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Categorization is essential for human behavior, including 
recognizing common objects, interpreting complex and 
variable speech signals, and giving meaning to high-level 
concepts. There is a long-standing debate on whether 
novel category learning is supported by a single system 
(e.g., Kruschke, 2020; Love & Tomlinson, 2010; Newell 
et al., 2011; Nosofsky, 1986) or multiple systems (e.g., 
Ashby et al., 1998, 2020; Chandrasekaran, Yi, & Maddox, 
2014; Maddox & Chandrasekaran, 2014). According to 
one influential dual-systems model of category learning 
(Competition Between Verbal and Implicit Systems, or 
COVIS; Ashby et al., 1998), multiple category learning 
systems may differentially support learning categories 
that optimally draw on declarative, explicit processes 
versus procedural, implicit processes. In this study, we 
investigated auditory category learning in dyslexia, a 

language disorder that may involve selective disruption 
in the procedural memory system (Krishnan et al., 2016; 
Nicolson & Fawcett, 2011, 2019; Ullman et  al., 2020; 
Ullman & Pullman, 2015), to assess the hypothesis that 
dyslexia should implicate impaired category learning via 
procedural strategies and spared category learning 
across hypothesis-testing strategies.

According to the COVIS model, category learning 
involves at least two systems that recruit distinct neural 
substrates with unique computational specialties. Cat-
egories that are discriminated easily by an explicit rule 
(rule-based categories) are proposed to be optimally 
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Abstract
Categorization has a deep impact on behavior, but whether category learning is served by a single system or multiple 
systems remains debated. Here, we designed two well-equated nonspeech auditory category learning challenges to 
draw on putative procedural (information-integration) versus declarative (rule-based) learning systems among adult 
Hebrew-speaking control participants and individuals with dyslexia, a language disorder that has been linked to a 
selective disruption in the procedural memory system and in which phonological deficits are ubiquitous. We observed 
impaired information-integration category learning and spared rule-based category learning in the dyslexia group 
compared with the neurotypical group. Quantitative model-based analyses revealed reduced use of, and slower 
shifting to, optimal procedural-based strategies in dyslexia with hypothesis-testing strategy use on par with control 
participants. The dissociation is consistent with multiple category learning systems and points to the possibility that 
procedural learning inefficiencies across categories defined by complex, multidimensional exemplars may result in 
difficulty in phonetic category acquisition in dyslexia.
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learned by a hypothesis-testing system that depends 
heavily on working memory and executive attention 
(Ashby et al., 1998; Waldron & Ashby, 2001). In contrast, 
categories that cannot easily be discriminated by an 
explicit rule and involve integration across multiple 
stimulus dimensions (information-integration catego-
ries) are proposed to be optimally learned by an implicit 
striatal reinforcement learning system in which dopa-
mine serves as the training signal (Ashby et al., 2011). 
Instead of accessing exemplar representations, indi-
viduals learn stimulus-response associations and, thus, 
the learning and memory involved are procedural 
(Ashby et al., 1998).

Critically, researchers can assess how individuals 
learn these categories by assessing learners’ decision 
strategies using decision-bound computational models 
(Ashby, 1992; Maddox & Ashby, 1993). An optimal strat-
egy for learning rule-based categories encompasses 
testing rules that can be discovered optimally by a 
hypothesis-testing strategy, whereas the optimal strat-
egy for learning information-integration categories 
involves integration from two or more stimulus dimen-
sions at a predecisional stage and procedural learning 
across stimulus-response associations (procedural-
based strategy).

There is substantial support for a dual-systems frame-
work for visual categorization from behavioral, neuro-
biological, and patient studies (Ashby et al., 2011), and 
recent studies have made the case for its involvement 
in auditory categorization, as well (Chandrasekaran, Yi, 
& Maddox, 2014; Maddox & Chandrasekaran, 2014; 
Roark & Holt, 2018). However, there are substantial 
critiques of the dual-systems account that instead argue 
in favor of a single exemplar-based system that accounts 
for learning phenomena (e.g., Kruschke, 2020; Love & 
Tomlinson, 2010; Newell et al., 2011; Nosofsky, 1986).

In summary, there remain unanswered questions 
about the nature of category learning. In the current 
study, we leveraged a special population that, according 
to a dual-systems perspective, should have selective 
disruption of category learning that relies on procedural 
learning mechanisms—developmental dyslexia. Exami-
nation of category learning processes in adults with 
dyslexia can contribute to the debate of single versus 
multiple category learning systems and provide impor-
tant insights into the learning difficulties encountered 
by individuals with dyslexia.

Developmental Dyslexia

Developmental dyslexia traditionally has been suggested 
to arise from a phonological impairment (Snowling, 
2001). But domain-general accounts assert that dyslexia 
is a consequence of a selective dysfunction in procedural 

learning and memory (Nicolson & Fawcett, 2011, 2019; 
Ullman et  al., 2020; Ullman & Pullman, 2015), which 
provides a mechanistic account for the diverse range of 
nonphonological linguistic and nonlinguistic symptoms 
observed in dyslexia (Beach et al., 2022; Gabay, 2021; 
Gabay et al., 2012, 2015; Hedenius et al., 2021; Howard 
et  al., 2006; Lum et  al., 2013; Massarwe et  al., 2022; 
Pavlidou et al., 2009, 2010; Sperling et al., 2004; Stoodley 
et al., 2006; Vicari et al., 2003, 2005). Individuals with 
dyslexia demonstrate structural and functional differ-
ences in core structures of the procedural memory sys-
tems, including the cerebellum (Alvarez & Fiez, 2018) 
and basal ganglia (Brunswick et al., 1999; Hedenius & 
Persson, 2022; Kita et al., 2013; Wang et al., 2019), pro-
viding further evidence for a general procedural learning 
and memory deficit.

Despite evidence of procedural learning and memory 
impairments in dyslexia, the nature of impairment is 
unclear (Bogaerts et al., 2021; West et al., 2021). Many 
tasks that are considered “procedural” (e.g., weather pre-
diction task, serial reaction time task) involve a mixture 
of procedural and declarative task demands (Bochud-
Fragnière et al., 2022; Packard & Goodman, 2013; Squire 
& Dede, 2015; Sun et al., 2005). Further, although prior 
studies of category learning among individuals with dys-
lexia have observed differences in overall accuracy, they 
have not examined the processes underlying these dif-
ferences. This work has shown poorer categorization 
accuracy among dyslexia compared with control groups 

Statement of Relevance 

Learning to carve perceptual input into coherent 
categories has a deep impact on human behavior. 
Yet debate remains about whether category learn-
ing is served by a single system or multiple  
systems. A multiple memory systems account pro-
poses that distinct neural systems with unique 
computational specializations mediate declarative 
(“knowing that”) versus procedural (“knowing 
how”) memories. Here, we observed that adults 
with dyslexia are selectively impaired at learning 
sound categories that require integration across 
input dimensions and that are optimally acquired 
with procedural decision strategies; learning cat-
egories optimally acquired with conjunctive rules 
is spared. This dissociation is consistent with mul-
tiple category learning systems. Moreover, it sug-
gests the possibility that phonetic category 
acquisition in dyslexia may arise from procedural 
learning inefficiencies across categories defined 
by complex, multidimensional exemplars.
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in learning complex, difficult-to-verbalize categories 
(e.g., information-integration categories) in the auditory 
and visual modalities (Gabay et al., 2015; Gabay & Holt, 
2015; Sperling et al., 2004). In contrast, category learning 
(as assessed by accuracy) is spared in dyslexia when 
learning requires selective attention and explicit rules 
(e.g., rule-based categories; Sperling et al., 2004).

Yet differences in categorization accuracy across 
groups do not provide insight into why the groups dif-
fer; qualitatively different strategies can yield the same 
level of performance (Filoteo et al., 2017; Maddox et al., 
2010; Roark & Holt, 2019). In the current study, dyslexia 
and neurotypical control groups learned both rule-based 
and information-integration auditory categories. We 
used decision-bound computational models to assess 
the multiple-systems hypothesis that procedural learning 
impairments in dyslexia arise from reduced use of, and 
slower shifting to, optimal procedural-based strategies 
during information-integration category learning.

Method

Participants

Twenty-nine neurotypical individuals (12 male, 17 
female) and 27 individuals with dyslexia (13 male, 14 
female) participated. A power analysis (calculated using 
the pwr package in the R programming environment; 
Version  3.6.1.; R Core Team, 2019; see Champely, 2020) 
indicated that a sample of 21 participants per group 
would be needed to obtain statistical power at a 0.80 
level (α = .05) to detect a small-to-medium difference 
among conditions (d = 0.37 or f = 0.185). The effect 
size was estimated from the smallest between-groups 
difference from a recent study of auditory categoriza-
tion (Roark et al., 2022).

All participants were native Hebrew speakers, were 
free of neurological or psychiatric disorders and atten-
tion deficits (American Psychiatric Association, 2013),  
had normal or corrected-to-normal vision and normal 
hearing, and came from families with middle to high 
socioeconomic status. The dyslexia group was recruited 
through Yael’s Learning Disabilities Center at Haifa Uni-
versity in Israel and had a formal diagnosis of dyslexia 
by a qualified psychologist, a score of at least 1 standard 
deviation below the average of the local norms in tests 
of phonological decoding (nonword-reading test; Shatil, 
1995), and intelligence scores within the normal range 
(assessed by the Raven Matrices Test; Raven & Court, 
1998). The presence of a diagnosed learning disability 
such as attention-deficit/hyperactivity disorder, specific 
language impairment, or any sensory or neurological 
disability excluded participation. The control group was 
at or above the inclusion criteria of the dyslexia group 

on the nonword-reading test and had intelligence 
scores within the normal range. Participants completed 
assessments of cognitive ability, verbal memory, rapid 
automated reading skills, and phonological awareness 
(see Table S1 in the Supplemental Material available 
online). The dyslexia group differed from the control 
group in reading and phonological skills but not in 
intelligence (see Table S2 in the Supplemental Material). 
The institutional review board at the University of Haifa 
approved the study, which was conducted in accor-
dance with the Declaration of Helsinki, with written 
informed consent provided by all participants. Partici-
pants received compensation for their participation in 
the study (120 shekels, or approximately $30).

AX discrimination task

To confirm whether the dyslexia group had auditory 
processing difficulties that could affect learning, we had 
participants discriminate between pairs of stimuli drawn 
from the same stimulus space as the auditory catego-
ries. The exemplars were not experienced in training, 
were approximately equidistant in perceptual space, 
and were chosen intentionally to be highly discrim-
inable to screen for perceptual processing challenges 
(Fig. 1a). Participants judged whether sounds were the 
same or different and heard each pairwise combination 
twice in a different order of presentation (275-ms inter-
stimulus interval; 10 randomized repetitions; 1:1 same/
different AX trials).

Rule-based and information-integration 
category learning tasks

The tasks were similar to those used in previous studies 
that examined rule-based and information-integration 
category learning in the auditory domain (Roark et al., 
2022). Each participant completed both rule-based and 
information-integration tasks, and the order was coun-
terbalanced across participants.

Stimulus distributions

Each participant learned two types of nonspeech audi-
tory categories (information integration and rule based; 
Fig. 1a); each category type comprised four individual 
categories of sounds sampled from a bivariate normal 
distribution. The rule-based categories can be separated 
by decision boundaries (dashed lines in Fig. 1a) that 
involve selective attention to both acoustic dimensions, 
and the information-integration categories can be sepa-
rated by diagonal boundaries across both dimensions 
that require integration across the dimensions.
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Stimuli

Stimuli were complex nonspeech ripples varying in 
spectral and temporal modulation with a duration of 
1 s (Fig. 1b). These dimensions reflect complex prop-
erties of sound perception (Schönwiesner & Zatorre, 

2009; Visscher et al., 2007; Woolley et al., 2005) and 
have been studied in category learning contexts in 
prior research (Roark et al., 2021). Stimuli were gener-
ated using a custom script in MATLAB (The Math-
Works, Natick, MA) and were amplitude matched at 
70 dB.
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Fig. 1.  Category distributions and spectrograms. (a) Rule-based (left) and information-integration (right) auditory cat-
egory structures. Dashed lines reflect optimal boundaries between categories, and different colors denote stimuli from 
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Procedure

After completing an assessment session, participants 
completed two sessions separated by 1 week, in which 
they first completed the AX discrimination task and then 
completed both the information-integration and rule-
based category learning tasks; the order was counterbal-
anced across participants. In each category learning 
task, participants completed eight 50-trial training 
blocks. Participants were not informed of the dimen-
sions that defined the categories and were told to listen 
to the sounds and decide which of four possible catego-
ries the sound stimuli belong to. On each trial, partici-
pants heard the 1-s sound and were immediately 
prompted to identify the category (“Which category?”). 
Participants pressed one of four buttons (1, 2, 3, or 4) 
and received immediate feedback (“Correct” or “Incor-
rect”) for 1 s followed by a 1-s intertrial interval. Partici-
pants were given unlimited time to respond to ensure 
that they made a response on every trial. After training, 
participants completed a 100-trial generalization test in 
which they encountered novel stimuli and received no 
feedback.

Learning strategies

To assess participants’ learning strategies, we applied 
decision-bound computational models (Ashby, 1992; 
Ashby & Maddox, 1993). Four classes of decision-
bound models were applied to category response data: 
hypothesis-testing models, a procedural-based model, 
and a guessing model, as in previous work (e.g., Roark 
et al., 2022; Maddox & Ashby, 2004).

Hypothesis-testing models.  We fitted a series of 
hypothesis-testing models that use linear decision bound-
aries orthogonal to the dimensions. There were unidi-
mensional models that use a single dimension (e.g., 
temporal or spectral modulation) and conjunctive mod-
els that use both dimensions (e.g., temporal and spectral 
modulation). The unidimensional models had four free 
parameters—three for the placement of the decision 
boundaries along the relevant dimension and one for 
perceptual and criterial noise. The conjunctive models 
had two free parameters—one for the placement of a 
decision boundary along each dimension and one for 
perceptual and criterial noise. A conjunctive strategy was 
the optimal strategy for the rule-based categories.

Procedural-based model.  We fitted a procedural-
based model that uses linear decision boundaries nonor-
thogonal to the dimensions to separate the categories. 
The implementation of the procedural-based model is the 
Striatal Pattern Classifier (Ashby & Waldron, 1999; Ashby 

et al., 2007) based on the neurobiology of the striatum. 
The model has four hypothetical “striatal” units that each 
represent a different category in the two-dimensional 
stimulus space. It has nine free parameters—two for each 
of the striatal units’ placement in space (x/y dimensions) 
for each of the four categories and one for perceptual 
and criterial noise. A procedural strategy, captured by the 
procedural-based model, is the optimal strategy for learn-
ing information-integration categories. It is unknown 
whether this model is “procedural” in all the senses that 
this common term is used in the literature, but informa-
tion-integration learning is sensitive to feedback delay 
and response switching and is insensitive to dual task 
interference—common features of procedural learning in 
other domains (Ashby & Valentin, 2017; Chandrasekaran, 
Koslov, & Maddox, 2014; Chandrasekaran, Yi, & Maddox, 
2014; Maddox & Chandrasekaran, 2014).

Guessing model.  Finally, we fitted a separate model that 
assumes that participants guess the category identity on 
each trial. This model assumes that participants respond 
with different category identities with equal probability 
across a block of trials.

Model fitting and selection

These models were separately fitted to each block of 
each participant’s data using maximum likelihood pro-
cedures (Wickens, 1982). To identify the best-fitting 
model for each participant and each block, we used 
the Bayesian information criterion (BIC) as a measure 
of goodness of fit: BIC = rlnN – 2lnL, where r is the 
number of free parameters, N is the number of trials in 
a given block for a given subject, and L is the likelihood 
of the model given the data (Wickens, 1982).

Results

AX discrimination

The dyslexia (M = .87, SD = .05) and control (M = .88, 
SD = .04) groups did not significantly differ in their 
ability to discriminate sounds before category training, 
t(53) = 0.90, p = .37, d = 0.24. This ensures that any 
group performance differences are not a result of dif-
ferences in perceptual abilities.1

Category training

Figure 2 shows category learning performance as aver-
age accuracy. The dyslexia and control groups began 
the category learning task on equal footing. There were 
no significant group differences in Block 1 performance 
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for rule-based tasks, t(54) = 0.907, p = .368, d = 0.24, 
or information-integration tasks, t(54) = 0.72, p = .47, 
d = 0.19. We examined accuracy of categorization deci-
sions across groups (dyslexia, control), training blocks 
(Blocks 1–8), and tasks (rule based, information integra-
tion) using a mixed-model analysis of variance 
(ANOVA). In general, categorization accuracy improved 
across blocks, F(7, 378) = 51.32, p = .00000, ηp² = .48. 
But the dyslexia group was significantly less accurate 
than the control group, F(1, 54) = 8.44, p = .002, ηp² = 
.13. This is moderated by a group-by-block interaction, 
F(7, 378) = 3.75, p = .001, ηp² = .06, a task-by-block 
interaction, F(7, 378) = 2.32, p = .02, ηp² = .04, and 
crucially, a three-way interaction of Group × Block × 
Task, F(7, 378) = 2.18, p = .03, ηp² = .03.

We conducted linear contrast tests separately in the 
information-integration and rule-based tasks to exam-
ine the three-way interaction. This enabled comparison 
of performance across training blocks for the two 
groups. In the information-integration task, there was 
a greater linear trend (of improving categorization 
accuracy) for the control, compared with the dyslexia, 
group, F(1, 54) = 11.47, p = .001, ηp² = .17. In contrast, 
there were no significant group differences in the linear 
trend across groups in the rule-based task, F(1, 54) = 
0.46, p = .50052, ηp² = .008. In summary, category learn-
ing in the rule-based task proceeded similarly for the 
dyslexia and control groups. The groups diverged in 
learning information-integration categories; the dys-
lexia group learned less effectively than the control 
group. We next investigated computational modeling 
of individuals’ learning strategies to understand 
whether this pattern of performance is driven by a 

selective impairment in procedural-based strategies 
and spared hypothesis-testing strategies among indi-
viduals with dyslexia.

Computational analyses of learning 
strategies

To better understand the nature of poorer information-
integration category learning in dyslexia, we examined 
learning strategies (Fig. 3a), how strategies shifted from 
suboptimal to task appropriate (Figs. 3b and 3c), and—
for task-appropriate strategies—how efficiently a strat-
egy was deployed (i.e., the level of accuracy reached 
using the strategy; Fig. 3d). These three measures move 
beyond between-groups accuracy differences to exam-
ine possible source(s) of the information-integration 
learning deficit in dyslexia.

Examining participants’ learning strategies across 
blocks, we found that the dyslexia group perseverated 
with task-inappropriate hypothesis-testing strategies 
during information-integration learning. Relative to the 
control group, the dyslexia group showed limited use 
of the task-appropriate procedural strategy even in the 
final block of training (15% dyslexia, 59% control). In 
contrast, both control and dyslexia participants were 
able to find and apply the optimal conjunctive strategy 
in the rule-based task (67% dyslexia, 66% control).

To understand how participants shifted from subop-
timal to task-optimal strategies, we next compared the 
first block in which participants used the optimal strat-
egy (Fig. 3b) and the total number of blocks in which 
participants used the optimal strategy (Fig. 3c) across 
groups and tasks.
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Fig. 2.  Performance across blocks. Error bars reflect standard error of the mean.
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First optimal block.  There was a significant interaction 
between group and category in the first block in which 
participants used the task-optimal strategy, F(1, 54) = 10.8, 
p = .002, ηG

2 = .075. The dyslexia group (M = 7.44 blocks) 
used the optimal procedural strategy later than the control 
group for the information-integration task (M = 4.96 
blocks; p = .0014, 95% confidence interval, or CI = [1.00, 
3.95]). In contrast, there were no significant differences 
between the dyslexia (M = 2.30 blocks) and control (M = 
2.48 blocks) groups in number of blocks to first use the 
optimal conjunctive strategy for the rule-based task (p = 
.72; 95% CI = [–1.23, 0.86]).

Total optimal blocks.  There was also a significant 
interaction of group and category in the total number of 
blocks in which they used the task-optimal strategy, F(1, 
54) = 14.6, p < .001, ηG

2 = .084. The dyslexia group (M = 
1.19 blocks) used the optimal procedural strategy in 
fewer blocks than the control group (M = 3.14 blocks) in 
the information-integration task (p = .0018, 95% CI = 
[0.76, 3.15]). In contrast, there were no significant differ-
ences between the dyslexia (M = 5.44 blocks) and control 
(M = 4.86 blocks) groups in the total blocks in which 
they used the optimal conjunctive strategy in the rule-
based task (p = .29, 95% CI = [–0.50, 1.66]). These results 
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indicate that the dyslexia group has a selective deficit in 
the ability to use procedural-based strategies to achieve 
success in the information-integration task.

Efficiency of optimal strategies.  Even though there 
were fewer participants with dyslexia using optimal pro-
cedural strategies in the information-integration task 
compared with controls, there were some participants in 
each group using the optimal procedural strategy. We 
next asked whether dyslexia participants who used the 
optimal strategies in the information-integration and rule-
based tasks were less efficient at using those strategies 
than control participants using the same strategies (Fig. 
3d). That is, do dyslexia participants have worse final 
block accuracy than control participants when they use the 
same task-appropriate strategy? Our results suggest that if 
individuals with dyslexia can find the task-appropriate 
strategies, they perform at similar levels to controls in 
both rule-based and information-integration tasks. In 
both the information-integration and rule-based tasks, we 
found no significant differences between dyslexia and 
control groups—information integration: t(3.78) = 1.28,  
p = .27, d = 0.78, 95% CI = [–12.0, 31.6]; rule based: t(35) = 
1.54, p = .13, d = 0.51, 95% CI = [–2.78, 20.3]—when  
participants used the task-appropriate strategy. We note 
that there were many fewer dyslexia participants using 
optimal strategies in the information-integration task 
(information integration—dyslexia: N = 4, control: N = 17; 
rule based—dyslexia: N = 18, control: N = 19), leading to 
a relatively small sample size for this comparison. It is 
difficult to compare the efficiency of procedural strate-
gies across groups because individuals with dyslexia do 
not often find the optimal strategy in the information-
integration task. However, it appears that when they do, 
they perform on par with control learners. Thus, the 
selective deficit in dyslexia appears to be in accessing 
optimal strategies, particularly in the case of procedural-
based strategies.

Generalization

Participants were able to generalize category knowl-
edge to novel sound exemplars (Fig. 4a). The perfor-
mance of the two groups during the test block was 
examined using a mixed-model ANOVA with group 
(dyslexia, control) and task (rule based, information 
integration) and mean accuracy as the dependent vari-
able. Although the dyslexia group generalized signifi-
cantly less accurately than the control group, F(1, 54) = 
8.22, p = .00590, ηp² = .13, the group-by-task interaction 
was significant, F(1, 54) = 9.57, p = .003, ηp² = .15. The 
dyslexia group was less able to generalize category 
learning to novel exemplars in the information- 
integration task, t(54) = 4.24, p = .00009, d = 1.27. There 

was no significant group difference in rule-based gen-
eralization, t(54) = 1.01, p = .31, d = 0.31, reflecting the 
same pattern as training performance.

However, in examining the transfer of performance 
from the final training block (with feedback) to the 
generalization block (novel exemplars with no feed-
back), we did not see any differences across groups 
(Fig. 4b). We examined transfer using a mixed-model 
ANOVA with group (dyslexia, control) and task (rule 
based, information integration) as factors. Transfer was 
not significantly different across the dyslexia and con-
trol groups, F(1, 54) = 2.70, p = .11, ηp² = .025, or rule-
based and information-integration tasks, F(1, 54) = 2.30, 
p = .14, ηp² = .020, and there was no interaction between 
group and task, F(1, 54) = 0.38, p = .54, ηp² = .003.

We also examined decision strategies during gener-
alization (Fig. 4c). The pattern was similar to training: 
The dyslexia group used fewer task-appropriate proce-
dural strategies in the information-integration task com-
pared with controls (33% dyslexia vs. 55% control), but 
the groups used the task-appropriate conjunctive strat-
egy in the rule-based task at similar rates (63% dyslexia 
vs. 55% control). Among participants using the optimal 
strategy during generalization (Fig. 4d), control partici-
pants performed significantly better than dyslexia par-
ticipants in the information-integration task, t(14.9) = 
3.21, p = .0059, d = 1.36, 95% CI = [3.69, 18.3], but not 
the rule-based task, t(30.5) = 1.38, p = .18, d = 0.48, 
95% CI = [–3.13, 16.3]. This departs from what we 
observed in training, where there were no significant 
differences. We note that this analysis has greater power 
than our analysis of efficiency in training because there 
were more dyslexia participants using the optimal strat-
egy in the information-integration task during the test 
(information integration—dyslexia: N = 9, control: N = 
17; rule based—dyslexia: N = 16, control: N = 16).

Discussion

In summary, the present study used dyslexia, a disorder 
that has been associated with a selective procedural 
learning impairment, as a test of whether category 
learning would differ from typical learners when opti-
mal performance demands a procedural strategy. Indi-
viduals with dyslexia were impaired in learning and 
generalizing information-integration nonspeech catego-
ries defined by integration across input dimensions, 
whereas performance on rule-based categories defined 
by conjunctive rules was spared. Computational analy-
ses revealed that individuals with dyslexia were slower, 
less efficient, and generally less able to use task- 
appropriate procedural strategies during information-
integration learning. Participants with dyslexia needed 
approximately 100 trials more to discover the optimal 
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procedural strategy and employed it over one third 
fewer blocks than control participants. In marked con-
trast, individuals with dyslexia used task-appropriate 
declarative strategies during rule-based learning. Like 
learners from the control group, individuals with dys-
lexia discovered the optimal, conjunctive strategy for 
rule-based category learning within the second block 
of training. This served learners well and led the groups 
to learn similarly. These findings support the existence 
of multiple category learning systems, add discriminant 

validity to the procedural learning deficit of language 
disorders such as dyslexia (Nicolson & Fawcett, 2011, 
2019; Ullman et al., 2020; Ullman & Pullman, 2015), and 
illuminate cognitive processes that could contribute to 
the difficulties of individuals with dyslexia to acquire 
complex categories such as native and nonnative 
speech sounds.

The present computational modeling results reveal 
slower “switching” from suboptimal hypothesis-testing 
strategies to optimal procedural-based strategies in the 

Category
RBll

RBll

Category
RBll

Strategy

Procedural

Conjunctive

Uni–Temporal

Uni–Spectral

Random

Category/Strategy

 P
ro

po
rti

on
 C

or
re

ct
 

RB
Optimal

ll
Optimal

Control

Dyslexia

Pr
op

or
tio

n 
Co

rr
ec

t

 T
ra

ns
fe

r (
Te

st
 –

 F
in

al
 B

lo
ck

)

Pr
op

or
tio

n 
of

 P
ar

tic
ip

an
ts

Group
C D C D

−0.3

−0.2

−0.1

0.1

0.0

0.2

0.4

0.8

0.6

0.2

0.4

0.8

0.6

1.00

0.75

0.50

0.25

0.00

a b

c d

Fig. 4.  Generalization test performance and strategies. Error bars reflect standard error of the mean. 
Individual subject performance is shown in lighter points and group average in darker points. Dashed 
lines in (a) and (c) reflect chance performance (25%) and in (b) reflect no difference between test 
and final block performance. (a) Average generalization test accuracy relative to chance. (b) Aver-
age transfer of performance from the final block to generalization test. (c) Learning strategies across 
tasks and groups. (d) Average generalization test accuracy across participants using optimal strategies 
(information integration, or II: procedural; rule based, or RB: conjunctive).



10	 Gabay et al.

context of learning information-integration categories 
among learners with dyslexia. The COVIS model (Ashby 
et al., 1998) postulates that responses are initially con-
trolled by the declarative, hypothesis-testing system and 
switch to control by the procedural system if necessary. 
According to the model, switching between systems 
originates in the prefrontal cortex, but the switching is 
mediated within the basal ganglia (Ashby et al., 1998; 
Ashby & Valentin, 2017). Our results suggest that sub-
optimal switching in dyslexia may arise from poor 
mediation by prefrontal control processes. It is impor-
tant to note, however, that patients with damage to the 
prefrontal cortex exhibit impairments in both rule-
based and information-integration learning (Schnyer 
et  al., 2009), rather than the selective impairment of 
information-integration learning observed here among 
learners with dyslexia.

Alternatively, basal ganglia dysfunction may contrib-
ute to suboptimal switching in dyslexia. Ashby et al. 
(1998) argued, on the basis of human and animal find-
ings (Ashby et al., 2003; Jaspers et al., 1990; Roberts 
et al., 1994), that switching may be controlled by the 
tail of the caudate nucleus (Ashby & Ennis, 2006; Ashby 
et al., 2002). Further, they postulated that damage to 
the tail of the caudate would be most likely to produce 
selective deficits to information-integration learning. 
Indirectly supporting this possibility in dyslexia, Gabay 
and Holt (2015) found that incidental auditory category 
learning within a videogame task in which successful 
learning is related to activation of the tail of the caudate 
(Lim et al., 2019) is less successful among individuals 
with dyslexia compared with a control group. A com-
bined approach with behavioral learning paradigms, 
computational modeling, and neuroimaging will be use-
ful in future work to disentangle the source of strategy 
switching deficits in dyslexia.

In the current study, learning differences cannot be 
attributed to baseline perceptual differences. Discrimi-
nation across the stimulus space was highly accurate 
across groups because the stimulus spaces were inten-
tionally constructed to limit differences in low-level 
sensory perception. The groups exhibited equivalent 
performance in the first block of each category learning 
task and performed equivalently in discriminating cat-
egory exemplars. Further, task difficulty, reinforcement 
schedules, and amount of training were constant across 
the information-integration and rule-based learning 
challenges, and observed differences between information- 
integration and rule-based learning were established 
within the same learners. Our results support a dissocia-
tion when the structures of category input distributions 
demand different learning strategies, rather than a gen-
eral deficit in category learning in dyslexia. Even more 
generally, the present dissociation of learning with 

procedural and declarative strategies aligns with models 
positing the existence of multiple distinct category 
learning systems (Ashby et al., 2011). In the future, it 
will be important to determine whether training pro-
grams designed to improve phonological skills of peo-
ple with dyslexia may capitalize on encouraging strategy 
shifts or offering incremental training regimes (Tricomi 
et al., 2006). Furthermore, it will be informative to exam-
ine category learning in dyslexia using subjective mea-
sures of awareness to support the notion of dissociation 
between memory systems in dyslexia. Finally, it will be 
important to examine whether the observed findings 
generalize to samples of children with developmental 
dyslexia on the basis of the differential maturation of 
multiple memory systems across development (Finn 
et al., 2016).

Considered from the domain of dyslexia, the impaired 
learning and selective deficit in categorizing information- 
integration categories is consistent with previous dem-
onstrations of a procedural learning deficit in dyslexia, 
as observed across motor, cognitive, and perceptual 
domains (Ballan et al., 2022; Gabay, 2021; Gabay et al., 
2012, 2015; Hedenius et al., 2021; Howard et al., 2006; 
Lum et al., 2013; Massarwe et al., 2022; Pavlidou et al., 
2009, 2010; Sperling et al., 2004; Stoodley et al., 2006; 
Vicari et  al., 2003, 2005). The present findings also 
invite consideration of the relationship between pho-
nological and nonphonological symptoms in dyslexia. 
Our results suggest that procedural learning deficits in 
dyslexia may be domain and modality general. Whereas 
previous work has demonstrated impaired information-
integration category learning with visual categories 
(Sperling et al., 2004), we demonstrate an information-
integration-specific learning impairment in the non-
speech, auditory domain. This suggests that dyslexia 
not only induces a phonological or speech processing 
deficit (Derawi et  al., 2022; Serniclaes & Sprenger- 
Charolles, 2003), as has been previously argued (e.g., 
Snowling, 2001), but instead arises from a general, pro-
cedural learning deficit. Inasmuch as information- 
integration categories are like phonetic categories in 
requiring integration across multiple acoustic dimen-
sions (e.g., Yi et  al., 2016), phonological deficits in 
dyslexia may originate in general challenges in acquir-
ing complex, multidimensional categories through 
procedural-based strategies.

In summary, computational modeling of categoriza-
tion decisions among learners with dyslexia reveals 
reduced use of and slower shifting to optimal procedural- 
based strategies even as declarative-based strategy use 
is like that of controls. Poorer category learning in 
dyslexia specifically arises from group differences in 
the ability to discover and capitalize on procedural 
strategies, which has important implications for 
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learning the complex multidimensional structure of 
speech categories.
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