 

Neurobiological 
characteristics 

Increased activation with increased 
regularity 

Indifferent to high regularity and to 
randomness 

Individual differences Sensitivity to regularity Sensitivity to non-random changes 
in regularity 

 
Table 1: Main contrasting features of SL and IF approaches to cognitive architecture 
 

The ever-changing nature of the linguistic environment 

While the building blocks of a given language and their basic patterns of co-occurrence in speech, 

sign, or print are typically characterized as well-defined and rigid, their actual realization in 

conversational context is messy, variable, and muddled, requiring constant adaptation and 
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accommodation. While there are of course stable aspects to the linguistic environment at abstract levels 

of description, deviations from central tendencies constantly occur at the level of the actual input. These 

deviations signal high informational value. Efficient language processing thus requires that the constant 

changes in regularities be perceived rapidly, allowing effective comprehension of the novel linguistic 

input. This can be easily demonstrated in the domains of speech, print, or sentence processing. 

In spoken language processing, the inventory of speech sounds comprising a language can be 

relatively well-defined, but the statistical regularities in speech streams are characterized by varying 

phonetic realizations. Speakers’ productions diverge due to variation in physical characteristics (sex, 

age, size), social characteristics (gender, social identity), dialect, accent, speech rate, vocabulary, and 

cultural backgrounds. Listeners must not only constantly accommodate this variation to achieve 

phonetic constancy (see Luthra, 2023, for a recent overview), but also simultaneously leverage the 

information it provides for purposes ranging from talker identification (e.g., Perrachione, 

Pierrehumbert, & Wong, 2009), to learning talker-specific phonetic idiosyncrasies that improve later 

perception (e.g., Norris, Cutler & McQueen, 2003; Nygaard & Pisoni, 1998), to making a surprising 

array of physical and social inferences (e.g., Krauss, Freyberg, & Morsella, 2002; Munson & Babel, 

2007).  

The predictability of word sequences significantly varies across different age groups and in 

different linguistic environments. In everyday conversations, speakers shift swiftly between different 

registers and codes, adapting their style of talking to their interlocutors, whether that be authority 

figures, like a police officer or our boss, or more affiliative dialogic partners, like parents, children, or 

friends (see Goulart et al., 2020). In such different linguistic environments, interlocutors’ language 

further tends to rapidly adapt to context-specific parameters of the interaction at every level, potentially 

mitigating those sources of variability (Garrod & Pickering, 2004). In many cases, conversational 

partners’ speech becomes more similar in terms of articulatory, acoustic, and prosodic details (e.g., 

Kim, Horton, & Bradlow, 2011; Lee et al., 2018; Pardo, 2006), syntax (e.g., Bock, 1986), semantics 

(e.g., Dideriksen, Christiansen, Tylén, Dingemanse, & Fusaroli, 2023), and kinetic alignment of head 

and hands (Trujillo, Dideriksen, Tylén, Christiansen, & Fusaroli, 2023). But in other cases, interlocutors 

will deviate from one another to provide new information when it is helpful to solve a particular task 
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(e.g., Didriksen et al., 2023; Trujillo et al., 2023; see Fusaroli, Rączaszek-Leonardi, & Tylén, 2014, for 

discussion). Speakers and listeners appear to attune exquisitely to novel information in conversation, 

with speakers producing words referring to new information for the first time with greater clarity than 

words referring to given (old) information (e.g., Fowler & Housum, 1987). Speakers (and writers) also 

appear to strive to maintain ‘uniform information density’ over time, via word choices and prosodic 

structure (e.g., Aylett & Turk, 2004; Frank & Jaeger, 2008; Genzel & Charniak, 2002; Gibson et al., 

2019), even to the level of discourse properties (Asr & Demberg, 2015). Speakers and listeners are 

sensitive to dynamic changes in discourse-relevant semantic and phonological neighborhoods even as 

they alter those neighborhoods themselves (e.g., by settling on a shared vocabulary in a novel task, as 

in Brown‐Schmidt & Tanenhaus, 2008—see Brown-Schmidt et al., 2015, for a review). Hence, the 

statistical properties of the speech environment are anything but fixed or stable, and the main game in 

conversational context is to perceive and adapt to the ever-changing novel structure — not to simply 

assimilate stable aspects of the environment.  

A similar state of affairs characterizes reading. Predictability of letters within words is to a large 

extent stable, constrained by orthographic and phonotactic rules (e.g., Siegelman, Kearns, & Rueckl, 

2020), and linguistic form enables some general predictions at higher levels of abstraction (e.g., Snell 

& Theeuwes, 2020). However, beyond this, readers are constantly faced with novel regularities. The 

predictability of printed words, which drives ocular movements during text reading, changes 

significantly as a function of variation in writing style, the period when the text was written, and the 

type of text being processed, from movie subtitles to newspapers. Efficient processing thus requires the 

reading system to detect and adjust to such changes as rapidly as possible. Recent research tracking 

eye-movements indeed shows that readers rapidly perceive and adapt to specific syntactic structures 

characteristic of the writing style (Yan & Jaeger, 2020), and to expected sequences of word-lengths 

from sentence onset in a given text, to optimize ocular movements (Snell & Theeuwes, 2020). For 

example, when presented with sentences of uniform word-length, readers adjust their preferred saccade 

length incredibly rapidly; just a few exemplars of a given word-length suffice (Cutter, Dreighe, & 

Liversedge 2017, 2018). Such context-dependent adjustments are well documented for speech as well. 

If listeners hear speech segments that are intentionally made ambiguous, with the lexical context 



 8 

providing disambiguation, they rapidly recalibrate their specification of the segments accordingly (e.g., 

Norris, McQueen, & Cutler, 2003). Language users also attune rapidly to changes in phonotactics when 

they produce speech (Dell, Reed, Adams, & Meyer, 2000), or simply listen to it (e.g., in the context of 

a lexical decision task; Onishi, Chambers, & Fisher, 2002). 

In the same vein, syntactic structures in spoken and written language are anything but uniform, 

reflecting the immense creativity characterizing human linguistic interaction (Christiansen & Chater, 

2022). These distributional changes have a direct impact on online sentence processing (Wells, 

Christiansen, Race, Acheson, & MacDonald, 2009). In addition, readers must also contend with the 

different distributions of syntactic regularities associated with different genres of writing (Snell & 

Theeuwes, 2020), from academic treatises and newspaper articles to fictional books and blog postings 

(Goulart et al., 2020).  

To summarize, while linguistic input allows for predictions at various levels of abstraction, 

speakers, listeners, and readers must constantly adapt to novel, ever-changing structures in the input 

stream, rather than merely encoding stable ones.  

 

The active nature of the learner 

The main appeal of SL is in the robustness and power of implicit learning mechanisms, which are 

already operating in newborns (e.g., Bulf, Johnson, & Valenza, 2011), and which do not require overt 

attention (Saffran et al., 1997). In the latter seminal study of Saffran and colleagues, children showed 

learning of transitional probabilities of speech sounds heard in the background while they drew pictures. 

In typical experimental studies of SL, learners are not informed about the existence of statistical 

regularities, nor warned of a subsequent test of their knowledge of them. The exposure phase involves 

passive listening or viewing of continuous input streams, yet participants (on the average) consistently 

show learning of the recurrent patterns in the input. These results paint the statistical learner as an 

efficient passive absorber of environmental regularities, which are assimilated via robust implicit 

learning mechanisms. In Figure 1, this view is reflected in the “sea sponge metaphor”: the learner is 

immersed in statistical regularities and assimilates them (see Tandoc et al., 2024, for a similar 

description).  
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The IF perspective does not dispute the existence of implicit unsupervised learning of recurrent 

patterns; indeed, such learning has been demonstrated from humans and other primates to songbirds 

(e.g., Santolin & Saffran, 2018; Lu & Vicario, 2014), and serves as a key subcomponent of IF. Crucially, 

though, the focus of IF is on the learner as an active explorer, an information forager, who registers 

recurrent patterns, but actively intervenes in regularity learning by exploring, interacting with, and 

altering its environment. In Figure 1, this view is depicted in the octopus metaphor, in contrast to the 

passive sea sponge. Regularities inform the learner where to forage — away from highly predictable 

patterns and away from randomness related to simple noise (i.e., the environment is not only dynamic 

but also noisy), allowing it to direct attention and action to times, places, and non-spurious events with 

potentially high informational content or reward. Deviations from regularity are one important source 

(among many) that guide perception, attention, and action in service of adaptive learning. Note that 

while the sponge is a metaphor for the system(s) comprising passive SL through mere exposure, the 

octopus is a metaphor for both SL system(s) and the mechanisms supporting IF. These comprise the 

organism itself — its body and perceptual/cognitive systems can be actively and intentionally directed 

towards information seeking and learning.  

Our take is that regularity learning, like all aspects of cognition, is inextricably linked to 

perception, action, and the environment (Sheya & Smith, 2019), as well as neural and genetic activity 

(Gottlieb, 2007; Gottlieb & Oudeyer, 2018). Theoretical perspectives such as dynamical system 

approaches to development (e.g., Smith & Thelen, 2003) and probabilistic epigenesis (Gottlieb, 2007), 

emphasize bidirectional interactions among all these levels. Hence, a learner is not simply shaped by 

the environment and its regularities. An active learner alters the environment through their actions, 

whether in speech communication as we have described above, or, say, learning words or linking them 

to objects. For example, as Smith, Yu and colleagues have documented, an infant’s actions modulate 

the multimodal context for language learning. When infants hold and manipulate an object, they change 

the visual and haptic context, and such actions, as well as where they direct attention in the visual world, 

can also modulate the language produced by adults around them (e.g., Slone, Abney, Smith, & Yu, 

2023; Suanda, Barnhart, Smith, & Yu, 2018; Suanda, Smith, & Yu, 2017). Similar interactions with 

people around them influence other domains of learning (e.g., Karmazyn-Raz & Smith, 2023; Smith, 
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Jayaraman, Clerkin, & Yu, 2018; Suarez-Rivera, Smith, & Yu, 2019; Yu, Zhang, Slone, & Smith, 

2021).  

How the learning of regularities is contingent on active responses has been recently shown in the 

singleton paradigm, where participants search for a shape singleton target and are asked to respond to 

it. Li, van Moorselaar, and Theeuwes (2024) reported that if a target’s location is predicted by the 

location of a target in the preceding trial, the execution of an arbitrary key response for both trials of 

the pair is needed for learning the across-trial statistical regularity. Passively attending to target 

locations did not result in any learning of the target’s spatial contingencies. 

To clarify, the active nature of the learner does not imply conscious awareness or meta-

awareness. It implies that learners do not automatically absorb the recurrent patterns in sensory input, 

but continuously interact with their environment and change it, whether consciously or not. The earliest 

ways in which infants shape their environments are subtle and likely occur in the absence of any 

awareness (when an object or entity in the visual world captures an infant’s attention, adults are more 

likely to speak about it). However, over experience, infants increasingly leverage this to intentionally 

shape adults’ behavior by directing their gaze or body (by pointing, approaching, or handling) 

selectively at aspects of the world they find interesting, especially deviations from regularity – including 

deviations they themselves cause. 

 

Aim of the system  

Given the ever-changing environment, the IF approach to cognitive architecture assumes that the 

priority of cognitive systems lies in continuously detecting novel co-occurrences and other coherent 

covariations in the input. It regards organisms as “information foragers” (see Pirolli & Card, 1999, for 

coining this concept), where “information” means that a meaningful change in patterns of co-

occurrences in sensory input has occurred. Our approach in this context is related in part to the 

information-theoretic notion of information (Shannon, 1948), which ties the informational load that 

events carry to the inverse of their predictability. By this view, highly predictable events carry very 

little information. However, in the context of regularity learning, random events are also uninformative. 

Hence, an information forager discounts random events as well as highly predictable events since both 
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carry little information. If the primary aim is to detect the novel regularities in the environment, this 

requires a mechanism that generates a reference against which changes in input regularities can be 

perceived. Conventionally, SL has been seen as a mechanism aiming to perceive and assimilate stable 

structural regularities in the environment. In the IF approach, SL mechanisms that track statistical 

regularities have a different core purpose: they provide the baseline from which a change in co-

occurrence can be detected. To be clear, we consider the detection of novel regularities and the 

generation of baseline references as functionally distinct at the cognitive level of description. As 

discussed further below, extant data raise the question of whether they can be implemented within one 

computationally and neurobiologically unified mechanism.  

Consider a typical visual SL task that presents a continuous stream of shapes or artificial letters 

appearing in triplets, where elements within triplets are fully predictable, and elements following triplet 

boundaries are less predictable (e.g., Fiser & Aslin, 2002; Turk-Browne et al., 2005; Saffran et al., 1996; 

Siegelman & Frost, 2015). Conventional SL theory assumes that learning serves to facilitate processing 

of the predictable stimuli (see for example, Turk-Browne, Scholl, Johnson, & Chun, 2010; Siegelman, 

Bogaerts, Kronenfeld, & Frost, 2018). Some recent findings, however, suggest that learners in such 

tasks track novelty. For example, a study that tracked EEG activity during the continuous presentation 

of triplets of visual stimuli revealed that increased pattern repetitions resulted in increased beta-band 

activity, which has been associated with sensory prediction (e.g., Arnal & Giraud, 2012) and top-down 

modulation (e.g., Hipp, Engel, & Siegel, 2011). Importantly, however, this top-down modulation was 

present at triplet transitions, where a novel shape is about to appear, and not within triplets, where 

shapes are predictable (Bogaerts, Richter, Landau, & Frost, 2020). As we further discuss in detail, the 

suggestion that probabilistic knowledge can upweight surprising rather than predictable events, 

favoring novelty over familiarity, is now acknowledged across different domains of cognitive 

neuroscience.  

 

The target of perception 

SL theory assumes that learning regularities in the environment enables their exploitation by 

facilitating perception of and action upon expected events. As such it considers likely recurrent events 
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to be the foremost target of perception and learning. In contrast, an IF approach holds that while 

predictable events can be favored by various top-down mechanisms, unexpected patterns of events 

constitute informational novelty, and are, therefore, the main target of perception. Indeed, as early as 

Pavlov (1927), orienting behavior has been taken as a primary mechanism aimed at detecting the 

slightest change in the environment. Further, it was argued that recurrent presentations of stimuli result 

in neuronal representations that encapsulate the stimuli’s specific features, so that all sensory input 

could be compared with the existing neuronal models, and a mismatch between novel input and the 

models would result in an orienting reaction (Sokolov, 1963). The competition between baseline 

habituation and novelty has been shown to drive orienting behavior and foraging for visual information 

(e.g., Sirois & Mareschal, 2004). While there is extensive variability in the definition of what constitutes 

“novelty” in this context (see, e.g., Gati & Ben-Shakhar, 1990, for discussion), the view that neuronal 

models of recurrent and expected events serve as a baseline to flag novel and unexpected recurrent 

events converges with our view (and see, e.g., Egner et al., 2010; Meyer & Olson, 2010; Kumar, 

Kaposvari, & Vogels, 2017; Richter et al., 2018, for evidence of surprisal detection in the neural 

domain).  

Recent work on attention provides additional support for the IF approach. The learned distractor 

suppression literature shows that when the distractors in a series of search displays frequently occur in 

the same location, they capture attention significantly less (see Theeuwes, Bogaerts, & van Moorselaar, 

2022 for review). These results suggest that attention is modulated by distributional regularities in the 

environment, prioritizing novelty. Only distractors occurring at unexpected locations compete strongly 

for attention. Learned suppression of predictable distractors has also been observed for distractor 

features. For example, a distractor in a specific color loses its ability to capture attention with repeated 

exposure (Vatterott & Vecera, 2012; see Geng, Won, & Carlisle, 2019, for review). In addition, if 

distractors are highly frequent this can eliminate capture, even if their location and features are 

unpredictable (Bogaerts, van Moorselaar, & Theeuwes, 2022; Won, Kosoyan, & Geng, 2019). 

Consistent with our approach, it seems that when distractors become part of the baseline, and are no 

longer novel or surprising, they become less salient. Similar effects may be at play in the speech domain. 

Understanding what a stranger has said is easier in a ‘cocktail party’ scenario when simultaneous, 
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competing speech is produced by a highly familiar talker (one’s spouse) vs. when the competing voice 

is that of a novel talker (Johnsrude et al., 2013). Moreover, frequently occurring sounds lead to reduced 

perception of similar sounds, an effect that has been extensively studied in the selective adaptation 

literature (Eimas & Corbit, 1973; see Samuel, 1986, for a review).  

 

The system’s end state 

The successful assimilation of the structural regularities present in the environment is typically 

viewed as the SL system’s end state. While SL naturally assumes that the learned regularities can be 

continuously updated given gradual changes, the view is that the system has done its job when it has 

learned the current regularities in a given domain. This view is well reflected in the experimental tasks 

devised to probe SL, which by and large, do not engage in change, perception of change, adaptability 

to change, and continuity (see Frost et al., 2019, for a review). Rather, participants are typically 

presented with an input sequence and then tested on whether they have learned the regularities that were 

embedded therein. Learning is inferred when there is evidence that participants have assimilated the 

structural regularity embedded in the input stream, whether visual or auditory (e.g., Siegelman, 

Bogaerts, Christiansen, & Frost, 2017). While, admittedly, these tasks were initially designed to provide 

a proof of concept that the statistical regularities in the input stream can be learned, in our view, they 

implicitly entrenched theoretical approaches to SL to consider it as a system whose end state is to map 

the existing structure of a stable environment.  

In contrast, IF assumes ongoing foraging for novel information, and thus that there is no end state. 

In the domain of language, given the dynamic changes in the input, IF requires the perceiver to be 

constantly adapting to what is different. For example, phoneme perception is immediately impacted 

upon encountering a new voice that shifts in mean acoustic spectra (Holt, 2005; Huang & Holt, 2012), 

or when hearing a foreign accent in which acoustic input dimensions differ in their correlation (Idemaru 

& Holt, 2011; Hodson, Shinn-Cunningham, & Holt, 2023). Indeed, as we discuss further below, given 

that most SL experiments involve stimuli that are often very novel, these experiments may be better 

construed as implicating, at least initially, sensitivity to new structure. 
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Of course, at the end of the day, organisms do represent knowledge about stable structural 

properties of the environment, language included, and this knowledge facilitates perception and action. 

From the IF perspective we are proposing, SL mechanisms are continuously at work, and if baseline 

regularities are recurrently registered across time, without much change, this information will be 

represented (subserving interaction with the environment; see, e.g., Schapiro et al., 2017) and updated 

to reflect gradual changes that may emerge over time. One could argue that, given this, IF subserves 

the SL system rather than the other way around. However, since the statistical regularities in sensory 

input are dynamic and continuously changing, adaptation to these novel changes is the system’s primary 

goal. Importantly, how much knowledge of stable real-world linguistic regularities is acquired from 

mere exposure to input regularities through implicit and unsupervised SL mechanisms, and to what 

extent additional kinds of learning (e.g., supervised) might be necessary, remains to be determined (see 

Bröker et al., 2024, for review). 

For example, concurring with our IF octopus metaphor, the alignment of statistical input 

regularities with active behavior amplifies learning above and beyond what is possible across passive 

exposure alone. An illustrative example comes from novel nonspeech sound clusters designed to mimic 

the statistical structure and complexity of English consonant categories. These categories are not 

acquired with passive exposure (e.g., Wade & Holt, 2005; Emberson, Liu & Zevin, 2013; Roark, Lehet, 

Dick, & Holt, 2022). Nonetheless, they are rapidly learned across the same time course when they are 

embedded in an unrelated active task structured such that the sounds are not essential to the task, but 

learning their structure supports success. This learning robustly generalizes to novel exemplars (Roark 

et al., 2022), alters cortical representations (Leech et al., 2019), and persists over days (Gabay, Karni, 

& Holt, 2023), even without knowledge that categories exist. The structure is discovered via its utility 

in supporting behavior. Active engagement in a rich, multimodal perceptual environment (typical of 

most natural behaviors) may encourage foraging for information that directs learners to specific 

statistical regularities among the essentially infinite informational contingencies that exist even in 

simple real-world environments (Roark et al. 2022). Thus, regularity that is difficult to extract across 

passive listening is readily learned, perhaps in a form of ‘self-supervised’ learning (Lim, Fiez, & Holt, 
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2019), by virtue of coarse alignment of statistically structured input with behaviorally relevant actions, 

objects, and events.  

In this context, both endogenous generation of feedback as in self-supervised learning and 

exogenous (supervised) feedback fit with the view that the learner actively engages with the 

environment. We assume that the division of labor between the different learning mechanisms is likely 

to differ across domains (e.g., reading, syntax, second-language acquisition), and potentially across 

individuals. For example, explicit instruction and feedback play a significant role in reading acquisition 

(see Rastle, Lally, Davis, & Taylor, 2021), which is not the case for native spoken language acquisition. 

 

Selectivity 

In conventional SL theory and in typical SL research, the structural regularities in the environment 

are defined independently of whether they are informative to the learner and of the specific context of 

learning (e.g., Lelonkiewicz, Ktori, & Crepaldi, 2020; Fiser & Aslin, 2002). Indeed, implicit passive 

learning of regularities present in sensory input (whatever computational mechanisms are assumed) is 

taken to be nonselective, in the sense that the system is set to assimilate and absorb the statistical co-

occurrences present in the input through mere exposure, whatever the regularity is, regardless of its 

informational value to the learner. While having a mechanism that registers recurrent regularities non-

selectively might have some advantages in terms of simplicity, we argue that passive, non-selective SL 

mechanisms are limited in their usefulness for driving higher-order behavior. Instead, their importance 

comes from their role as a baseline-providing subcomponent of a higher-order IF system, which is 

selective. The IF system must be selective because any given environment presents the learner with a 

myriad of possible regularities, and it is the current context that determines which are “informative” 

and which are not for a given organism.  

The importance of selectivity and the role of contexts has not gone completely unnoticed within 

the domain of SL research. For example, a good demonstration that learners are not passive absorbers 

of regularities in sensory input and that the informativeness of the signal modulates learning is 

children’s ability to assimilate regularities such as ABB (e.g., generalizing le-di-di to ko-ga-ga; see 

Marcus et al., 1999). Marcus, Fernandes, and Johnson (2007) have shown that when children hear ABB 
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in speech sounds, they learn the patterns, but when they hear ABB in non-speech sounds, such as sine-

wave tones, they do not. Importantly, in a subsequent study, Ferguson and Lew-Williams (2016) 

demonstrated that if children were previously exposed to a video of two persons communicating in 

tones (a communicative context), learning does occur for tones, just as it does for speech sounds (see 

Saffran et al., 2007, for a related finding with images children found interesting [dogs] vs. not [shapes, 

used by Marcus et al., 2007]). This shows that there are preferences regarding what regularities should 

be attended to and what regularities can be ignored. The context determines what in the environment 

carries important information for a given species and what does not. In this example, regularities such 

as speech sounds that subserve communication within humans appear to be a primary filter for selection.  

This tension between informative and non-informative regularities has also been acknowledged in 

the domain of perception with a similar argument; it is computationally infeasible to sample all available 

information in the very complex real-world environment (Braunlich & Love, 2022). Learning is 

selective because IF requires learners to eventually ignore regularities in the input that are uninformative 

(with respect to goals relevant for the organism to thrive in its niche), and focus on the informative 

ones. Note that making sense of which variations in the input are informative and which are not in itself 

requires learning. In fact, an essential part of development can be regarded as mastering this distinction. 

For example, very young infants are sensitive to subcategorical (subphonemic) variations in speech 

(allowing them to distinguish non-native speech sound contrasts, such as the /r/-/l/ distinction for 

Japanese infants), but during the first year of life they learn to divide acoustic-phonetic space in ways 

that are optimized for the language they are immersed in, and they lose the ability to distinguish most 

contrasts that are not relevant for that language (e.g., Werker, Gilbert, Humphrey, & Tees, 1981). In the 

domain of reading, proficiency has been shown to be related to the extent to which a reader relies on 

systematic (e.g., orthography to phonology) regularities versus spurious (e.g., arbitrary semantic cues 

such as imageability) regularities that are characteristic of the orthography (Siegelman et al., 2020).  

Successful SL will result in lasting representations aligned with language regularities. This internal 

knowledge provides another form of selectivity for IF. In lexically-mediated perceptual learning (Norris 

et al., 2003), informativeness is seen in at least two ways. First, shifts in phoneme boundaries seem 

typically to be learned in a talker-specific way (segregating novel statistics experiences in speech from 
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a particular talker from baseline, rather than assuming the overall baseline for the language has changed; 

e.g., Eisner & McQueen, 2005). Second, learning is blocked when an alternative explanation is 

available for phoneme boundary shifts (e.g., seeing that the speaker has a pen in her mouth; Kraljic, 

Samuel, & Brennan, 2008). In dimension-based statistical learning in speech, individual differences in 

acoustic cue weighting (a reflection of long-term speech representations) predict how local speech input 

regularities shift speech categorization (Wu & Holt, 2022). Thus, statistical learning under control of 

information foraging is selective, can be adaptively conservative in its scope, and can involve foraging 

of internal representational space as well as local input.  

 

Neurobiological characteristics 

In the conventional view, SL serves to provide the organism with an internal mirror of external 

regularities in the environment, so that greater external regularity should lead to faster learning. From 

a neurobiological perspective, the assumption of this view is that the more regularity there is in the 

input, the more neural activity there should be in the medial temporal lobe (MTL) as well as in early 

sensory cortices, leading to faster assimilation of the external statistics (e.g., Schapiro et al., 2017). IF 

systems operate differently, because both full randomness and full regularity are uninformative, as they 

do not represent meaningful novelty. This view of a “Goldilocks” range of information concurs with 

behavioral findings showing that children direct attention to events that are neither too simple nor too 

complex (e.g., Kidd et al., 2012; see also Forest, Siegelman, & Finn, 2022, for adults). Hence, the neural 

architecture of an IF system should not be responsive to randomness, nor to completely predictable 

patterns. Indeed, neuroimaging studies have identified neural populations that track uncertainty non-

monotonically following an inverted U-shaped function (with stronger response for moderately 

unexpected inputs, but low response for both highly expected and highly random inputs), in both the 

visual and auditory cortices (Nastase, Iacovella, & Hasson, 2014; Hasson, 2017). These neural systems 

do not respond to full randomness or full regularity as these are alike in terms of informativeness (or 

lack thereof); instead, they are tuned to the moderate regularities in the sensory input.  

Extensive neuroscience work has investigated the interconnection of the reward system and 

salience network (Seeley et al., 2007) with the violation of expectation. For example, substantial 
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research has tied the amygdala, insula, and dorsal anterior cingulate cortex to computations flagging 

novelty and surprise (e.g., Kolling, Wittmann, Behrens, 2016; see Vassena, Holroyd, & Alexander, 

2017, for review), thus potentially mediating information foraging. A different body of evidence comes 

from work on reinforcement learning and the dopaminergic system showing that novel and/or 

infrequent information is encoded by dopaminergic neurons in the striatum (e.g., Schultz, Dayan, & 

Montague, 1997). This research, however, has mainly focused on prediction errors regarding upcoming 

reward given changes in its probability (e.g., Behrens, Woolrich, Walton, & Rushworth 2007), and not 

on general deviation from baseline regularity in implicit unsupervised learning. Hence, the question of 

whether and to what extent IF is rewarding beyond paradigms of supervised learning requires further 

investigation.  

A hint comes from neuroimaging of the learning of nonspeech categories, described above. 

Recall that these regularities are not learned with passive exposure but are robustly acquired when the 

regularity aligns with behavior in an active task (Wade & Holt, 2005; Roark et al., 2022; Gabay et al., 

2023). Examining such learning with fMRI reveals that that posterior striatum (especially caudate and 

putamen) is sensitive to statistical regularity. When actions and events in an active task incidentally 

align with sound categories that are defined by well-structured statistical regularities, the posterior 

striatum is recruited to a greater degree than it is among participants who engage in the same task with 

statistically less-well-structured categories. The magnitude of striatal activation is associated with better 

behavioral learning outcomes. Thus, when statistical regularities align with actions and events in the 

environment, ‘self-supervised’ learning signals available via the posterior striatum may boost learning 

beyond what is possible through passive exposure alone (Lim, Fiez & Holt, 2019). 

Along with our present IF approach, a recent framework tying learning and memory to curiosity 

(the Prediction, Appraisal, Curiosity, and Exploration [PACE] Framework; Gruber & Ranganath, 2019) 

demonstrates how, in general, prediction errors and detection of novelty increase attention and 

exploration through modulation of activity in dopaminergic circuits. Hence, while SL research has 

typically focused on the role of the MTL in registering regularities mainly through hippocampal 

activation (e.g., Schapiro et al., 2017), an IF approach would incorporate a larger set of neurobiological 



 19 

mechanisms that simultaneously consider a) sensitivity to deviation from regularity, b) reward systems, 

and c) memory.  

 

Individual differences 

Both SL and IF accounts assume that there are individual differences in pattern sensitivity (see 

Frost et al., 2015; Siegelman et al., 2017, for discussion). Since the environment is not only dynamic 

but also noisy, the challenge to any learning system, SL and IF alike, is to distinguish meaningful 

patterns related to regularities, from those related to noise. Separating noise from signal requires 

something akin to a time window across which random noise will average out based on not having any 

predictive value, whereas regularity of the signal will remain. If the sampling window is too short, the 

system will change/reorient/relearn with every bit of fluctuating noise. If the time window is too wide, 

shifting patterns could go unnoticed. One possibility is that such a sampling window may be 

implemented in a literal fashion, as in a time series analysis. However, this may not be a likely solution 

because learners cannot hold on to multiple input patterns before processing them, and our limited 

memory abilities leaves little room for backtracking (cf. the Now-or-Never bottleneck, Christiansen & 

Chater, 2016). Instead, we lean toward a more metaphorical interpretation of the sampling window, 

such as what might be observed in recurrent networks trained on sequences. Here, there is no explicit 

sampling window, but coherent signals will triumph over noise because consistent patterns (relative to 

dynamic contexts) will be the primary driver of weight changes over time. Interestingly, work by 

Karuza et al. (2016) indeed suggests that the assimilation of structure leads to decreased environment 

sampling, causing learners to overlook pattern shifts and to display a bias toward their initial 

experiences (see also Bruner & Postman, 1949). We assume that individuals differ in this respect, that 

is, how they optimize their ‘sampling window’ in a given context.  

Although research from an SL perspective targets individual sensitivity to detecting regularities 

(e.g., Misyak, Christiansen, & Tomblin, 2010, Siegelman & Frost, 2015), IF targets individual 

sensitivity to detecting changes in regularity. Given that the environment is typically dynamic rather 

than stable, individuals are expected to differ in their perceptual sensitivity to the ongoing dynamic 

changes in regularities in sensory input, and their efficiency in acting on these changes. This again 
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would be tied to differences in optimizing the sampling window in a given context. Whereas it is 

possible that sensitivity to stable regularities goes hand in hand with sensitivity to change, it is also 

possible that these would be two dissociable dimensions of inter-individual variance. Note that IF also 

assumes substantial individual differences in sensitivity to informativeness. These differences are found 

not only across development (efficient IF requires the ongoing learning of which regularities to 

assimilate and which to ignore), but also differentiate individuals at a given point in development (see 

Forest et al., 2023; Saffran & Kirkham, 2018, for reviews of changes in regularity learning across 

development). Thus, we posit that substantial individual differences should be revealed in the ability to 

perceive and learn which continuously encountered variations in the input are relevant or informative 

and which are not.  

This perspective also offers novel avenues for understanding the wide individual differences in 

response to interventions in clinical populations. ADHD (attention deficit hyperactivity disorder), for 

example, has been tied to heightened novelty seeking which leads to the suboptimal reward-related 

decision-making characteristic of this population (Lieder et al., 2019). For autism, findings have been 

mixed. Comparing trial-by-trial performance in a serial detection task, neurotypical participants were 

found to overweight recent statistics and quickly update their internal sensory models, which is adaptive 

in changing environments, whereas individuals with autism were found to rely atypically heavily on 

long-term statistics (Lieder et al., 2019). Other studies, however, provided evidence for faster rather 

than slower updating of internal models by individuals with autism (Goris et al., 2022; Lawson, Mathys, 

& Rees, 2017).  

 

Role in the cognitive system 

Here we come to an important distinction regarding cognitive architecture, and an important 

clarification: Per our Figure 1, IF does not preclude mechanisms of SL and does not aim to replace SL 

as a theoretical construct. Rather, while conventional SL theory regards SL as a stand-alone mechanism, 

from our perspective, SL computations form a subcomponent of IF, with SL playing a critical role in 

providing baselines against which change can be detected. This distinction is a corollary of the view of 

the environment as being fundamentally dynamic, with the changes in regularities as the main target 
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of perception. To identify such changes, a baseline of current covariation is needed, from which novel 

information can be detected. Hence, per our view, SL is a primary mechanism that non-selectively 

attunes the system to regularities in sensory input, but in service of the higher purpose of novelty 

detection. While we have argued so far that IF is a necessary component of learning regularities, as we 

outline below, from a wider perspective, we consider IF to be a unifying principle that underlies more 

complex behavior such as curiosity, exploration, and creativity. This perspective opens a novel set of 

questions regarding how SL and IF interact, and what outputs they produce, to enable efficient 

perception and action in a dynamic and everchanging environment.  

 

One system or two?  

An important theoretical question is whether registering recurrent regularities in the input for 

establishing baselines (SL), and sensitivity to changes in regularities that deviate from baseline (IF), 

require two independent and distinct systems, or whether one system can account for both. In other 

words, we ask whether a mechanism that registers recurrent regularities in sensory input as established 

by SL research could also at the same time allow for the fast accommodation of changes therein.  

One could argue, for example, that  a unified Bayesian perspective could, in principle, 

accommodate both SL and IF. In a Bayesian framework, if the environment is inherently everchanging, 

then the prior distribution of the perceived regularities would become less and less informative. With a 

relatively less informative distribution, deviating evidence (i.e., changes in regularity) has substantial 

weight, thereby significantly changing the posterior distribution and leading to increased sensitivity to 

novelty, aligning with our IF approach. In contrast, if the environment is stable and characterized by 

recurrent regularities, this would result in increasingly strong priors for expected events. Strong priors 

would lead to facilitation in the perception and/or processing of likely events in the input (e.g., Friston, 

2005, 2009, 2010; Kok, Jehee, & de Lange, 2012), aligning with the conventional SL approach and its 

empirical findings. The main appeal of such an architecture is that one unified system generates 

different behaviors to the extent that the environment is stable versus ever-changing in a given domain. 

While this Bayesian approach has the advantage of parsimony, it predicts, for example, that the 

more exposure a learner has to a repeated set of regularities, the less weight a surprising deviation from 
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this pattern will have in updating the posterior distribution. This is because repeated regularities produce 

increasingly strong priors, so that substantial evidence is eventually required for updating beliefs about 

the structural properties of the input.2 This goes counter to the prediction we would make based on our 

IF account. IF argues that effective novelty detection and behavioral adaptation on the basis thereof, 

take place when there is a violation of structure in a so-far stable patterned environment (which has 

served as a baseline). In general, humans and other organisms adapt very rapidly to changing statistics 

while seeming to provisionally segregate changing statistics from regularities learned over the long 

term (e.g., Dell, Reed, Adams, & Meyer, 2000; Kraljic & Samuel, 2005; Onishi, Chambers & Fisher, 

2002), and link them causally to contexts (e.g., Kraljic & Samuel, 2011). Evidence shows that detection 

and adaptation to deviation from recurrent regularities is exceedingly fast regardless of lengthy past 

experience. For example, participants were found to adjust their preferred saccade length (which 

reflected their prolonged reading experience) when presented with sentences containing words with a 

uniform word-length, when they had only one trial to adapt (Cutter et al., 2018).  

While we opted to exemplify this problem using Bayesian terms, we should emphasize that 

virtually any learning system will face a challenge when it has been immersed in very strong 

regularities, and those regularities begin to change: Systems will respond sluggishly to changes in a 

previously highly regular environment. For example, a neural network (e.g., a simple recurrent network; 

Elman, 1990, 1991) may require substantial experience to overcome previous learning, and it might 

well lose significant aspects of prior learning if they are no longer reinforced (so-called catastrophic 

interference; McClosky & Cohen, 1989; Bower, Thomson-Schill, & Tulving, 1994; Merhav, Karni & 

Gilboa, 2014) — a phenomenon that is not generally observed in biology. This suggests that a system 

that targets the tracking of stable regularities, and a system that prioritizes novelty detection over stable 

regularities, might operate with different computational mechanisms.  

This discussion resonates with our initial claim that a theory of learning regularities should first 

consider the nature of the environment that is the object of learning. We take it as evident that a 

 
2 It should be noted that the magnitude of surprise can be greater when encountering a highly unexpected input 
in the context of a strong prior (characterized by a narrow distribution) compared to a weak prior (characterized 
by a broad distribution). This is due to the potentially larger discrepancy between the unexpected input and the 
concentrated probability mass of a strong prior. 
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computational mechanism tracking regularities in the input could naturally assimilate gradual and slow 

changes, as original patterns will recur but at lower and lower frequency, and novel patterns will emerge 

at a higher and higher frequency. However, if the input is characterized by abrupt changes in regularities 

which would flag informational novelty, and the target of perception is precisely these changes, then 

slow adaptive learning mechanisms would probably not suffice. 

This perspective raises important questions that should be the focus of future empirical and 

computational research efforts: What is the overlap in mechanisms that underlie the assimilation and 

updating of baseline regularities and those involved in detecting novel regularities? How do they 

interact with one another, and with what brain networks? Are different behavioral phenomena 

indicating sensitivity to novel regularities (spanning different cognitive domains and different 

timescales of adaptation) all tapping into one and the same IF system? Finally, are representations of 

baseline regularities overwritten/adjusted by IF, or do the representations of baseline regularities and 

those of novel regularities co-exist? As we outline in the following section, these questions regarding 

regularity learning are echoed across other domains in cognitive science. 

 

Parallel debates across cognitive neuroscience 

Since Helmholtz (1863), cognitive neuroscience has grappled with how sensory input and prior 

knowledge (expectations) interact to establish a percept (e.g., Geisler & Kersten, 2002; Friston, 2009; 

Heilbron, & Chait, 2018). Contemporary studies examine how expectations are established (Jabar & 

Fougnie, 2022), how they shape behavior and neural response (Egger, Remington, Chang, & Jazayeri, 

2019), and, importantly, how they change in a world with dynamic, fluctuating regularities (Hodson et 

al., 2023). Whereas this paper centers on SL, parallel debates on the importance of novelty are seen in 

multiple domains of cognition. 

The most relevant framework is that of predictive processing. This theoretical approach to 

cognition views the brain as a Bayesian inference machine, where predictions regarding sensory input 

are continuously made to minimize free energy, a proxy for uncertainty and surprise, thereby facilitating 

perception and action (e.g., Friston, 2005, 2009, 2010). While we have discussed the problem of 

exceedingly fast adaptation with reference to a Bayesian perspective regarding enhanced sensitivity to 
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changes in regularities, parallels between current theories of predictive processing and our IF view 

certainly exist. Predictive processing, similar to IF, regards learners as active in the sense that they 

continuously make inferences, and it highlights the role of explorative behavior in learning (e.g., 

Friston, 2016, 2017; see Schwartenbeck et al., 2013, for discussion). Like IF, predictive processing 

centers on adaptation, offering computational mechanisms for it through the notion of minimizing 

prediction errors and a continuous process of updating priors. Given this, both frameworks reject the 

idea of an end state when the environmental regularities have been assimilated. However, an important 

basic difference remains. While models of predictive coding also offer computational accounts for 

novelty seeking, curiosity, and creativity (e.g., Schwartenbeck et al., 2013; see Clark, 2017, for 

discussion), in essence, they center on the notion of minimizing surprisal, while IF centers on the 

prioritization of changes in regularity. This distinction echoes our above discussion on one versus two 

systems. 

In the domain of visual perception, the contrast between prioritizing expected input (as in the SL 

approach) vs. upweighting novel and surprising input (as in the proposed IF approach), is discussed in 

the context of sensory perception of unitary events vs. sensory-motor predictions. This debate, dubbed 

the Perceptual Prediction Paradox (see Press, Kok, & Yon, 2020), outlines the difference between, 

say, perceiving a cup, which requires fast recognition of a familiar object, vs. sensing the cup slipping 

from one’s grip, which requires fast detection of deviation from what is expected regarding this object 

in terms of sensory information.  

From a neurobiological perspective, a key signature of expectations is a weakened neural 

response to stimuli that are anticipated (see Heilbron & Chait, 2018; de Lange, Heilbron, & Kok, 2018, 

for reviews). There are, however, different accounts of the specific neural mechanism responsible for 

this suppression, which directly relate to whether perception tilts toward the input we expect, or if it 

instead prioritizes unexpected and novel input (see Press et al., 2020, for discussion). According to 

sharpening models, neural populations that are not tuned to the anticipated stimulus are particularly 

affected by expectations, resulting in a neural response that is overall diminished in magnitude but 

carries a more precise representation of the stimulus (e.g., Kok et al., 2012; Bell, Summerfield, Morin, 

Malecek, & Ungerleider, 2016). This “sharpening” process biases perception in accordance with the 
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perceiver’s expectations, and is consistent with data demonstrating that predicted events are perceived 

with greater clarity and detected or processed faster, as typically assumed in SL theory. In contrast, 

damping models propose that neural populations that are tuned toward an expected stimulus are 

suppressed, leading to reduced cortical activation for expected input (Blakemore, Wolpert, & Frith, 

1998; Summerfield & de Lange 2014). This leads to the prioritization of novelty, as the brain now 

favors the processing of surprising information, per an IF approach. 

How these two seemingly incompatible explanations (and the data supporting each) can be 

reconciled is still a matter of debate (see, Richter, Heilbron, & de Lange, 2022, for discussion). While 

some theoretical accounts hypothesize that sharpening and damping can occur in parallel in different 

neural populations (Friston, 2005), others propose different time courses for sharpening and damping 

so that initial processing favors the expected, but later processing highlights signals that depart from 

these expectations to allow us to accommodate change (e.g., Press et al., 2020). These proposals for 

reconciliations, however, are silent regarding how the tradeoff between prediction and novelty detection 

is modulated by context, per our IF approach. The alignment of input statistics with active behavior 

may play an important role in such modulation (Roark, Lehet, Dick, & Holt, 2022; Lim, Fiez, & Holt, 

2019).  

Integrating SL into an IF framework sets a novel research agenda for understanding how input 

patterns acquired by SL may lead to predictions about upcoming input, and how departures from these 

patterns are flagged and accommodated in behavior and neural response. In the IF framework, future 

SL research will benefit from cross-fertilization with cognitive neuroscience literatures that examine 

the nature of predictive processes and novelty detection. Such research should focus on the precise 

neural systems that are implicated in dynamically tracking ever-changing regularities in sensory input, 

and to what extent they are related to reward networks driving curiosity and exploration. 

 

Information foraging and higher cognitive functions 

We consider the prioritization of novel information to be a domain-general feature and a 

unifying principle that explains a wide range of behaviors. Starting from early life, cognitive 

development is often cast in terms of constructing internal models that serve as a baseline for the 
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detection of important novel information (Atzil, Gao, Fradkin, & Barrett, 2018). As Twomey and 

Westermann (2018) suggest, infants drive their cognitive development by searching for structure in 

their environment, and maximal learning emerges when stimulus novelty is maximized in reference to 

their internal models. However, we propose that IF is also an explanatory principle for more complex 

behaviors. For example, foraging for information has been a cornerstone principle in the study of 

curiosity and its neurobiological underpinning (see e.g., Loewenstein, 1994; Kidd & Hayden, 2015, 

Gottlieb & Oudeyer, 2018, for review). Within this research area, novelty is taken to act as an intrinsic 

reward in exploration (e.g., Gottlieb, Oudeyer, Lopes, & Baranes, 2013), and such curiosity-driven 

explorations overall lead to improvement of prediction, a reduction in uncertainty, and assimilating 

more complex structures (Oudeyer & Smith, 2016). As long as three decades ago, tracking ocular 

movements, Berlyne (1996) found that when presented with pairs of stimuli, participants spend less and 

less time inspecting recurrent patterns and more and more time looking at novel patterns. While at the 

time, this was labeled “perceptual curiosity”, it coincides well with our IF approach. In general, current 

theories of curiosity converge on the assumption that the automatic bias towards novel and surprising 

events is rooted in the motivation to reduce uncertainty in the environment (van Lieshout, de Lange, & 

Cools, 2020), so that the model of the environment is continuously updated. This has been extensively 

shown in how young children forage for visual information. Infants tend to focus on familiar visual 

stimuli as long as they offer learning progress, but they switch to novel stimuli when learning progress 

drops (Poli et al., 2020; and see Adyman & Mareschal, 2013, for how redundancy governs spontaneous 

orientation). Indeed, if the environment is not stable but ever-changing, such updating is a primary 

priority. From this perspective, highly predictable events are uninformative and do not contribute to 

uncertainty reduction for updating our models of the world. Similar to our approach, novelty-based 

theories of curiosity suggest that new and highly uncertain stimuli drive curiosity, and, in general, the 

causal structure of the environment and its predictability will determine whether high or moderate 

uncertainty should drive curiosity (Dubey & Griffiths, 2020). 

Discussions in the domain of creativity parallel the proposed contrast between SL and IF. In 

creativity research, “creative foraging”, as a theoretical construct, is taken to balance two main 

processes, exploitation and exploration (Hills, Todd, Lazer, Redish, & Couzin, 2015; Hart et al., 2018). 
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Exploitation is operationally defined as taking advantage of the specific regularities within a search 

space, repeatedly applying identical or similar computations. Opposite to exploitation is exploration, 

defined as moving to a novel search space, applying novel computations, to increase gain. While 

exploitation would maximize reward if the environment is stable, a maximizing organism would not 

detect superior reward associated with different regions of space or different computations (indeed, 

exploitation may limit reward, if resources are depleted, especially if multiple organisms compete for 

resources; e.g., Gallistel, 1993). While exploitation is driven by predictable outcomes akin to SL, 

exploration, and in essence, curiosity behavior, is driven by the promise of information gain that would 

come in unpredictable novel search spaces (Linquin & Lombrozo, 2020). In fact, exploration is defined 

only with reference to exploitation, just as novelty in IF is defined with reference to baseline statistical 

regularity. 

 

Concluding remarks and future directions 

Our present theoretical perspective on IF and its role in cognitive architecture lays the groundwork 

and raises new questions for future research on the processing of regularities. Critically, experimental 

investigations of IF should focus on paradigms that involve changes in regularity, tracking participants’ 

perception of these changes in real-time, mapping the precise parameters that determine efficient 

detection of deviations from baseline (e.g., Weiss, Gerfen, & Mitchel, 2009; Ryskin, Qi, Duff, & 

Brown-Schmidt, 2017; Wang & Theeuwes, 2020; Hodson et al., 2023). When it comes to laboratory 

experiments with artificial stimuli, this will require tracking behavior in significantly longer 

experimental sessions than conventional SL research (see e.g., Frank, Tannenbaum, & Gibson, 2013), 

where participants are processing input streams that vary in regularity as the session proceeds. In the 

domain of language, where the statistical co-occurrences of linguistic elements can be determined by 

considering large databases, experimental work can focus on presenting participants with input streams 

that conform or not with the distributional properties that characterize their linguistic environment. This 

approach can be used to measure the manipulation’s impact on performance, for speech, print, or any 

linguistic input (e.g., Idemaru & Holt, 2011; Isbilen, McCauley, & Christiansen, 2022; and see Elazar, 

Alhama, Bogaerts, & Frost, 2022, for discussion). In the same vein, from the perspective of individual 
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differences, studies should focus on individual sensitivity to a change in statistical regularities, 

individual plasticity in adapting to novel structural properties, and individual efficiency in determining 

which regularities are informative and which are not, given the particular context of learning.  

To map the neurobiological underpinning of IF, research could focus on the range of neural 

mechanisms that are tuned to track deviation from baseline, and mechanisms that flag alterations in 

patterns of quasi-regularity. A recent example is the role of norepinephrine in tracking unexpected 

uncertainty and deviation from regularity (Zhao et al., 2019). Importantly, such investigation should go 

beyond simple oddball paradigms and their concurrent mismatch negativity responses (e.g., Näätänen 

& Alho, 1995). As we point out above, and in contrast to conventional SL, mechanisms of IF most 

probably involve complex interactions with systems that govern exploration, attention, and reward. 

Establishing the neurocircuitry that is implicated in the foraging of change, and the necessary conditions 

for its consolidation in memory, is an important priority.  
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