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This study examined perceptual learning of spectrally complex nonspeech auditory categories in an
interactive multi-modal training paradigm. Participants played a computer game in which they
navigated through a three-dimensional space while responding to animated characters encountered
along the way. Characters’ appearances in the game correlated with distinctive sound category
distributions, exemplars of which repeated each time the characters were encountered. As the game
progressed, the speed and difficulty of required tasks increased and characters became harder to
identify visually, so quick identification of approaching characters by sound patterns was, although
never required or encouraged, of gradually increasing benefit. After 30 min of play, participants
performed a categorization task, matching sounds to characters. Despite not being informed of
audio-visual correlations, participants exhibited reliable learning of these patterns at posttest.
Categorization accuracy was related to several measures of game performance and category learning
was sensitive to category distribution differences modeling acoustic structures of speech categories.
Category knowledge resulting from the game was qualitatively different from that gained from an
explicit unsupervised categorization task involving the same stimuli. Results are discussed with
respect to information sources and mechanisms involved in acquiring complex, context-dependent
auditory categories, including phonetic categories, and to multi-modal statistical learning. © 2005

Acoustical Society of America. [DOI: 10.1121/1.2011156]

PACS number(s): 43.71.—k, 43.71.An, 43.66.Ba, 43.66.Lj [ALF]

I. INTRODUCTION

Experience plays an essential role in shaping auditory
perception in general, and speech perception in particular.
However, there is a major complicating factor in character-
izing this role experimentally; listeners come to the labora-
tory already shaped by considerable experience, the history
of which may not be known to the experimenter. Since lan-
guage experience cannot be controlled ethically, this is par-
ticularly troubling for speech perception. As a result, there
are often limits on the certainty with which underlying learn-
ing or perceptual mechanisms can be inferred from patterns
in adult (or even infant) perception. As a result, many long-
standing questions concerning phonetic categories remain
and current theories vary even in their most basic assump-
tions, including the very nature of perceptual objects (Diehl
et al., 2004; Fowler, 1986; Liberman and Mattingly, 1985;
Lotto and Kluender, 1998; Nearey, 1997). In cases like this
where ecological validity and experimental control are at
odds, it can be useful to take a converging methods ap-
proach, for example examining adult and infant speech per-
ception where control over experience is less realizable and,
in addition, investigating experimental paradigms where
strict control over the history of experience is possible.
Along with studies of nonhuman animal perception and
learning of speech sounds (e.g., Hauser et al., 1998, 2000;
Holt et al., 1997, 2001; Kluender et al., 1987, 1998; Sinnott
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et al., 1976; Sinnott and Brown, 1997), human nonspeech
auditory categorization designs provide an important con-
trolled testing ground of the latter type. With properly se-
lected nonspeech sounds, listeners’ exposure to category in-
stances can be carefully monitored. Observing the effects of
this exposure during and after acquisition, then, aids in un-
derstanding the auditory and cognitive constraints upon
sound category acquisition, and knowledge of these con-
straints in turn informs the examination of phonetic percep-
tion. Analogous lines of research have proven valuable in
other domains; expert visual perception of non face objects,
for example, has provided a new understanding of the cog-
nitive and neural mechanisms involved in face perception
(Gauthier and Tarr, 1997; Gauthier et al., 1998; 1999a, b;
Rossion et al., 2002).

Observation of nonspeech category learning has already
revealed some interesting and potentially informative paral-
lels to speech categorization. However, interpretation of
these results with respect to their link to phonetic categori-
zation is challenged by the limited ecological validity of both
the category stimulus distributions and the training methods
used in studies thus far. Sounds and sound inventories for
which learning has been observed are simpler by orders of
magnitude than those involved in speech communication.
Relatedly, the methods used to drive this learning have been
limited to explicit training tasks demonstrably unlike any-
thing encountered during speech category acquisition and
considerably simpler than those used to affect non-face ex-
pertise in visual training studies (e.g., Gauthier et al., 1998).
The purpose of the present study is twofold: we describe a
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method of exposing participants to novel nonspeech auditory
categories that better resembles the natural category acquisi-
tion process and we explore the success of this method by
investigating listeners’ development of categories that, to
varying degrees, involve some of the same challenges asso-
ciated with the acquisition of naturally occurring speech cat-
egories. We first review a few relevant previous findings
from nonspeech categorization studies.

A. Nonspeech auditory categorization

Several important parallels between speech and non-
speech categories have been observed. First, there is evi-
dence that as a result of training human adults do, in fact,
learn auditory categories that, like speech sounds, have non-
linear acoustic distributions. Lotto (2000), for example,
taught listeners to categorize novel sounds as members of
categories. Sounds varied continuously along one temporal
and two spectral dimensions and categories overlapped thor-
oughly in all three acoustic dimensions. Category member-
ship was determined by a complex rule and could depend on
the acoustic characteristics of a given sound along any two
of the three dimensions. Despite this complexity, however,
listeners’ categorization reliably improved over the course of
training; they correctly labeled more sounds on the tenth day
of training than on the first.

Also in line with phonetic acquisition, not all nonspeech
acoustic distributions are learned with equal ease or in the
same manner. Holt er al. (2004), for example, showed that
general auditory perceptual discontinuities may interact with
sound categorization. Listeners in this study learned sound
categories defined along a single temporal dimension, tone
onset time (TOT), a measure of the difference in onset time
between two coterminous tones that has been previously
used to model voice onset time (VOT) in speech (Pisoni,
1977). Nonspeech TOT categories were easiest to learn when
the stimulus distributions defining the categories were posi-
tioned along the TOT dimension such that their boundary
coincided with a temporal region (~20 ms) associated with
increased discriminability in humans (Pisoni, 1977) and non-
humans (Kuhl and Miller, 1975) and known to underly a
disproportionate number of phonetic distinctions in the
world’s languages (Keating, 1984; Lisker and Abramson,
1964). When the category distributions were shifted such
that the natural peak in discriminability no longer coincided
with the boundary between the category stimulus distribu-
tions, categories were more difficult to learn. Relatedly, Mir-
man et al. (2004) found qualitatively different learning pat-
terns for categories as a function of the type of acoustic cue
that differentiated category exemplars. Listeners who learned
complex nonspeech sounds differing along a rapidly chang-
ing temporal dimension (amplitude rise time) were better at
categorizing, but worse at discriminating, category exem-
plars than listeners who learned categories differing along a
steady-state spectral dimension. This difference was ob-
served even when pretraining sensitivity to the spectral and
temporal cues was equalized across the two acoustic dimen-
sions. This pattern of perception parallels differences ob-
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served in perception of steady-state (vowels and fricatives)
and rapidly changing (consonants) speech sounds (e.g., Ei-
mas, 1963).

In addition to the acoustic characteristics and distribu-
tional properties of sound categories, the category training
procedure used also seems to have important consequences
in auditory categorization. It is well known that, particularly
for complex categories, the learner’s task during training
may affect resulting knowledge (e.g., Allen and Brooks,
1991; Ashby et al., 1999, 2002). In nonspeech categoriza-
tion, categorization-with-feedback designs have thus far been
assumed to provide a reasonable approximation of the natu-
ral acquisition process. One notable finding in this respect
was reported by Guenther er al. (1999) who examined listen-
ers’ ability to discriminate very similar within-category
sounds as a function of different types of training. When
training emphasized discrimination, listeners improved in de-
tecting small acoustic differences among stimuli. However,
when training emphasized categorization, they instead dem-
onstrated “acquired similarity,” becoming less sensitive to
within-category acoustic differences. These findings may be
informative regarding the structure of information encoun-
tered during acquisition, since perceptual warping of the
acoustic space seems to accompany the categorization of
speech sounds (Kuhl, 1991; Kuhl, 1992; cf. Lotto et al.,
1998).

The import of observations of nonspeech categorization
is generally taken to be their qualitative similarity to patterns
known to exist in speech perception. To the extent that ef-
fects in nonspeech acquisition and perception can be conclu-
sively linked to similar effects in speech, nonspeech designs
offer an important ground for investigating the limits and
possible mechanisms governing categorization. However,
also noteworthy are the differences between perception of
speech and the nonspeech categories for which learning has
been thus far observed. One striking difference involves the
degree of competence typically reached in nonspeech train-
ing studies. Lotto (2000), for example, observed only 70%
accuracy in participants’ learning of two categories after ten
hour-long sessions of intensive training; language users ob-
viously must maintain many more categories much more ac-
curately to achieve communication proficiency. Certainly,
performance might continue to improve with more experi-
ence; language-acquiring infants receive thousands of hours
of language exposure. However, with the impossibility of
imposing this level of exposure in nonspeech training experi-
ments comes the risk that the learning observed is fundamen-
tally different from that involved in language acquisition (see
Reber, 1989).

Another important (and potentially more manageable)
difference involves the training method used in the studies.
The categorization-with-feedback training commonly used in
studies of nonspeech categorization is demonstrably quite
unlike the processes by which humans are exposed to natural
language sounds, and perhaps so fundamentally different as
to preclude informative comparison. In the typical categori-
zation training study participants sometimes undergo a short
period of passive familiarization with the sounds to be
learned and then hear a large number of exemplars from two
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or (rarely) more categories. After each sound presentation,
listeners press a button corresponding to a category label;
following this response, some sort of visual feedback indi-
cates whether the previously-heard sound corresponds to the
same category as the button pressed.

Phonetic acquisition does not seem to involve explicit
category labels, explicit response trials, or explicit feedback
(e.g., Bruner, 1983; Jusczyk, 1997b). To the extent that cat-
egory information accompanies category instances during
(first) language acquisition, it involves complex correlations
among acoustic event sequences and various visual, auditory,
olfactory, tactile, and other events occurring in the environ-
ment. While it is far from clear how infants make use of this
barrage of co-occurrences, it is known that human infants
and adults are sensitive to statistical regularities at multiple
levels (Jusczyk, 1997b; Kuhl et al., 1992; Maye et al., 2002,
Saffran et al., 1996; 1997, 1999). Moreover, there seem to be
differences in the learning resulting from explicit training
and that resulting from more incidental, implicit exposure. At
least for patterns that are not particularly salient or easy to
describe with simple rules, implicit exposure leads to faster,
more accurate learning of the patterns than does explicit in-
struction (Reber, 1976; Reber et al., 1980; Reber, 1989 for
review). It has been suggested (e.g., Lacerda, 2003; Lacerda
and Sundberg, 2004) that sensitivity to statistical regularities
given rich, multimodal input from the environment results in
the recognition of systematic patterns, including an aware-
ness of phonetic categories that eventually interacts with
other levels of linguistic processing.

With the aim of addressing this issue from multiple, con-
verging methods, the purpose of this study was to develop
and test a method of exposing learners to auditory categories
that better resembles the natural acquisition process in these
respects. In the next section a training method is described
that captures several essential aspects of phonetic acquisi-
tion. In this method, subjects play a computer game in which
they must navigate through a three-dimensional space, per-
forming actions specific to animated characters they encoun-
ter along the way. Each of these characters is associated with
both a distinctive movement pattern and predetermined
sound category; an exemplar of this category is presented
repeatedly each time the character is encountered in the
game. Participants are not informed of the nature of these
sound categories, nor of their significance in the game task,
and other sound effects including a repetitive, synthetic
background music score are also present throughout the
game. However, as the game progresses, the speed and dif-
ficulty of the required tasks increase so that quick identifica-
tion of approaching characters by means of their character-
istic sounds is, while never required or explicitly
encouraged, of gradually increasing benefit to the player.
Following one or more sessions of this type of exposure,
listeners complete a categorization task involving explicit
matching of sounds to characters encountered during the
game. This training method was used to examine listeners’
categorization of a somewhat larger (four category) inven-
tory of sound categories composed of sound exemplars that
incorporate somewhat more of the nonlinear, context-
dependent nature of speech sounds than have exemplars em-

2620 J. Acoust. Soc. Am., Vol. 118, No. 4, October 2005

LEVEL: 7
SCORE : 823
HIGH SCORE: 5520

REMAINING LIFE: 9

FIG. 1. Screenshot of typical game. The two-eyed figure in the center is an
approaching irf-bat character; the orientation of the targeting graphic (two
triangles) and background scene indicate that the player has adjusted the line
of sight to the left to target the character.

ployed in previous auditory categorization studies. Categori-
zation patterns were compared across differences in category
structure (experiment 1) and to categorization patterns result-
ing from an explicit, unsupervised categorization task that
did not involve the interactive game (experiment 2).

B. Outline of the game

The design of the training task is conceptually, audiovi-
sually, and ergonomically similar to that of typical commer-
cial first-person shooting games. A screenshot of a typical
game scene is shown in Fig. 1. For the duration of a game,
the player moves forward at a constant perceived speed
through a pseudo-three-dimensional tunnellike space. As the
player progresses, he or she is periodically approached by
animated irf-bat (interactive robot figure-based auditory
training) characters, generally from the forward direction.
The game involves four irf-bat characters that are easily dis-
tinguished from each other by shape, motion, and color pat-
terns.

The player’s tasks are to shoot and to capture these char-
acters. Two of the four characters are enemy irf-bats, desig-
nated for shooting, and the remaining two are friend irf-bats,
to be captured. These tasks are accomplished as follows, in a
manner typical of similar games. Although the player moves
uniformly forward throughout the game, it is possible to ad-
just the visual line of sight, to look or aim in any direction.
This is accomplished using the LEFT, RIGHT, UP, and
DOWN arrow keys with the right hand. Shooting and cap-
turing require a combination of this movement and a multi-
step aiming process using the left hand. Specifically, when
the Q key is pressed and held, a targeting graphic (the two
triangles in Fig. 1) is illuminated in the center of the screen.
This graphic is used to aim at enemy irf-bat characters in
preparation for shooting. The player adjusts the sight line
using the arrow keys, until a color change in the targeting
graphic indicates that the irf-bat is currently on target for
shooting. Finally, pressing the SPACE bar activates a shoot-
ing function. Capturing involves a similar process. When the
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R key is pressed and held, a targeting graphic appears on the
screen that aids the player in aiming at an irf-bat character
using the arrow keys. Instead of pressing the SPACE bar, the
subject must continually adjust the target using the arrow
keys to keep the character in line as it approaches. As this is
happening, the irf-bat character moves continuously forward,
closer to the player’s vantage point. Once the character
reaches the player, with the capturing graphic displayed and
on target, a capturing function is activated. If any irf-bat
reaches the player’s location without having been success-
fully shot or captured, it is said to have escaped and disap-
pears from the player’s line of sight.

Three variables figure prominently in the game’s struc-
ture: score, level, and life. The player’s primary objective is
to acquire and maintain a high score. This is accomplished
by shooting; each time the player successfully shoots an en-
emy irf-bat, the score increases, by an amount determined by
(1) the current level and (2) the proximity of the character to
the player at the time of shooting. More points are awarded
for faster shooting and at higher levels of game play. The
player advances one level each time a predetermined number
of enemy characters (three in the present experiments) are
successfully shot. Life is a measure of how many characters
have recently escaped without being successfully shot or
captured. At the beginning of a game, life is set at 10; it
decreases by 2 each time a character escapes. This variable’s
value has no effect on the workings of the game, but the
game terminates when it reaches zero. Its value increases by
1 each time a friend irf-bat is successfully captured and each
time a level is completed. If the player shoots, instead of
captures, a friend character, life is not increased and the
score is decremented by a constant value. The values of each
of these parameters in a given experiment is under the con-
trol of the experimenter.

C. Auditory category presentation in the game

In the present experiments, the game just described was
used to present auditory categories that, like many speech
sounds, are spectrally complex stimuli of a few hundred mil-
liseconds duration. The game involves four sound categories,
each of which possesses multiple exemplars and is associated
with a single irf-bat character. The manner in which partici-
pants are exposed to these categories was designed to mirror
several key aspects of natural phonetic acquisition.

Sound categories always co-occur with their associated
characters. Each time a character appears visually in the con-
text of the game, an exemplar of its corresponding sound
category is presented auditorily. The sound is repeated con-
tinuously (with brief silences between repetitions) the entire
time the character is active, i.e., from the time it is intro-
duced until it is caught or captured or escapes. As a result,
the auditory category (defined by multiple exemplars) tends
to co-occur over the course of a game with both the visual
image of the character and the distinctive motor/tactile pat-
terns involved in shooting or capturing it. Whereas this com-
bination is certainly simplistic compared to the rich set of
visual, olfactory, auditory, kinesthetic, and other cues that
may be correlated with speech sounds as they occur in the
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world, it represents much richer contextual support in cat-
egory presentation than that typically present in explicit
learning paradigms, where categories simply co-occur with
their labels and feedback assignments. Additionally, repeti-
tion of a sound throughout a character’s appearance is con-
sistent with an apparently significant aspect of human lan-
guage learners’ early speech input; infant-directed speech
appears to be repetitive (Fernald and Simon, 1984; Lacerda
and Sundberg, 2004; Papousek et al., 1985).

At the beginning of a game, exposure to these patterns
of co-variance is expected to be fairly implicit, since knowl-
edge of or attention to the acoustic exemplars is of no appar-
ent consequence to game performance and no mention of
their importance is made; participants are instructed only that
they will be playing a video game. Characters appear near
the center of the screen and approach the player slowly. Their
accompanying sounds are merely part of a stylistically and
texturally coherent game score, accompanied by background
music and separate sound effects when the player shoots or
captures a character or a character escapes. However, with
each new level, the game becomes progressively more diffi-
cult in two ways. First, all motion in the game, including the
approach of the characters and the targeting mechanism’s
responsiveness to the player’s key presses, speeds up gradu-
ally. In addition, the characters begin approaching from lo-
cations that are gradually further displaced from the center of
the screen. Each irf-bat character is associated with a single
direction of origin (up, down, left, or right) from the center
of the screen; on average (there is always an additional ele-
ment of random noise), characters begin their approaches
further in these directions as a game progresses.

These trends can be seen in the Fig. 2(a), which shows
the starting locations of characters encountered over the
course of a typical game. In this figure, the x and y dimen-
sions represent the absolute distance in screen coordinates
from the center of an approaching irf-bat character to the
point at the center of the screen when the player is facing
forward, a measure proportional to the apparent angular dis-
placement of the character from the forward direction. En-
emy characters approach the player in a straight line, and
friend characters approach in a straight line infused with ran-
dom jitter, so these locations remain nearly constant as long
as a character is active. Each time a character is caught or
captured or escapes, the player’s line of sight is returned to
the forward direction.

As shown in Fig. 2(a), as the game progresses, charac-
ters appear in more and more distal locations, requiring faster
movement and hand-eye coordination on the part of the
player. In the figure, the visible area of the game screen is
represented by the range (1,-1) in each dimension, so that
the player’s viewing frustum always extends only one unit in
each direction from the current line of sight. Importantly,
since this line is adjusted so that the player faces forward
each time a character becomes inactive, only characters fall-
ing within the range [(1, 1), (=1,—1)] are initially visible to
the player; this range is represented by the shaded box. As
shown in Fig. 2(a), at some point during a game (approxi-
mately level 8) the mean starting points of approaching char-
acters move beyond this visible area. Since in this case an

T. Wade and L. L. Holt: Auditory categorization in a computer game 2621



screen coordinates (y)
o

2.4
-2

screen coordinates (x)

playing time (s)

FIG. 2. Sample game. (a) Initial posi-
tions of irf-bat characters occurring
during the game (inset shows indi-
vidual characters), overlayed with the
player’s initial viewing frustum at
each character’s appearance. (b)
Traces of player movements in re-
sponse to the same characters. (c) De-

playing time (s)

2 T T T T T

-
T T

=)
o
T

T

aiming distance (screen coordinates)
o
=
S|

o
T

(%]

=]
o
T

T T gree of player orientation toward char-

. acters over the course of the game,
deﬁliled ((x?layerTx?haracte;)z_'_(yglayer
character)2y1/2 ayer charactery2

- yfhamen) V2 _ ((yploér _ yeharcer

1
player __

h:
| + (yO C aracler)Z)l/Z.

Yo

o

100 200 300 400
playing time (s)

irf-bat’s sound is the only cue to its identity and location
available to the player when it appears, the correlation be-
tween irf-bats, their sound patterns, and their typical starting
locations is of increasing benefit to quick, accurate targeting.
As starting points become still more distal, targeting be-
comes nearly impossible without quick categorization of
sound patterns. Good performance at higher levels, then, re-
quires a repeated, instantaneous, functionally oriented iden-
tification of sound categories that is generally not demanded
of participants in explicit auditory category training studies.

Figure 2(b) shows a typical player’s responses to the set
of irf-bat character stimuli. The dashed line shows the play-
er’s current aim trajectory (also in screen coordinates), and
® symbols denote successful hits and captures. Despite a
lack of previous exposure to the game or to the sound cat-
egories, this relatively successful player was able to maintain
game play for several minutes after characters began origi-
nating from outside the viewing area, apparently using ac-
quired knowledge of sound-character-location correlations to
successfully target many characters.

D. Measurement of category acquisition

There are several means of measuring and characterizing
participants’ acquisition of sound categories with the game
(henceforth, Irfbats) task. One ecologically attractive method
is to observe participants’ ability to translate acquired knowl-
edge to successful game performance. Rough measures such
as the absolute or average high score or level reached in a
training session have proven to be effective and are dis-
cussed in the next section. More detailed information can be
obtained by examining players’ aiming responses to indi-
vidual audiovisual stimuli encountered over the course of the
game. Figure 2(c) is derived from the same player move-
ments depicted in Fig. 2(b), portraying the direction of
movement with respect to target characters. The y axis rep-
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600 700 800

resents, over the course of the game, the Euclidean distance
in screen coordinates between the current (at each moment
during game play) line of sight and the character’s location,
compared to this same distance at the time the character first
appeared:

( (xglayer _ x;:haracter)Z + (y?Iayer _ ylgharacter)Z) 172

_ (( xglayer _ xgharacter)z + ( yglayer _ yzharacler)Z)I/Z‘
Negative values, therefore, indicate the player is adjusting
the targeting device toward the character. As shown by the
sequences of positive values in Fig. 2(c), the player makes
periodic mistakes, adjusting the target in the direction oppo-
site the character, particularly later in the game when char-
acters are initially invisible, occasionally allowing characters
to escape. However, even very late in the game, the majority
of movement is toward the (often out-of-range) character.
This measure was compared across games and participants in
the experiments described below.

A more direct means of investigating acquired category
knowledge is performance on an explicit postgame categori-
zation task, in which players match sounds with pictures of
characters encountered during game play. Such a test was
also implemented in the present experiments. In the test, par-
ticipants view a screen in which all characters are displayed
with numbers while a sound is presented, and responses are
made by pressing number keys (1-4) on the same keyboard
used during game play.

Il. EXPERIMENT 1

The purpose of experiment 1 was to measure and char-
acterize the effectiveness of the Irfbats training paradigm in
learning complex nonspeech auditory categories. Employing
this method, participants were exposed to an inventory of
sound categories intended to present categorization chal-
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FIG. 3. Schematic representations category exemplars encountered during game play (each exemplar is comprised of the invariant P1 resonance and one P2

pattern.) Thin dashed lines show interpolation to P2 category loci for clarity.

lenges involving both spectral complexity and context-
dependent category structure similar to those encountered in
acquisition of phonetic categories.

A. Method
1. Stimuli

An inventory of four nonspeech categories, each com-
posed of six stimulus exemplars, was used in training. Each
stimulus was 250 ms in duration and had spectral peaks in
two locations, P1 and P2. Category stimulus exemplars were
differentiated by dynamic spectrotemporal patterns in P2, as
shown in Fig. 3. For two of the categories, P2 onset fre-
quency increased or decreased linearly over the initial 150
ms and then remained at a steady-state frequency for the
following 100 ms. We refer to these stimuli as ‘“onset”
stimuli. The remaining two categories were “offset” stimuli
with a symmetrical pattern; P2 frequency was constant for
the first 100 ms and increased or decreased linearly to a final
offset value across 150 ms. P1 frequency had a similar onset
or offset pattern and was constant across stimuli within a
category.

These stimuli modeled some of the spectrotemporal
characteristics of speech signals in that P1 and P2 can be
thought of as analogous to formant resonances of the vocal
tract. Critically, however, the stimuli were perceptually very
dissimilar to speech sounds and unlikely to have been per-
ceived in a “speechlike” manner (Pisoni, 1987). No category
involved a set of dynamic P2 patterns (category exemplars
are described in detail below) that corresponded in absolute
terms to observed formant patterns of any known set of pho-
nologically equivalent speech sounds. Moreover, stimuli all
possessed a complex fine temporal structure completely un-
like that of speech. For all stimuli, the two spectral peaks
were created by filtering two separate sources and combining
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the resulting waveforms additively. P1 was always derived
from a square wave of periodicity 143 Hz. For onset stimuli,
P2 was derived from a sawtooth wave of periodicity 150 Hz,
and for offset stimuli it was derived from uniform random
noise. (This last difference also helped to maximize the per-
ceived difference between onset and offset categories).

To help ensure that stimuli were not perceived as
speechlike, several naive observers, including some experi-
ment 1 participants, were interviewed informally regarding
the sounds. When asked for general impressions, observers
invariably commented that they resembled ‘“video-game
sounds” or something similar; none mentioned speech
sounds. When pressed to identify individual stimuli as
speech sounds, responses were inconsistent across observers
and did not reflect any relevant properties of the CV and VC
sequences discussed above. Samples of the sounds are avail-
able online.'

Figure 3 shows schematized versions of P1 and P2 pat-
terns of the six exemplars of each category encountered dur-
ing the game task. The range of P2 patterns within categories
was designed to reflect—to varying degrees—the same types
of variability with which consonants are cued by formant
transitions in the context of simple CV and VC sequences.
Steady-state portions, roughly analogous to vowel place of
articulation, varied in center frequency from 950 to 2950 Hz
in 400-Hz steps within and across categories, thus carrying
no first-order information to category membership. P2 tran-
sition trajectories were determined by a combination of (1)
this steady-state frequency and (2) category-specific loci, to-
ward or away from which P2 varied in frequency across
time. As shown in Fig. 3, the beginning (offset stimuli) or
end (onset stimuli) of P2 transitions always corresponded to
the steady-state location; the transition itself spanned a linear
trajectory of approximately2 83% of the distance from the
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steady-state frequency to a constant target locus frequency
for each category. This was intended to represent the way
production (Delattre er al., 1955, 1964) and perhaps percep-
tion (Sussman et al., 1993, 1998) of consonant formant tran-
sitions varies depending on adjacent vowel context. For off-
set stimuli (categories 3 and 4), P2 loci were placed such that
the categories would be easily distinguished based on only
transition information. Since offset loci were either substan-
tially higher (3950 Hz) or substantially lower (350 Hz) in
frequency than the range of steady-state frequencies, the P2
trajectories of offset stimuli, while varying somewhat in
slope and offset frequency, either always decreased in fre-
quency or always increased in frequency within a category.
For onset stimuli (categories 1 and 2), however, P2 loci were
within the possible steady-state frequency range at 1350 and
2550 Hz and, as a result, no single invariant acoustic char-
acteristic of onset transitions defined category membership.
Category 1 onsets, for example, varied from steeply decreas-
ing in frequency, to flat, to slightly increasing in frequency
depending on the following steady-state frequency. As a re-
sult, the category 1 trajectories corresponding to the three
highest P2 steady-state frequencies overlap completely in
terms of slope with the category 2 trajectories preceding the
lowest three steady-state frequencies.

Members of these categories, in particular the onset cat-
egories, thus lacked constant necessary and sufficient cues to
category identity. This was intended to reflect the notoriously
non-invariant nature of acoustic cues to many speech catego-
ries. However, also in line with phonetic categories (e.g.,
Lindblom et al., 1992; Lindblom, 1996) and with many cat-
egories shown to be learnable in the visual domain (Ashby
and Gott, 1988; Ashby and Maddox, 1990), onset stimulus
categories were in fact linearly separable in a slightly higher
dimensional space. Figure 4(a) shows P2 transition slope, a
cue known to be useful in consonant discrimination (e.g.,
Liberman et al., 1954), plotted against steady-state frequency
for the onset categories (categories 1 and 2). As indicated by
the dotted line, perfect discrimination between the two
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classes may be achieved by simple integration of information
from these two sources. Thus, although there is no first-order
acoustic information upon which to reliably base categoriza-
tion decisions, there is higher-order structure that may be of
use to learners. As a first step in evaluating the importance of
this higher-dimensional relationship in category learning, a
control condition (condition 2) was devised in which this
relationship was absent. Stimuli for this condition are repre-
sented in Fig. 4(b); whereas categories 1 and 2 possess pre-
cisely the same P2 steady-state and trajectory ranges—and
the same degree of cross-category overlap in these two
dimensions—as the set just described (condition 1), the cor-
relation between the two cues, rather than being determined
by a category-specific locus, is pseudo-random. To the extent
that information integration takes place as a result of cat-
egory learning in game play, it was predicted that partici-
pants in condition 1 would outperform condition 2 partici-
pants during the game and/or in posttest category
identification.

All sounds were created using Matlab (Mathworks,
Inc.). Source signals were first generated at a sampling fre-
quency of 22.05 kHz and filtered with an eighth-order ellip-
tical bandpass filter with 2-dB peak-to-peak ripple, 50-dB
minimum attenuation, and 500-Hz bandwidth. After filtering,
all spectral peaks (P1 and P2 within and across categories)
were equalized for rms amplitude, and 25-ms linear on-off
ramps were applied. Finally, waveforms for each pair of for-
mants were added together. Following synthesis, stimuli
were inspected using spectrogram and waveform representa-
tions and found to closely match the intended parameters
depicted in Fig. 3. A constant 50-ms silent interval separated
repetitions of individual stimuli during game play.

2. Procedure

The game procedure used in training was identical to
that described in the introduction; each of the four categories
just described was associated with one of the four characters
pictured in Fig. 2 and one direction of approach. Specifically,
the two friend characters [A and B in Fig. 2(a)] progressively
appeared from the right and left of the screen, respectively,
and enemy characters [C and D in Fig. 2(a)] came from the
bottom and top. Friend and enemy classes each included one
onset and one offset category, such that P2 transition patterns
(and not simply the onset-offset difference) took on the func-
tion of denoting character type. Friend characters A and B
involved the two falling P2 patterns (high onset category 1
and low offset category 4, respectively) and characters C and
D were matched with rising P2 patterns (categories 2 and 3).

Subjects were first familiarized with the game with a
short tutorial program in which they were allowed to practice
capturing and destroying stationary characters as the experi-
menter verbally explained the concepts of the game. No
sounds were present during this familiarization session, and
no mention was made of sound categories or their impor-
tance in the game task. Once subjects demonstrated to the
experimenter’s satisfaction that they understood the game
procedure (familiarization typically took about 5 min), they
were given a pair of headphones and informed that they
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would play the game for 30 min, during which time their
objective would be to achieve as high a score as possible. A
pause screen (toggled by pressing the P key) was available to
remind players of the details of the task, including summary
instructions for shooting and capturing and descriptions of
visual characters as friend or enemy. Participants were en-
couraged not to pause the game unless it was necessary. The
participant was instructed to press the F1 key to begin a new
game each time the life variable reached zero and a game
terminated. Individual games ranged in length from tens of
seconds to several minutes, and the number of games com-
pleted during the 30-min session ranged from 2 to 14.

Following the game session, subjects completed a cat-
egorization test in which they matched visual images of the
irf-bat characters with exemplars of the four sound catego-
ries. Sound-category exemplars in the test were the 24
stimuli depicted in Fig. 3 and presented during game play
and five novel sounds created to match the characteristic lo-
cus of each category. Novel stimulus P2 trajectories were
determined by the same locus relationship depicted in Fig. 3,
but had steady-state frequencies intermediate those of each
pair of adjacent values used in training (11502750 Hz in
five 400-Hz steps). Each stimulus was presented four times
in the test, for a total of 176 trials, in random order. To
provide maximal continuity with the game task, the same
auditory and visual backgrounds were present during the test.
A trial began with the simultaneous presentation of a sound
stimulus and appearance of all four character images on the
screen, arranged horizontally in an arbitrary constant order
and accompanied by a number 1-4. As in the game, the
sound repeated, with 30-ms silent gaps between repetitions,
for 1.5 s or until the subject pressed a number 1-4 on a
standard keyboard to register a response.

Game and test sessions took place in sound-attenuated
booth using a laptop computer. All sounds were presented
diotically over linear headphones (Beyer DT-150) at approxi-
mately 70 dB SPL.

3. Participants and design

Forty-two college students from the Carnegie Mellon
University community reporting normal hearing participated
in the experiment. Participants received undergraduate psy-
chology credit for their participation.

To test whether any observed effects were due to the
arbitrary mappings of categories to screen directions, visual
characters, source signals, and stimulus types (onset versus
offset) described above, two additional control subconditions
were introduced in condition 1. Although the number of pos-
sible manipulations introduced by the richness of the game
environment precluded fully factorial counterbalancing of
game elements, we expected that these conditions would
capture the effects of any major confounds. Condition 1b
addressed the possibility that preference for a particular vi-
sual character or direction of origin might affect learning for
some categories. In condition 1b the character correspon-
dences described in Sec. I A 2 were reversed, with catego-
ries 1,2,3, and 4 occurring with characters C, A, B, and D,
respectively. Since this manipulation involved a change in
character assignment, location, and task (shoot or capture)
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for each sound category, it was predicted that any major bias
patterns would be revealed in differences in performance be-
tween condition la (the originally described mappings) and
condition 1b. Condition 1c was designed to test whether the
difference in source signals between onset and offset catego-
ries would contribute to differences in learning. In this con-
dition, the source-category type correspondences from con-
dition 1a were reversed, so that onset category P2 resonances
were derived from noise and offset P2s from the sawtooth
source.

Ten participants each were arbitrarily assigned to condi-
tions la, 1b, and lc. The remaining 12 participants were
assigned to condition 2. (Condition 2 character-source-
category correspondences were constant, identical to those of
condition 1a).

B. Results

Participants gave a variety of reactions when faced with
the posttest task of matching sounds to visual characters. The
continuum of responses ranged from total surprise to relative
confidence, although self-reported category knowledge did
not always correspond with test performance.

1. Overall learning effects

Figure 5 summarizes overall categorization posttest per-
formance across experiment 1 conditions. It was assumed
that, if participants learned patterns of covariance between
characters and sounds as a result of the game task, they
would be able to match characters to sounds in a subsequent
explicit identification task. When game characters co-
occurred with onset categories defined by the structured vari-
ability patterns shown in Fig. 4(a), this learning indeed oc-
curred. Subjects in conditions la, 1b, and lc all performed
reliably above chance level (25%) at posttest, for both pre-
viously heard [condition la: #(9)=2.76, p=0.022; condition
Ib:  1#(9)=5.92, p<0.001; condition lc: #(9)=4.28,p
=0.002] and novel [condition 1a: #(9)=3.3, p=0.009; condi-
tion 1b: #9)=5.91, p<0.001; condition lc: #(9)=5.29, p
<0.001] category exemplars. No overall differences in accu-
racy were observed between familiar and novel stimuli or
between condition la, 1b, and Ic participants, indicating that
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the learning effect was reproducible and robust over (at least)
modest changes in the game procedure and the acoustics of
sound category exemplars. Critically, condition 1 participants
in both subgroups performed better than chance both for off-
set category stimuli, which were linearly separable by P2
trajectory [condition la: #(9)=2.92, p=0.017; condition 1b:
#(9)=7.65, p<0.001; condition Ic: #9)=5.48, p<0.001]
and for onset category stimuli, which were not invariant in
this manner [condition la: #(9)=3.17, p=0.022; condition
Ib:  #(9)=4.31, p=0.002; condition lc: 1#(9)=3.48,p
=0.007].

Condition 2 participants heard onset categories that were
not structured reliably in the higher-dimensional acoustic
space defined by P2 trajectory and steady-state frequency
dimensions [Fig. 4(b)], and did not demonstrate learning.
These participants did not differ reliably from chance in
posttest identification of either novel [#(11)=2.1; p=0.06] or
previously encountered [#(11)=1.08; p=0.302] stimuli. A
one-way between-subjects ANOVA revealed that condition 1
participants reliably outperformed condition 2 participants in
accurately categorizing both novel [F(1,40)=11.69; p
=0.001] and previously encountered [F(1,40)=13.5;p
=0.001] stimuli. Moreover, the difference observed was
rather large; the difference in overall p(c) between condi-
tions 1 and 2 was 19%, corresponding to an effect size d
=1.12 (conservatively using the larger of the two observed
standard deviations, from condition 1). This effect size cor-
responds to a power of approximately 0.8 with the smaller
condition 2 sample size n=12, so it seems the moderate sub-
ject numbers were sufficient.

Since only condition la participants’ sound-character
pairing perfectly matched that of condition 2 participants
(condition 1b differed in sound-character and condition Ic in
source-category correspondences), this comparison was re-
peated including only condition la and condition 2 partici-
pants. The results were similarly reliable [novel stimuli:
F(1,20)=7.63, p=0.012; familiar stimuli: F(1,20)=6.003,
p=0.024].

2. Category comparisons

The top two rows of Fig. 7 show responses to each ex-
emplar of each of the four categories at posttest across
steady-state frequencies. Here several important trends in
categorization are apparent. First, while condition 1 partici-
pants tended to recognize stimuli from all four categories
reliably, condition 2 participants performed uniformly at
chance level. Interestingly, this was true even for offset cat-
egories 3 and 4, for which exemplars were identical to those
heard by condition 1 listeners. It would seem that the lack of
structure in the onset categories discouraged condition 2 par-
ticipants from making use of any audio-visual correspon-
dences in the game.

To test for effects of the complexity of category distinc-
tions on their learning for condition 1 subjects, a
3(training condition; la, b, ¢) X2 (category type; onset ver-
sus offset) mixed model ANOVA compared subjects’ sensi-
tivity (%hits — %false alarms) to categories of each type. A
main effect of category type was observed [F(1,27)
=24.25; p<0.001], indicating that the unidimensionally de-
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fined offset categories were recognized slightly more accu-
rately than the onset categories. This was not at all surprising
given the more difficult nature of the two-dimensional onset
distinction. Additionally, while no training condition main
effect was observed (F<1), the training condition
X category type interaction reached significance [F(2,17)
=4.6; p=0.019]. Posthoc comparisons indicated that this ef-
fect was due to a slightly greater category type difference in
condition 1lc, where noise replaced a sawtooth wave as the
source for the onset P2 resonance. Whereas learning oc-
curred for both groups, the harmonic source thus seems to
have been a slightly better carrier of P2 information than the
noise source.

Finally, inspection of category 1 and 2 identification by
condition 1 subjects suggests that, while the structured vari-
ability in the onset stimulus cues helped the listeners to es-
tablish the two categories, the high-level distinction was not
learned perfectly. Specifically, category 1 accuracy tends to
decline at higher P2 steady-state frequencies (i.e., where P2
is falling), while category 2 accuracy is worst for the lowest
steady states (where P2 is rising). This suggests that (some)
listeners may have been relying too heavily on the slope of
the P2 transition and not compensating maximally for the
steady-state part of the locus rule. Still, however, the fact that
condition 1 subjects outperformed condition 2 subjects indi-
cates that the higher-order structure played a role in learning,
even in the brief (30-min) training period employed.

3. Game performance effects

In characterizing the effect of the Irfbats task on listen-
ers’ categorization, it was informative to examine perfor-
mance during the game as well as at posttest. Due to errors in
test administration, game performance data from two partici-
pants (one in condition 1a, one from condition 1b) were not
recorded for comparison with posttest scores. Figure 6 shows
posttest accuracy plotted against three measures of success at
the game task for the remaining 40 listeners: mean high
score achieved, mean high level attained, and the mean aim-
ing distance measure pictured in Fig. 2(c).

Figure 6 illustrates a few important patterns in game
performance across participants and groups. First, condition
1 participants (games with structured onset category variabil-
ity) outperformed condition 2 participants (random onset
variability) not only at posttest but also during the game
itself. On average, condition 1 participants achieved higher
scores [F(1,38)=8.7, p=0.005; means (s.d.) for conditions
1, 2: 40230 (14 763), 26 998 (7012)], reached higher levels
of the game [F(1,38)=8.5, p=0.006; means: 11.5 (2.7), 9.01
(1.7)], and navigated more accurately toward characters
throughout the game [F(1,38)=4.3, p=0.045; means:
—-33.02(12.1), —24.9(9.05)] than did condition 2 partici-
pants. Moreover, game performance and category learning
accuracy appear to be related. For condition 1 participants,
all three performance measures correlate reliably with post
test accuracy; players who demonstrated success (higher
score and level values) and accuracy (lower aiming differ-
ence values) during the game also exhibited better category
learning at posttest. It is not surprising that these correspon-
dences did not hold for condition 2 subjects, who did not
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demonstrate learning overall, although this might also be due
to the smaller total number of subjects in condition 2.

Thus, the higher-order structure imposed on condition 1
stimuli affected category learnability and learning in the Irf-
bats exposure task was sensitive to differences in this struc-
ture. At posttest, condition 1 participants (1) demonstrated
learning for both simple and more complex category exem-
plar distributions and (2) reliably outperformed condition 2
participants, who did not learn overall. Furthermore, it seems
likely that the interactive, incidental nature of the game was
important in achieving this result, since success at the Irfbats
task was related to posttest performance both within and be-
tween participant groups. This indicates that the game task
was not merely a superficial addition to an unrelated inciden-
tal learning task. Game performance was also affected by
category learning and sensitive to differences in category
structure.

lll. EXPERIMENT 2

Experiment 1 demonstrated that simple audio-visual cor-
relation patterns in a game task enabled listeners to learn
complex sound categories, whether the category distinctions
involved unidimensionally invariant acoustic cues (catego-
ries 3 and 4) or required integration of two or more cues
(categories 1 and 2). In beginning to characterize the type of
learning that took place in familiar terms, it is important that
both of these distinction types were tested. Previous studies
have shown that training conditions affect learning differen-
tially depending on the complexity of category distinctions.
Ashby er al. (1999), for example, observed visual categori-
zation under unsupervised conditions, where observers
grouped visual patterns into a given number of categories.
Optimal categorization occurred only when stimuli were uni-
dimensionally separable, and not when distinctions involved
more than one dimension. Similarly, Ashby er al. (2002)
found an interaction between category structure and the way
category information was presented during training. “Obser-
vational training,” in which category labels were presented to
participants simultaneously with training stimuli, and “feed-
back training,” in which corrective feedback was provided
after stimuli (and sometimes after a subject response), led to
similar learning for simple, unidimensional category distinc-
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tions. However, for categories whose recognition required
integration of information along two separate visual dimen-
sions (length and orientation), feedback training provided a
substantial advantage. These differences were tentatively
taken as evidence of the learning systems involved, namely
whether a simple explicit system was complemented by
more complex, implicit learning over the course of training
(Ashby et al., 1998).

The game used here combines elements of all of these
methods of category exposure, as (perhaps) does natural lan-
guage acquisition. At various points in the game, the relative
order of occurrence of auditory stimuli, visual characters,
and participant responses reflect elements of unsupervised,
observational, feedback, and other types of training. As a
first step in comparing learning in the game task to that pre-
viously observed in more controlled designs, and in general
to further characterize the effects of the game on learning, an
additional experiment measured learning of the same sound
categories used in experiment 1, in more explicit circum-
stances and absent the game task. Specifically, an unsuper-
vised training design was used, in which listeners were told
the number of sound categories and exposed repeatedly to
category exemplars but given no category label information
or other feedback. Essentially, this was expected to reveal
which aspects of category structure were critically presented
by the structure of the game environment and those that were
more self-evident given minimal instruction and explicit, de-
liberate comparison of salient acoustic properties of the
stimuli.

A. Method
1. Stimuli

Stimuli were identical to those used in experiment I.
Only the six exemplars of each category presented during
experiment 1 game play and depicted in Fig. 3 were used in
exposure and testing.

2. Procedure

The categorization task consisted of five familiarization
blocks alternated with five transfer blocks in a single session.
Each block consisted of three repetitions of each of the six
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exemplars of each category, for a total of 720 stimuli (360
familiarization, 360 transfer). This was in keeping as closely
as possible with session length and stimulus exposure expe-
rienced in experiment 1 (experiment 1 participants, on aver-
age, encountered 367.3 characters during their 30 min of
game play). Participants heard isolated sound stimuli in
sound-attenuated booths over headphones at approximately
70 dB SPL. Stimuli were presented in random order within
blocks, using ALVIN, a software system recently developed
by Hillenbrand and Gayvert (2005). In familiarization
blocks, participants were instructed to listen to each stimulus
carefully and learn as much as possible about the sounds in
order to reliably divide them into four categories, pressing a
button labeled “continue” after each trial. In transfer blocks,
they were instructed to press one of four numbered buttons,
depending on which of the four arbitrarily labeled categories
they chose to assign to the sound’s category. Participants
were urged to be as consistent as possible and were informed
that perfect performance was possible, following Ashby et
al. (1999).

3. Participants

Ten college students from the Carnegie Mellon Univer-
sity community reporting normal hearing participated in the
experiment. Participants received undergraduate psychology
credit for their participation.

B. Results

Each participant’s response patterns were first translated
into a set of category labels by choosing the set of response-
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to-stimulus category mappings that maximized overall accu-
racy (% correct). Resulting overall accuracy scores averaged
59.9%, well above chance (25%) performance [#(9)
=6.003; p<0.001] and in fact somewhat higher than overall
experiment 1, condition 1 (a,b; condition Ic involved a dif-
ferent set of sounds) game participants’ scores [F(1,28)
=3.41; p=0.076]. This last result was not especially surpris-
ing or indicative of fundamental differences in learning. Ex-
periment 2 involved an explicit auditory categorization task,
while exposure to sounds in experiment 1 was purely inci-
dental (participants did not even know they were learning
sounds), so direct comparison of overall accuracy after a
single session is not particularly informative. More critical
was the interaction of training type and whether category
distinction cues were unidimensional (offset stimuli) or inte-
grative (onset stimuli) in nature.

The bottom row of Fig. 7 shows responses to each ex-
emplar of each of the four categories averaged across the five
transfer blocks. A qualitatively different categorization pat-
tern seemed to result from explicit unsupervised training.
Experiment 2 participants performed quite well on the lin-
early separable offset categories, but confused the two cue-
integrating onset categories (1 and 2) with each other at near-
chance level. To illustrate this pattern more clearly, Fig. 8
shows the difference between correct responses and locus-
differing competitor responses for onset and offset categories
across testing conditions (zero indicates chance-level perfor-
mance). This comparison demonstrates that, while experi-
ment 2 participants labeled offset categories fairly accurately,
they responded to onset categories with almost no tendency
to discriminate between competitors. A
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2(training condition) X 2(category distinction type) ~ mixed
model ANOVA with training condition as a between-subjects
factor revealed that onset categories were most difficult over-
all [F(1,28)=26.4; p<<0.001]. The training condition effect
did not reach significance; critically, however, a training
X category type interaction was observed [F(1,28)=7.5; p
=0.011]. Relative to overall performance, unsupervised cat-
egorization participants had considerably more difficulty
with onset stimuli compared to offset stimuli.

One interpretation of this difference is that game partici-
pants, like observers trained with feedback in previous ex-
periments (e.g., Ashby er al., 1999, 2002), were relatively
better able to learn the higher-dimensional onset distinction
than listeners explicitly comparing the sounds in the unsu-
pervised categorization task. However, the training
X category interaction cannot be conclusively attributed to
an advantage on complex distinctions for game participants,
since absolute performance levels precluded direct compari-
son of responses across groups. The unsupervised training
might instead have given experiment 2 listeners a special
advantage in categorizing the offset categories, although it is
unclear what the source of this advantage might have been.
As a first step in addressing this issue, it was observed that
the Irfbats task introduced at least two sources of variability
to the category identification task that were not introduced by
experiment 2’s simple, constant procedure. Absolute average
performance in experiment 1 posttest was probably deflated
by subsets of participants who either (1) due to initial diffi-
culty with the game task failed to advance sufficiently during
30 min of play for much learning to occur or (2) were sur-
prised or confused by the posttest task and did not optimally
display their acquired knowledge. Although study involving
longer-term game play will be required to solve these prob-
lems completely, for the present data it was useful to equate
performance across the tasks by considering subsets of ex-
periment 1 participants who were successful at the game task
and able to demonstrate acquired category knowledge in the
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explicit posttest. The right portion of Fig. 8 shows onset and
offset identification patterns for Irfbats participants selected
based on several possible criteria. Offset category identifica-
tion accuracy was selected as a measure of success at the
posttest task, since considering experiment 2 results it should
have been fairly easy for successful participants and since it
did not directly involve the more critical onset performance.
For game success, the mean high score, level, and aiming
speed measures presented above were considered. The per-
formance of successful players was similar across criteria;
they performed similarly to experiment 2 participants for oft-
set categories and tended to outperform experiment 2 partici-
pants for onset categories. (The onset difference reached sig-
nificance only when the offset score or mean distance
criterion was used.) Thus, it does seem that, at least for the
more successful participants, Irfbats-style feedback provided
an advantage for learning the complex onset category dis-
tinction.

IV. GENERAL DISCUSSION

This study introduced Irfbats, an interactive video game
developed for use in investigating the acquisition of auditory
categories. While playing Irfbats, participants were inciden-
tally exposed to sound category exemplars in the presence of
other richly correlated multimodal cues. Observations of
postgame sound categorization and patterns in game perfor-
mance allowed for measurement of the types of auditory dis-
tributions that are learnable in the absence of explicit feed-
back.

A. Posttest categorization

Postgame sound categorization patterns demonstrated
that even without explicit feedback Irfbats players can learn
spectrally complex non-invariant auditory categories within
a rather short period (30 mins) of incidental exposure when
higher-dimensional acoustic cue relationships are present. In
experiment 1, the inventory of sounds presented during the
game included both categories possessing distinctive, invari-
ant spectral cues (rising versus falling offset patterns in cat-
egories 3 and 4, as shown in Fig. 3), and categories that were
not unidimensionally separable (onset categories 1 and 2).
Much has been made of the significance of non-invariant
category cues with respect to speech perception (Delattre et
al., 1955; Kluender et al., 1987; Stevens and Blumstein,
1981). Like the speech categories they modeled, the non-
invariant category distributions were linearly separable in a
higher-dimensional space when two separate acoustic cues
(onset trajectory and steady-state frequency) were integrated.
Experiment 1 demonstrated that participants exposed to such
categories exhibited robust learning over the course of a
single 30-min game session. In a posttest they were able to
match visual characters from the game reliably to sound cat-
egory exemplars encountered during game play, as well as to
novel sound exemplars drawn from the same category distri-
butions. Another group of participants heard categories that
possessed the same distributions of onset trajectories and
steady states but lacked structured second-order cues to cat-
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egory membership. These listeners did not differ from
chance in their posttest categorization responses.

This finding is of potential significance concerning the
types of knowledge required for context-dependent speech
perception. Though, like many phonetic categories of the
world’s languages, onset categories 1 and 2 could not be
differentiated by any single invariant acoustic cue, listeners
(experiment 1, condition 1) learned the sounds, even without
feedback or instructions to learn the categories. Together
with the fact that nonhuman animals can learn similarly non-
invariant speech categories (Kluender et al., 1987), this find-
ing is consistent with an account of speech perception that
exploits general learning mechanisms for phonetic acquisi-
tion (Diehl, et al., 2004) rather than specialized processes
(e.g., Liberman and Mattingly, 1985; 1989; Trout, 2001).

Learning in the game was also compared with that re-
sulting from an explicit unsupervised categorization task in
experiment 2. An interaction involving category type was
observed, such that game participants showed relatively
more learning for the non-invariant onset categories requir-
ing cue integration. This is informative in beginning to char-
acterize the type of learning that resulted from the game.
With respect to category exemplar distribution effects, the
categorization responses of game participants were more like
learners trained with explicit feedback in previous studies;
exposure through game play seems to provide a similar ad-
vantage to feedback in learning complex, information-
integrating category structures (Ashby et al. 1999, 2002),
whereas observation and unsupervised training are helpful
only for simpler, invariant categories. Additional study will
be required to fully characterize the effects of the interactive
game task on the types and extent of learning. In particular,
comparison of category knowledge resulting from extended,
explicit feedback training with that of expert game players
will be necessary.

B. Interactive task effects

The structure of the Irfbats game was designed to model
some of the interactions and multimodal correlations through
which listeners may come to recognize the acoustic regulari-
ties underlying the sound distributions of a native language.
Repeated presentations of category exemplars co-occurred
with distinct visual events and motor tasks inherent to the
game. Although sound categorization was not explicitly
mentioned to or required of the players, it was of increasing
benefit to achieve high levels of game performance as play
progressed.

Indeed, it does not appear that the game task provided
only a superfluous precursor to the more standard categori-
zation posttest; rather, several characteristics of players’
game performance proved to be good predictors of posttest
categorization accuracy. Participants’ ability to achieve
higher scores, reach higher levels, and navigate successfully
in the game environment was related to their knowledge of
sound categories, and also was sensitive to differences in the
non-invariant category distributions. As participants acquired
knowledge of the sound categories relevant to the game task,
skill at the task increased. Likewise, as increased skill en-
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abled players to reach more difficult stages of the game,
continued success demanded increasingly efficient, acces-
sible knowledge of sound categories. This pattern is consis-
tent with the interactive processes known to be important in
category learning in other species (e.g., Baptista and Pet-
rinovich, 1986; Eales, 1989) and thought to underly the pho-
netic and phonological acquisition processes (Bruner, 1983;
Kuhl et al., 2003; Lacerda, 2003; Lacerda and Sundberg,
2004).

Developing a precise mechanistic account of how expe-
rience shapes the acquisition of phonetic categories is chal-
lenging because it is impossible to attain full control over the
histories of listeners’ experience with speech. Even very
young infants possess significant experience with, and dem-
onstrate sensitivity to, the sound structure of the native lan-
guage (e.g., Jusczyk, 1997a; Kuhl er al., 1992). In domains
like this where control over the input is elusive, a converging
methods approach can be useful in balancing the competing
demands of experimental control and ecological validity.
One perspective on this issue is that understanding how hu-
man listeners extract information from the auditory environ-
ment can be informative about the constraints and mecha-
nisms the system brings to phonetic (speech) categorization.
Presently, there exists a limited literature describing general
auditory (nonspeech) categorization (e.g., Guenther et al.,
1999; Holt et al., 2004; Lotto, 2000; Mirman et al., 2004), so
there is still much that can be learned about how listeners
categorize acoustic stimuli using these more traditional
methods. Nevertheless, we believe that the present paradigm
has value in providing an intermediate step along the con-
tinuum from experimental control to naturalistic observation.
To be sure, this video game environment is a considerable
step removed from the rich structure present in learning
speech categories. Even so, Irfbats appears to capture some
of the characteristics of correlation among multiple cues,
function-based categorization, and exploration of an environ-
ment that likely accompany phonetic category acquisition.
Just 30 min of incidental exposure to the multimodal statis-
tical regularities present in the game was sufficient to pro-
mote category learning for a set of stimulus exemplars that
model one of the central challenges in speech categorization,
the lack of invariance.

Recent studies support the utility of examining non-
speech learning to understand potential mechanisms avail-
able to speech perception. Adults, infants, and nonhuman
primates exhibit sensitivity to the statistical regularities
present in sequences of speech syllables (Hauser et al., 2000;
Saffran et al., 1996, 1997) and statistical learning of this sort
appears to be deployed for both speech and nonlinguistic
sounds (Saffran et al., 1999). Thus, there is evidence that
general (statistical) learning mechanisms may be operative
across linguistic and nonlinguistic sound classes. The Irfbats
paradigm relates to this literature in that it likewise requires
sensitivity to statistical regularity for learning to be observed.
However, the present work differs in a couple of important
ways from previous approaches.

For the most part, investigation of statistical learning has
been limited to single modalities. Statistical learning appears
to be operative for both auditory (e.g., Saffran er al., 1997)
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and visual (Fiser and Aslin, 2002; Kirkham et al., 2002)
stimuli, but there thus far has been little investigation of how
multimodal regularities are learned. It is, of course, pre-
sumed that learners take advantage of informative regularity
where it exists, even if it occurs cross-modally (e.g., Mas-
saro, 1987). The present paradigm provides a means of ad-
dressing this assumption explicitly and gaining an under-
standing of potential constraints upon the types of
multimodal regularities that are learnable. Here, we have
demonstrated that listeners acquire sound categories for
spectrally complex, non-invariant acoustic exemplars
through incidental exposure in a video game environment
provided that they possess second-order acoustic regularity
and they covary with multimodal perceptual/motor cues in-
troduced in the game.

The Irfbats game is also differentiated from previous
studies of statistical learning by how it assesses learning.
Investigations of statistical learning have primarily relied
upon measures of familiarity to assess whether participants
learned statistical regularities presented in an experiment;
adult participants, for example, are above chance at judging
whether stimuli are consistent (familiar) or inconsistent (un-
familiar) with the regularities they encountered incidentally
in previous exposure (Saffran et al., 1997), and extensions of
this same paradigm are used with human infant and nonhu-
man primate listeners (Hauser er al., 2000; Saffran er al.,
1996). The results of the present studies move a step beyond
familiarity. Participants were able to apply what they learned
in the course of the game to the task of categorization.

C. Conclusions

The present results provide evidence that adult listeners
can solve what has been thought to be a rather difficult au-
ditory categorization challenge, acquiring categories for
spectrally non-invariant acoustic exemplars, in a task in
which categorization is largely incidental. Observation of
learning was contingent upon the existence of a higher-
dimensional acoustic relationship between the non-invariant
cues and the presence of rich statistical regularity with other
perceptual/motor cues provided in game play. Moreover, the
categorization behavior of participants who played the game
was demonstrably different from that of participants who
merely classified the stimuli in an unsupervised categoriza-
tion task. We interpret these results as evidence of human
adults’ general capacity to make use of informative statistical
regularities in the input in interactive, functionally oriented
situations and suggest that understanding more about the
manner by which listeners discover sound structure in the
environment can instruct us about the general learning
mechanisms that may be brought to bear on phonetic catego-
rization.

Some caution might be warranted in making strong
claims regarding phonetic categorization or multimodal
learning based on the present results, however. First, there is
the possibility that the onset categories 1 and 2 in experiment
1, condition 1 did in fact possess invariant acoustic cues. As
shown in Fig. 3, the initial energy distributions of category 1
exemplars did involve a P2 center frequency region (roughly
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2.06-2.67 kHz over the first 25 ms) that was uniformly
higher than that of category 2 exemplars during the same
time frame (1.23-1.84 kHz). Listeners, then, could conceiv-
ably have identified categories based on the spectral proper-
ties of this distinctive region alone, disregarding the remain-
der of the onset patterns. Indeed, it has been similarly
proposed in speech that the overall spectral shape of voiced
consonants’ initial bursts, rather than the non-invariant fol-
lowing formant transitions, are responsible for their context-
independent recognition (Blumstein and Stevens, 1980). Dy-
namic formant patterns, though, have long been considered a
salient acoustic property of voiced stops (e.g., Cooper et al.,
1952; Delattre et al., 1955; Liberman et al., 1954). In fact,
language users have a persistent tendency to label conso-
nants primarily based on formant transitions even after ex-
tensive training emphasizing instead the role of burst spectra
(Francis et al., 2000). It is especially unlikely that listeners in
the present experiment classified category exemplars based
only on their initial spectra, since unlike consonants they did
not begin with acoustically prominent burst patterns but in-
stead with brief onset ramps. It seems reasonable, therefore,
to characterize categories 1 and 2 as having a “lack of in-
variance” of the same type that phonetic categories exhibit.
Nonetheless, additional study in which the initial locations of
similar dynamic spectral peaks are further removed from
category-specific loci would help to clarify this issue. It
would also be informative to examine the effects of differing
types and degrees of “unstructured” variability like that em-
ployed in experiment 1, condition 2. Onset-trajectory—
steady-state correspondences for the present study were a
single pseudo-random distribution; further manipulation of
these correspondences—perhaps involving their variation in-
dependent of absolute initial P2 ranges—could help to un-
cover more precisely the dependence of categorization on
higher-order acoustic structure.

Another cause for caution in interpreting the results of
experiment 1 is the overall level of categorization accuracy
observed at posttest. As shown in Fig. 6, some individual
participants performed quite well; overall, however, like the
Japanese Quail in Kluender et al.’s (1987) phonetic category
learning study and the human listeners in Lotto’s (2000)
complex nonspeech learning study, even condition 1 partici-
pants demonstrated far-from-perfect recognition. Judging by
the results of the present study, this deficit seems more likely
a methodological issue than a fundamental learning con-
straint. That is, it is expected that achieving expert-level per-
formance may require more than a single 30-min learning
session. In experiment 1, none of the participants approached
the level of performance (score, level, etc.) that the experi-
menter reached after several hours of game play. This room
for improvement indicates first of all that the game is well
suited for longer-term studies. Furthermore, the correlation
between game performance and posttest accuracy illustrated
in Fig. 6 suggests that as skill level at the game continues to
increase, so too will category knowledge. Pilot data suggest
that listeners may begin to recognize categories like those
described above at near 100% accuracy after as little as an
hour of game play. Further study, perhaps involving hours of
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game play over multiple sessions, will help in further char-
acterizing the learnability of non-invariant sound classes like
those explored here.

Finally, care must be taken in interpreting the correlation
between game performance and learning as evidence that it
was precisely the interactive nature of the task that helped
drive learning. While learning sound classes had clear con-
sequences for game performance, further study will be nec-
essary to determine how truly interactive the process was.
Training conditions, probably also over longer training peri-
ods, in which various potentially informative aspects of the
Irfbats design (e.g., character-response, character-direction,
and category-character contingencies) are altered or withheld
will have to be compared to address this issue and to evalu-
ate the relative importance of each type of information.

In sum, the Irfbats game paradigm appears to capture
characteristics of auditory category learning that may be es-
sential to learning natural sound categories, including pho-
netic categories. Moreover, it provides a learning environ-
ment in which to empirically manipulate experience to
mechanistically address the bases of complex auditory cat-
egorization.
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