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Abstract 42 
 43 
Humans and other animals use information about how likely it is for something to happen.  The 44 
absolute and relative probability of an event influences a remarkable breadth of behaviors, from 45 
foraging for food to comprehending linguistic constructions -- even when these probabilities are 46 
learned implicitly.  It is less clear how, and under what circumstances, statistical learning of simple 47 
probabilities might drive changes in perception and cognition.  Here, across a series of 29 48 
experiments, we probe listeners' sensitivity to task-irrelevant changes in the probability 49 
distribution of tones’ acoustic frequency across tone-in-noise detection and tone duration 50 
decisions. We observe that the task-irrelevant frequency distribution influences the ability to 51 
detect a sound and the speed with which perceptual decisions are made. The shape of the 52 
probability distribution, its range, and a tone's relative position within that range impact observed 53 
patterns of suppression and enhancement of tone detection and decision making. Perceptual 54 
decisions are also modulated by a newly discovered perceptual bias, with lower frequencies in 55 
the distribution more often and more rapidly perceived as longer, and higher frequencies as 56 
shorter. Perception is sensitive to rapid distribution changes, but distributional learning from 57 
previous probability distributions also carries over. In fact, massed exposure to a single point 58 
along the dimension results in a sustained 'statistical deafening' along a range of subsequently 59 
encountered frequencies. This seemingly maladaptive loss of sensitivity - occurring entirely in the 60 
absence of feedback or reward - points to a gain mechanism that suppresses sensitivity to regions 61 
along a perceptual dimension that are less likely to be encountered. 62 
 63 
Significance Statement 64 
  65 
Organisms as diverse as honeybees and humans pick up on probabilities in the world around 66 
them. People implicitly learn the likelihood of a color, price range, or even syntactic structure. How 67 
does statistical learning affect how we detect events and make decisions, especially when 68 
probabilities are completely irrelevant to the task at hand, and can change without warning? We 69 
find that people learn and track changes in perceptual probabilities irrelevant to a task and that 70 
this learning drives dynamic shifts in perception characterized by graded effects of enhancement 71 
– and primarily – suppression across acoustic frequency. This can result in a remarkably long-72 
lived 'statistical deafening' that seems maladaptive but may instead reflect use of likelihood to 73 
guide and sharpen perception.      74 
 75 
Introduction 76 
 77 
We implicitly pick up information about the probability of white versus red cars on the road, the 78 
spatial position of objects in a room, and how likely different sounds might be within a soundscape 79 
– for instance, hearing a cow moo in a barnyard versus a hospital. The detailed distributional 80 
structure of sensory input leads us to expect some events and to be surprised by others. How 81 
does statistical learning influence perception? 82 
 83 
Some studies have focused on learning across probabilistic input, whereby organisms implicitly 84 
discover regularities across continuous input dimensions (Love, 2003; McMurray, Aslin, Toscano, 85 
2009; Rosenthal, Fusi, & Hochstein, 2001). For example, unsupervised cluster-learning of speech 86 
in infancy may scaffold language acquisition (Werker, Yeung, & Yoshida, 2012; Cristià, 2011; 87 
Schatz et al., 2022). Other studies manipulate probability to operationalize expectation, 88 
emphasizing the effects of distributional learning on perception and neural representation 89 
(Summerfield & de Lange, 2014; Summerfield & Egner, 2009). 90 
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Some theoretical accounts of the influence of expectation on perception postulate prioritization of 91 
high probability input consistent with Bayesian inference (de Lange et al., 2018). Indeed, frequent, 92 
expected stimuli are better detected than rare stimuli (Pinto et al., 2015; Stein & Peelen, 2015) 93 
and perceptual decisions about expected stimuli are speedier and more accurate, even when 94 
expectations concern task-irrelevant qualities (Summerfield & de Lange, 2014; Summerfield & 95 
Egner, 2009). This enhanced perception might be achieved via adjustments of weights on sensory 96 
channels that modulate gain, sharpening representation of frequent relative to rare input. 97 
Alternately, perceptual enhancements might be mediated by expectation-congruent memory 98 
representations (Summerfield & de Lange, 2014; Kok et al., 2012). Neuroimaging studies have 99 
revealed that representation of expected stimuli is enhanced via suppressed activity in voxels 100 
tuned away from expected stimuli (Kok et al., 2012; Yon et al., 2018). 101 
 102 
Other accounts conclude, instead, that distributional learning accentuates infrequent, unexpected 103 
events (see Press et al., 2020). This prioritization is accomplished by suppressing expected input 104 
(Blakemore et al., 1998; Kilteni & Ehrsson, 2017; Richeter et al., 2018; Meyer & Olson, 2011; 105 
Kumar et al., 2017), leading to improved detection of rare stimuli (Milne et al., 2024). A third 106 
account suggests that expectation can lead to enhancement in some contexts and suppression 107 
in others, with initial perceptual biases that tilt toward expected stimuli but can be cancelled out 108 
by highly surprising input (Press et al., 2020). But complicating matters, probability distributions 109 
experienced across a perceptual dimension may influence the bottom-up salience (Alink & Blank, 110 
2021; Zivony & Eimer, 2024) or task relevance (Rungratsameetaweemana & Serences, 2019) of 111 
a dimension, each with the potential to impact perception. In sum, there is still no consensus 112 
about how likelihood influences perception. 113 
 114 
We propose that opposing theoretical perspectives may persist, at least in part, as a byproduct of 115 
empirical focus on dichotomous frequent-versus-rare likelihoods that necessarily limit the 116 
resolution with which the relationship between expectation and gain can be estimated. More 117 
complex probability distributions sampled across a continuous perceptual dimension have the 118 
potential to reveal granular, graded influences of expectation built from distributional learning 119 
across probability.  120 
 121 
Here, we shape expectation by sampling stimuli probabilistically across the primary 122 
representational axis of the auditory system, acoustic frequency. Crucially, across all studies 123 
acoustic frequency is task-irrelevant. This decouples expectation from task utility 124 
(Rungratsameetaweemana & Serences, 2019) allowing us to examine the influence of 125 
distributional statistical learning across a task-irrelevant dimension on perception. We test how 126 
this learning impacts perception across unimodal, bimodal, and equiprobable distributions varying 127 
in statistical volatility, sampling density, and context.  128 
 129 
Inspired by two classic psychoacoustics literatures, we manipulate acoustic frequency 130 
distributions across two distinct perceptual tasks: tone-in-noise detection and tone duration 131 
decisions. Detection accuracy of near-threshold tones in noise provides a graded metric of the 132 
perceptual gain function arising from expectation built from distributional learning and allows for 133 
directional assessment of enhancement versus suppression. Complementing this, the speed of 134 
duration decisions tests the influence of task-irrelevant frequency distributions on processing time 135 
to execute a perceptual decision and extends the generalizability of conclusions.  136 
 137 
Across 29 experiments, we find that task-irrelevant probability distributions’ mode(s) and range 138 
influence the ability to determine whether a sound is present and the speed of perceptual 139 
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decisions. We find that statistical learning is not mere ‘bean counting’: equally likely events are 140 
differentially perceived as a function of their position within a probability distribution. We observe 141 
exquisite sensitivity to distribution shifts and robust carryover of influence from previously 142 
experienced distributions. Massed exposure to a single point along the frequency dimension 143 
results in sustained 'statistical deafening' along a range of subsequently encountered frequencies 144 
that would seem to be maladaptive but may indicate suppressed sensitivity to regions along a 145 
perceptual dimension that are less likely to be encountered that attunes perception to statistical 146 
regularities of the current environment.  147 
 148 
Results 149 
 150 
The experiments build on classic psychoacoustics literatures across two perceptual tasks. One 151 
task examines detection of near-threshold tones in continuous noise. In an influential study, 152 
Greenberg and Larkin (1968) led listeners to expect a single constant-frequency tone to appear 153 
in noise but tone frequency varied on a minority of trials. Detection accuracy was superior for the 154 
expected, high-probability frequency with graded diminishment of detection accuracy as a 155 
function of distance from the expected frequency. This gradation of sensitivity with distance from 156 
the expected frequency has been interpreted as a frequency-selective attentional filter (Scharf et 157 
al., 1987). The other task, developed by Schröger and Wolf (1998) as a model of auditory 158 
distraction, requires participants to decide whether a sound is “long” or “short” across two 159 
equiprobable tones with different durations. The tones’ acoustic frequency is task-irrelevant but 160 
carries a distributional regularity that impacts response speed, with slower duration decisions 161 
about tones with low-probability frequencies consistent with longer processing time. Together, the 162 
tasks allow us to examine putative effects of statistical learning on distinct perceptual processes. 163 
 164 
Statistical learning alters the detection of tones in noise 165 
 166 
We first ask whether statistical learning across a probability distribution sampled over a 167 
continuous sensory dimension affects the most basic perceptual process: detection. Does the 168 
probability with which a sound occurs influence the ability to hear it in noise?  169 
 170 
In Exp 1, listeners detect a tone presented at threshold (estimated for each participant, Fig 1a, 171 
top) in continuous white noise within one of two intervals (Fig 1a, bottom). (For each tone-172 
detection-in-noise study, individual detection thresholds are established immediately before the 173 
experiment using three iterations of a standard staircase technique adapted for online testing, 174 
Zhao et al., 2022; see Materials and Methods). Exp 1a establishes baseline detection accuracy 175 
when a single acoustic frequency (1000 Hz) is 100% probable. Exp 1b-f draw from a pool of five 176 
easily differentiable frequencies (Fig 1c; 800, 920, 1000, 1080, 1200 Hz) spaced ~13x the just-177 
noticeable difference in frequency (Sek & Moore, 1995). In Exp 1b-d, one highly probable 178 
frequency comprises 75% of the 320 trials. The remaining four tones each occur on just 6.25% of 179 
trials, creating a unimodal distribution across frequency. Exp 1e has a bimodal probability 180 
distribution with 800 Hz and 1200 Hz frequencies each presented on 40.6% of trials, with each 181 
other frequency presented on 6.25% of trials. Exp 1f is identical to Exp 1e, except that the 182 
frequency for threshold estimation is 1080 Hz, rather than 1000 Hz as in Exp 1a-e. Fig 1c 183 
illustrates these distributions across the acoustic frequency dimension. 184 
 185 
Given the large number of experiments and results, for Exp 1 and all subsequent experiments, 186 
we report only exact p values for each statistical test in the main Results text. Table S3 provides 187 
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details on each reported analysis, including the relevant filename of the subject-wise data and 188 
analysis files available at https://osf.io/xdgnw/.   189 
 190 

 191 
 192 
Figure 1. Tasks and Distributional Regularities. (A) The tone-in-noise detection task involved two 193 
phases: adaptive threshold estimation followed by the tone-in-noise detection task. Threshold estimation 194 
trials began with continuous noise and a fixation cross (750 ms), after which a 1000-Hz tone was presented 195 
with equal probability in one of three 250-ms detection windows (250 ms ISI), each indicated by a number 196 
(1, 2, or 3) on the screen. A prompt 250-ms after the third detection window elicited participants’ report of 197 
the interval containing a tone (here, shown in the first interval). Tone intensity followed the 3-down, 1-up 198 
procedure to estimate 79% accuracy (see Methods and Materials). The noise continued through the tone-199 
in-noise detection task, shown in the bottom of (A). For each trial, 500 ms preceded a 250 ms fixation cross 200 
and another 500 ms period. A 250-ms sinewave tone with intensity + 0.75 dB above the threshold estimated 201 
in the adaptive thresholding task appeared in one of two 250-ms intervals (250 ms ISI), indicated by a “1” 202 
and a “2" on the screen, respectively. Participants reported which interval contained the tone (here, shown 203 
as interval 2). Tone frequency varied according to the distributions in (C). (B) In the duration decision task, 204 
each trial involved a 1000-ms fixation followed by a 50 or 90 ms sine wave tone (equal probability) and 205 
participants reported “long” or “short” with a button press. (C) Probability distributions for each experiment, 206 
as a function of acoustic frequency. Blue distributions indicate tone-in-noise detection experiments. Orange 207 
distributions indicate duration decision experiments. 208 
 209 
 210 
In Exp 1, stimulus probability strongly modulates tone detection in noise across Exp 1b-f with 211 
better detection of high-probability frequencies at the distribution mode (Fig 2a; Freq x Exp 212 
interaction, p = 1.761x10-31). Detection of only 1000 Hz (Exp 1a: 100% probability; average 213 
accuracy 77.9%) does not differ from detection of the highest-probability frequency in unimodal 214 
distributions (Exp 1b-d: 75% probability; average accuracy 75.3%; p = 0.242). But detection of 215 
the modal frequencies in the bimodal distributions (40% probable) is lower than when a single 216 
frequency is 80% or 100% probable (Exp 1e-f: 40.6% probability; average accuracy 70.3%; p = 217 
0.006 versus Exp 1b-d, p = 0.003 versus Exp 1a). 218 
 219 
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 220 

Figure 2. Statistical learning alters the detection of tones in noise. Each panel plots mean detection 221 
accuracy as a function of tones’ acoustic frequency. The histograms to the left show distributional 222 
regularities for each experiment. Marker size scales with tone probability. Error bars are standard error of 223 
the mean. (A) Detection accuracy for a single-point distribution at 1000 Hz in Exp 1a approximates the 224 
expected detection accuracy estimated by the preceding threshold procedures and serves as a reference 225 
baseline for single frequency detection. For Exp 1b-d the distribution mode is detected best, with 226 
equivalently low-probability tones detected more poorly as a function of distance from the mode (see inset). 227 
(B) Bimodal distributions produce a ‘dual spotlight’ with detection accuracy best at the modes. Exp 1e-f 228 
differ only in the frequency used to estimate the threshold (1000 and 1080 Hz, respectively).   229 

 230 
Proximity to the high probability tone also influences detection (Fig 2a). The low-probability 231 
frequencies of Exp 1b-d share the same probability, yet those closer to a high-probability 232 
frequency are better detected than those further away (p = 0.014). When the high-probability 233 
frequency is centered in the range of frequencies defining the distribution, this graded detection 234 
accuracy difference is symmetric (near > far to high-probability frequency, p = 0.004). When the 235 
high-probability frequency is nearer to the distribution edge (Exp 1b and Exp 1d), there is an 236 
asymmetric detection curve (p = 0.015): a sharp detection decrement toward the distribution edge 237 
is contrasted with a more gradual ‘ski slope’ decrement toward the middle of the frequency range 238 
(see inset, Fig 2a). In sum, equiprobable rare tones are detected more accurately if they are 239 
adjacent to the distribution mode, but this advantage is modulated by the position of the high 240 
probability tone relative to the range of the frequency distribution. 241 
 242 
More complex probability distributions also modulate detection (Fig 2b). Exp 1e shows that a 243 
bimodal probability distribution with higher-probability (40.6%) frequencies at the edges of the 244 
distribution (800 and 1200 Hz) induces a ‘dual spotlight’ across the frequency dimension. 245 
Listeners detect the higher-probability tones more accurately than neighboring low-probability 246 
tones (920 and 1080 Hz, p = 3.451 x 10-7) and the middle 1000 Hz tone (p = 0.036).  247 
 248 
Note that for Exp 1e, detection of 1000 Hz tones has a numerical (but not significant) detection 249 
advantage compared to the other low-probability tones (Fig 2b). Two ‘spotlights’ centered at the 250 
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high-probability tone frequencies would yield a “V” rather than this observed “W” detection profile. 251 
We speculated that the numerical detection advantage for 1000 Hz might arise from experience 252 
with 1000 Hz in the 90-trial threshold-setting procedure that precedes Exp 1e. Exp 1f falsifies this 253 
hypothesis. Changing the initial threshold-setting frequency to 1080 Hz elicits a similar “W” profile 254 
and, importantly, replicates the overall 'dual spotlight' at 800 and 1200 Hz (p = 8.52 x 10-11, Fig 255 
2b).  256 
 257 
In summary, Exp 1 demonstrates that distributional statistical learning modulates sound detection. 258 
Replicating and extending classic studies in psychoacoustics (Greenberg & Larkin, 1968), tones 259 
with higher-probability frequencies are better detected in noise than lower-probability frequencies. 260 
The impact of statistical learning is graded across frequency, with better detection of low-261 
probability frequencies that lie closer to high-probability frequencies than equally improbable, but 262 
more distant, frequencies. This effect is further influenced by the overall distributional context: the 263 
protective effect of proximity to the high-probability tone depends on its position within the range 264 
of encountered frequencies. Moreover, bimodal distributions with two higher-probability 265 
frequencies at the edges of the frequency range elicit a ‘dual spotlight’.  266 
 267 
Statistical learning across a task-irrelevant dimension impacts perceptual decisions 268 
 269 
Listeners track probabilities across acoustic frequency despite the irrelevance of frequency to the 270 
Exp 1 detection task. Previous findings show that similar probability distribution manipulations 271 
affect perceptual decision response times (Schröger & Wolff, 1998). We next ask whether 272 
statistical learning over a probability distribution defined across task-irrelevant frequency impacts 273 
the time course of decisions about a sound’s duration.  274 
 275 
In Exp 2a-c, participants report whether a tone is long or short, with 50 ms and 90 ms tones 276 
presented equiprobably across 400 trials (Fig 1b; see Materials and Methods). Task-irrelevant 277 
tone frequency varies across five frequencies (800-1200 Hz) in the manner of Exp 1 (Fig 1c). 278 
There are four improbable tone frequencies (each 5% of trials), and a single probable frequency 279 
(80% of 400 trials, Exp 2a: 920 Hz; Exp 2b, 1000 Hz; Exp 2c: 1080 Hz). In Exp 2d, 800 Hz and 280 
1200 Hz are presented on 40.625% of trials with the other frequencies each presented on 6.25% 281 
of trials to create a bimodal distribution (320 trials). In Exp 2e, the five tones are equiprobable 282 
(20%) across the first half of the study and then switch to the bimodal distribution of Exp 2d (640 283 
total trials). 284 
Across Exp 2a-c, the probability of a tone’s frequency significantly impacts the speed of duration 285 
decisions (p = 7.62 x 10-7, Fig 3a). Response times (RTs) are slower for tones with low, compared 286 
to high, probability frequencies (p = 1.445 x 10-21). Further, RTs for duration decisions to 287 
equiprobably rare frequencies are graded as a function of their distance from the high-probability 288 
distribution mode. Compared to RTs to the most probable frequency, those to the adjacent low-289 
probability frequencies are slower (p = 5.222 x 10-11) and frequencies furthest away from the high-290 
probability frequency are slowest (p = 4.19 x 10-6). (These patterns hold true for each Exp 2a-c 291 
study, p < .05 Holm-corrected). This replicates and extends classic observations from 292 
psychoacoustics (Schröger & Wolff, 1998) and mirrors the graded influence on Exp 1 detection 293 
accuracy (Fig 2a).  294 
 295 
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 296 

Figure 3. Statistical learning across a task-irrelevant dimension impacts perceptual decisions. Each 297 
panel plots mean response time as a function of tones’ acoustic frequency. The histograms to the left show 298 
distributional regularities for each experiment. Marker size scales with tone probability. Error bars are 299 
standard error of the mean.  (A) Response time to report tone duration is impacted by the probability of 300 
tones’ acoustic frequency across Exp 2a-c. The influence is graded, with faster decision times for 301 
equivalently low-probability tones closer to the distribution mode (see inset). (B) Unlike the dual spotlight 302 
for tone detection in Exp 1e-f, there is no significant response time difference for the two more probable 303 
modes in Exp 2d, a consequence of a frequency-duration perceptual bias (see Fig S1). (C) Exp 2e 304 
evaluated the frequency-duration bias across an equiprobable distribution in the first half of the study 305 
(orange, dashed) with a switch to the bimodal distribution at study midpoint (yellow, solid). The bias is 306 
largest at the edges of the distribution where it interacts with the bimodal distributional regularity (see Fig 307 
S1). 308 

However, unlike the dual spotlight for tone detection in Exp 1e-f, there is no significant RT 309 
advantage for making duration decisions about the higher-probability 800 and 1200 Hz tones in 310 
Exp 2d (Fig 3b; p = 0.615). To examine this more closely, Exp 2e introduces a distribution change: 311 
five initially equiprobable (20%) frequencies (320 trials) shift to mirror the Exp 2d bimodal 312 
distribution mid-study (320 trials; see Fig 1c). This allows us to characterize potential frequency-313 
duration interactions that may exist, independent of probability. Indeed, decision RTs are longer 314 
for 800 Hz and 1200 Hz compared to other frequencies (p = 0.031) when tone frequencies are 315 
equiprobable in the first half of trials (Fig 3c). 316 
 317 
Investigating this reveals a novel frequency-duration perceptual bias: duration decisions for lower-318 
frequency tones (800, 920 Hz) are more accurate and faster for long (90 ms) compared to short 319 
(50 ms) tones whereas those for the highest frequency tone (1200 Hz) are more accurate and 320 
faster for short compared to long tones (Fig S1; Frequency x Duration interaction, RT: p = 0.003, 321 
Accuracy (Acc): p = 3.738 x 10-5). This perceptual bias is mirrored qualitatively in Exp 2d (Fig S1; 322 
p > 0.05, with lower frequencies related to longer durations and higher frequencies with shorter 323 
durations). Notably, the bias is largest at the edges of the frequency distribution (800 and 1200 324 
Hz) where it interacts with the bimodal distribution modes of Exp 2d-e, helping to explain why the 325 
dual spotlight observed in Exp 1e-f detection is not apparent in Exp 2d duration decisions. When 326 
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we inspect the data from Exp 2a-c (Fig S1) we also observe the longer-lower/shorter-higher bias 327 
in the context of the unimodal distributions (Frequency x Duration interaction, RT: p = 3.968 x 10-328 
6; Acc: p = 0.003). In other words, listeners found it easier to identify long durations when tones 329 
were relatively lower in frequency; conversely, it was easier to identify short durations when the 330 
sound was a relatively higher frequency tone. This impacted response time and interacted with 331 
the probability manipulation. 332 
 333 
In summary, statistical learning across a task-irrelevant dimension affects perceptual decisions. 334 
The speed with which participants report the duration of a tone is impacted by the probability of 335 
the tone’s frequency. As with tone detection in noise in Exp 1a-f, learning across the probability 336 
distribution produces a graded influence on perceptual decisions: decisions across equivalently 337 
low-probability tones differ as a function of the tone’s distance in frequency from a high-probability 338 
tone. Moreover, Exp 2 demonstrates that seemingly intrinsic biases across acoustic dimensions 339 
may influence and/or disguise the impact of short-term statistical input regularities (for other 340 
examples see Roark & Holt, 2022; Bröker et al., 2024). These “intrinsic” biases might arise from 341 
statistical learning across longer timescales (see Discussion), and interact with short-term 342 
statistical regularities as shown in Exp 2a-e. 343 
 344 
Perceptual sensitivity and decisions rapidly update in volatile statistical contexts 345 
 346 
Studies of statistical learning often investigate static distributions. But real-world environments 347 
can be volatile: for example, listeners often encounter talkers speaking different accents with 348 
different distributional regularities. The perceptual weight of different speech cues can rapidly alter 349 
in response to shifts in distributional regularities (e.g., Hodson et al., 2023; Murphy et al., 2023). 350 
It is not clear whether fundamental perceptual processes like detection and duration decisions 351 
are modulated by statistical volatility across task-irrelevant sensory dimensions. 352 
 353 
Here, across six studies, we examine distributions composed of two tones: one high probability 354 
frequency and one low probability frequency (Fig 1c), akin to dichotomous probability distributions 355 
often used in studies of expectation and attention (e.g., Zivony & Eimer, 2024). In Exp 3a-b 356 
(detection) and Exp 4a-b (duration decision) we examine static two-frequency distributions to 357 
assure that effects of statistical learning observed across 5-tone distributions in Exp 1 and Exp 2 358 
hold even in the simplest 2-tone sensory context over 320 trials. Exp 3a and Exp 4a examine 359 
detection and duration decisions, respectively, with 1000 Hz occurring across 75% of trials and 360 
1155 Hz occurring over the remaining 25% of trials. Exp 3b and Exp 4b examine detection and 361 
duration across the complementary probability distribution. In Exp 3c and Exp 4c, we model a 362 
dynamic statistical context where these two-frequency distributions alternate every 160 trials. 363 
Participants experience four 160-trial blocks, with 1000 Hz high-probability (75%) and 1155 Hz 364 
low-probability (25%) in the first block, and probabilities alternating across frequencies in 365 
subsequent blocks.  366 
 367 
 368 
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 369 

Figure 4. Perceptual sensitivity and decisions rapidly update in volatile statistical contexts. For Exp 370 
3a-c mean detection accuracy as a function of acoustic frequency is plotted in blue; for Exp 4a-c duration 371 
decision mean response times are plotted in orange. Marker size scales with tone probability. In (A) and 372 
(B) the insets show the probability distributions. In (C) and (D) color indicates the tone frequency and marker 373 
size indicates its probability. Error bars are standard error of the mean. (A) Probability distributions defined 374 
across just two acoustic frequencies impact tone detection, with more accurate detection for high-probability 375 
tones in Exp 3a-b. (B) Two-tone distributions defined across task-irrelevant acoustic frequency also impact 376 
the response time to make duration decisions, with slower duration decisions to low-probability tones in 377 
Exp 4a-b. (C) As tone probability shifts every 160 trials across four blocks in Exp 3c, detection is more 378 
accurate for the high-probability, compared to low-probability, tones. (D) Similarly, in Exp 4c, the speed of 379 
duration decisions mirrors volatile probability changes: lower probability tone frequencies elicit slower 380 
duration decisions. 381 

 382 
Across Exp 3a and Exp 3b, we find equal and opposite effects of frequency probability, with the 383 
high probability tone detected on average ~6% more accurately than the low probability tone (Fig 384 
4a; Freq x Prob interaction, p = 3.361 x 10-6). In Exp 4a and Exp 4b, RTs to the high probability 385 
tone frequency are on average ~28 ms faster than those to the low-probability frequency (Fig 4b, 386 
p = 1.375 x 10-6). We also observe the perceptual 'low-frequency à long-duration / high frequency 387 
à short-duration’ bias of Exp 2 even in this dichotomous probability distribution, with faster RTs 388 
for long-low/short-high duration-to-frequency pairings (Freq x Duration interaction, RT: p = 9.34 x 389 
10-6; Acc: p = 6.318 x 10-5). In summary, a 2-tone frequency probability distribution affects tone in 390 
noise detection. It also affects individuals' speed in making perceptual decisions across a 391 
different, task-relevant input dimension, but this effect is modulated by pre-existing perceptual 392 
biases.  393 
 394 
In the statistically volatile context established in Exp 3c, there is a detection advantage for the 395 
more probable frequency, with significant ‘flips’ in detection accuracy due to short-term reversals 396 
in tone probability for the first three blocks of Exp 3c (Fig 4c; Freq x Block interaction, p = 2.495 397 
x 10-5, each block p < 0.05). In the final block, there is no significant difference in detection 398 
accuracy across frequencies.  399 
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 400 
Likewise, transient changes in probability distribution affect the efficiency of perceptual decisions 401 
in Exp 4c (Fig 4d, Freq x Block interaction, p = 5.253 x 10-7). RTs are slowest for the less probable 402 
frequency in Blocks 1, 3, and 4 (all p < 0.04 Bonferroni-corrected). Even in this dynamic context 403 
we again observe the systematic frequency-duration perceptual bias discovered in Exp 2 (Freq x 404 
Duration interaction, RT: p = 0.019; Acc: p = 0.019). 405 
 406 
In summary, probability distributions defined across two acoustic frequencies elicit implicit 407 
statistical learning that impacts perception. The influence is rapid: probability exerts its influence 408 
across just 160 trials. As input statistics change, implicit statistical learning influences sound 409 
detection and perceptual decision making.  410 
 411 
The influence of statistical learning is consistent with a gain mechanism exhibiting 412 
hysteresis 413 
 414 
We observe strong influences of statistical learning across unimodal probability distributions on 415 
detection accuracy and the speed of duration decisions (Exp 1 and Exp 2) that holds for 416 
dichotomous probabilities and follows volatile statistics across an experiment (Exp 3 and Exp 4). 417 
Here in Exp 5 (detection) and Exp 6 (duration decisions), we borrow from the distribution-switch 418 
design established in Exp 2e (Fig 1c). This distribution manipulation enables us to investigate 419 
how statistical learning influences detection and duration decisions across a changing statistical 420 
context. Moreover, by establishing perception across equiprobable distributions as a baseline, we 421 
reveal granular and graded changes in detection and decision making that emerge as statistical 422 
learning builds expectations, including enhancement and suppression of expected stimuli.  423 
 424 

 425 

Figure 5. The influence of statistical learning is consistent with a gain mechanism exhibiting 426 
hysteresis. In Exp 5a-b mean detection accuracy as a function of acoustic frequency is plotted in blue; in 427 
Exp 6a-b duration decision mean response times are plotted in orange. The histograms to the left show 428 
distributional regularities for each experiment. Marker size scales with tone probability. In each panel, the 429 
darker color (dotted line) indicates behavior in the first half of the experiment; the lighter color (solid line) 430 
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indicates behavior in the second half, when distributional regularities shift. Error bars are standard error of 431 
the mean. (A) Exp 5a establishes detection accuracy across a equiprobable distribution, then shifts to a 432 
unimodal distribution centered on 1000 Hz. Detection accuracy improves for the distribution mode with 433 
increased probability and decreases for frequencies with decreased probability. (B) Exp 5a switches from 434 
a unimodal distribution centered at 1000 Hz to an equiprobable distribution. Note the hysteresis at 1000 435 
Hz, where detection remains elevated even into the second half of the study. (C) In Exp 6a, duration 436 
decision times are flat with equiprobable frequencies in the first half. Introduction of a unimodal distribution 437 
centered at 1000 Hz leads to faster duration decisions at the mode. (D) In Exp 6b the unimodal distribution 438 
shifts to equiprobable at the study midpoint and duration decision response times shift substantially; note 439 
that this effect interacts with the frequency-duration bias identified in Exp 2. 440 

With equiprobable frequencies in the first half of Exp 5a, detection accuracy is consistent across 441 
frequency (Fig 5a; overall ~65%, with unexpectedly better detection for 800 Hz, p = 0.009). In the 442 
second half of Exp 5a, probabilities shift to mirror Exp 1b (1000 Hz 75%; all others 6.25%). This 443 
shift drives changes in accuracy which differ across frequencies (p = 8.511 x 10-7). The 1000 Hz 444 
tones, which are now more probable, are better detected than they were in the first (equiprobable) 445 
half of Exp 5a (p = 0.013, whereas the frequencies nearest (p = 0.041) and furthest (p = 0.004) 446 
from 1000 Hz, which are now less probable, are more poorly detected than they were in the first 447 
half of the study). 448 
 449 
In Exp 5b, we reverse distribution order. With a unimodal distribution centered on 1000 Hz in the 450 
first half of Exp 5b, detection generally resembles Exp 1c (Fig 5b), with better accuracy for high-451 
probability 1000 Hz compared to low-probability frequencies (p = 2.77 x 10-10), but with only a 452 
numerical detection advantage for frequencies nearest (920 and 1080 Hz) versus furthest (800 453 
and 1200 Hz) from the probable center frequency (p = 0.312, Bonferroni-corrected). When tone 454 
frequencies become equiprobable mid-study, again the probability shift drives differential changes 455 
in accuracy (p = 1.815 x 10-4). Here, the influence of the unimodal distribution carries over to 456 
confer a detection advantage to 1000 Hz, which was formerly highly probable, compared to other 457 
frequencies, which were formerly less probable (p = 1.068 x 10-5). Detection of 1000 Hz tones 458 
decreased in accuracy from the first to the second study half due to the probability shift (p = 459 
0.0035), but detection accuracy for the formerly low-probability tones did not change, despite a 460 
more than 3-fold probability increase (p = 1, Bonferroni corrected). 461 
 462 
In sum, statistical learning across a unimodal distribution provokes a persistent effect on 463 
detection. For example, in Exp 5b, the initially highly probable 1000 Hz tone continued to be 464 
detected more accurately than other tones even after tone frequencies became equiprobable. 465 
Conversely, the tones adjacent 1000 Hz, which were initially relatively improbable, continued to 466 
be detected poorly even after the shift to the equiprobable distribution. Next, we use this 467 
distribution shift design to examine duration decisions.  468 
 469 
Exp 6a begins with equiprobable frequencies and shifts mid-study to a unimodal distribution 470 
centered at 1000 Hz (80%, each other frequency 5%; Fig 1c). Exp 6b reverses this order. In the 471 
first half of Exp 6a, duration decision RTs across equiprobable frequencies are similar (Fig 5c, p 472 
= 0.163). When probabilities shift to a unimodal distribution centered on 1000 Hz mid-study, RTs 473 
drop overall (p = 0.011). Although there is a numerical 'V-shaped' RT advantage for the now-474 
probable 1000 Hz compared to increasingly more distant frequencies, this pattern does not differ 475 
significantly from the first half of the experiment (p = 0.245).    476 
 477 
In the first, unimodal probability half of Exp 6b, duration decisions exhibit the “V” shape around 478 
the high-probability 1000 Hz tone also observed in Exp 2b (effect of frequency, p =6.847 x 10-8, 479 
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Fig 5d). Decisions about low-probability frequencies near to 1000 Hz are slower compared to 480 
1000 Hz itself (p = 0.024) but faster than to those further away from 1000 Hz (p = 0.004).  481 
 482 
When all frequencies become equiprobable mid-study in Exp 6b, there is a change in the degree 483 
to which frequency modulates duration decisions (p = 0.024), but the 1000 Hz decision advantage 484 
persists in the second half (Fig 5d). Even though 1000 Hz is now 20% probable, RTs are not 485 
significantly different than in the first experiment half when it was 80% probable (p = 0.796). Like 486 
detection in Exp 5b, there is carryover from experience with the unimodal distribution in the first 487 
half of the study, such that duration decision RTs are still modulated by frequency (p = 8.306 x 488 
10-5). RTs to report decisions for 1000 Hz continue to be significantly faster than for the now-489 
equally-probable far frequencies (p = 0.003), although not significantly faster than nearby 490 
frequencies (p = 0.405). Finally, we again observe the duration-frequency bias established in the 491 
prior duration decision studies (Freq x Duration interaction, RT: p = 1.608 x 10-4; Acc: p = 0.006). 492 
 493 
In summary, the impact of statistical learning on both detection and perceptual decisions emerges 494 
quickly and exhibits hysteresis, persisting even after the unimodal probability distribution flattens 495 
so that tones are equiprobable.   496 
 497 
The detailed shape of statistically-driven gain is modulated by range, distribution, and 498 
sampling density 499 
 500 
In Exp 7, we make a more in-depth exploration of how expectations built up from distributional 501 
statistical learning are impacted by statistical context, including frequency range and sampling 502 
density. Across six tone-in-noise detection studies, Exp 7 provides detailed information about the 503 
shape of the gain that emerges from statistical learning and how it evolves after an abrupt change 504 
in distributional statistics. We use these within-experiment distributional changes to estimate the 505 
emergence of enhancement and suppression of frequencies via statistical learning.  506 
 507 
Exp 7a-f incorporate a mid-study change in distribution from equiprobable to unimodal or vice 508 
versa. The studies vary the range and density of 7 tone frequencies that define the distributions 509 
(Fig 1c) from narrow (Exp 7a,b; 5.5 semitone range), intermediate (Exp 7c,d; 9.47 semitones 510 
range), to wide (Exp 7e,f; 11.36 semitone range). In each range, frequencies are symmetrically 511 
arranged around 1000 Hz (like Exp 1c). As in prior studies, we group frequencies according to 512 
their distance (near, middle, and far) from the center frequency, which changes from highly 513 
probable to equiprobable or vice versa. In Exp 7a,c,e, the 7 frequencies are equiprobable (14.3%) 514 
until the experiment mid-point when 1000 Hz tones comprise the majority (71.4%) of trials and 515 
the other six tones are lower probability (4.8%). This order is reversed in Exp 7b,d,f. Below, we 516 
first describe detection accuracy patterns separately for Exp 7a,c,e (equiprobable to unimodal) 517 
and Exp 7b,d,f (unimodal to equiprobable), and then aggregate detection data across the 518 
unimodal conditions from each experiment to maximize power to detect effects of statistical 519 
context.  520 
 521 
In Exp 7a,c,e, an equiprobable distribution precedes a switch to a unimodal distribution centered 522 
on 1000 Hz (see Fig 6a-c). Across these three studies, detection accuracy in the equiprobable 523 
first halves does not vary across frequency (p = 0.393), nor is it modulated by the different 524 
frequency ranges across Exp 7a,c,e (p = 0.115), and there is no interaction of frequency and 525 
range (p = 0.119). Average detection accuracy across these equiprobable distributions is 64%, 526 
which does not differ from that of the 5-frequency equiprobable distribution of Exp 5 (p = 0.219). 527 
  528 
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The introduction of the unimodal distribution differentially affects detection, depending on distance 529 
of tones from 1000 Hz (p = 1.622 x 10-11). When 1000 Hz shifts from equiprobable (14.3%) to 530 
highly probable (71.4%), there is a small but reliable increase in detection accuracy (p = 0.002). 531 
It is notable that this five-fold increase in probability (and ~16-fold increase in relative probability 532 
compared to low-probability frequencies) only confers an average 3.7% detection improvement. 533 
This mild enhancement is not significantly influenced by the range of frequencies (p = 0.365). 534 
Examining the off-center frequencies that drop in probability (14.3% to 4.8%) upon introduction of 535 
a unimodal distribution, we observe a significant decrease in detection accuracy of 4.7% (p = 536 
4.798 x 10-9), the magnitude of which does not differ significantly across range (p = 0.337). In 537 
brief, when probabilities switch from equiprobable to unimodal we observe a modest increase in 538 
detection accuracy for the center frequency that increased in probability and a decrease in 539 
detection accuracy for the off-center frequencies that decreased in probability.  540 
 541 
Turning next to Exp 7b,d,f (Fig 6d-f), what happens when initial experience with a unimodal 542 
distribution shifts mid-study to equiprobable presentation? As now expected from prior results, 543 
detection of the high-probability mode of a unimodal distribution is considerably more accurate 544 
than detection of improbable frequencies (p = 1.220 x 10-40; Fig 7d-f). Detection of low-probability 545 
frequencies is impacted by proximity to the high-probability center frequency (p = 0.010); accuracy 546 
is higher for frequencies nearest the high-probability center frequency compared those at middle 547 
(p = 0.023) or far frequencies (p = 0.023). However, the relatively preserved detection accuracy 548 
for tones near the high-probability frequency compared to those is observed only in Exp 7b for 549 
the narrow range (near vs. middle, p = 0.017, near vs. far, p = 4.449 x 10-4). It is noteworthy that 550 
the tones sampling narrow distributions remain highly differentiable at ~8x larger than typical just-551 
noticeable frequency differences.  552 
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 553 

Figure 6. The detailed shape of statistically-driven gain is modulated by range, distribution, and 554 
sampling density. See Fig 1c for histograms of distributional regularities. Marker size scales with tone 555 
probability. In each panel, the darker color (dotted line) indicates behavior in the first half of the experiment; 556 
the lighter color (solid line) indicates behavior in the second half, when distributional regularities shift. Each 557 
panel plots mean detection accuracy as a function of acoustic frequency. Error bars indicate standard error 558 
of the mean. The top row shows Exp 7a,c,e for which the equiprobable distribution preceded the unimodal 559 
distribution. The bottom row shows Exp 7b,d,f for which a unimodal distribution preceded the switch to an 560 
equiprobable distribution. Panels (A) and (D) plot the narrow distribution (5.5 semitone range), Panels (B) 561 
and (E) plot the intermediate distribution (9.47 semitone range), and Panels (C) and (F) plot the wide 562 
distribution (11.36 semitone range). In each panel, the insets show detection accuracy for the high-563 
probability tone (in the unimodal half of the experiment) and equiprobable low-probability tones near, 564 
intermediate, and far from the high-probability 1000-Hz tone. 565 

The effects on detection of proximity to the high-probability 1000 Hz mode are modulated by the 566 
switch to an equiprobable distribution (p = 3.279 x 10-11). We observe a continued, but smaller, 567 
detection advantage for the formerly-high-probability center frequency compared to formerly- 568 
improbable frequencies (1.066 x 10-14). This change is driven by a decrease (difference of 7.1%, 569 
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p = 1.137 x 10-12) in detection accuracy for the center frequency as it becomes 5 times less 570 
probable, as well as a smaller (difference of ~2%, p = 0.007) increase in accuracy as off-center 571 
frequencies become 3 times more probable; this is potentially compatible with a relative release 572 
from suppression. This residual advantage does not vary significantly with distance from the 573 
center frequency (p = 0.213) or interact with the range of frequencies presented (p = 0.202). In 574 
sum, there is hysteresis from experience with the unimodal distribution such that the formerly 575 
high-probability frequency remains better detected than other frequencies.  576 
 577 
Next, we ask if hysteresis is also observed in detection accuracy for 1000 Hz in a unimodal 578 
distribution after prolonged initial exposure to an equiprobable distribution (second half of Exp 579 
7a,c,e)  compared to when the experiment begins with a unimodal distribution (first half of Exp 580 
7b,d,f). We find that pre-exposure to 336 trials of the flat probability distribution diminishes 581 
detection rates for the high-probability 1000 Hz tone in the subsequent unimodal distribution by 582 
5.8% relative to when the identical unimodal distribution is encountered first (p = 6.394 x 10-4). 583 
The persistent damping effect of first encountering the equiprobable distribution is not significantly 584 
affected by the range of frequencies encountered (p = 0.768).   585 
 586 
Finally, we aggregate detection data for off-center frequencies across the unimodal conditions 587 
from Exp 7a,c,e (when the unimodal distribution was preceded by equiprobable) and Exp 7b,d,f 588 
(when it was first) to maximize the power to detect influences of frequency range and distance 589 
from the higher-probability center frequency. Frequency range influences detection in unimodal 590 
probability distributions (p = 0.005). Specifically, a wide frequency range impairs overall off-center 591 
detection accuracy, compared to when the frequency range is narrow (p = 0.006). (The middle 592 
frequency range falls in-between and differs significantly from detection in wide, p = 0.037, but 593 
not narrow, p = 0.429, ranges). Moreover, the shape of the drop-off in detection accuracy from 594 
the high-probability center frequency is significantly graded only in the narrow frequency range, 595 
with a significant difference between the near and mid frequency band conditions (p = 0.013), and 596 
a non-significant decrease between the middle and far frequencies (p = 0.318). 597 
 598 
To summarize Exp 7, we again observe that listeners' ability to detect a tone in noise is modulated 599 
by dynamic changes in statistical distributions. Decreases in probability are met with diminished 600 
detection and increases in probability improve detection. However, as we previously observed, 601 
the degree of proximity to a more-probable center frequency in unimodal distributions partially 602 
rescues detectability of low-probability frequencies. The impact of statistical learning on detection 603 
reflects both the probability distribution and the range over which it is defined.  604 
    605 
Experience with a single-frequency point distribution results in suppressive ‘statistical 606 
deafening’ of other frequencies 607 
 608 
The prior experiments leave open the possibility that perceptual interactions across adjacent trials 609 
may account for the graded impact on detection, for example through spectrally contrastive 610 
influences among tones with different frequencies (Holt, 2005). Exp 8 makes a critical test of 611 
whether patterns of relative gain, characterized in the prior experiments, involves enhancement 612 
of the high-probability frequency, suppression of low-probability frequencies, or a combination of 613 
enhancement and suppression.  614 
 615 
To do so, Exp 8 establishes a context in which participants detect only 1000 Hz tones in noise, or 616 
an equiprobable distribution of 20 tones finely sampling frequency between 800-1200 Hz that 617 
does not include 1000 Hz (Fig 1c). In Exp 8a, the first 320 trials involve 20 different equiprobable 618 
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(6.25%) tone frequencies (35-cent intervals from 800-1200 Hz, excluding 1000 Hz) and the 619 
second 320 trials present exclusively 1000 Hz tones (100% probability). Exp 8b begins with 320 620 
1000-Hz trials, then transitions to the 20-frequency equiprobable distribution (excluding 1000 Hz) 621 
across 320 trials. Excluding 1000 Hz from the stimulus set provides a control for possible 622 
perceptual interactions across adjacent trials that may have an influence and establishes a 623 
baseline against which to evaluate evidence of enhancement and suppression. 624 
 625 

  626 
Figure 7. Experience with a single frequency point-distribution results in suppressive ‘statistical 627 
deafening’ of other frequencies. Exp 8 makes a critical test of whether the gain characterized in the prior 628 
experiments involves enhancement of the high-probability frequency, suppression of low-probability 629 
frequencies, or a combination of enhancement and suppression. The histograms to the left show 630 
distributional regularities for Exp 8a and Exp 8b. Marker size scales with tone probability. Mean detection 631 
accuracy is shown as a function of acoustic frequency, with standard error of the mean indicated by error 632 
bars. In Exp 8a (dark blue, dashed line), detection trials included 20 equiprobable tones (800-1200 Hz, 633 
excluding 1000 Hz) in the first half of the study. In the second half, tones were exclusively 1000 Hz. In Exp 634 
8b (light blue, solid line) the first half of the study involved only 1000 Hz whereas the second half shifted to 635 
20 equiprobable frequencies (800-1200 Hz, excluding 1000 Hz). The inset shows detection in the context 636 
of equiprobable distributions for each experiment, as a function of distance from 1000 Hz. Note that 637 
detection is somewhat ‘rescued’ around 1000 Hz and that detection of frequencies distant from 1000 Hz is 638 
suppressed in Exp 8b relative to Exp 8a. 639 
 640 
We first ask whether the consistent experience with 1000 Hz in the first half of Exp 8b yields 641 
accumulating detection accuracy improvements (Fig 7b). It does not: accuracy in the first quarter 642 
of trials (first half of the first half) is 78% (aligned with expectations from listener-specific 643 
thresholding) then decreases slightly to plateau at 75% for the remaining trials in the first half of 644 
the study (p = 0.015). Similarly, neither Exp 1a (p = 0.210) or Exp 8a (p = 0.451) exhibit improved 645 
detection across a block of trials with only 1000 Hz tones. There is a similar initial detection 646 
decrement of ~5% across the first quarter of the 20-equiprobable-frequency trials of Exp 8a with 647 
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no further change (p = 9.669 x 10-6). This same pattern emerges in the initial equiprobable blocks 648 
of Exp 7a,c,e (p = 1.375 x 10-5). Detection accuracy for equiprobable distributions that are 649 
experienced in the first half of a study does not differ over experiments (Exp 5a, 7a,c,e, and 8a; 650 
p = 0.387).  651 
 652 
Turning next to the nature of the gain, we first examine whether initial experience with the 20-tone 653 
equiprobable distribution in Exp 8a (which does not include 1000 Hz) impacts subsequent 654 
detection in the 1000-Hz-only block (Fig 7a). It does not: detection of 1000 Hz in the second half 655 
of Exp 8a did not differ from either Exp 1a (p = 0.315) or the first half of Exp 8b (p = 0.837), each 656 
of which involved blocks of trials with only 1000 Hz at the beginning of the study.  657 
 658 
In contrast, massed exposure to 1000 Hz in the first half of Exp 8b drives a dramatic, long-lasting, 659 
and frequency-specific detection decrement for the subsequently encountered 20 equiprobable 660 
frequencies, as compared to detection across equiprobable frequencies in Exp 8a (interaction of 661 
Distance-from-1000-Hz x Exp, p = 2.618 x 10-4). Specifically, as shown in Fig 7b, detection of 662 
frequencies at far (2 to 3.9 semitones) and intermediate (1 to 2 semitones) distances from 1000 663 
Hz were detected much less accurately after massed experienced with 1000 Hz (Exp 8b; far: p = 664 
1.668 x 10-3, intermediate: p = 9.007 x 10-4), compared to equiprobable presentation at the 665 
beginning of the study (Exp 8a). This suppressive effect was rescued by proximity to the now-666 
absent 1000 Hz in the second half of Exp 8b, with frequencies within about a semitone from 1000 667 
Hz eliciting detection accuracies roughly on par with those from Exp 8a (p = 0.362). Thus, a half-668 
hour of 1000-Hz exposure induces a lasting attentional filter that impacts the ability to detect 669 
frequencies varying from 800-1200 Hz, even though 1000 Hz was never again encountered. 670 
 671 
One might expect that any initial learning across the 1000-Hz-only distribution would be 672 
overwhelmed by the mid-study shift to the high-uncertainty 20-frequency equiprobable 673 
distribution. However, we see the opposite: across the second half of Exp 8b, there is no 674 
significant change in overall detection accuracy (p = 0.165), nor any change across time in relative 675 
accuracy of detection across frequencies (p = 0.568). The large advantage for detection of 676 
frequencies near 1000 Hz compared to intermediate and far frequencies persists to the final 80 677 
trials of Exp 8b (p = 0.006). This effect is further evidenced by comparing the second half of Exp 678 
8b with the first half of Exp 8a. Here, there is strong suppression of frequencies at far and 679 
intermediate distances from 1000 Hz in Exp 8b compared to detection of the same frequencies in 680 
the equiprobable half of Exp 8a. As for the within-experiment comparison, this difference is 681 
observed through the entirety of the second half of the study, again extending even to the last 682 
quarter of trials (p = 0.009). The absence of 1000 Hz over this period rules out the possibility that 683 
trial-wise perceptual interactions or the experience of a relative probability difference for a 684 
particular frequency were strong contributors to the hysteresis observed in Exp 5 and Exp 7. See 685 
Fig S2. 686 
 687 
Discussion 688 

Is perception guided toward what we expect, or by what surprises us? Here, across 29 689 
experiments, we examine two perceptual tasks for which distributional regularities accumulate 690 
across a task-irrelevant dimension without instruction, directed attention, or feedback. We find 691 
that distributional learning drives dynamic shifts in suppression and, to a lesser degree, 692 
enhancement along acoustic frequency. This affects sound detection: a faint tone of a particular 693 
frequency is better detected in noise if it occurs frequently than if it occurs rarely. However, this 694 
distributional learning is not simple ‘bean counting’ of likelihood (see McMurray et al., 2009): 695 
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among equally rare stimuli, detection of tones positioned closer to the distribution mode is partially 696 
rescued from the suppressive effect exerted on tones more distant from the mode.  697 

Examination of expectation built across distributions (rather than dichotomous probabilities) 698 
affords a wider vantage point for understanding how perceptual gain is modulated by expectation. 699 
Our results reveal an influence on perception that is graded as a function of the distribution mode, 700 
the range of the distribution, and the position of a stimulus within the distribution. The detailed 701 
shape of the distribution is important, as well, as shown by the bimodal profile of tone detection 702 
evoked by a bimodal frequency distribution. Strikingly, equally probable rare events are perceived 703 
differently as a function of their perceptual distance from the distribution mode(s). Decades ago, 704 
Greenberg and Larkin (1968) examined tone detection in a similar paradigm (albeit with overt 705 
instructions about tone probability instead of distributional learning) and interpreted the graded 706 
gain to be indicative of a frequency-selective attentional filter situated at the high-probability mode 707 
with increasingly suppressive sidebands with greater distance from the mode.  708 

Indeed, in the time since there has been sustained interest (e.g., Summerfield & Egner, 2009; 709 
Zivony & Eimer, 2024) in isolating the influence of expectation - operationalized by manipulating 710 
the probability of stimuli – from attention – defined according to the utility or relevance of these 711 
stimuli to a task (Summerfield & de Lange, 2014; Kok et al., 2012). Under these definitions, the 712 
present tasks are attention-neutral and involve manipulations of expectation only. Yet, our results 713 
suggest that expectation built across distributional learning establishes a selection filter that 714 
impacts how (and whether) subsequent stimuli are perceived. Whether this is described as a 715 
dimension-selective attentional filter (as proposed by Greenberg & Larkin, 1968) or more neutrally 716 
as an experience-driven predictive filter, the present results are distinct from manipulations of task 717 
utility or relevance that have been attributed to attention (Zivony & Eimer, 2024; 718 
Rungratsameetaweemana & Serences, 2019). 719 

In the time domain, the influence of distributional learning on perception is persistent: effects of a 720 
unimodal distribution provoke lasting influence with a continued advantage for tones that were 721 
previously probable and a lasting disadvantage for the tones that were previously improbable, 722 
even after exposure to a uniform distribution. Even so, there remains sensitivity to volatile 723 
distribution changes with both detection and perceptual decisions dynamically adjusting when 724 
dichotomous probabilities flip. Future work will be needed to resolve the interpretive tension 725 
between the rapid adjustment we observe across changing dichotomous probabilities in Exp 3 726 
and Exp 4 versus the lingering influence of bimodal (Exp 5,6,7) and point (Exp 8) distributions.  727 
Candidate contributors include the magnitude of differences in stimulus probabilities, 728 
dichotomous versus more fully sampled distributions, lower information conveyance by uniform 729 
distributions, and relative volatility across a listening session. The present paradigms provide a 730 
basis for further discovery, with implications for ‘stubborn predictions’ examined in other literatures 731 
(Yon et al., 2023). 732 

The impact of these distributional regularities on perception is evident for both detection and 733 
perceptual decisions, emphasizing the breadth of influence of distributional learning on 734 
perception. Even so, detection provides a unique window through which to observe effects of 735 
distributional learning and resulting expectations, as it has a natural baseline set by individuals’ 736 
thresholds. The detection results make it especially clear that the net impact of distributional 737 
learning is to prioritize the high-probability distribution mode not by enhancing detectability of the 738 
expected stimulus but instead by suppressing detectability of rare, unexpected stimuli. We 739 
observe this repeatedly across experiments. Despite considerable headroom for detection 740 
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accuracy to improve in the context of a threshold set at ~79% accuracy we do not observe 741 
substantial enhancement of detection of the high-probability tone. Indeed, in the original 742 
Greenberg and Larkin (1968) study, exposure to tens of thousands of trials of a high-probability 743 
frequency did not enhance detection above the initially established perceptual threshold. This lack 744 
of enhancement due to probability is somewhat surprising given the literature on perceptual 745 
learning (Amitay, Zhang, Jones, & Moore, 2014; Watanabe & Sasaki, 2015), where intensive 746 
practice with attentionally-demanding perceptual paradigms can drive improved detection. But, in 747 
contrast to most perceptual learning approaches, the influences we observe accrue across a task-748 
irrelevant perceptual dimension, without directed attention, reward, or feedback.  749 

It would seem inefficient for a system to track distributional regularities irrelevant to the task at 750 
hand. However, ‘optimal’ selectivity to a task-relevant dimension may not be typically adaptive for 751 
perception: in natural environments with shifting demands, it may be effective to ‘keep an ear out’ 752 
by tracking evolving regularities with potential utility for future behavior. Moreover, the sustained 753 
'statistical deafening' to subsequently encountered frequencies that we observe following massed 754 
exposure to a single frequency would seem to be a maladaptive loss of perceptual sensitivity. 755 
Instead, it may reflect gain mechanisms that suppress sensitivity to regions along a perceptual 756 
dimension that are less likely to be encountered. In the sense that one cannot be surprised by 757 
something if one is not sure it has occurred (Press et al., 2020), the suppressive effects we 758 
observe for low-probability stimuli distant from a distribution mode are substantial enough that 759 
these stimuli would seem to be less likely to enter subsequent distributional learning. Distributional 760 
effects on perception thus may have the potential to snowball to exaggerate regularities relative 761 
to the true distribution of events.  762 

As we described above, Bayesian models and cancellation models make opposing predictions 763 
about how expectation impacts perception. Our results challenge both classes of model: the 764 
observation that distributional learning emphasizes the expected stimulus via graded suppression 765 
of rare stimuli contrasts with Bayesian models’ predicted enhancement of expected stimuli and 766 
with cancellation models’ predicted exaggeration of response to unexpected stimuli. Press et al. 767 
(2020) propose an opposing process account to reconcile conflict between Bayesian and 768 
cancellation models. When an unexpected signal is weak, perception tilts toward what is 769 
expected, but when input is strong there is greater surprise that turns up the gain to accentuate 770 
the rare event. We observe similar patterns of influence on perception for weak (detection) and 771 
strong (decision) tasks that, at this point, are also difficult to fully reconcile with the opposing 772 
process account. 773 

Our results emphasize that layered histories experience with distributional regularities impact 774 
behavior. For example, unimodal distributions have lingering effects, even after a switch to 775 
equiprobable stimulus presentation. At a longer timescale, we observe a consistent frequency-776 
duration bias in our perceptual decision experiments. The effect is persistent across decision 777 
experiments (even when only two frequencies were present) and appears to be associated with 778 
the ordinal position of frequencies in the distribution range rather than absolute frequency. 779 
Although acoustic frequency and duration would seem to be good candidates for orthogonal 780 
acoustic input dimensions – and indeed, older studies had suggested this (Allan & Kristofferson, 781 
1974; Woods, Sorkin, & Boggs, 1979) – the ubiquity of interactions between acoustic dimensions 782 
is seen clearly in auditory category learning studies in which rotating the sampling of acoustic 783 
category exemplars in an ostensibly orthogonal acoustic space produces radically different 784 
learning outcomes due to prior expectations about the relationship between the dimensions 785 
(Roark & Holt, 2022; Bröker et al., 2024).  786 
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We suggest that life-long exposure to the distributional statistics of natural sound environments 787 
may drive at least some of the ubiquitous bias to perceive relatively lower frequencies as longer, 788 
and relatively higher frequencies as shorter (Fiser, Berkes, Orbán, & Lengyel, 2010; Berkes, 789 
Orbán, Lengyel, & Fiser, 2011). Pinning down the etiology of this endogenous bias will be 790 
challenging, as multiple environmental and acoustic factors may contribute. From different decay 791 
characteristics for struck strings on the piano (undamped bass notes decay much more slowly 792 
than treble notes; Fletcher, Blackham & Stratton, 1962) to the longer reverberance for lower 793 
versus higher frequencies (Backus, 1977) there are complex, and likely consistent, regularities 794 
across acoustic frequency and duration that individuals may learn about over a lifetime of 795 
listening.  796 

The present results are potentially informed by rich literatures studying neural response across 797 
stimuli that vary in probability. Repeated exposure to a stimulus changes neural firing patterns in 798 
visual (Schoups, Vogels, Qian, & Orban, 2001) and auditory (Khouri & Nelken, 2015) cortex. Two 799 
neural phenomena - the mismatch negativity (MMN, Naatanen et al., 1978), and stimulus specific 800 
adaptation (SSA, Ulanovsky et al., 2004) – are extensively studied in the auditory domain using 801 
an ’oddball’ paradigm in which common and rare stimuli are intermixed in a sequence. This 802 
probability manipulation reveals exaggerated neural response to low-probability sounds, seeming 803 
to run counter to the principally suppressive effects we observe for low-probability tones. 804 
However, we do not yet have a strong understanding of how these neural phenomena – which 805 
can be evoked even under anesthesia (Yaron et al., 2012) and in disordered consciousness 806 
(Bekinschtein et al., 2009) – impact auditory behavior. Schröeger and Wolf (1998), who pioneered 807 
the duration decision task we use here, argued from electroencephalography results that – at 808 
least for perceptual decisions – the effects of probability may arise from a memory-based 809 
mechanism that detects deviance from expectations, and orients attention to the rare stimulus 810 
frequency leaving fewer resources and resulting in slower duration decisions. However, in a case 811 
of convergent experimental design, Mondor and Bregman (1994) used a very similar duration 812 
decision paradigm to argue that the reaction time advantage for probable or cued frequencies 813 
showed attentional allocation to the probable, and not the improbable, frequency. This 814 
interpretational challenge is echoed in the larger literature on expectation and attention effects, in 815 
particular for the relationship between behavioral repetition priming and neural repetition 816 
suppression (McMahon & Olson, 2007; Feuerriegel, Vogels, & Kovács, 2021).  817 
 818 
Organisms as diverse as humans and honeybees are exquisitely sensitive to patterns that unfold 819 
across sensory input. We find that people rapidly and implicitly apprehend distributional 820 
regularities of how often stimuli occur, even when the regularities emerge across sensory 821 
dimensions irrelevant to the task at hand. This statistical learning across input distributions arises 822 
rapidly even in the context of statistically dynamic contexts and has a substantial influence on 823 
perception. The ability to detect whether a stimulus is present and to make a judgment about it 824 
are affected by statistical learning. This learning drives dynamic shifts in sensitivity along a 825 
perceptual dimension involving modest enhancement and robust suppression. Statistical learning 826 
affects fundamental aspects of perception. 827 

Materials and Methods  828 

Experiment materials, code, and analyses can be found at https://osf.io/xdgnw/. 829 

Participants. Participants (ages 18-35 yrs) were recruited online and compensated via Prolific.co 830 
(Damer & Bradley, 2014). All self-reported normal hearing. Table S1 provides experiment-wise 831 
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demographic details. Based on power analyses of pilot data collected using the same tasks, we 832 
targeted recruitment of 30 participants/experiment. 833 

Stimuli. Sinewave tones and white noise were generated in the lossless FLAC format using the 834 
Sound eXchange sound processing software (SoX, http://sox.sourceforge.net/) at 44.1kHz and 835 
16-bit precision.  836 

Procedure.  All experiments were conducted online following best-practices described by Zhao 837 
et al. (2022) using PsychoPy (2022.1.2, pavlovia.org) for tone-in-noise detection experiments and 838 
Gorilla (Anwyl-Irvine et al., 2020) for duration decision experiments. Online participants used the 839 
Chrome browser on their own laptop or desktop computer (no smartphones or tablets) with a brief 840 
listening test assuring headphone compliance (Milne et al., 2020). Fig 1 illustrates the trial 841 
structure for each task. Table S2 provides experiment-level details.   842 

Tone-in-Noise Detection. Continuous white noise commenced +40 dB relative to the level just -843 
detectable over participants’ own computer and headphones, as determined by a brief system-844 
calibration procedure (Zhao et al., 2022). Adaptive thresholding commenced with the onset of a 845 
300-sec white noise (200-ms cosine amplitude onset/offset ramps) that looped continuously 846 
through the end of the study. Adaptive thresholding entailed detecting a 250-ms (10-ms cosine 847 
onset/offset ramps), 1000-Hz sinewave tone (1080-Hz in Exp 1f) in a three-interval forced choice 848 
task (Fig 1a). The first 6 trials served as practice, with feedback and -13.75 dB SNR. Thereafter, 849 
there was no feedback across three 40-trial adaptive thresholding runs. Each run began at -13.75 850 
dB SNR with tone intensity decreasing 1.5 dB after each correct detection until the SNR reached 851 
-19.75 dB, or until an incorrect response. Subsequently, tone intensity decreased -.75 dB after 852 
three correct responses and increased +.75 dB after each incorrect response. Threshold tone-in-853 
noise detection was computed as the ‘mean of the mode’ tone intensity across the three runs 854 
(Zhao et al. 2022) which estimates threshold at 79.4% correct detection (Levitt, 1971). 855 

Adaptive thresholding established a by-participant threshold tone intensity for the tone-in-noise 856 
experiment. The first experiment block was practice, with -13.75 dB SNR, feedback, and tone 857 
frequencies that matched the initial experiment distributional regularity (Fig 1a). After practice, 858 
tone intensity was set to -.75 dB relative to the threshold estimate for the remainder of the 859 
experiment. Participants reported which of two intervals contained the tone (Fig 1a). Participants 860 
were not informed about the task-irrelevant distributional regularities across acoustic frequency 861 
(Fig 1c). The entire protocol took about 30 minutes, except in experiments with double the trials 862 
(see Table S2). We report mean detection accuracy. 863 

Duration Decision. Each trial involved a single sinewave tone presented in quiet at a comfortable 864 
level. Tones were 50 or 90 ms, with equal probability and random presentation. Participants 865 
reported whether the tone was “long” or “short” with a key press and were not instructed about 866 
the task-irrelevant distributional regularities across acoustic frequency (Fig 1b). Each experiment 867 
began with a practice block involving feedback and a distributional regularity that mirrored the 868 
main experiment. There was no feedback for the remainder of the experiment. Table S2 provides 869 
experiment-wise details. The entire protocol took about 30 minutes, except in experiments with 870 
double the trials. Analyses focused on decision response time, measured from tone offset to 871 
response. Trials for which response time was shorter than 300 ms or longer than 1500 ms (non-872 
inclusive) were excluded from analyses (see Table S1 for percent of trials excluded). 873 
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Approach to Analysis.  Data were preprocessed using JMP Pro 17.0.0, and statistical analyses 874 
were conducted in JASP (JASP team, Amsterdam, Netherlands, 10/19/22, version 0.16.4). We 875 
report Greenhouse-Geisser corrected degrees of freedom and p values for ANOVAs for which 876 
the assumption of sphericity was violated, as determined by a Mauchly test. Multiple comparison 877 
correction for linear contrasts was carried out using Bonferroni correction, and for posthoc tests 878 
using Holm correction. Study-wise analysis details are provided in Table S3. 879 
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