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Abstract
Communicating with a speaker with a different accent can affect one’s own speech. Despite the strength of evidence for 
perception-production transfer in speech, the nature of transfer has remained elusive, with variable results regarding the 
acoustic properties that transfer between speakers and the characteristics of the speakers who exhibit transfer. The current 
study investigates perception-production transfer through the lens of statistical learning across passive exposure to speech. 
Participants experienced a short sequence of acoustically variable minimal pair (beer/pier) utterances conveying either an 
accent or typical American English acoustics, categorized a perceptually ambiguous test stimulus, and then repeated the 
test stimulus aloud. In the canonical condition, /b/–/p/ fundamental frequency (F0) and voice onset time (VOT) covaried 
according to typical English patterns. In the reverse condition, the F0xVOT relationship reversed to create an “accent” with 
speech input regularities atypical of American English. Replicating prior studies, F0 played less of a role in perceptual 
speech categorization in reverse compared with canonical statistical contexts. Critically, this down-weighting transferred to 
production, with systematic down-weighting of F0 in listeners’ own speech productions in reverse compared with canonical 
contexts that was robust across male and female participants. Thus, the mapping of acoustics to speech categories is rapidly 
adjusted by short-term statistical learning across passive listening and these adjustments transfer to influence listeners’ own 
speech productions.

Keywords Statistical learning · Speech perception · Speech production · Phonetic cue weighting · Phonetic convergence · 
Auditory word repetition

The close interaction of speech perception and production 
is undeniable. Perception of one’s own speech influences 
speech production (e.g., Bohland et al., 2010; Guenther, 
1994). For example, altering speech acoustics and feeding 
speech back to a talker with minimal delay results in rapid 
compensatory alterations to productions that are predicta-
ble, replicable, and well accounted for by neurobiologically 

plausible models of speech production (e.g., Guenther, 2016; 
Houde & Jordan, 1998).

Similarly, perception of another talker’s speech can 
influence production. Talkers imitate sublexical aspects of 
perceived speech in speech shadowing tasks (Fowler et al., 
2003; Goldinger, 1998; Shockley et al., 2004) and phoneti-
cally converge to become more similar to a conversation 
partner (Pardo et al. 2017). However, results are variable 
and hard to predict. Shadowers imitate lengthened voice 
onset times (VOT), but not shortened VOTs (Lindsay et al., 
2022; Nielsen, 2011; but see also Schertz & Paquette-Smith, 
2023). Phonetic convergence occurs only for some utter-
ances or some acoustic dimensions but not others (Pardo 
et al., 2013). Talkers may converge across some dimensions 
but diverge on others (Bourhis & Giles 1977; Earnshaw, 
2021; Heath, 2015), making it difficult to predict which 
articulatory-phonetic dimensions will be influenced (Ostrand 
& Chodroff, 2021). Phonetic convergence is also variable 
across talkers’ sex (Pardo et al., 2017), with some studies 
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reporting greater convergence among female participants 
(Namy et al., 2002), others among males (Pardo, 2006; Pardo 
et al., 2010), or more complicated male–female patterns of 
convergence (Miller et al., 2010; Pardo et al., 2017). In sum, 
the direction and magnitude of changes in speech produc-
tion driven by perceived speech are dependent on multiple 
contributors (Babel, 2010; Pardo, 2006,) likely to include 
social and contextual factors (Bourhis & Giles, 1977; Giles 
et al., 1991; Pardo, 2006). This has made it challenging to 
characterize production–perception interactions fully.

Some have argued that a better understanding of the 
cognitive mechanisms linking speech perception and 
production will meet this challenge (Babel, 2012; Pardo 
et al., 2022). Here, we propose an approach that is novel 
in two ways: (1) Statistical learning. Instead of investigat-
ing phonetic convergence at the level of individual words, 
we manipulate the statistical relationship of two acoustic 
dimensions, fundamental frequency (F0) and voice onset 
time (VOT) and study the effect of perceptual statistical 
learning across these dimensions on listeners’ own speech. 
(2) Subtlety and implicitness. Acoustic manipulation of the 
statistical regularities of speech input is barely perceptible 
and devoid of socially discriminating information, since it is 

carried on the same voice, therefore allowing us to investi-
gate the basic perception–production transfer without influ-
ence of additional (important, but potentially complicating) 
sociolinguistic factors.

Our approach builds on the well-studied role of statistical 
learning in speech perception. Dimension-based statistical 
learning tracks how the effectiveness of acoustic speech 
dimensions in signaling phonetic categories varies as a func-
tion of short-term statistical regularities in speech input (Ide-
maru & Holt, 2011, 2014, 2020; Idemaru & Vaughn, 2020; 
Lehet & Holt, 2017; Liu & Holt, 2015; Schertz et al., 2015; 
Schertz & Clare, 2020; Zhang & Holt, 2018; Zhang et al., 
2021). This simple paradigm parametrically manipulates 
acoustic dimensions, for example, voice onset time (VOT) 
and fundamental frequency (F0), across a two-dimensional 
acoustic space to create speech stimuli varying across a 
minimal pair (beer–pier). The paradigm selectively samples 
stimuli to manipulate short-term speech regularities, mim-
icking common communication challenges like encounter-
ing a talker with an accent that deviates from local norms. 
Across Exposure stimuli (Fig. 1A–B, red) the short-term 
input statistics either match the typical F0 × VOT correla-
tion in English (canonical condition, e.g., with higher F0s 

Fig. 1  Stimulus and trial structure. A Canonical distribution. B 
Reverse distribution. The test stimuli (blue) have ambiguous VOT 
and are identical across canonical and reverse conditions. C Trial 
structure. Exposure phase: Participants listened passively to 8 expo-
sure stimuli, each paired with a visual stimulus. Perceptual categori-

zation phase: After 600 ms, they heard one of two test stimuli with 
low or high F0 and categorized it as beer or pier. Repetition phase: 
they heard the same test stimulus again and repeated it aloud. (Color 
figure online)
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and longer VOTs for pier) or introduce a subtle and barely 
detectable “accent” with a short-term F0 × VOT correlation 
opposite of that typically experienced in English (reverse 
condition, e.g., lower F0s with longer VOTs for pier).

Test stimuli are constant across conditions (Fig. 1A–B, 
blue). They have a neutral, perceptually ambiguous VOT 
thereby removing this dominant acoustic dimension from adju-
dicating category identity. But F0 varies across test stimuli. 
Therefore, the proportion of test stimuli categorized as beer 
versus pier provides a metric of the extent to which F0 is per-
ceptually weighted in categorization as a function of experi-
enced short-term speech input regularities (Wu & Holt, 2022).

Although the manipulation of short-term input statistics is 
subtle and unbeknownst to the listeners, the exposure regu-
larity rapidly shifts the perceptual weight of F0 in beer–pier 
test stimulus categorization (Idemaru & Holt, 2011). Lis-
teners down-weight F0 reliance upon introduction of the 
accent. This effect is fast and robust against the well-known 
individual differences in perceptual weights and the vari-
ability with which individuals perceptually weight different 
acoustic dimensions (Kong & Edwards, 2011, 2016; Schertz 
et al., 2015, 2016). In all, this well-replicated finding (1) 
demonstrates reliable changes in the perceptual system as a 
function of brief exposure to subtle changes in the statistical 
properties of the acoustic input and (2) establishes a statis-
tical learning paradigm as an ideal tool for examining the 
impact of these changes on speech production.

In the current study, we used dimension-based statistical 
learning to investigate whether adjustments to the percep-
tual space influence speech production in systematic ways. 
Following Hodson et al. (2023), participants passively expe-
rienced short sequences of beer and pier exposure stimuli 
sampling canonical or reverse distributions followed by one 
of the two F0-differentiated test stimuli. They categorized 
the test stimulus as beer or pier, then heard it again and 
repeated it aloud (Fig. 1C). If production is rapidly adjusted 
to the change in the perceptual space evoked by passive lis-
tening across statistically structured sequences of sound, we 
predict a down-weighting of production F0 in the reverse 
(compared with the canonical) condition. Secondarily, we 
examine both perception and production effects separately 
in male and female participants to assess whether the adjust-
ment is influenced by participant sex.

Methods

Participants

Although previous studies which have used this experimen-
tal paradigm have found large effect sizes for dimension-
based statistical learning in perception, we do not have a 
prior effect size for potential dimension-based statistical 

learning in production. Assuming an effect size of 0.45 with 
alpha of 0.05 and power of 0.8, in a within-subject design, 
we would need 41 participants. Because a secondary goal 
of this project is to assess the effect separately in male and 
female participants, we doubled this sample size. To allow 
for possible attrition, we set the target sample size of 45 male 
and 45 female participants.

Ninety participants (45 females) were recruited using 
Prolific (www. proli fic. co), an online participant enrollment 
tool. Sex was determined by participants’ responses to the 
question: “What sex were you assigned at birth, such as 
on an original birth certificate?” In answer to a question 
regarding gender, 45% of participants identified as cisgender 
female, 48% identified as cisgender male, and 7% identified 
as nonbinary. Here, we used the biological variable sex.

The study was conducted under a protocol approved by the 
Institutional Review Board at Carnegie Mellon University. 
All participants were adult native-English speakers located 
within the United States, ages 18 to 40 years old (Mage = 28.6 
years, SD = 6 ), and compensated at an hourly rate of $10. 
Following data collection, three (two female) participants 
were removed due to poor quality audio recordings.

Stimuli

Acoustic stimuli were based on natural utterances of beer 
and pier spoken by an adult female native-English speaker 
digitally recorded in a sound-attenuated booth, as described 
by Idemaru and Holt (2020). All stimuli were derived from 
two initial recordings, one beer and one pier, chosen for 
their similarity in duration (385 ms) and F0 contour. Fol-
lowing the approach of McMurray and Aslin (2005), we 
identified 15 splice points (~2–3 ms apart, at zero crossings) 
in both recordings. Then, we removed the interval between 
beer onset and the first splice point and inserted a corre-
sponding interval from the pier, creating a new stimulus 
along the VOT series. Repeating this process resulted in a 
fine-grained series of syllables varying in VOT from beer 
to pier in approximately 2–3-ms steps. From this series, syl-
lables with VOTs of 0, 10, 20, 30, 40, and 50 ms served as 
stimuli. An additional stimulus with −10 ms VOT was cre-
ated by taking a splice of prevoicing from beer and inserting 
it before the burst of the 0-ms VOT beer.

Next, we manipulated the fundamental frequency (F0) 
across the VOT series to create a two-dimensional F0 × 
VOT acoustic space, with adjustment of the F0 onset fre-
quency (170–250 Hz in 10-Hz steps) at vowel onset manipu-
lated manually using Praat 5.3 (Boersma & Weenink, 2021). 
The F0 contour decreased quadratically to 150 Hz at stimu-
lus offset. Stimuli were normalized to the same root-mean-
squared amplitude.

We sampled three types of stimuli from the F0 × VOT 
acoustic space. Exposure stimuli conveyed a specific F0 × 

http://www.prolific.co
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VOT short-term regularity (Canonical, Reverse) across pas-
sive listening (Fig. 1C, Exposure). They possessed unam-
biguous VOTs diagnostic of /b/ (−10, 0, 10 ms) and /p/ (30, 
40 ,50 ms) and F0 frequencies spanning 170, 180, 190, 240, 
250, 260 Hz. The canonical condition stimuli (Fig. 1A, red) 
were sampled to exhibit the typical English F0 × VOT rela-
tionship (Abramson & Lisker, 1985), with beer associated 
with shorter VOT (−10, 0, 10 ms) and lower F0 (170, 180, 
190 Hz) and pier associated with longer VOT (30, 40, 50 
ms) and higher F0 (240, 250, 260 Hz). The reverse condition 
stimuli (Fig. 1B, red) reversed this F0 × VOT correlation; 
shorter VOTs consistent with beer were paired with higher 
F0s and longer VOTs signaling pier were paired with lower 
F0s. We constructed each trial as a sequence of four beer 
(short VOT) and four pier (long VOT) stimuli randomly 
selected from either the canonical or reverse distributions, 
and randomly ordered with 300-ms interstimulus silent inter-
vals (Fig. 1C).

Test stimuli (Fig. 1, blue) served as both the probe for 
perceptual categorization and elicitation of speech produc-
tion in the auditory repetition task. Test stimuli possessed a 
constant, perceptually ambiguous VOT (20 ms; see Idemaru 
& Holt, 2020) and either a high F0 (250 Hz) or a low F0 
(180 Hz; Fig. 1A–B, blue). Two stimuli with unambiguous 
VOTs and high or low F0s (beer: 0 ms VOT, 180 Hz F0; 
pier: 40 ms VOT, 250 Hz F0). Forty-eight trials with unam-
biguous test stimuli were included to ensure participants did 
not perceive only unusual sounding probes.

Procedure

Online participants recruited via Prolific were automatically 
directed to the experiment, hosted on the online experimen-
tal platform Gorilla (www. goril la. sc, Anwyl-Irvine et al., 
2018, 2021). Participants were required to use the Chrome 
browser, and all speech was presented in lossless FLAC for-
mat. Participants first completed consent and a simple demo-
graphics survey and then underwent a brief psychophysi-
cal check for compliance in wearing headphones using the 
dichotic Huggins pitch approach (Milne et al., 2021). Par-
ticipants who did not pass the headphone check did not pro-
ceed to the experiment. Subsequently, a microphone check 
confirmed that participants’ browsers and microphones were 
recording speech utterances.

The experiment then commenced, expanding the percep-
tual protocol of Hodson et al. (2023) to examine transfer to 
production. Participants were instructed about the trial struc-
ture via written instructions. As illustrated in Fig. 1C, each 
trial had three phases: exposure, perceptual categorization, 
and repetition. In the exposure phase participants passively 
listened to a sequence of eight exposure stimuli (four short 
VOT <15 ms signaling beer and four long VOT >25 ms 
signaling pier, randomly ordered) separated by 300 ms of 

silence (5,900 ms total duration). As stimuli played dioti-
cally over headphones corresponding clipart images (beer 
for <15 ms VOT, pier for >25 ms VOT) appeared, synchro-
nized to sound onset. The next phase, perceptual categoriza-
tion, began with 600 ms of silence. Participants then heard a 
test stimulus with perceptually ambiguous VOT (20 ms) and 
either low (180 Hz) or high (250 Hz) F0 and categorized it 
as beer or pier via a keyboard response guided by on-screen 
text indicating the key/response correspondence as well as a 
question mark to indicate the need to respond. The repetition 
phase began immediately after response. Participants heard 
the same test stimulus and, 300 ms later, saw an image of 
a microphone that signaled them to repeat the test stimulus 
aloud. Participants’ utterances were recorded over their own 
computer microphone and stored digitally as .weba files.

The perceptual categorization and repetition phases were 
identical across blocks. Blocks differed in the distinctive 
(canonical, reverse) short-term regularities conveyed by the 
exposure phase. The first block was always canonical, with 
subsequent blocks alternating between reverse and canonical 
blocks. This resulted in 248 test trials (124 canonical, 124 
reverse; blocks of 40–42 trials) presented across six blocks. 
Two of the three canonical blocks were composed of 41 
trials while the third was composed of 42 trials. A small 
programming discrepancy led to two of the three reverse 
blocks having 42 trials whereas the third had 40 trials.

Among the 248 test trials, 200 trials (100 canonical, 100 
reverse) presented ambiguous test stimuli to assay dimen-
sion-based statistical learning in perception and its transfer 
to production. The remaining 48 trials (24 canonical, 24 
reverse) presented unambiguous stimuli so that participants 
did not perceive only unusual sounding probes. Ambiguous 
and unambiguous stimuli were randomized within condition 
(canonical, reverse). Participants had 15-s breaks after each 
15 trials and between blocks.

Production F0 measurements

We designed custom Praat and R scripts to extract F0 
from the speech productions. In Praat (Version 6.1.51), 
“To TextGrid (silences)...” identified and isolated word 
productions in the 2.5-second audio recordings. Then, “To 
Pitch (ac)” characterized the F0 frequency of first 40 ms 
of voicing, where F0 differences between onset obstruent 
consonants are typically most pronounced (Hanson, 2009; 
Hombert et al., 1979; Lea, 1973; Xu & Xu, 2021). After 
F0 values were log transformed, outliers ±3 standard devi-
ations relative to a participant’s mean F0 were removed 
from further analyses. Next, z-score normalization on a 
by-participant basis accounted for F0 variability across 
talkers that is impacted by multiple factors, including sex 
(Titze, 1989). Thus, a F0 value of 0 represented the mean 
F0 for a participant across all productions and values of 

http://www.gorilla.sc
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±1 corresponded to a standard deviation above and below 
the mean, respectively. Normalization provided a means of 
aligning F0 variability across participants prior to group 
analyses.

Analysis

Statistical analysis involved mixed-effects models via the 
lme4 package (Bates et al., 2014) in R (Version 4.1.3; R 
Core Development Team, 2021). In keeping with recom-
mendations of Barr et al. (2013), we strove for including 
the maximal random effects in the models. Most mod-
els, however, did not tolerate the maximal random effect 
structure. For consistency, we report the models with 
random intercept of both subjects and items, which were 
tolerated by all models. The former captures variability 
among subjects; the latter among exposure sequences that 
changed from trial to trial. To assure that excluding ran-
dom slopes did not radically alter any of the main conclu-
sions, we also report the output of the models with the 
largest random effect structure tolerated by each model 
in Appendix 2.

For perceptual categorization data, a logit mixed-
effects logistic regression model included a binary 
response (beer, pier) as the dependent variable. The 
model included condition (canonical, reverse), test stim-
ulus F0 (low F0, high F0), and participant sex (male, 
female) and their two- and three-way interactions as 
fixed effects, and by-subject and by-item random inter-
cepts included. For speech production data, a continuous 
z-score normalized F0 dependent measure allowed for a 
standard (non-logit) linear mixed-effects model. Here, 
too, fixed effects of condition, test stimulus, sex and its 
interactions were modeled, with by-subject and by-items 
modeled as random effects. Dependent categorical vari-
ables were center coded (1 vs −1). P values were based 
on Satterthwaite approximates using the LmerTest pack-
age (Version 3.1-3; Kuznetsova et al., 2017). Analyses 
collapsed data from the three canonical blocks and, sepa-
rately, from the three reverse blocks.

We conducted the production analyses in two steps: (1) 
Our first analysis used test stimulus F0 to predict production 
F0. This analysis is parallel to the perceptual analysis and 
captures the whole process, which includes the change to 
perception as well as changes to production. (2) Our second 
analysis used perceptual responses as the main predictor of 
production F0. This analysis already partials out the contri-
bution of perceptual changes as a function of exposure to the 
canonical and reverse distributions, which allows us to iso-
late the production component of transfer. The data, analysis 
code, and full tables of the results are available (https:// osf. 
io/ cwg4d/).

Results

Perceptual categorization

Figure 2 plots categorization responses as a function of 
canonical and reverse short-term speech regularities. Table 1 
presents the results of the analysis.

As expected, there was a main effect of test stimulus F0, 
such that the test stimulus with the high F0 was more likely 
to be labeled as pier (z = 9.94, p < .001). Crucially, as in 
prior studies of dimension-based statistical learning, there 
was a significant interaction of test stimulus F0 and condi-
tion (z = 16.09, p < .001). Passive exposure to short-term 
speech input regularities impacted the effectiveness of F0 
in signaling beer–pier category identity. Neither the main 
effect of sex, nor its interaction with condition was signifi-
cant.1 There was, however, a significant three-way interac-
tion between sex, condition, and test stimulus F0 (z = 6.39, 
p < .001). To better understand the nature of this interaction, 
we conducted separate tests on male and female participants. 
The results showed significant Condition × Test stimulus 
F0 interactions for both male and female participants, with 
a larger coefficient for female participants (ꞵ = 1.22, SE = 
.09, z = 14.19, p < .001; ꞵ = 1.49, SE = .08, z = 17.54, p < 
.001, for males and females respectively).

In summary, listeners relied on F0 to guide decisions 
about speech category identity when local speech input 
regularities conformed to English norms. When regulari-
ties shifted to create an “accent,” F0 was much less effective 
in signaling the speech categories. This replicates Hodson 
et al. (2023), who first demonstrated that passive exposure to 
speech elicits dimension-based statistical learning. Adding 
to that result, we also showed that the effect is robust in both 
male and female participants. Next, we examine the influ-
ence of this perceptual statistical learning on production.

Repetition (speech production)

Figure 3 plots z-score-normalized speech production F0s 
elicited in response to high and low F0 test stimuli in the 
context of canonical and reverse short-term speech regulari-
ties. As described under Analyses, two models were run on 
these data. The first model predicted changes to production 
F0 as a function of test stimulus F0. Table 2 presents this 
model’s results. As in perceptual categorization, there was 
a significant effect of test stimulus F0, such that the high F0 

1 The interaction between sex and condition was significant in a 
mixed-effects model with a random slope of test cue F0 by subject 
(see Table 6); however, post hoc analyses run separately in males and 
females revealed no significant effect of condition in either group (z = 
0.86, p = .391, z = 0.29, p = .769, for males and females, respectively).

https://osf.io/cwg4d/
https://osf.io/cwg4d/
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test stimulus prompted a larger magnitude normalized F0 
than the low F0 test stimulus (t = 15.36, p < .001). There 
was also a significant effect of condition, such that produc-
tions made in the canonical condition exhibited a higher F0 
than the reverse condition (t = 2.27, p = .026). The interac-
tion between test stimuli F0 and condition was significant 
(t = 19.02, p < .001) in a manner consistent with transfer 
of perceptual statistical learning to production.

There was no significant main effect of sex, though 
there was a significant three-way interaction among sex, 

condition, and test stimulus F0 (t = 3.50, p ≤ .001). Sepa-
rate post hoc tests on male and female data revealed a 
significant interaction between condition and test stimulus 
F0 for both groups, with a larger coefficient for female 
participants (ꞵ = 0.19, SE = 0.02, t = 12.87, p < .001; 
ꞵ = 0.25, SE = 0.01, t = 20.07, p < .001, for males and 
females, respectively).

These results suggest that production is affected by 
the manipulation of short-term regularities in speech 
perceived passively. However, it is possible that the 
results are driven by changes to perception and not 
production. Our second analysis addresses this issue 
by modeling changes to production F0 as a function of 
participants’ perceptual choices, thus removing the vari-
ance due to the influence of test cue F0 on perception. 
Figure 4 shows production F0 changes based on per-
ceptual responses, and Table 3 summarized the results 
of this analysis.

As seen in Fig. 4, when the contribution of perception 
is removed, the effect size clearly diminishes. The question 
is: Is there a significant production effect beyond those 
captured by perception? The results of the analysis sug-
gest that there is. In addition to the main effect of percep-
tual response, there was a significant interaction between 
perceptual response and condition (t = −8.75, p < .001), 

Fig. 2  Results of perceptual categorization. Percentage of pier 
responses to high and low F0 test stimuli in canonical and reverse 
conditions are shown at the group level (A), broken down by sex (B), 

and broken down by blocks (C). Averages reflect subject means ± SE. 
(Color figure online)

Table 1  Regression table—Perception

Reference levels are condition (reverse), target stimulus F0 (low F0), 
sex (male)

Predictor β SE z p

(Intercept) −0.23 0.10 −2.26 .024
Condition 0.13 0.08 1.48 .139
Test cue F0 0.84 0.08 9.94 <.001
Sex −0.05 0.06 −0.83 .406
Condition:Test cue F0 1.36 0.08 16.09 <.001
Condition:Sex −0.04 0.02 −1.68 .094
Test cue F0:Sex −0.01 0.02 −0.47 .635
Condition:Test cue F0:Sex 0.14 0.02 6.39 <.001
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indicating within-word changes to F0 in productions as a 
function of condition. A significant interaction between 
perceptual response and sex (ꞵ = −0.02, SE = .01, t = 
−3.36, p = .001) was evident, indicating within-word 
changes to F0 as a function of sex.2 Moreover, there was 
a significant three-way interaction among sex, condition, 
and perceptual response (t = −4.62, p < .001) with post 
hoc tests revealing significant effects in both sexes, with 

a greater magnitude in females (ꞵ = −0.04, SE = .01, t = 
−3.61, p < .001; ꞵ = −0.09, SE = 0.01, t = −8.57, p < 
.001, for males and females, respectively). This provides 
evidence of true transfer of perceptual statistical learn-
ing to production. This analysis shows that evidence of 
transfer of statistical learning to speech production is pre-
sent even when the perceptual heterogeneity expected of 
F0-differentiated stimuli in the reverse condition is fac-
tored out. For readers interested in changes to VOT, we 
have reported a series of analyses including that variable 
in Appendix 1.

Discussion

The findings of this study show that subtle acoustic regulari-
ties experienced in listening to a voice impact the details 
of our own speech. The influence of perceptual statistical 
learning on speech production is rapid, can result from pas-
sive listening, and impacts sublexical aspects of speech pro-
duction in both male and female participants. The transfer 
we observe cannot be accounted for by mimicry of speech 
acoustics. Mimicry would predict consistent F0 patterns 
across conditions, since the speech tokens that elicited 
speech productions were constant across the experiment. 
Putting mimicry aside, the transfer of F0 down-weighting 
in an auditory repetition task can come from two sources: 
changes to the perception of the stimulus and/or changes to 
production. Comparison between the first and subsequent 

Fig. 3  Results of repetition. F0 values in speech production by test stimulus F0 are shown at the group level (A), broken down by sex (B), and 
broken down by blocks (C). Averages reflect subject means ± SE. (Color figure online)

Table 2  Regression table—Production (by test stimulus F0)

Reference levels are condition (reverse), target stimulus F0 (low F0), 
sex (male)

Predictor β SE t p

(Intercept) 0.01 0.01 0.50 .617
Condition 0.03 0.01 2.27 .026
Test stimulus F0 0.18 0.01 15.36 <.001
Sex 0.002 0.01 0.31 .760
Condition:Test stimulus F0 0.22 0.01 19.02 <.001
Condition:Sex −0.01 0.01 −1.28 .199
Test stimulus F0:Sex 0.04 0.01 4.84 <.001
Condition:Test stimulus F0:Sex 0.03 0.01 3.50 <.001

2 The interaction between perceptual response and sex was not sig-
nificant in a mixed effects that included random slopes for both con-
dition and perceptual response by subject (Table 8).
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analyses allows us to segregate the contribution of each 
source. Hypothetically the down-weighting of F0 differ-
ences in productions in the reverse condition might have 
arisen solely from perception, without transfer to speech 
production. If participants were to utter beer and pier with 
English-consistent F0 each time they heard a high-F0 or low-
F0 target then the overall F0 difference in the reverse condi-
tion might be diminished relative to the canonical condition 
simply because perceptual down-weighting leads to greater 
inhomogeneity in the proportion of beer versus pier percepts 
in the reverse, compared with the canonical, condition. This 
inhomogeneity would mean that high- and low-F0 targets 
elicit a mix of high and low F0 productions entirely due to 
perception, without any transfer of learning to production.

Our first analysis, conditioned on test stimulus F0, shows 
the combined perception plus production effect of transfer 
to be of a large effect size. A second analysis conditioning 
production F0 according to beer versus pier categorization 
instead of test stimulus acoustics removes the contribution 
of perception and shows smaller, albeit persistent, F0 down-
weighting in reverse condition productions. Together, the 
analyses suggest that although there is a sizable perceptual 
contribution, there is also a unique contribution of transfer 
of the effects of statistical learning to production. The fact 
that this influence differs in magnitude across analyses con-
ditioned on perceptual categorization versus input acous-
tics also makes an important point: The long-term norms 
of speech production are not overwritten by the more subtle 
influences of rapid statistical learning evident across short-
term input. This is consistent with the demonstration that 
auditory repetition of familiar words is largely lexical (Dell 
et al., 2013; Nozari & Dell, 2013; Nozari et al., 2010).

These findings align with positive reports of phonetic 
convergence on F0 in shadowing tasks (Garnier et al., 2013; 
Mantell & Pfordresher, 2013; Postma-Nilsenová & Postma, 
2013; Sato et al., 2013; Wisniewski et al., 2013). At the 
same time, they also illustrate how our statistical learning 
approach can provide a solution to the challenges of captur-
ing and characterizing phonetic convergence. One advantage 
is dimension selection. A priori predictions about the dimen-
sions expected to exhibit phonetic convergence have proven 
challenging in the phonetic convergence literature, as beau-
tifully demonstrated by an exhaustive search across more 

Fig. 4  Results of repetition. F0 values in speech production by perceptual responses are shown at the group level (A), broken down by sex (B), 
and broken down by blocks (C). Averages reflect subject means ± SE. (Color figure online)

Table 3  Regression table—Production (by perceptual response)

Reference levels are condition (reverse), perceptual response (pier), 
sex (male)

Predictor β SE t p

(Intercept) 0.04 0.01 4.32 <.001
Condition 0.01 0.01 0.77 .443
Perceptual Response −0.44 0.01 −58.32 <.001
Sex 0.01 0.01 0.97 .334
Condition:Perceptual Response −0.07 0.01 −8.75 <.001
Condition:Sex −0.005 0.01 −0.65 .513
Perceptual Response:Sex −0.02 0.01 −3.36 .001
Condition:Perceptual Response:Sex −0.03 0.01 −4.62 <.001
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than 300 acoustic-phonetic features (Ostrand & Chodroff, 
2021). Our statistical learning approach provides a priori 
predictions of the dimension impacted by convergence 
(Wu & Holt, 2022), eliminating the need to selectively—or 
exhaustively—sample dimensions across which to examine 
the nature of transfer.

A second advantage is the ability to make directional 
predictions. Dimension-based statistical learning elicits pre-
dictable, directional effects on perception. When short-term 
speech input provides robust information (here, VOT) to 
indicate category identity, secondary dimensions that depart 
from long-term norms of these categories (as, here, for F0 
in reverse condition) are down-weighted in their influence 
on perceptual categorization (Wu & Holt, 2022). This has 
proven to be the case across consonants (Idemaru & Holt, 
2011), vowels (Liu & Holt, 2015), and also prosodic empha-
sis (Jasmin et al., 2023) categories. This is important in that 
it emphasizes that the transfer to production is not simply 
convergence in the sense of imitation. Rather, directional 
sublexical adjustments in the perceptual system are carried 
over to the production system. As a result, we would not 
expect all changes to the acoustics of speech to transfer to 
production (see, e.g., our VOT analysis). This, in turn, may 
help to explain why phonetic convergence studies often yield 
inconsistent reports.

A third advantage is the ability to set aside sociolinguistic 
factors. Our manipulation of acoustic F0 was barely per-
ceptible, and devoid of socially discriminating information 
because the voice was constant across conditions. With this 
approach, we observed transfer in both male and female par-
ticipants. The consistency of our findings across sex may 
have been supported by our approach, which allowed us 
to eliminate sociolinguistic factors that may contribute to 
the variability of findings reported in the phonetic conver-
gence literature (Pardo et al., 2017). A sizeable literature 
now exists detailing social and contextual factors eliciting 
convergence, such as talker attractiveness (Babel, 2012), 
conversational topic (Walker, 2014), and even cultural 
primes (Hurring et al., 2022; Walker et al., 2019). Further 
understanding of how these factors influence convergence 
will benefit from an understanding of the cognitive mecha-
nisms of transfer (Pardo et al., 2022). Here, we put forward 
one such an account, in the framework of statistical learn-
ing wherein several computational approaches to the per-
ceptual effects have been proffered (Harmon et al., 2019; 
Kleinschmidt & Jaeger, 2015; Liu & Holt, 2015; Wu, 2020).

At the broadest level, the results demonstrate that subtle 
statistical regularities experienced in passive listening to 
another talker’s speech can transfer to influence one’s own 
speech production. Statistical learning involving short-term 
regularities in perceived speech impacts sublexical aspects 
of speech production in a predictable manner, even when 
the speech targets that elicit production are held constant 

to prevent mimicry. In sum, by yielding specific a priori 
predictions of the sublexical aspects of speech expected to 
be impacted by transfer of statistical learning, dimension-
based statistical learning across passive exposure to speech 
provides a valuable new framework for understanding per-
ception-production transfer.

Appendix 1

VOT analysis

We measured production VOT on each trial using the Deep 
and Robust VOT annotator (Dr.VOT; Shrem et al., 2019), 
with postprocessing manual inspection. Next, we z-scored 
the VOTs following the by-participant approach described 
for F0.

We used VOT to verify that perceptual categorization 
(beer, pier) responses were followed by speech productions 
that corresponded to the perceptual response (e.g., longer 
VOTs following pier vs. beer responses). Figure 5 shows 
the raw (1A.A) and z-scored (1A.B) distribution of VOTs 
as a function of beer–pier perceptual responses. Perceptual 
responses were strongly associated with the VOT of subse-
quent productions (t = −141.94, p < .001) and production 
VOT distributions were not influenced by (canonical, reverse) 
condition (t = −1.51, p = .13, Table 4). Point biserial cor-
relation between VOT and perceptual categorization reveals 
a strong relationship that is comparable across canonical 
and reverse conditions (r = 0.74, p < .001 for the canoni-
cal condition and r = 0.74, p < .001, for the reverse condi-
tion). In sum, participants’ beer–pier perceptual responses to 
test stimuli were followed by speech productions possessing 
VOTs that align with these perceptual categories.

Given that VOT is well aligned with the perceptual 
response we next examined its utility as a continuous measure 
of participants’ intended utterance in testing transfer of sta-
tistical learning to the weighting of F0 in speech production. 
We fit a model predicting normalized speech production F0 
as a function of utterance VOT (a continuous-measure proxy 
for intended production) and condition (canonical, reverse). 
Table 5 shows the predicted interaction (β = −0.02, SE = .01, 
t = −2.02, p = .043). The significant interaction replicates 
the transfer of statistical learning to speech production that 
persists when the F0 of the stimulus eliciting the utterance 
is factored out, and results are examined as a function of a 
participant’s intended speech production (here, assessed with 
VOT, assessed via perceptual response in Fig. 4).

In sum, participants are largely consistent in produc-
ing words that correspond to their preceding perceptual 
choices. Transfer of statistical learning to speech produc-
tion is observed in analyses utilizing VOT as a continuous 
measure of participants’ intended productions.
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Fig. 5  Distribution of raw production VOTs (A) and z-scored VOTs (B) for beer and pier in canonical and reverse conditions. (Color figure 
online)

Table 4  Regression table—Production VOTs (by perceptual 
response)

Reference levels are condition (reverse), perceptual response (pier)

Predictor β SE t p

(Intercept) 0.05 0.01 4.16 <.001
Condition −0.01 0.01 −1.51 .130
Perceptual response −0.75 0.01 −141.94 <.001
Condition:Perceptual response −0.002 0.01 −0.33 .743

Table 5  Regression table—Production F0s (by production VOTs)

Reference levels are condition (reverse). All VOT measures z-score 
normalized within participants

Predictor β SE t p

(Intercept) 0.01 0.02 0.56 .580
Condition 0.01 0.02 0.64 .527
VOT 0.32 0.01 40.33 <.001
Condition:VOT −0.02 0.01 −2.02 .043
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Appendix 2

Mixed‑effects models with the largest random effect 
structure tolerated by each model

Mixed-effect models presented below share the same fixed-
effect structure as corresponding models in the main manu-
script but also include the largest random effect structure 
tolerated by each model (Table 7).

Acknowledgments This work was supported by funding from the 
National Science Foundation BCS-1941357 to L.H. and by BCS-
2217415 to N.N. and L.H. T.M. was supported by the Predoctoral 
Training Program in Behavioral Brain Research (T32GM081760, 
awarded institutionally to L.H. and Julie Fiez). Christi L. Gomez and 
Erin D. Smith provided critical support with study recruitment and 
data collection. Emril Radoncic and Reva Prabhune were essential in 
piloting and troubleshooting. David Plaut provided helpful feedback.

Funding Open Access funding provided by Carnegie Mellon 
University

Data Availability Data, R scripts used for statistical analyses, and 
results are available (https:// osf. io/ cwg4d/).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abramson, A. S., & Lisker, L. (1985). Relative power of cues: F0 shift 
versus voice timing. In V. Fromkin (Ed.), Phonetic linguistics: 
Essays in honor of Peter Ladefoged (pp. 25–33). Academic.

Anwyl-Irvine, A., Massonnié, J., Flitton, A., Kirkham, N., & Ever-
shed, J. (2018). Gorillas in our midst: Gorilla. Behavior Research 
Methods, 52, 388–407.

Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. 
(2021). Realistic precision and accuracy of online experiment 
platforms, web browsers, and devices. Behavior Research Meth-
ods, 53(4), 1407–1425.

Babel, M. (2010). Dialect convergence and divergence in New Zealand 
English. Language in Society, 39, 437–456.

Babel, M. (2012). Evidence for phonetic and social selectivity in 
spontaneous phonetic imitation. Journal of Phonetics, 40, 
177–189.

Table 6  Perceptual categorization

Reference levels are condition (reverse), test cue F0 (low F0), sex 
(male)

Perceptual Response ~ Condition * Test cue F0 * Sex + (1 + Test cue 
F0 | Subject) + (1 | Item)

Predictor β SE z p

(Intercept) −0.38 0.13 −2.97 .003
Condition −0.004 0.10 −0.04 .966
Test cue F0 1.12 0.17 6.45 <.001
Sex −0.08 0.08 −0.99 .322
Condition:Test cue F0 1.70 0.10 16.40 <.001
Condition:Sex −0.07 0.03 −2.74 .006
Test cue F0:Sex −0.04 0.14 −0.29 .773
Condition:Test cue F0:Sex 0.16 0.03 6.13 <.001

Table 7  Repetition (speech production by target cue F0)

Random effect structure presented in Table 2 is already the largest random effect structure tolerated by this model.

Table 8  Repetition (speech production by perceptual response)

Reference levels are condition (reverse), perceptual response (low 
F0), sex (male)

Z-scored Production F0 ~ Condition * Perceptual Response * Sex + 
(1 + Perceptual Response + Condition | Subject) + (1 | Item)

Predictor β SE t p

(Intercept) 0.04 0.01 3.51 .001
Condition 0.004 0.01 0.35 .723
Perceptual Response −0.42 0.03 −16.21 <.001
Sex 0.01 0.01 0.66 .512
Condition:Perceptual Response −0.06 0.01 −7.33 <.001
Condition:Sex −0.001 0.01 −0.13 .898
Perceptual Response:Sex −0.02 0.03 −0.95 .346
Condition:Perceptual Response:Sex −0.03 0.01 −4.64 <.001

https://osf.io/cwg4d/
http://creativecommons.org/licenses/by/4.0/


 Psychonomic Bulletin & Review

1 3

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random 
effects structure for confirmatory hypothesis testing: Keep it 
maximal. Journal of Memory and Language, 68(3), 255–278.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting 
linear mixed-effects models using lme4. ArXiv Preprint. 
arXiv:1406.5823.

Boersma, P., & Weenink, D. (2021). Praat: Doing phonetics by com-
puter [Computer program.] Version 6.1.51. Retrieved 25 July 
2021 from http:// www. praat. org/

Bohland, J. W., Bullock, D., & Guenther, F. H. (2010). Neural repre-
sentations and mechanisms for the performance of simple speech 
sequences. Journal of Cognitive Neuroscience, 22(7), 1504–1529.

Bourhis, R. Y., & Giles, H. (1977). The language of intergroup distinc-
tiveness. Language, Ethnicity and Intergroup Relations, 13, 119.

Dell, G. S., Schwartz, M. F., Nozari, N., Faseyitan, O., & Coslett, H. 
B. (2013). Voxel-based lesion-parameter mapping: Identifying 
the neural correlates of a computational model of word produc-
tion. Cognition, 128(3), 380–396.

Earnshaw, K. (2021). Examining the implications of speech accom-
modation for forensic speaker comparison casework: A case 
study of the West Yorkshire FACE vowel. Journal of Phonetics, 
87, Article 101062.

Fowler, C. A., Brown, J. M., Sabadini, L., & Weihing, J. (2003). 
Rapid access to speech gestures in perception: Evidence from 
choice and simple response time tasks. Journal of Memory and 
Language, 49(3), 396–413.

Garnier, M., Lamalle, L., & Sato, M. (2013). Neural correlates of 
phonetic convergence and speech imitation. Frontiers in Psy-
chology, 4, Article 600.

Giles, H., Coupland, N., & Coupland, J. (1991). Accommodation 
theory: Communication, context, and consequence. In H. Giles, 
J. Coupland, & N. Coupland (Eds.), Contexts of accommoda-
tion: Developments in applied sociolinguistics (pp. 1–68). Cam-
bridge University Press. https:// doi. org/ 10. 1017/ CBO97 80511 
663673. 001

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of 
lexical access. Psychological Review, 105(2), 251–279.

Guenther, F. H. (1994). A neural network model of speech acquisi-
tion and motor equivalent speech production. Biological cyber-
netics, 72(1), 43–53.

Guenther, F. H. (2016). Neural control of speech. MIT Press.
Hanson, H. M. (2009). Effects of obstruent consonants on funda-

mental frequency at vowel onset in English. The Journal of the 
Acoustical Society of America, 125(1), 425–441.

Harmon, Z., Idemaru, K., & Kapatsinski, V. (2019). Learning mecha-
nisms in cue reweighting. Cognition, 189, 76–88.

Heath, J. (2015). Convergence through divergence: Compensatory 
changes in phonetic accommodation. LSA Annual Meeting 
Extended Abstracts, 6. https:// doi. org/ 10. 3765/ exabs. v0i0. 3002

Hodson, A. J., Shinn-Cunningham, B., & Holt, L. L. (2023). Statisti-
cal learning across passive listening adjusts perceptual weights 
of speech input dimensions. PsyArXiv. https:// doi. org/ 10. 31234/ 
osf. io/ 4kxz3

Hombert, J. M., Ohala, J. J., & Ewan, W. G. (1979). Phonetic expla-
nations for the development of tones. Language, 55(1), 37–58.

Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in 
speech production. Science, 279(5354), 1213–1216.

Hurring, G., Hay, J., Drager, K., Podlubny, R., Manhire, L., & Ellis, 
A. (2022). Social priming in speech perception: Revisiting kanga-
roo/kiwi priming in New Zealand English. Brain Sciences, 12(6), 
Article 684.

Idemaru, K., & Holt, L. L. (2011). Word recognition reflects dimen-
sion-based statistical learning. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 37(6), Article 1939.

Idemaru, K., & Holt, L. L. (2014). Specificity of dimension-based 
statistical learning in word recognition. Journal of Experimental 

Psychology: Human Perception and Performance, 40(3), Article 
1009.

Idemaru, K., & Holt, L. L. (2020). Generalization of dimension-based 
statistical learning. Attention, Perception, & Psychophysics, 82(4), 
1744–1762.

Idemaru, K., & Vaughn, C. (2020). Perceptual tracking of distinct dis-
tributional regularities within a single voice. The Journal of the 
Acoustical Society of America, 148(6), EL427-EL432.

Jasmin, K., Tierney, A., Obasih, C., & Holt, L. (2023). Short-term 
perceptual reweighting in suprasegmental categorization. Psycho-
nomic Bulletin & Review, 30(1), 373–382.

Kleinschmidt, D. F., & Jaeger, T. F. (2015). Robust speech perception: 
Recognize the familiar generalize to the similar and adapt to the 
novel. Psychological Review, 122(2), 148–203. https:// doi. org/ 10. 
1037/ a0038 695

Kong, E., & Edwards, J. (2011). Individual differences in speech per-
ception: Evidence from visual analogue scaling and eye-tracking. 
Proceedings of the International Conference on Phonetic Science, 
17, 1126–1129.

Kong, E. J., & Edwards, J. (2016). Individual differences in categori-
cal perception of speech: Cue weighting and executive function. 
Journal of Phonetics, 59, 40–57.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerT-
est package: Tests in linear mixed effects models. Journal of Sta-
tistical Software, 82, 1–26.

Lea, W. A. (1973). Segmental and suprasegmental influences on funda-
mental frequency contours. Consonant Types and Tone, 1, 15–70.

Lehet, M., & Holt, L. L. (2017). Dimension-based statistical learning 
affects both speech perception and production. Cognitive Science, 
41, 885–912.

Lindsay, S., Clayards, M., Gennari, S., & Gaskell, M. G. (2022). Plas-
ticity of categories in speech perception and production. Lan-
guage, Cognition and Neuroscience, 37(6), 707–731.

Liu, R., & Holt, L. L. (2015). Dimension-based statistical learning of 
vowels. Journal of Experimental Psychology: Human Perception 
and Performance, 41(6), Article 1783.

Mantell, J. T., & Pfordresher, P. Q. (2013). Vocal imitation of song and 
speech. Cognition, 127(2), 177–202.

McMurray, B., & Aslin, R. N. (2005). Infants are sensitive to within- 
category variation in speech perception. Cognition, 95(2), 
B15–B26.

Miller, R. M., Sanchez, K., & Rosenblum, L. D. (2010). Alignment to 
visual speech information. Attention, Perception, & Psychophys-
ics, 72(6), 1614–1625.

Milne, A. E., Bianco, R., Poole, K. C., Zhao, S., Oxenham, A. J., Bil-
lig, A. J., & Chait, M. (2021). An online headphone screening 
test based on dichotic pitch. Behavior Research Methods, 53(4), 
1551–1562.

Namy, L. L., Nygaard, L. C., & Sauerteig, D. (2002). Gender differ-
ences in vocal accommodation: The role of perception. Journal of 
Language and Social Psychology, 21(4), 422–432.

Nielsen, K. (2011). Specificity and abstractness of VOT imitation. 
Journal of Phonetics, 39(2), 132–142.

Nozari, N., & Dell, G. S. (2013). How damaged brains repeat words: A 
computational approach. Brain and Language, 126(3), 327–337.

Nozari, N., Kittredge, A. K., Dell, G. S., & Schwartz, M. F. (2010). 
Naming and repetition in aphasia: Steps, routes, and frequency 
effects. Journal of Memory and Language, 63(4), 541–559.

Ostrand, R., & Chodroff, E. (2021). It’s alignment all the way down, but 
not all the way up: Speakers align on some features but not oth-
ers within a dialogue. Journal of Phonetics, 88, Article 101074.

Postma-Nilsenová, M., & Postma, E. (2013). Auditory perception bias 
in speech imitation. Frontiers in Psychology, 4, Article 826.

Pardo, J. S. (2006). On phonetic convergence during conversational 
interaction. The Journal of the Acoustical Society of America, 
119(4), 2382–2393.

http://www.praat.org/
https://doi.org/10.1017/CBO9780511663673.001
https://doi.org/10.1017/CBO9780511663673.001
https://doi.org/10.3765/exabs.v0i0.3002
https://doi.org/10.31234/osf.io/4kxz3
https://doi.org/10.31234/osf.io/4kxz3
https://doi.org/10.1037/a0038695
https://doi.org/10.1037/a0038695


Psychonomic Bulletin & Review 

1 3

Pardo, J. S., Jay, I. C., & Krauss, R. M. (2010). Conversational role 
influences speech imitation. Attention, Perception, & Psychophys-
ics, 72(8), 2254–2264.

Pardo, J. S., Jordan, K., Mallari, R., Scanlon, C., & Lewandowski, E. 
(2013). Phonetic convergence in shadowed speech: The relation 
between acoustic and perceptual measures. Journal of Memory 
and Language, 69(3), 183–195.

Pardo, J. S., Urmanche, A., Wilman, S., & Wiener, J. (2017). Phonetic 
convergence across multiple measures and model talkers. Atten-
tion, Perception, & Psychophysics, 79(2), 637–659.

Pardo, J. S., Pellegrino, E., Dellwo, V., & Möbius, B. (2022). Vocal 
accommodation in speech communication. Journal of Phonetics, 
95, Article 101196.

R Core Team. (2021). R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna. 
https:// www.R- proje ct. org/

Sato, M., Grabski, K., Garnier, M., Granjon, L., Schwartz, J. L., & 
Nguyen, N. (2013). Converging toward a common speech code: 
Imitative and perceptuo-motor recalibration processes in speech 
production. Frontiers in Psychology, 4, Article 422.

Schertz, J., & Clare, E. J. (2020). Phonetic cue weighting in perception 
and production. Wiley Interdisciplinary Reviews: Cognitive Sci-
ence, 11(2), Article e1521.

Schertz, J., & Paquette-Smith, M. (2023). Convergence to shortened 
and lengthened voice onset time in an imitation task. JASA 
Express Letters, 3(2), Article 025201.

Schertz, J., Cho, T., Lotto, A., & Warner, N. (2015). Individual dif-
ferences in phonetic cue use in production and perception of a 
non-native sound contrast. Journal of Phonetics, 52, 183–204.

Schertz, J., Cho, T., Lotto, A., & Warner, N. (2016). Individual dif-
ferences in perceptual adaptability of foreign sound categories. 
Attention, Perception, & Psychophysics, 78(1), 355–367.

Shockley, K., Sabadini, L., & Fowler, C. A. (2004). Imitation in shad-
owing words. Perception & Psychophysics, 66, 422–429.

Shrem, Y., Goldrick, M., & Keshet, J. (2019). Dr. VOT: Measuring 
positive and negative voice onset time in the wild. ArXiv Preprint. 
arXiv:1910.13255.

Titze, I. R. (1989). Physiologic and acoustic differences between male 
and female voices. The Journal of the Acoustical Society of Amer-
ica, 85(4), 1699–1707.

Walker, A. (2014). Crossing oceans with voices and ears: Second 
dialect acquisition and topic-based shifting in production and 
perception (Doctoral dissertation, Ohio State University, Colum-
bus, OH).

Walker, M., Szakay, A., & Cox, F. (2019). Can kiwis and koalas as 
cultural primes induceperceptual bias in Australian English speak-
ing listeners? Laboratory Phonology: Journal of the Association 
forLaboratory Phonology, 10(1), 1–29.

Wisniewski, M. G., Mantell, J. T., & Pfordresher, P. Q. (2013). Transfer 
effects in the vocal imitation of speech and song. Psychomusicol-
ogy: Music, Mind, and Brain, 23(2), 82.

Wu, Y. C. (2020). Behavioral, computational, and electrophysiologi-
cal investigations of adaptive plasticity mechanisms in speech 
perception (Doctoral dissertation, Carnegie Mellon University, 
Pittsburgh, PA).

Wu, Y. C., & Holt, L. L. (2022). Phonetic category activation drives 
adaptive plasticity in dimension-based statistical learning in 
speech perception. Journal of Experimental Psychology: Human 
Perception & Performance, 48, 913–925.

Xu, Y., & Xu, A. (2021). Consonantal F0 perturbation in American 
English involves multiple mechanisms. The Journal of the Acous-
tical Society of America, 149(4), 2877–2895.

Zhang, X., & Holt, L. L. (2018). Simultaneous tracking of coevolv-
ing distributional regularities in speech. Journal of Experimental 
Psychology: Human Perception and Performance, 44(11), Article 
1760.

Zhang, X., Wu, Y. C., & Holt, L. L. (2021). The learning signal in per-
ceptual tuning of speech: Bottom-up versus top-down information. 
Cognitive Science, 45(3), Article e12947.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.R-project.org/

	Transfer of statistical learning from passive speech perception to speech production
	Abstract
	Methods
	Participants
	Stimuli
	Procedure
	Production F0 measurements
	Analysis

	Results
	Perceptual categorization
	Repetition (speech production)

	Discussion
	Appendix 1
	VOT analysis

	Appendix 2
	Mixed-effects models with the largest random effect structure tolerated by each model

	Acknowledgments 
	References


