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Allometric Scaling Laws for Temporal Proximity in Perceptual Organization

David L. Gilden and Taylor M. Mezaraups
Department of Psychology, University of Texas at Austin

In both space and time, proximity plays an important role in the formation of perceived groups, objects, and
scenes. Proximity is especially critical in the temporal domain where there are constraints—pauses or delays
between neighboring events, that when of sufficient size, defeat the grouping processes that underlay
temporal integration. A framework is developed where temporal proximity constraints are theorized to
reflect lifetimes of exponential decay processes, and this identification leads to an inquiry into their scaling
properties. In a study focusing on rhythmic pulse, the slowest tempo permitting stable rhythmic performance
is shown to satisfy an allometry with a power-law exponent close to that of heart rate. The coefficient of
variation, a measure of drumming stability and precision, is also shown to obey an allometry. A theory is
developed that predicts that allometry in the coefficient of variation exists only at adagio and largo tempi. In
a second experiment, this theory is tested by replicating the finding of precision allometry at 60 bpm, and by
finding that precision is independent of body size at the marching tempo of 120 bpm. A third experiment
examined proximity constraints in apparent motion, historically a defining example of temporal organiza-
tion. Using a behavioral method for measuring path vividness, it is demonstrated that proximity constraints
for the percept of illusory motion paths also satisfy an allometry. These two examples of proximity
constraint scaling suggest that allometry may be a generic feature of temporal integration.

Keywords: allometry, gestalt, perceptual organization, rhythm, apparent motion

There are at least two distinct points of departure for studying
timing in animals. One is principally concerned with explicit
judgment and begins with the observation that people and other
animals are able to judge the magnitudes of time intervals. Many of
the same issues that animated much of early sensory psychophysics
have been recapitulated in the arena of time judgment (Allan, 1979;
Fraisse, 1984; Grondin, 2010; Wearden, 1991). The second point of
departure concerns the implicit appearance of time in the organiza-
tion of perception and action. Beyond issues of what people know
about time and time intervals is the patent observation that the
temporal flux of ordinary experience is perceptually organized,
integrated, into distinct, and segmented scenes. Scene formation
is what transforms the flow of time into a coherent and meaning-
ful world.
In the context of judgment, time intervals are treated as objects

that may be attended to and which have properties such as their
magnitude and whether they are filled or unfilled. In psychophysical

assessments of judgment, these objects are presented as stimuli in an
experimental design that is divorced from the contexts in which time
enters an animal’s life as temporality. Of particular relevance to the
work presented here is the circumstance that the specific time
interval magnitudes that appear in the experimental design are freely
chosen to address the hypotheses being tested. Consequently, it is
not uncommon for people and other animals (rats and pigeons in
particular) to be placed in situations where they are asked to judge
time intervals that are quite large, extending to several scores of
seconds (Roberts, 1998). Typical studies in these interval regimes
(see for example Catania, 1970; Roberts, 1981; Roberts & Church,
1978) have revealed that time interval judgment has much in
common with magnitude estimation generally; errors are typically
Weberian (errors scale with the size of the thing being judged), and
representations appear to be compressive.

In the context of perceptual organization, time is not an object of
judgment but a background dimension in the physical sense where
events are marked by the moments of their occurrence. These
moments are graded by proximity, a construct that is a relational
property of events and which is distinguished from magnitude
which is a property of time intervals. Proximity is generally a
key determinant of grouping, and there are many points of com-
monality between how it functions in space and how it functions in
time. Nevertheless, temporal proximity has key structural differ-
ences from spatial proximity.

In spatial organization, proximity is relative in that the influence it
has over grouping may be invariant over transformations in overall
scale. A given picture, for example, can be magnified or shrunk
without changing any characteristic of grouping or shape. The
implication is that spatial proximity is not graded in terms of meters
or degrees of arc but more abstractly in terms of the entire set of
distance relations that exist in any given scene. Furthermore, there is
no spatial displacement that sets an absolute limit on whether
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elements in a scene will be grouped. When grouping is not decided
solely on the basis of proximity, it is because there is some other
principle (similarity, continuity, closure, etc.) that happens to be
more effective in that particular arrangement. In this sense, spatial
grouping principles are not binary in their effectiveness, but rather
their effectiveness is continuously graded in the sense of a compe-
tition (Quinlan & Wilton, 1998). The fact that spatial proximity is
invariant under transformations of scale, and is always competitive
in grouping, means that there is no such thing as a proximity
constraint in spatial organization. It is on this point that temporal
proximity and spatial proximity diverge because there are temporal
proximity constraints.
Temporal organization has the interesting feature that there are

upper bounds on the lengths of delays or pauses that may be
tolerated in the formation of groups and scenes. That some upper
bound exists for the integrative processes that effect temporal scene
formation may not be surprising, but it is significant that upper
bounds are often found to have values in the range of 2 ± 1 s.
Although the conduct of ordinary life is literally composed by the
processes of temporal integration, a few explicit examples may serve
to illustrate the many ways that the emergent properties associated
with temporal organization dissolve into temporal succession when
gaps of just a couple of seconds are interposed. These few examples
are intended to simply make the point that proximity constraints of
2 ± 1 s are a common feature of perceptual organization in time.
Whether or not 2 ± 1 s reflects the span of the subjective present
(Pöppel, 1997, 2009), or whether it is relevant to all forms of
temporal integration (White, 2017), is not at issue here.

Musical Experience

The abilities of people to produce and comprehend music is
limited to specific regimes of tempo. The experience of rhythmic
pulse, in particular, is severely attenuated at tempi much slower than
40 bpm. A percussionist, say, playing a duple rhythm at tempi
greater than 40 bpm will experience successive beats1 in relation to
one another, and the performance will generate a sense of rhythmic
pulse. The same duple rhythm played slower than about 40 bpm
leads to a very different experience. When moments of beat
production are separated by more than about 1.5 s, successive beats
lose their sense of being connected and are experienced rather as a
succession of individual and discrete moments. The aspect of
perceptual organization known as melody also mostly disappears
when note onsets are separated by more than about 1.5 s (Warren
et al., 1991). When common melodies are given note durations of
about 1.5 s, they become unrecognizable, evidently sounding more
like note successions than songs.

Apparent Motion

The most well-studied example of temporal integration in cogni-
tive psychology is long-range apparent motion. β movement, origi-
nally investigated by Wertheimer (1912), is a paradigmatic example
of an emergent quality (Steinman et al., 2000) that fails to appear
when a proximity constraint is violated. Under optimal timing
parameters, two alternating images will appear to fuse into one
as an illusory path emerges. However, when the stimulus onset
asynchrony (SOA) approaches 700 or 800 ms, the single fused

object will dissolve, and the (veridical) succession of two blinking
images (Ekroll et al., 2008) will be recovered.

Segmentation

The observation that pauses generally act as temporal scissors to
segment and separate the stream of happenings is so fundamental to
ordinary experience that it is unnecessary to reference psychophys-
ics. For the purposes of illustration and to get a sense of what a pause
of a couple seconds can achieve, it is instructive to review how
pauses are used informally in the methods sections of the psycho-
logical literature—where experimental psychologists reveal their
implicit understandings of temporality. As an example, consider
how lists are presented in, say, a word learning experiment. In this
context, pauses are inserted so that the list is not heard as an intact
sentence but as a succession of separate items. Roediger and
McDermott (1995), to take an often-cited article, use 1.5 s to
separate words. This choice does not reflect a psychophysical
measurement of the transition for words heard in phrases to words
heard as isolated items; the choice simply reflects their experience,
as listeners, with pause lengths that can effectively create segmen-
tation without wasting time. Of note, 1.5 s suffices for the purpose of
list presentation. Similarly, if an experimenter wishes to give
participants a clear sense of beginnings and endings of trials beyond
the sense of ending that is provided by response, a second or two
waiting time is imposed. Again, to reference an often-cited article,
Meyer and Schvaneveldt (1971) employ an intertrial interval of 2 s.
This interval is, again, not derived from psychophysics but reflects
the investigator’s implicit understanding of what is required for a
participant to receive feedback and get themselves ready for the next
scene, or in this case, the next trial. Longer intertrial intervals could
have been employed, but ordinary experience provides innumerable
tutorials in event segmentation; the choice of 2 s is far from
arbitrary. In this way, the psychological literature methods sections
may be viewed as an informed distillation of how much time is
required to cognitively dissociate a stimulus stream into discrete trial
events. And, it is worth emphasizing that such choices are neither
justified nor called into question, implying that this aspect of
temporality is held in common.

Causal Learning

The delay of reinforcement gradient is the most well-studied
example of proximity constraint in the formation of an emergent
grouping. It captures how a delay between two events, an operant
and a reinforcer, influences the learning of a causal relation—the
sense that not only were there two events, one following the other,
but also that one caused the other. Much of the early work on the
delay of reinforcement gradient can be summarized by the finding
that a delay of just a few seconds suffices to severely attenuate the
causal association of, say, a bar press and the appearance of a food
pellet (Perin, 1943). The critical role that a few seconds plays in
determining whether events are perceived in terms of actions and
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1 Although it is common in psychological contexts to regard beat as being
synonymous with pulse, beat here is used within common musical termi-
nology to denote a distal event or musical structure independent of how that
event or structure is experienced. So a time signature is defined by the
number of beats per measure, and beat machines generate pulse through the
production of dance beats, rap beats, pop beats, and so forth.
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consequences, a type of grouping, is well known to anybody who
has attempted to train an animal to enact specific behaviors.
The experimental work presented in this article grew out of an

attempt to understand the mechanisms of temporal organization that
lead to every grouping process having a proximity constraint, and
further, to understand why these constraints appear to have fairly
restricted values. This inquiry led to the conjecture that proximity
constraints might not have fixed values but rather function as
timescales that have parametric dependencies. As timescales in
living systems are often parameterized by body size, our investiga-
tions focus on determining whether proximity constraints satisfy
allometric laws, and if so, what interpretation may be brought to the
derived exponents. We begin with a brief review of the theoretical
issues.

Theory of Temporal Proximity Constraints

In this section, we consider what mechanisms might produce
temporal proximity constraints. As a vehicle for this discussion, we
will focus on the phenomenon of rhythmic pulse, as it is universally
familiar, and there are widely divergent accounts for why pulse fails
at tempi much slower than 40 bpm. An influential theory of pulse
and one that provides a strong contrast with a perceptual integration
perspective is entrainment theory (Large, 2000; Large & Kolen,
1994; Large & Palmer, 2002; Large & Snyder, 2009; Thut et al.,
2011). In entrainment theory, the experience of pulse and meter
arises from the coupling of neural oscillations in the brain with
periodic signals in the environment. Essentially, the brain uses its
resonant structures to manifest patterns that are coordinate in the
environment (Large & Jones, 1999). In this view, the reason people
are unable to experience rhythmic pulse at very slow tempi, say
slower than 30 or 40 bpm, is that there are no sustained brain
oscillations at frequencies below ½ Hz that are available to entrain
to a ½ Hz environmental signal (Bååth, 2015). Large and Kolen
(1994) refer to this circumstance as the environmental signal falling
outside of the receptive fields of available neural oscillations. To this
extent, pulse constraints at slow tempi might be viewed as similar in
kind to constraints on spatial frequency processing in vision;
structures in light that have spatial frequencies below about 0.1 cy-
cles/deg are essentially invisible. The low-frequency cutoff for
contrast sensitivity function is not viewed as a failure of perceptual
organization, and neither is the loss of rhythmic pulse at slow tempi
in entrainment theory.
An account of rhythmic experience from the point of view of

perceptual organization views pulse as an emergent property of
individual beats being perceived in relationship with neighboring
beats. In this view, pulse arises from group formation, and when
pulse fails to be experienced, it is because there are temporal
limitations on the processes that allow neighboring beats to be
relatable. Mates et al. (1994) theorize that such limitations are
consequent to activation decay within an implicit working memory
system. Specifically, they theorize that the experience of a beat
creates a short-termmemory trace that “fades out” over 2 to 3 s, after
which it can no longer serve as a reliable cue for the placement of a
subsequent beat.
These two accounts of how pulse acquires a proximity constraint

are distinguished by their potential for generalization. In entrain-
ment theory, pulse will fail to be produced when the brain does not
supply oscillations at a frequency that might couple to a slowly

varying environmental signal. In this sense, failure occurs for
reasons that are intrinsic to pulse mechanics and would not gener-
alize to other forms of temporal grouping.2 The perceptual organi-
zation account, in contrast, acquires considerable generality by
placing the origin of proximity constraints in a memory system
that is structurally separate from the mechanisms that effect the
formation of temporal groups. To the extent that temporal integra-
tion generally involves a form of implicit memory, activation decay
provides a mechanism for creating proximity constraints in all forms
of temporal grouping.

A general theory of proximity constraints comes to down to three
principles: That event onsets create activation, that grouping pro-
cesses act on activation overlap between neighboring event onsets,
and that activation decays. What counts as an event here is inten-
tionally left unspecific. An event could be a beat, a note, a word, an
image, a head nod—anything that might be brought into a temporal
relationship to create a group. Figure 1 shows the theory and how
decay and overlap are the decisive constructs that create a proximity
metric that sets what is near and far in time. In this picture, proximity
constraints are experienced when the temporal gap between neigh-
boring events exceeds the activation lifetime. The observation that
many proximity constraints converge on a common value, 2 ± 1 s,
is interpreted as a consequence of various grouping mechanisms
sharing a common scheme of activation.

Theory of Decay

The experimental work presented in this article was motivated by
considering whether the functional form of activation decay might
be described by a negative exponential,

XðtÞ = Xð0Þ � e−t=τ,

where τ is the activation lifetime, or more formally, the e-folding
time. Decay processes are often observed to be negative exponen-
tials simply because the underlying differential equation describes a
situation often encountered in natural systems; the loss rate is
proportional to the amount that is present to lose:

dX=dt = −kX (1)

where k = 1/τ is a constant. This differential equation is also the
simplest nontrivial description of a decay process; it is linear in the
decaying quantity and there is no explicit time dependence. Finally,
Equation 1 may be viewed as a universal decay equation for small
perturbations. Any decay process dX/dt = −F(X) where F is a
positive definite function will yield Equation 1 in a Taylor expan-
sion of F to first order.

The issue of explicit time dependence in decay rate is important in
evaluating whether the negative exponential applies in a given
situation. In the context of long-term memory, for example, Simon
(1966) considered the negative exponential as a candidate expression
for forgetting but rejected it in view of Jost’s second law—the
observation that older memories decay more slowly than younger
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2 In fairness, entrainment theory and other schemes for extracting pulse
from periodic beat trains (Scheirer, 1998; Eck, 2006) are not designed to
explain pulse proximity constraints. Rather, they are intended to provide
formal theories of the basic phenomenon that pulse is experienced in the
presence of a periodic signal.
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memories. A rate equation that is consistent with Jost’s second law
may be constructed by simply introducing a factor of 1/t into
Equation 1. With this modification, the decay rate given in Equa-
tion 2 is an explicit function of memory age such that, given two
memories of equal strength, the older one will decay more slowly.

dX=dt = −kX=t: (2)

The explicit time dependence in Equation 2 leads to the familiar
power law of forgetting,

XðtÞ = Xð0Þðt0=tÞk ,

and while it is difficult in practice to distinguish power laws from
exponentials in data (Navarro et al., 2004), the two laws are
distinguished by having different metrics for the time passage.
The exponential decay law has a timescale, τ, that provides an
intrinsic ruler for time passage: For every additional interval of
elapsed time equal to τ, activation decreases by a factor of e. Time is
not scaled in this sense in a power law; time is measured just as clock
time since the onset of forgetting. The question of whether activation
decay is measured by a timescale comes down in part to deciding
whether the decay rate is time independent.
To evaluate whether the exponential is a viable model for

activation decay, we consider what processes in long-term memory
cause the loss rate to acquire time dependence and whether such
processes might play a role in the brief activation decay that is
relevant to the formation of proximity constraints. Wixted (2004), in
a thorough review of Jost’s second law, concludes that time-
dependent decay rates occur in long-term memory as consequence
of processes of consolidation that render older memories less
vulnerable to retroactive interference. Wixted’s review is instructive
because the conception of a memory as something that could be
consolidated or interfered with is quite distinct from the conception
of activation invoked here. Activation decay in the context of
temporal integration is considered to be a purely physical process,
and states of activation are considered to be more akin to states of
energy than to quantities of information. In this sense, activation
decay is construed to function more like the cooling of coffee or

radioactive decay than the forgetting of meaningful information. In
this physical sense, activated states are not subject to the memorial
processes involved in encoding, storage, and retrieval of informa-
tion, and so are not subject to the mechanisms considered byWixted
that could make the decay rate time dependent. In the absence of
specific reasons to suppose that activation decay does not follow a
simple linear rate equation, we will develop the consequences of an
exponential law for activation decay.

The Meaning of τ

The importance of identifying the negative exponential as the
form of activation decay is that it associates proximity constraints in
perceptual organization with a definite and specific theoretical
construct, the activation lifetime, τ. τ has psychological entailments
through the circumstance that, although it has the dimensions of
time, and is literally an amount of time, it does not function only as a
time interval. In physical contexts of exponential decay, decay
lifetimes will satisfy an equation that specifies its parametric depen-
dencies, τ = f(a, b, c, : : : ). f and its arguments are specified by the
particular physics that obtains in any given instance. For example,
the physics that leads to Newton’s Law of cooling makes τ a
function of surface area, heat capacity, and the heat transfer coeffi-
cient. In the same way, if activation decay in temporal organization
is exponential, then there is some functional relationship for the
activation lifetime. The central problem addressed by the empirical
work is the identification of the arguments of this function.

The parametric composition of τ poses a difficult problem insofar
as the construct of activation is not tied to a fundamental theory that
makes reference to physical quantities. Nor is it clear at what level of
description the parameters of τ should be conceptualized. In so far as
τ exists at the intersection where distal event flux is transformed into
meaningful and stable percepts, it potentially could be parameter-
ized by any combination of neuronal, ecological, or environmental
variables. To make sense of τ dependencies, we have looked to
biology and botany, where scaling is a central issue in the compo-
sition and structure of living systems.

An observation of potential relevance to the formulation of τ
parameters is that animals often display size-correlated variation in
their anatomical form, physiology, and behavior. That such correla-
tions exist is an issue in its own right, raising questions of how
natural selection has fashioned animal bodies so that much about
their structure and function is highly constrained by the single
determinant of size (Niklas, 1994). The study of these correlations
forms the field of allometry, first conceptualized in terms of
development and the differential growth of body parts relative to
overall body size (ontogenetic allometry; Pélabon et al., 2013), but
later generalized to include both physiological and behavioral
characteristics of adult animals (static allometry). Recently, allom-
etry has been extended to nonbiological/botanical entities that have
well-defined sizes, such as cities (Li et al., 2015).

In its most general form, allometry is concerned essentially with
one kind of relationship; a power law of mass such that animal
property = a × massb. The animal properties that have this form of
size scaling are diverse and include, for example, head size (anat-
omy), heart beat period (physiology), burst acceleration (behavior),
and so on. Although all allometries are based on statistical correla-
tions, the goal of allometry is not the demonstration of a significant
correlation, but rather the measurement of the mass exponent, b.
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Figure 1
A Sketch of the Framework Where Proximity Constraints Are Set by
Activation Lifetimes

Note. Neighboring events in time are available for integration into groups
to the extent that later events arrive before the activation produced by earlier
events has decayed.
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The types of animal properties that enter into allometric relations
typically have a physical basis, and this allows the exponents to be
interpreted within physical frameworks. The focus of any interpre-
tation begins with an inquiry into whether the exponent expresses
geometric similarity or not. Geometric similarity serves as the
definition of isometry in biological contexts and is regarded as a
kind of null hypothesis in the interpretation of scaling exponents.
Allometries refer just to scaling that cannot be explained by
geometric similarity, and so they inevitably require the introduction
of additional constructs and can drive theory building (West and
Brown, 2005, being a notable example). It is in the physical
interpretation of power law exponents that allometry goes beyond
correlational analysis and becomes a theoretically productive field.
The scaling properties of τmay not be empirically accessible, in so

far as activation decay is not experienced in temporally organized
scenes. What is experienced are the products of temporal integration,
gestalts, and these do not decay exponentially with increasing time
between event arrival. Ordinary experience reveals that grouping
strength is fairly invariant until the temporal gaps between events
approaches the proximity constraint—a song played at 120 bpm does
not necessarily generate a stronger sense of melodic contour and
rhythmic pulse than when played at 90 bpm. Psychophysical evi-
dence of tempo invariance in rhythmic pulse may be seen in Figure 2
in Etani et al. (2018), where it is shown that groove ratings of drum
breaks are independent of tempo in the range 75 bpm to 150 bpm,
where most music is played. Much of the psychophysical data
presented in this article will provide further evidence for this obser-
vation. Nevertheless, the scaling properties of τ may be investigated
indirectly through the scaling properties of proximity constraints.
Proximity constraint magnitudes are functions of τ, and if τ satisfies an
allometry, so too will proximity constraints.

Overview of the Experiments

An investigation into proximity constraint allometry requires that
proximity constraints be measured with some precision, and for this
reason, we have sought examples of temporal integration that are
associatedwith an objective task. The requirement in task designwas
that itgeneratedata thatpermit inferencesaboutwhether temporalflux
is being perceived as a structured pattern or not. The experience of
rhythmic pulse is especially opportune in this regard as it may be
assessed through drumming or tapping performance, and such per-
formances naturally generate a time series—a form of data that is
uniquely susceptible to the formal analysis of precision, stationarity,
and autocorrelation. A second form of temporal integration that may
be assessed through an objective task is long-range apparent motion.
Here, we used a variant of a methodology originally developed by
Proffit et al. (1988) to introduceprecision in aprobeplacement taskas
an index of the vividness of curved apparent motion paths.
In the first study, proximity constraints for the experience of

rhythmic pulse were inferred from the time series of drumming
performances across a range of tempi. The principal difficulty
encountered in this study was in locating the proximity constraint
at the level of the individual. A detailed discussion of this problem is
presented in the Appendix together with a review of strategies
employed in a variety of previous investigations. Results are pre-
sented for both child and adult samples, and a general allometric law
for proximity constraints in pulse is developed. This discussion is
supplemented by the production of a second allometric law for

drumming precision. A theory of scaling in drumming precision is
proposed that makes the prediction that allometry in precision will
only exist at slow tempi in the neighborhood of pulse constraints. A
second experiment that assessed allometry in drumming precision at
120 and 60 bpmpresents data consistent with the theory. The second
content area of apparent motion is then introduced where the tech-
nique we developed for measuring precision in probe placement on
illusory curved motion paths is described. Data are presented that
show that precision in probeplacement exhibits the same scaling laws
as the coefficient of variation (cv) in drumming performance; allom-
etry in the precision of probe placement exists, but only near the
watershed SOA where the percept of apparent motion is difficult
to maintain. The article concludes with a discussion of how the
derived scaling exponents for proximity constraints might be inter-
preted, with particular attention paid to the forms of scaling that arise
from energy exchange between animal bodies and their environment.

Experiment 1: Allometry of Rhythmic Pulse
Proximity Constraint

In this study, drumming performances were recorded over a range
of tempi. Individual performances were evaluated to determine the
slowest tempo, or equivalently, the maximum time interval between
beats at which any given person could produce a stable drumming
performance. We will refer to this limiting interval as t-horizon in so
far as it serves as a temporal horizon for the relatability of successive
beats. Allometric relations were constructed for both t-horizon and
for the coefficient of variation (cv = mean/standard deviation)
defined on the time series of interbeat intervals. Both adults and
children were assessed to extend the range of body size as much as
possible. This led to an interpretation of the data that included both
ontogenetic and static allometries, as the two groups produced
similar but offset power laws. We present the results for adults
and children separately and then combined.

Analysis of Slowest Stable Drumming Tempo in Adults

Participants

Fifty-eight adults participated in the study. The participants were
students at the University of Texas at Austin between 18 and
30 years of age. Heights ranged from 58 to 77 inches. Participants
were admitted into the study regardless of musical experience or
training. The sample is objectively large so that all of the principal
comparisons and regressions were statistically significant.

Procedure and Design

Drumming data were collected using a Roland Handsonic elec-
tronic drum that permitted highly accurate recordings of drum
strikes via midi signals, as well as compelling auditory and tactile
feedback to the participant. The Handsonic drum was configured to
simulate the sound of a conga drum. Each participant provided
drumming performances at eight tempi that were chosen to elicit
both the feeling of rhythmic pulse, as well as the feeling of being
lost. These tempi were 80, 70, 65, 60, 55, 50, 45, and 40 beats per
minute, or equivalently, interbeat intervals of 0.75, 0.86, 0.92, 1.0,
1.1, 1.2, 1.3, and 1.5 s. In each condition, participants used their
dominant hand to drum along to a metronome for approximately
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10 s. Immediately after this practice period, themetronomewas turned
off, and the participant continued drumming for 60 s at the chosen
tempo. This process was repeated until all eight performances had
been collected. Height, age, and gender were also recorded from each
participant. The ordering of tempo conditions was chosen to allow the
participant to experience rhythm in the first performance, with the
more difficult tempo conditions introduced subsequently: 80, 60, 50,
70, 45, 65, 40, and 55 bpm. Certainly, other orders might be contem-
plated, but this design served the purpose of giving people a mixture of
experiences where they were occasionally lost without sacrificing the
sense that their efforts were on the whole productive.

Analysis I: Visual Inspection of Time Series

The goal of the analysis was to estimate the slowest tempo at
which individual participants could demonstrate a stable perfor-
mance. The assessments were made just on the performance data,
with no knowledge of any personal characteristics, such as height or
gender. In so far as this study appears to be the first to attempt to
determine the limits of rhythmic pulse on an individual basis, we
undertook two independent evaluations of the performance data
conducted by different people. In both cases, decisions about
slowest stable tempo were made primarily on visual inspections
of the time series of interbeat intervals, the rawest depiction of a
drumming performance. Other methods that have been developed
for determining t-horizon are reviewed in the Appendix.
The initial set of judgments used a plotting format where the eight

performances were plotted separately but with common axis ranges
and axis dimensions. The second set of judgments were made using
a format where all of the time series shared a single frame. This
second format was found to greatly facilitate time series compar-
isons at different tempi. An example from the second round is shown
in Figure 2 for a participant with code 71.
An informal walk-through of how the slowest stable tempo for

participant 71 was identified will clarify what is involved in this form
of data analysis. This participant produced sequences of interbeat
intervals that fluctuate but without substantial drift at tempi down to
60 bpm. The performance at 55 bpm does not drift, but the fluctua-
tionsappear toexhibit intermittency in amplitude.Theperformanceat
50 bpm looks like it is beginning to generate some hill/valley struc-
ture.Hillsandvalleysdominate theperformance timeseriescontourat
40 and 45 bpm, evidence of randomwalking (see the Appendix for a

discussion of random walking and the loss of rhythmic pulse). So,
from the portraits, it would be concluded that the slowest stable
performance is either at 50 bpm or 55 bpm, depending on how
dispositive one regards intermittency as evidence of losing rhythm.

Additional statistics that speak to stability are measures of
predictability (lag-1 autocorrelation) and precision (cv). The lag-
1 autocorrelation is particularly useful here as a check on visual
impressions of random walking. Formally, the lag-1 autocorrelation
measures how predictable the ith interbeat interval is given the
(i − 1)st interbeat interval. But practically, we are mostly interested
in the circumstances when it is large and positive, and this will occur
when the intervals form a contour dominated by hills and valleys.
These statistics are shown in Figure 3 illustrates for participant 71.

An analysis of this participant’s cv and lag-1 autocorrelation
begins with the observation that all of the performances have cvs
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Figure 3
Coefficients of Variation and Lag-1 Autocorrelations for Each of the
Eight Tempi Assessed for Participant 71

Note. These statistics were computed from the time series of inter-beat
intervals and were used to supplement the assessment of the slowest
achievable stable drumming.

Figure 2
Time Series of Interbeat Intervals Collected From Participant 71 in Experiment 1 in a Continuation
Drumming Paradigm

Note. Shown are performances at each of the eight tempi assessed. Plots such as these were used in the
assessment of the slowest tempo where stable drumming was achieved.
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smaller than .05, with a cluster around .035. Experience with
measurement of stability characteristics of professional drummers
has taught us that a cv of .03 is objectively small. Participant 71 is
able to maintain relatively low variability even when the time series
of interbeat intervals indicates random walking. More discriminat-
ing are the lag-1 autocorrelations. The performances at 40 and
45 bpm are positively autocorrelated and clearly more autocorre-
lated than the other performances. Large positive autocorrelation
scores are symptoms of randomwalking, a feature already noticed in
the time series portraits. (Negative autocorrelations observed at
faster tempi arise from the circumstance that every drum strike
both ends one interbeat interval and begins the next. The conse-
quences of this coupling for autocorrelation are discussed in Gilden
et al. 1995). The performance at 50 bpm has the smallest cv of any
performance, and its lag-1 autocorrelation is smaller than the
performance at 55 bpm. The overall impression from the statistics
and visual inspection is then that the 50 bpm performance is a good
candidate for being the slowest tempo at which this person can
execute a stable performance, and given the temporal resolution of
this study, this person has a t-horizon of 1.2 s.

Analysis II: Diffusion Rate Analysis of Time Series

The diffusion rate statistic Δ′(tempo), introduced by Madison
(2001) and discussed in detail in the Appendix, provides a relatively
independent method for inferring slowest stable performances. This
statistic is constructed to take on positive values when the tempo of a
performance diffuses away from the intended tempo and to take on
values close to zero when the performance tempo is steady. As an
instrument for inferring t-horizon, it functions best when there is a
step discontinuity at one specific tempo. In that case, the position of
the step specifies the slowest tempo at which a stable performance is
possible. In practice, however,Δ′(tempo) may not be a step function
of tempo, and settling on a value of t-horizon may entail some
uncertainty. An example of what is involved in inferring t-horizon
from Δ′(tempo) is shown in Figure 4.
Figure 4 shows Δ′(tempo) for participant 71 that person whose

performances are depicted as a time series in Figure 2. Here, there
is no step discontinuity in Δ′(tempo), and settling on a value of
t-horizon comes down to an analysis of features in a sawtooth
pattern. One feature which is particularly salient is the maximal
diffusion rate at 45 bpm. The utility of this feature in assessing
t-horizon would be enhanced were the diffusion rate at 40 bpm also
large and positive, but instead it is large and negative.
Negative diffusion rates are inherently unphysical, insofar as

diffusion processes tend to create separation over time and not
convergence. In the spectral domain, a negative diffusion rate
corresponds to a spectrum with greater power at high frequencies
than at low frequencies, a circumstance typically encountered only
in the spectrum of a difference process. In the case of participant
71, the negative diffusion rate at 40 bpm is an artifact created by
sample size and by specific idiosyncratic structures that are observ-
able in the original time series. In the first place, this tempo has the
fewest number of interbeat intervals (in our methodology), so any
statistic that characterizes performance at 40 bpm will be based on
a relatively small sample size. The sample size issue is made more
acute by the constraint that the number of samples that goes into
the median estimate of drift, |X(i)−X(i + w)|, decreases with
increasing window size, w [see the Appendix for the construction

of Δ′(tempo)]. It also happens that this particular time series
manages to wander back to the tempo where it embarked, ensuring
that many of the estimates of absolute difference at large w will be
small, hence the negative slope in Δ(w) with separation size.3

Recognizing that the negative diffusion rate at 40 bpm is anoma-
lous, it seems that the last low diffusion performance occurred at
50 bpm, and that value was chosen to mark t-horizon.

Results

Figure 5 plots derived values of t-horizon versus participant
height. Panel A shows the inferred values of t-horizon from both
rounds of visual inspection of interbeat interval time series. The firstT
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Figure 4
Madison (2001) Diffusion Rate Statistic Plotted for Participant 71

Note. This statistic provides a quantitative measure of the stability of any
given drumming performance and serves as a check on the informal method
of visual inspection.

3 Some perspective on the statistical problems inherent in diffusion rate
analysis may be had by considering how variability is distributed across scale
(w) in the calculation of diffusion rate. The general situation in time series
analysis is that high frequency (small w) variation is always measured with
lower variance than low frequency (large w) variation. The reason for this is
due just to square-root-n statistics in standard errors of mean values. High-
frequency (short wavelength) structure is resolved in smaller windows than
low-frequency structure, and the availability of windows for computing
averages will be greater where windows are smaller. In the present context,
variability in estimates of Δ(w) increases with the size of w because the
number of windows available for computing absolute differences decreases
as the scale of separation, w, increases. In regression models of Δ(w) with w,
the most poorly determined values of Δ(w) may exert considerable leverage,
as they are located at a terminal end. This unhappy situation is encountered
generally where model selection requires resolution of structure at low
frequencies (Gilden, 2009).
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round is plotted as unfilled circles, and the second as filled dots
(jittered slightly to reveal overlap). It is evident that there is
considerable overlap between the two rounds of t-horizon assess-
ment. Of the 58 participants, there were only three instances where
estimates of t-horizon differed between the two rounds. Panel B
shows inferred values of t-horizon from diffusion rate functions of
tempo (also jittered).
In both panels of Figure 5, height and t-horizon are plotted in

the log–log plane, the traditional format for regression analysis in
the field of allometry, as allometric relations are typically ex-
pressed as power laws of body size. Linear regressions were
computed in this plane so that the slope gives an estimate of
the power law exponent. The principle distinction between visual
assessment and diffusion rate analysis in the assessment of
t-horizon is in overall criterion setting, manifest as intercept shifts
in the regression lines. Estimates of t-horizon made on the basis of
diffusion rate are generically more conservative, smaller in mag-
nitude (larger in bpm), than estimates made on the basis of visual
assessment of diffusion.
The three sets of t-horizon judgments led to slightly different

slope estimates that were nevertheless equivalent within the stan-
dard errors. The first round estimate of slope was 0.64 ± 0.24,
t(56) = 2.62, R2 = .11, p = .006, while the second round produced
a slightly steeper slope estimate of 0.81 ± 0.24. t(56) = 3.36,
R2 = .17, p < .001. (All comparisons in this article are reported
as one-tailed, as all of our hypotheses are one directional; allometries
in biology generally associate longer time periods with larger
animals.) The diffusion rate estimate of slope was 0.72 ± 0.27,
t(56) = 2.72,R2 = .12, p = .004, roughly at the midpoint of the two
rounds of visual inspection. These results are summarized as the
production of a consistent measurement of the power law exponent
using two independent methods of analysis, in addition to two
different rounds of visual inspection.

Analysis of Slowest Stable Drumming Tempo in Children

In the development of allometric laws, there are both statistical
and scientific reasons to assess the widest range body sizes possible.
Statistically, there is the concern that restriction of range will
attenuate correlations, and this in turn will lead to systematic errors
in the calculation of power law exponents. Restriction of range may
be an issue in our first study, as the smallest person was about 58″,
and the entire height range spanned only 19″. Scientifically, it is of
interest to establish whether scaling exponents are different in
different regimes of body size. Although we are not interested in
conducting a developmental study of rhythm, it is the case that
children do provide a pool of relatively short participants, and for
both of the reasons given, it is of interest to include their t-horizons
in a more inclusive and broader examination of allometry.

The costs to including children are twofold. First, the participation
of children introduces age as a confounding variable—age and body
size are correlated in children. Second, whatever height relation may
be found in temporal horizons in children, it cannot be easily
interpreted in terms of allometry. Allometry, as has been historically
practiced, applies to the differential growth of body parts during
development of single animals (ontogenetic allometry) or to rela-
tions between somatic/behavioral properties and body size across
different adult animals (static allometry). An assessment of the type
undertaken here is not ontogenetic because it is not longitudinal, and
it is not static because our child participants are at different stages of
incomplete development. With these cautions, we report on what
children of different sizes can achieve in rhythmic expression at
slow tempi.

This study replicates the adult study in every detail except (a) the
45 participants ranged in age from 6 to 12 and were recruited mainly
from the afterschool care program of St. Andrew’s Episcopal School
in Austin, TX and (b) due to limitations in attentional vigilance, we
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Figure 5
Estimates of t-horizon, the Longest Interval of Time Between Successive Drum Beats That Could Be Bridged in the
Production of a Stable Nonsynchronized Drumming Performance for a Population of Adult Participants

Note. Panel A shows regressions of t-horizon onto height for estimates deriving from two independent rounds of visual assessment of
stability and meandering in the time series of interbeat intervals. Panel B shows regressions of t-horizon onto height for estimates derived
from Madison’s (2001) diffusion rate statistic. For clarity, a beat per minute scale (bpm) is also included so that it is clear where people
achieve their slowest stable performances
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recorded drumming for 15 s per tempo condition instead of for
1 min. This group substantially removed the restriction of range in
height (extending the range down to 45″), but the shorter sequence
lengths necessarily make the determination of slowest stable tempo
more ambiguous. As with the adults, we report two separate sets of
judgments by independent observers, where the second round again
incorporated integrated time series plots of the type shown in
Figure 2, as well as cv/lag 1 autocorrelation plots of the type shown
in Figure 3. The first round employed only individual time series
plots. Both sets of assessments were made with no knowledge about
the participants except that they were children, which was clear in
any event from the shorter sequence length.
The results of this study are shown in Figure 6 as two height

regression models of t-horizon, corresponding to the two sets of
independent assessments of t-horizon. Again, the plots are rendered
in the log–log plane, so that slopes may be interpreted as power law
exponents of height. The two assessments generated highly concor-
dant slopes. First round t-horizon assessments (open circles) yielded
a slope estimate of 0.91 ± 0.28, t(43) = 3.22, R2 = .19, p = .001,
while second round assessments (filled dots) yielded the slope
estimate 0.83 ± 0.21, t(43) = 3.92, R2 = .26, p < .001.
The vertical displacement of the two fitting functions reflects the

circumstance that the two rounds of t-horizon assessment differed in
strictness on their stability criteria, the second round being some-
what more conservative in setting a criterion for what constitutes a
stable performance. Practically, this means that the two judges might
disagree about whether a wobbly performance reflects normal
Weberian growth error or whether it represents random walking.
Criterion differences aside, the power law exponents derived from
the two sets of t-horizon assessment are identical within the errors.
The implication is that assessment of t-horizon on short-time series
can be done with some systematicity, but that it is more sensitive to
criterial variation than assessments of the longer sequences analyzed
in the adult population.

The issueof howvariation in t-horizon shouldbe interpretedwithin
a developing population is not straightforward insofar as age and
height are naturally highly correlated; the correlation in our sample is
.8, and either or both could be relevant. As allometry has not been an
issue in any previous study of rhythmic pulse, it is not surprising that,
in large developmental studies of rhythmic abilities in children and
adults (McAuley et al., 2006; Drake et al., 2000), only age was
considered as a factor. However, in our sample of children, it is
height specifically that appears tobedriving thevariation in t-horizon.
Focusing just on the second set of judgments, in simple regressions
(not log-transformed) on single variables, age alone explains 18%,
t(43) = 3.07,p = .002, andheight aloneexplains28%, t(43) = 4.05,
p < .001, of the variation in t-horizon.Multiple regressions focused
on unique variance (Type III sums of squares) clarified the respective
roles of these two variables. When height and age are both retained
as predictors, the combined model does not exceed that of height
alone; height still acts as a significant predictor, t(42) = 2.36,
p = .01, while age does not, t(42) = .046, p = .48. In the context
ofmodel selection using theAkaike information criterion (AIC) in a
stepwise regression, the AIC value for a height-only model is
exactly two smaller than a height plus age model; adding age has
no effect on model fit, but it does add a model parameter. The
statistical conclusion here is not that development is unimportant in
setting t-horizon but that developmental effects are expressed
through height.

Global Analysis of t-horizon

The finding that height effectively parameterizes t-horizon for
both children and adults suggests that the two data sets be merged
into a single analysis. In Figure 7, we display the entire set of
t-horizon assessments (2nd round assessments only) as a function of
group and height, together with their individual regressions. The
individual regressions (shown as dashed lines) have similar slopes
(adults = 0.81, children = 0.83), but the intercepts are clearly
differentiated. These observations motivated a global regression
model over both groups that had three free parameters; one slope and
two intercepts. Such a model is formally what is constructed in an
ANCOVA, although ANCOVA is typically used for the purpose of
hypothesis testing about group differences where there is a covari-
ate. Our purpose here is simply to fit the merged assessments of
t-horizon with a model that incorporates the information gained
from the separate child and adult regressions.

The common slope in an ANCOVA model is 0.82 ± 0.16,
t(100) = 5.02, p < .001, and the intercept difference is 0.1,
t(100) = 5.38, p < .001. A simple regression, shown as a solid
line, has also been fit to these data. As a simple regression cannot
capture group intercept differences, it fits a much steeper regression
line, b = 1.47, t(101) = 12.0, p < .001. In terms of R2, it is arguable
that ANCOVA provides a better statistical description than a simple
regression over the entire combined population. An ANCOVA
model captures 68% of the variance in t-horizon, while a model
with a single intercept captures 59%. Even with the additional
intercept in the ANCOVA, the difference in AIC values between
the two models is 24, with an evidence ratio in excess of 105.

A final point concerns whether these studies provide an adequate
picture of t-horizon variation. In this regard, although the addition of
children into the study adds some complexity both in measurement
and interpretation, the effort did succeed in providing better height
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Figure 6
Estimates of t-horizon for a Population of Child Participants

Note. Shown are regressions onto height for estimates deriving from two
independent rounds of visual assessment of stability and meandering in the
time series of interbeat intervals. A beat per minute scale (bpm) scale is
provided for reference.
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coverage and greatly extended the range of measured values of
t-horizon. The combined child/adult sample resolved a 0.75 s range
in t-horizon (40 to 80 bpm), an ecologically meaningful differential,
as the nominal maximal value (built into metronomes) of t-horizon
is 1.5 s.
Some perspective is required here to appreciate the role that height

is playing in t-horizon. Although perhaps obvious, it is the case that
themeasurement of t-horizon is not embedded inwell-established and
well-understood psychophysics. It does not reflect some aspect of,
say, early vision where there are sophisticated measurement techni-
ques that are supplemented by extensive physiology and quantitative
theory. Rather, t-horizon is the watershed for a particularly abstract
aspect of human experience, a temporal dividing line between the
experience of rhythmic pulse and the experience of beats separating
into a stream of isolated moments. And furthermore, there is no
established psychophysics for its measurement. In this light, the
demonstrated impact of height on t-horizon is quite extraordinary.
These regressions are performed on raw data, there is no averaging
prior to model fitting, and yet, height models with only two (simple
regression) or three free parameters (ANCOVA) account for upward
of 60 to 70% of the variance. To put these proportions into context,
experimental designs in cognitive psychology, especially those em-
ploying speeded forced choice, typically contend with large amounts
of unexplained variability (Gilden, 1997, 2001, 2009). Much of
cognitive theory is based on methodologies where only 10% of
the total variability reflects the experimental design.

ANCOVA Models of Allometry

ANCOVA models often arise in the development of allometries
when more than one identifiable group is regressed onto body size.

In the analysis of the Kleiber Law, for example, Heusner (1982)
employed ANCOVA to allow for intercept shifts between various
species of mammal. In our study, the groups are defined simply by
the child/adult distinction, a distinction that succeeded in extending
the height range but also succeeded in introducing an intercept shift.
Although children and adults do not represent two different species,
they do represent different stages of development, and the existence
of an intercept shift may be explained in terms of the distinction
between ontogenetic and static allometry. In Figure 8, we illustrate
how amixture of incomplete developmental trajectories could easily
yield an intercept shift relative to a static allometry realized in adults.

The filled circles represent the measurements made in the adult
study, and the regression line represents the static allometric law
relating height to t-horizon. The open circles represent the child data.
Each child is depicted as being on a different ontogenetic allometric
trajectory corresponding to their unique growth pattern and to the
adult size that they will eventually achieve. These trajectories were
not measured by our study, in so far as our study was not longitudi-
nal, capturing each child once at a particular state of development.
Nevertheless, it may be presumed that individual ontogenetic
trajectories eventually attach to the adult static allometry, again
according to the unique growth pattern of each individual. Any
height law that is discovered within snapshots of the ensemble of
developmental trajectories is a pseudoallometry, reflecting neither a
developmental trend nor an asymptotic trait scaling. In this picture,
the intercept shift arises from the circumstance that the ontogenetic
trajectories are steeper than the static allometry (see Pélabon et al.,
2013) and from the fact that the children have not yet attached to the
asymptotic static law that marks the end of development. The
positive slope of the pseudoallometry arises then from the general
patterns in both the (theorized) ontogenetic and (empirically vali-
dated) static allometries, where larger body size is associated with
larger values of t-horizon.
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Figure 8
A Model Depicting how the Ontogenetic Allometry in a Developing
Population and a Static Allometry in an Adult Population Could
Together Create the Conditions Where an ANCOVA With an
Intercept Shift Would Be Required to Interpret the t-horizon
Data in Experiment 1

Figure 7
The Entire Collection of Second Round Visual Estimates of
t-horizon Regressed on Height for Both Children and Adults

Note. A simple regression over the entire participant population is shown
along with separate group regressions. A beat per minute scale (bpm) scale is
provided for reference.
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Motor Contributions to t-horizon Allometry

In view of the fact that this is an originating study of the
existence of allometry in a proximity constraint, there is a concern
that these results might be artifactual or trivially explained. We
consider here two physical aspects of drumming performance that
might be conjectured to create body size relations in rhythmic
proximity constraints. One mechanism that deserves comment has
to do with motor delay in the actuation of a drum strike. There are
obvious motoric aspects to drumming that are peripheral to
cognitive timing process, and some of these do scale with body
size. Motor delays enter the Wing–Kristofferson model of rhyth-
mic drumming (Wing & Kristofferson, 1973) as an additive factor
(Mi) that offsets the moment of the ith drum strike (Ii) from the
internal sense of beat placement (Ci); Ii = Ci + Mi. Mi might
satisfy an allometry, in that larger people have greater body-
crossing times for neural conduction, and in fact, a height3/4

law has been proposed (Lindstedt & Calder, 1981)—an exponent
quite consistent with the t-horizon regressions reported here. The
contribution of neural conduction to t-horizon allometry may be
estimated by considering the observed range of height variation.
Height differences in our participant population had a range of
½ m, translating to about a 10 ms range of difference in neural
transmission times for a presumed conduction speed of 50 m/s
(Macefield et al., 1989; Thomas et al., 1959). A 10 ms of slack is
small compared to the 750 ms range covered by t-horizon, imply-
ing that scaling of neural transmission cannot substantially con-
tribute to scaling of t-horizon.
Motor delays also arise from hand lowering to the drum surface,

but there are several reasons to reject hand lowering in drumming as
a pathway to allometry. First, the geometry of drumming is not size
scaling. People who are taller do not hold their hands further above a
drum surface than people who are smaller; everybody holds their
hands a couple of inches above the drum surface. Second, drum
strikes are ballistic, percussive, events, and are not executed at the
natural frequency that arms execute, say, while swinging during
walking motion. Natural arm frequency is size scaling, but pendular
motions occur over timescales of seconds; a percussive hand strike
consumes much less than a second. A very liberal estimate of the
time elapsed for a percussive hand strike places the hand about
10 cm above the drum surface and being lowered at 1 m/s. In this
case, the hand lowering time is about 100 ms, not in the same regime
as pendular period, and again, too small to be relevant to the
observed range of t-horizon.
Finally, we wish to stress that whatever influence height has on

the physical execution of a drum strike that influence is tangential
to the breakdown of rhythmic pulse that invariably occurs at
sufficiently slow tempo. Losing pulse is not a motor problem; it
is a knowledge problem—not knowing where to place a drum
strike in a context where drum strikes are in fact either on the
beat or off the beat. What t-horizon captures is the critical tempo
where people transit from knowing where to place drum strikes to
not knowing. The onset of random walking at slow tempi is
evidence of a cognitive struggle, attempting to place drum strikes
on beats when rhythmic pulse has been lost. The tempo at which
this happens is not linked in any obvious way to the body, yet it
manages to satisfy an allometric relation. Somehow, a transition
in knowing is linked to body size. That is what must be
explained.

The influence of a Proximity Constraint on Drumming
Precision

There is considerable evidence that Weber’s Law holds for the
rhythmic production of temporal intervals, in the sense that cv is
generally observed to be constant across a substantial range of tempi
(also referred to as a scalar property of timing—see Wearden 1991).
McAuley et al. (2006), for example, showed that adults (older than
18) in a continuation tapping task have remarkably constant cv’s of
about .06, extending over a range of interbeat intervals from 150 to
1,700 ms. Similar data were reported by Madison (2001). McAuley
et al. also find that children obey a modified Weber’s Law; children
older than about five have a fairly constant cv that increases slowly
with decreasing tempo, but the absolute value of that cv increases
with decreasing age.

Violations of Weber’s Law at Slow Tempi

To provide context for an investigation into cv allometry and to
make contact with previous investigations of rhythmic performance,
we display in Figure 9 group averaged cv (<cv>) as a function of
tempo, split between children at two age groups (a median split) and
adults. The displayed trends in <cv> are in broad agreement with
McAuley et al. (2006) over the common range of tempo assessment;
adults show fairly constant values out to 60 bpm, and children,
especially the youngest, display relatively larger <cv> values that
increase more dramatically with decreasing tempo. <cv> values in
the two studies are also generally in numerical agreement in the child
sample, but our adult <cv> values are systematically smaller than
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Figure 9
Group-Averaged Coefficients of Variation (cv) as a Function of
Target Tempo for Three Groups Assessed in Experiment 1: Adults,
Children 9–14, and Children 8 and Under

Note. Error bars depict standard error of the mean. Flat functions, as
observed in the adult group for tempi faster than 60 bpm, indicate the
Weberian property where error growth is proportion to the magnitude of the
quantity produced, in this case an interbeat interval.
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McAuley et al.’s by about 20%.We do not have an explanation for the
superior adult performance in our study except to note that performing
on a Roland Handsonic drum surface with headphones providing
conga auditory feedback may be a more compelling experience than
tapping on a copper plate (seemethods section inMcAuley et al.). We
also do not have a satisfactory explanation for the relatively low<cv>
at 40 bpm in the 9–14 age group. A <cv> value close to .06 in this
group is an unusual achievement and suggests that some of our
participants were subdividing the interval through some artifice we
did not detect, perhaps subvocal counting.
Figure 9makes clear thatWeber’s Law is substantially violated in

our study. This outcome was expected as the design focused on
performances at largo tempi (40–60 bpm) so that t-horizon could be
estimated. Our account of the observed violations of Weber’s Law
begins with the observation that drumming performances display
greater precision when the performer is experiencing rhythmic pulse
than when they are not. It is inevitable that non-Weberian drumming
will be observed at tempi where people have lost pulse—at tempi
slower than the watershed tempo associated with their t-horizon: 60/
t-horizon. In general, stable drumming performances at tempi > 60/
t-horizon typically generate cv values in the range .04 to .06, while
meandering performances at tempi < 60/t-horizon typically gener-
ate larger cv values associated with tempo diffusion. (Technically,
cv is only well defined on stable performances. Meandering per-
formances are nonstationary, and cv values will depend on the
sequence length. This makes the numerical values associated with
<cv> growth difficult to interpret.) The growth of <cv> with
decreasing tempo of assessment occurs because <cv> is a group
averaged statistic, and at any given tempo of assessment, some
people may be experiencing rhythmic pulse while other are not—
this is a consequence of the allometry in t-horizon. Consequently,
the <cv> values in Figure 9 reflect mixtures of stable and unstable
performances where the mixing proportions vary with tempo of
assessment. <cv> grows as tempo of assessment decreases because
the proportion of people who have lost pulse increases.<cv>will be
constant only in tempo regimes where there are no meandering
performances added into the mix, and this occurs in the adult
population at tempi faster than about 60 bpm.

Theory of cv Allometry

These same considerations also imply that cv might satisfy an
allometry in slow tempo regimes as a consequence of the more
fundamental allometry in t-horizon. This textbook example of
regression effects is illustrated in Figure 10. In this figure, the
allometry in t-horizon is depicted to reflect the general trend that
taller people encounter their proximity constraint in rhythmic pulse
at slower tempi. Centered on the regression line about the predicted
values are residual distributions of t-horizon. For illustrative pur-
poses, homoscedasticity is assumed so that these distributions
appear as invariant with height.
Consider then a tempo, T, where a cv assessment is conducted.

This tempo is illustrated as a solid horizontal line that cuts the
various residual distributions at different z-scores. Within each
residual distribution, people whose t-horizon tempo is slower
than T will contribute stable, low cv performances. This group is
illustrated as the shaded region in the residual distributions that
extends from T and continues towards slower tempi. Everybody else
in the residual distribution is attempting a performance at a tempo

(T) which is slower than their t-horizon tempo, and consequently,
they contribute large cv, diffusing performances. In the illustrated
example, the left most residual distribution is dominated by people
contributing diffusing performances (least shaded area), while the
rightmost distribution is dominated by stable performances (most
shaded area). The allometry in shading proportion immediately
translates to allometry in cv. This picture also suggests that there
should be an entire range of tempi where no allometry in cv is
observed. If the tempos of assessment were shifted downward in
Figure 10 to a sufficiently fast tempo, all of the residual distributions
would be completely shaded—the number of people contributing
diffusing performances would be quite small. At such tempi, the
differential shading of the residual distributions with height would
not occur, and consequently, height would cease to be a factor. This
is a testable proposition and will be examined in Experiment 2.

The argument that both allometry in cv and departures from
Weberian growth of error in <cv> arise from the mixing of stable
and unstable performances depends critically on the details of cv
variation in these two regimes. To highlight the stable/unstable
distinction in cv magnitude, Figure 11 plots all of the cv values that
were assessed for all participants at each of each of the eight tempi in
the design in terms of tempo distance from each participant’s tempo
of t-horizon (60/t-horizon). So, for example, a given cv assessed at
60 bpm would have an x coordinate of +10 if the person who
produced that cv had a tempo of t-horizon measured at 50 bpm but
would be plotted at −10 if that person’s tempo of t-horizon was
measured at 70 bpm. As positive x values correspond to perfor-
mances where the tempi of assessment were faster than the tempi of
t-horizon, cv values in this regime reflect predominantly stable
performances. Negative x values refer to tempi of assessment
that were slower than the tempi of t-horizon, and this marks the
regime of unstable performances. x = 0 in Figure 11 marks the
boundary between stable and unstable performances.

Figure 11makes the obvious but important point that assessments
of drumming precision depend critically on whether the perfor-
mance is stable or whether it is diffusing or erratic. For x > 0, people
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Figure 10
Theory of Allometry in the Group Averaged Coefficient of Variation

Note. At a given sufficiently slow tempo of assessment (T), each height
subpopulation will have a mixture of stable (low coefficient of variation [cv])
and unstable (large cv) performances with proportions that vary with height.
The dependence of relative proportions on height creates cv allometry.
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are producing stable time series, presumably because they are
experiencing successive beats in relation to one another and the
attendant emergent property of rhythmic pulse. The interpretation
then is that for x > 0, cv is a measurement of a cognitive capacity,
the feeling of rhythmic pulse, and Figure 11 shows that the ensem-
ble of cv values in the stable regime is characterized by three
features: cv is relatively small (about .05), cv is relatively constant
across the tempo where it is assessed (the Weberian property), and
cv values are relatively homogeneous across the entire population.
None of these features are found in the ensemble of unstable
performances located in the half plane x < 0. When the tempo of
cv assessment is slower than the tempo of t-horizon, cv does not
reflect the guidance of temporal organization, but rather the guid-
ance of whatever strategies or knowledge can be used to decide
when to strike the drum, given that the sense of target tempo has
been compromised or lost. These strategies are evidently executed
with a highly variable degree of accomplishment, leading to a high
degree of heterogeneity in the cv values in Negative × Portion of
Figure 11, especially in the child population. It is evident then that
cv has the requisite structure to display allometric scaling, simply
because the relative proportions of stable and unstable performances
follow the allometry of t-horizon.

Empirics of cv Allometry

Exponents of cv allometries were computed at each of the tempi
employed in the assessment of t-horizon, as regression slopes of

log(cv) by log(height). Figure 12 shows these calculations as
separate tracks for the child and adult samples. Error bars represent
standard errors of the estimated slope. R2 values are also included for
each regression. It is evident that that cv scaling is fairly generic in
both data sets; at all tempi slower than 70 bpm, negative exponents
were statistically resolved (p < .05).

This result in itself has significant practical implications, in that cv
is derived from rote calculation, while the derivation of t-horizon
invariably involves some degree of judgment. As either variable can
be used to demonstrate the existence of an allometry, the principal
finding here, that proximity constraints in rhythmic pulse obey an
allometric law, is freed from the complexity of measuring t-horizon.
However, it must be stressed that the allometry describing t-horizon
is the fundamental relation. In this framework, t-horizon is related to
a tangible property of the memory system that mediates temporal
integration, the activation lifetime. cv, in contrast, is a behavioral
achievement with an allometry inherited from the circumstance that
t-horizon creates a height trend in the mixing proportions of low cv
stable performances and high cv diffusing performances.

The tempo variation in the cv exponents [slopes in the log(cv),
log(height) plane] was not predicted, although some aspects of it are
explicable in terms of the theory outlined so far. Taking Figure 12 at
face value, cv exponents in the adult group are relatively constant near
−1.4, while exponents in the child group become quite negative, in
the neighborhood of −4. This difference is attributable to both the
relative proportions of participants that are lost (randomly walking or
otherwise executing erratic performances), as well as to the character
of erratic performances. In the adult sample, as the tempo decreases,
the proportion of people that are lost slowly increases, and those that
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Figure 12
Slopes From Simple Regressions of the Coefficients of Variation
Against Height in the Log–Log Plane as a Function of Tempo of
Assessment for Both Children and Adults

Note. Error bars depict standard error of the slope estimate. These slopes
may be read as exponents of a power law allometric relation. Inset are
proportions of variance explained by the regression—R2.

Figure 11
The Entire Ensemble of Coefficients of Variation (cv) Collected in
Experiment 1

Note. Each person contributed eight values of cv, and these are plotted at
tempi relative to the tempo associated with that person’s t-horizon. Positive
values indicate cv assessments in regimes of stable drumming performance,
while negative values indicate assessments of performances marked by
meandering or other erratic behavior. Open dots show cv values collected
from children, while filled circles show adult cv values.
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are lost do not appear to be generating performances that are highly
erratic. Referring back to Figure 9, we see that <cv> never exceeds
.055 in the adult group and that the error bars are of relatively constant
magnitude. The implication is that diffusing performances produced
by adults are constrained in their wandering. In contrast, Figure 9 also
make clear that <cv>, in both magnitude and variability, increases
markedly with decreasing tempo in the child group, especially among
the younger/shorter children. The stratification in<cv> that occurs in
the median split in age in Figure 9 ends up being reflected in steep
slopes in log(cv) regressions on log(height).
The correlation between age and height that exists generally in any

child sample muddles the interpretation of cv scaling, as it did the
interpretation of t-horizon scaling. In so far as it appears that cv
allometry is a consequence of t-horizon allometry, it is plausible
that, if height controls t-horizon, then it must also control cv. This
turns out to be true, and the evidence is given in Table 1,whereAIC and
R2 values are reported for regression models of cv based upon age and
height, height alone, or age alone. These models were computed on the
raw data (not log-transformed), to more easily interpret the relationship
between the nested models (consequently proportions of variance will
be slightly discrepant from Figure 12, which employed log-transformed
variables). From an AIC point of view, age alone models are never
preferred to height alone models, and adding age to height in a
combined model never improves the goodness-of-fit. A study more
focused on development than ours might find a more prominent role for
age, but for our sample, the variation in cv is best explained as a function
of height alone. This is the same conclusion we reached for t-horizon,
and it motivated a global analysis of cv based only on height.
To generate a global model of height variation in cv, we focused

on a range of tempi where both the cv scores themselves and the
regression slopes with height in the children’s data were relatively
constrained (and perhaps more meaningful). From Figure 9, it
appears that gross violations of Weber’s Law appear in the youngest
children beginning at 55 bpm, and this is also where the regression
exponents become increasingly negative in Figure 12. Conse-
quently, we defined a tempo averaged cv, denoted as cv*, over
the four tempi, 60, 65, 70, and 80 bpm. Figure 13 shows height
regressions of cv* for both adults and children.

Our analysis of cv* closely follows the analysis of t-horizon in
detail. Regressing log(cv*) on log(height) in the separate groups
produced results consistent with separate regressions at the four
tempi that went into the average (see Figure 12). In the child
group, log(cv*) was significantly correlated with log(height)
[b = −1.65 ± 0.73, t(43) = −2.26, R2 = .09, p = .01], while
log(age) was not [b = −0.33 ± 0.28, t(43) = −1.15, R2 = .03,
p = .13]. Furthermore, adults were found to satisfy a static allome-
try [b = −1.35 ± 0.50, t(56) = −2.71, R2 = .11, p = .005]. As the
slopes in the two groups were not statistically different, we again
constructed an ANCOVA model with one common slope and two
intercepts. In the ANCOVA model, the common slope is
−1.48 ± 0.42 (t(100) = −3.50, p < .001), and the intercept differ-
ence is −0.095 ± 0.046 (t(100) = −2.06, p = .02). An ANCOVA
explains 38.2% of the total variance, while a simple regression
through both data sets explains 35.6%, a meaningful but recogniz-
ably marginal difference. The differential [AIC(ANCOVA)—AIC
(simple regression)] = −2.29, leading to an evidence ratio in favor
of the ANCOVA of about 3 to 1. This is not conclusive support for
the ANCOVA, but it is worth noting as the two models select
substantially different exponents. A simple regression model does
not recognize an intercept difference and fits the data with a much
steeper exponent (b = −2.13 ± 0.29, t(101) = −7.47, p < .001)
than the ANCOVA model. The principal conclusions then are
that (a) drumming precision at slow tempi obeys an allometry
and (b) the allometry in a tempo-averaged cv appears to have a
structure similar to that of t-horizon—a pseudoallometry in devel-
oping children and a static allometry in adults.

Experiment 2: Allometry in the Coefficient of
Variation at Fast and Slow Tempi

Our interpretation of cv scaling is that it is an inherited property
from t-horizon scaling and that cv scaling might be limited to tempi
where people are substantially divided in terms of whether they are
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Table 1
Comparison of Models With Age and Height, Height Only, and Age
Only as Predictors for the Coefficient of Variation of Child Drum-
ming Performances

Age and height Height only Age only

Tempo R2 AIC R2 AIC R2 AIC

40 27.1* −123 27.0** −125 19.1** −120
45 17.4* −107 17.0** −109 8.4* −104
50 22.5* −115 22.2** −117 12.1* −111
55 18.7* −137 18.4** −140 9.8* −135
60 7.5 −123 6.4* −125 2.0 −123
65 6.5 −117 6.2 −118 1.3 −116
70 2.5 −158 2.0 −159 0.5 −150
80 3.2 −150 3.0 −152 2.6 −152

Note. For combined model, significance corresponds to the height term, as
age was never significant when height was included as a term. AIC =Akaike
information criterion.
* p < .05, one-tailed. ** p < .01, one-tailed.

Figure 13
Separate Regressions of the Tempo Averaged Coefficient of Varia-
tion, cv*, Against Height in the Log–Log Plane for Children and
Adults

Note. The similar slope and manifest intercept difference motivated an
ANCOVA model of these data.

14 GILDEN AND MEZARAUPS



able to produce a stable, low cv performance. It is a prediction of the
framework shown in Figure 10 that cv scaling should not occur at
sufficiently fast tempi. If everybody is contributing stable perfor-
mances, the fact that t-horizon is scaling ceases to be relevant. In
particular, there is no prediction that height plays a scaling role at
tempi where music is typically played, in the range 90 to 160 bpm.
Culturally, there is no reason to suspect that size conveys any
advantage in musical performance. Solid drumming performances
seem to be a universal property in human populations.
This prediction could not be directly addressed using the data

collected in Experiment 1, as the design was deliberately constructed
to efficiently measure a proximity constraint for rhythmic pulse and
the tempo conditionswere chosen to be challenging. In Experiment 2,
we determine whether there is allometry in cv at a tempo more in
alignment with drumming tempo preference. As 120 bpm is typical
of the tempo chosen by adults when asked to spontaneously execute a
drumming performance (McAuley et al., 2006), this tempo was
chosen for one of the conditions in Experiment 2. This condition
would suffice to test the conjecture that cv scaling is limited to the
neighborhood of t-horizon, but as this report is the first in the
literature to find cv scaling at any tempo, a 60 bpm condition was
also included simply to test the reliability of a key finding.
In this study, 43 participants, all adults between 60 and 76 inches,

engaged in a continuation drumming task at 60 and 120 bpm. As in
Experiment 1, we used a Roland Handsonic drum configured to
simulate a conga drum. The order of the tempo conditions was
randomized between participants. Each person drummed along with
a metronomic beat for approximately 10 s, after which they contin-
ued without the metronome for an additional 60 s. This was
sufficient for the computation of a cv for each participant.
The results from this study are shown in Figure 14. At 120 bpm,

the regression of log(cv) against log (height) failed to reach signifi-
cance (R2 = .026, b = −0.68 ± 0.67, t(39) = −1.02, p = .16). The
regression with log(height) at 60 bpm confirmed the existence of
allometry (R2 = .14, b = −1.60 ± 0.66, t(37) = −2.42, p = .01),
and replicated our earlier finding at this tempo.

This study goes some distance in clarifying the way temporal
horizons influence the stability of drumming performances. The
most important finding is that, while height does play a role in
drumming precision, its influence appears to be limited to slow
tempi in the vicinity of a pulse proximity constraint. At the relatively
fast tempi that reflect not only peoples’ spontaneous drumming
preferences but also the bulk of popular music, height confers no
advantage in precision. However, when people attempt to drum at
slow tempi (no subdividing the interval allowed), ability, as repre-
sented through precision, does obey an allometry. This observation
has been made at multiple tempi in Experiment 1 and then again at
60 bpm in Experiment 2.

This replication is important for several reasons. First and most
importantly, as there is no supporting literature that contemplates
allometry in temporal proximity constraints on perceptual organi-
zation, all of the findings reported in Experiment 1 have what
Ioannidis (2005) refers to as “low prestudy odds.” Novel reports
from a single experiment must create concern that the findings will
not replicate. The finding of allometry at a slow tempo in Experi-
ment 2 is a crucial replication with new participants and a modified
design. Experiment 2, however, is more than just a simple replica-
tion. The theory that we have proposed for cv allometry leads to the
distinction that there will be cv allometry at 60 bpm but not at
120 bpm. Finding empirical support for this distinction is strong
evidence for the theory.

Experiment 3: Allometry in the Perception
of Apparent Motion

If temporal proximity constraints do indeed reflect decay life-
times, then allometry might be quite commonplace, awaiting only
the necessary psychophysics to tease it out. A second empirical
demonstration of an allometry would certainly contribute to the
notion that allometry is general and would also, as a matter of
course, greatly enhance the “prestudy odds” of finding allometries.
A good place to look for an allometry, a place where a demonstration
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Figure 14
Regressions of the Coefficient of Variation Against Height in the Log–Log Plane at Two
Tempi of Assessment, 60 and 120 bpm, for an Adult Sample

Note. The slope at 120 bpmwas not statistically distinguishable from zero, while the slope at 60 bpm
replicated the allometries reported in experiment 1.
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would have considerable rhetorical force as a consequence of its
foundational role in gestalt theory, is apparent motion.
Apparent motion is a form of temporal organization wherein two

or more images that sequentially cycle on and off are perceived as a
single object moving along an emergent path. The perception of a
path that is not in sense data and the unification of multiple blinking
images into a single persistent object has been a defining example of
Gestalt since it was first discussed byWertheimer (1912). When two
images are cycled so that their presentations do not temporally
overlap, the phenomenology is fairly straightforward (although, see
Ekroll et al., 2008 for a full discussion of the interactions between
timing variables) and involves three distinct perceptual regimes that
are indexed by the stimulus onset asynchrony [SOA = image
duration + inter-stimulus interval (ISI)]. At fast cycle rates
(SOAs around 100 ms or less), the images tend to be perceived
as flickering without a clear ordering—often referred to as simulta-
neity. At intermediate cycle rates (SOAs of a few hundred ms), path
perception tends to be robust for image displacements measured in a
few degrees of visual arc. As the SOA increases out to a half second
and beyond, the path percept is replaced by the percept of
succession—one image following the other with an obvious tem-
poral ordering. The phenomenology of this second transition for-
mally resembles that encountered in rhythmic pulse, where at
sufficiently slow tempo the experience of rhythmic pulse is replaced
by a succession of unrelated beats. Although the experiential
qualities of rhythmic pulse and apparent motion are obviously quite
different, the common role that time gaps play in organization
suggests that there may be a quantity like t-horizon in path emer-
gence that satisfies an allometry.
Limited measurements of temporal horizons in apparent motion

have been reported using both physiological and psychophysical
techniques. Wibral et al. (2009) provide an estimate for the limiting
SOA in an electroencephalogram (EEG) study of apparent motion
path perception. In the most simplistic terms, visual evoked poten-
tials (VEPs) at 400 and 600 ms could be discriminated, principally
at the position POz’, in a specific image geometry where elements
subtending 2° had a centroid separation of 4.6°. In the 400 ms
condition, a signature in the sequence-sensitive difference wave
appeared 90 ms after onset of the second image. This feature was
largely absent at 600 ms, providing a neural correlate to self-reports
of motion vividness: Strong motion at 400 ms and weak motion at
600 ms. To this extent, 600 msmight be taken as a temporal horizon
for apparent motion.
A psychophysical strategy for measuring the transitional SOA

was developed by Finlay and von Grünau (1987). Their method
capitalized upon the fact that apparent motion is bistable near the
transition SOA, alternating between path and succession percepts.
The particular design employed by Finlay and von Grunau involved
the self-reporting of the moment when the path percept first transi-
tioned into succession. At a cycle rates slower than 0.75 Hz,
corresponding to an SOA of 665 ms, the path percept broke
down immediately independent of whether the spatial separation
was 2° or 4° of visual arc. This finding is in good numerical
agreement with the VEP measurements (Wibral et al., 2009) and
moreover suggests that there may not be a space-time trade-off at the
path/succession boundary.
Although the assessment tool developed by Finlay and von Grünau

(1987) apparently does yield estimates of the critical SOA at the path/
succession boundary, it is ultimately based on self-report of a

perceptual state. In this early phase of investigation of allometry in
apparent motion, it seemed prudent to not rely upon any form of
measurement that employs self-report and to instead develop a task
that permitted objective forms ofmeasurement. In the sameway that a
time series provides an objective check on a person’s sense of their
rhythmic behavior, we required a behavioral expression that could
stipulate whether or not a path was being perceived. The task we
settled on was originally described in Marusich and Gilden (2014)
and involvedmodifying a technique developed by Proffit et al. (1988)
for measuring the curvature of emergent paths.

The stimulus employed by Marusich and Gilden (2014) is shown
in Figure 15 below. When oriented rectangles (focusing here solely
on the rectangles labeled 1 and 2) are cycled on and off, an entire
class of curved paths is perceptually invited. Two members of this
class are of particular theoretical import. A wand-like circular path is
information minimizing; it is the simplest path, in that it involves a
single rotation. There is no transformation requiring fewer opera-
tions and is an instance of Chasle’s Theorem. A second path of
interest is the straight line connecting the centroids of the two
rectangles. This path is distance minimizing in the usual Euclidean
sense, and if the path were vertical, it might describe the trajectory of
a dropped object. Objective measurement of illusory path curvature
was achieved simply by having the observer move a probe rectangle
onto the trajectory of their perceived path. This artifice has been
shown to afford precise measurement of path curvature sufficient to
map out the parametric dependencies of curvature on rectangle
orientation (Proffit et al., 1988).

In the following experiment, we used the probe placement
method to infer path clarity as a function of SOA. The methodology
is based on the expectation that the vividness or clarity of a path
percept might be effectively assessed by the variance of probe
placement over multiple trials. At short SOA (Proffit et al., 1988
used 250 ms), path perception is vivid, and probes may be placed
with relatively low variability. As SOA increases into the regime of
succession and path perception attenuates, probe placement must
become more difficult and uncertain, and this uncertainty will
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Figure 15
The Apparent Motion Geometry Employed in Experiment 3

Note. Depicted are two oriented rectangles that invite a circular path percept
together with a moveable probe rectangle. All elements are drawn to scale.
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naturally lead to increased placement variability. In this way, we
were able to construct a dependent measure that has many of the
same properties as the cv. Both measures involve the placement of
something into an emergent context—a probe onto an illusory path
or a drum strike into a metrical context that supports pulse. Each is a
measure of precision, and in both cases, precision deteriorates as the
temporal distance between events approaches a proximity constraint.
These structural similarities lead to the conjecture that variability

in probe placement might have the same formal structure with
respect to allometry as the cv, and that the framework outlined in
Figure 10 would apply to both domains. If there is an allometry in
the maximum temporal gap (the critical SOA) that permits path
perception, then (a) for any sufficiently slow SOA, some people will
not see clear apparent motion and will contribute highly variable
probe placements while others will see clearer apparent motion and
will produce constrained probe placements and (b) the fractions that
are in each group will scale with body size. This is exactly the
analysis given to cv, and again, this framework predicts that there
are temporal regimes where measures of precision are not scaling. At
sufficiently short SOA where typical apparent motion studies are
conducted, say, around 250 ms, most people are able to see apparent
motion, and so there is no part of a residual distribution that could
contribute highly variable probe placements—hence, no allometry
in placement precision. The following experiment was designed to
test the two main conjectures of this framework: that there are long-
SOA regimes where probe placement precision follows allometric
law, as well as short-SOA regimes where placement precision is
height independent.

Participants

Fifty-one undergraduates at the University of Texas at Austin
participated in this study. Age ranged from 18 to 25 years, and
height ranged from 58.5 to 77 inches.

Stimulus and Design

The geometry of the apparent motion stimulus is shown in
Figure 15. This figure is drawn to scale, and the overall dimensions
reflect the computer screen area. Two rectangles, referred to here as
rectangles 1 and 2, were separated by an angle in the screen plane of
60°, with their major axes aligned with a ray extending from the axis
of rotation to the centroid as indicated. Proffit et al. (1988) found
that rectangles oriented in this way generated the most circular
wand-like apparent motion paths of all tested orientations. Along a
ray bisecting the angle subtended by rectangles 1 and 2, depicted
here as the system axis, we placed amovable probe rectangle aligned
as shown. Movement of the probe was constrained along this ray but
was otherwise free. Rectangle dimensions were 3.5 cm (3.3°) by
1.0 cm (1°), where angles here refer to degrees of visual arc
subtended at a viewing distance of 60 cm. The distance between
the centers of the two outer rectangles was 13 cm (12.4°), and the
distance between the straight-line path and circular arc was
1.8 cm (1.7°).
Trials consisted of the three rectangles presented in succession as

follows: rectangle 1—ISI—probe rectangle—ISI—rectangle 2—
ISI—probe rectangle—ISI—rectangle 1, and so on. The image
duration for all rectangles was 100 ms, and the ISI varied among
the following values: 50, 300, 500, 700, 900, 1,100, and 1,300 ms.

As the probe rectangle actively participates in the apparent motion
percept, we compute the relevant SOA as that between probe and an
exterior rectangle, taking on the values 150, 400, 600, 800, 1,000,
1,200, and 1,400 ms. Each SOA was tested at four different angles
of the system axis (shown here as the angle θ): 45°, 135°, 225°, and
315°. Rotations of the overall display geometry were intended to
prevent the enactment of placement strategies or memorization of
screen positions. Trials were blocked so that the four rotations of the
system were presented consecutively for a given ISI, while different
ISIs were presented in a random order. At the onset of each trial, the
probe rectangle was placed randomly at one of two starting posi-
tions, shown in Figure 15 as an outlined rectangle on the system
axis. Starting placements at both extreme positive values (beyond
the circular arc) and extreme negative values (beyond the straight-
line path) discouraged the observer from enacting a stereotyped or
memorized method of adjustment for placing the probe rectangle.
Trials were not speeded, and participants were free to adjust the
probe until they were satisfied with its placement, at which point
the position was recorded with a mouse click. To be clear, none of
the underlying structure in Figure 15 was visible to the participant;
they only saw three blinking rectangles.

Results and Discussion

The mean and standard deviation of probe placement was com-
puted at each SOA over the four levels of system axis orientation for
each participant. The ensemble averages over participants of these
statistics are shown in Figure 16. The right panel shows the mean
values of probe placement, where a value of zero corresponds to a
straight-line path, and a value of 107 corresponds to a circular arc.
From the work of Proffit et al. (1988), whose stimulus most closely
resembles ours, we expected that at short SOA (less than a few
hundred milliseconds) people would place the probe on paths that
were nearly but not quite circular. We take such placements as
indicative of what people are perceiving. However, our study also
employed large values of SOA, where probe placement was highly
variable, implying attenuation of path clarity, and yet, the mean
probe position did not deviate from near circularity. The implication
here is either that the geometry of this stimulus invites probe
placement on near circular paths, and/or people are influenced by
their history of responding. Regardless, the exact same result was
also obtained in Marusich and Gilden (2014) that used a similar
stimulus, probe placement method, and range of SOA.

The focus of this study was not on where people place the probe
but on their ability to place the probe reliably. The relevant data is
shown in the left panel of Figure 16, where participant-averaged
standard deviations are plotted as function of SOA. This plot
possesses a number of specific features that imply that the method
of probe adjustment succeeds in producing a measure of path clarity.
First, at short SOA in the regime of a few hundred milliseconds,
where apparent motion experiments and demonstrations are typi-
cally conducted, the probe standard deviations are both relatively
constant and relatively small. The second feature is that the regime
of low probe variability terminates at roughly an SOA of 600 ms
that SOA which both Wibral et al. (2009) and Finlay and von
Grünau (1987) have previously identified as a rough estimate of
succession threshold. Beyond 600 ms, the probe variability function
grows monotonically with SOA, suggesting that the task is becom-
ing increasingly difficult as the location of the path becomes more
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uncertain. Finally, at the largest SOAs, the variability is objectively
large, in the sense that the full width at half maximum covers about
60 to 70 pixels in a context where 107 pixels separate the straight
line from the curved path.
The development of allometric laws for probe variability closely

follows the earlier work on the cv, particularly that in Experiment 2
where fast and slow tempo conditions were contrasted. What distin-
guishes this study is the large range of assessed SOA extending from
150 to1,400 ms.Aconsequenceof the extended range is thatwehave
multiplemeasurements of variability in both fast blink rate (150, 400,
and 600 ms) and slow blink rate (800, 1,000, and 1,200 ms) regimes.
Theseparticular groupingsweremotivated specificallyby theappear-
ance of the SOA function of variability as having a transition point
somewhere between 600 and 800 ms. Regression analysis was then
conducted on averages defined over these two groups, <150, 400,
600 ms> and <800, 1,000, 1,200 ms>, with height as the indepen-
dent variable. Variability data at 1,400 ms were excluded from the
slow blink rate group because it was unique in containing many
outlying probe placement values—well beyond 100 pixels. The
conjecture was that if probe placement behaves like drum strike
placement, then the fastblink rategroupingmightnot showallometry,
where the slow blink rate grouping would.
Figure 17 shows regressions of averaged probe placement stan-

dard deviations with participant height. The left and right panels
show regressions for the low and high variability SOA groupings,
respectively. As this study included only adult participants, there is
no issue of intercept variation that would require an ANCOVA, and
we have computed simple regression models in the log (average
standard deviation)—log (height) plane to determine R2 values and
to derive power law exponents. The regression model in the slow
blink rate, high variability regime has a nonzero slope,
b = −2.28 ± 0.82, t(49) = −2.77, R2 = .14, p = .004. In contrast,
the slope of the regression model in the fast blink rate, low
variability regime is indistinguishable from zero. These results

closely replicate the scaling of precision in rhythmic performance
shown in Figure 14: Allometry at slow bpm (60 bpm) but not at fast
bpm (120 bpm).

The isomorphism in precision allometries between probe place-
ment and drum strike placement suggests that there may be an
underlying allometry in the proximity constraint for apparent
motion. Logically if there is an allometry in the proximity constraint
for apparent motion, then the precision of probe placement should
show the fast/slow distinction where precision allometry is
observed. This distinction is observed, and while it does not entail
the converse implication, that the proximity constraint satisfies
allometry, it certainly suggests that it does. It is difficult to imagine
how precision might display allometry only at slow blink rate, in the
regime where path perception is attenuated, if the proximity con-
straint itself did not also obey an allometry.

These findings strengthen the conjecture that allometry may be a
general property of perceptual organization. From a strictly proba-
bilistic point of view, the second instance of anything makes it clear
that the first instance is not isolated and that perhaps instances are
common. The inference also has practical significance in that it may
be methodologically more tractable to measure precision than to
measure a temporal horizon. This is certainly the case with apparent
motion, in that probe placement statistics do not generate any feature
with SOA as an independent variable that permits the selection of an
SOA horizon. To reiterate this important point, demonstrating a fast/
slow distinction in the allometry of precision is a methodologically
simple path to inferring allometry in the proximity constraint.

General Discussion

Scaling relationships and their associated exponents have been
derived for three types of quantities: t-horizon, the cv in drumming
performance, and the precision of probe placement in apparent
motion. We have interpreted the first, t-horizon, as reflecting an
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Figure 16
Standard Deviations and Mean Values of Probe Placement as a Function of Stimulus-Onset Asynchrony

Note. Error bars depict standard error of the mean. It is evident that probe placement becomes increasing uncertain at SOA larger
than 600 ms.
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activation lifetime, τ. Under this interpretation, t-horizon is a
characteristic timescale of a memory process—it is a memory
property. Measures of precision, coefficients of variation, and
standard deviations are not properties but behavioral outcomes—
outcomes theorized to inherit their scaling from the scaling of an
underlying proximity constraint. This distinction informs the kind of
interpretation that we bring to the allometric laws that have been
derived. Of the three scaling quantities that have been produced,
only the exponent of t-horizon permits a theoretical account. The
exponents of precision allometries will be interpreted in terms of the
residuals of proximity regressions.

Interpreting the t-horizon Proximity Constraint
Exponent

Within the framework that has been developed to understand the
prevalence of 2 ± 1 s as a proximity constraint (Figure 1), proximity
constraints as a class were conceptualized as reflecting activation
lifetimes. What factors might be relevant to an allometry in an
activation decay lifetime are, however, not clear given that proxim-
ity constraints play such an important role in determining group
memberships. So although an activation lifetime might be concep-
tualized in terms of brain function, what proximity constraints do,
their purpose, must be conceptualized in ecological terms, as scene
formation is what makes the world a meaningful place. This
blending of system levels suggests that much more must be under-
stood about embodiment before a theory of proximity constraint
scaling is approachable. In the absence of a theory of t-horizon
allometry, it is nevertheless worthwhile to place its exponent into the
broader context of physiological and behavioral allometries. To this
end, we examine the allometry for rhythmic pulse in terms of the

allometries produced by the two most important forms of human
energy expenditure; locomotion and basal metabolism.

Scaling of Energetically Efficient Body Motion

The most common form of rhythmic motion is walking, and to the
extent that the experience of rhythm involves the motion of jointed
limbs, an analysis of walking energetics provides a good starting
point for deriving an allometry relevant to rhythmic expression. The
kinematics of walking is a topic of some complexity that has been
approached both through empirical measurement (Burdett et al.,
1983; Rose et al., 1991), and through the construction of formal
models (Anderson & Pandy, 2001; Kuo, 2001, 2002). There is,
however, one elementary property of walking that immediately
leads to a scaling law. Recognizing that it is possible for walking
to be conducted at a range of speeds, the energy output per meter
walked (a definition of efficiency) is minimized at a unique speed
(Rose et al., 1994). The existence of an energy expenditure mini-
mum in locomotion is specific to walking kinematics and is a
consequence of the fact that walking is basically a driven pendular
motion; legs in walking motion effectively function as compound
pendula anchored at the waist. Pendula display the property of
resonance, such that their response amplitude is maximal when a
periodic driving force is matched in frequency to the natural period.
The consequence of this resonance for animal locomotion is that
energy consumption is minimized when the gait period matches the
natural pendular period. The natural pendular period scales as the
square root of leg length, and this square root relation governs all of
the relevant timescales for motion at the energy consumption
minimum. The crossing time, the time for a person to traverse
the extent of their own body, is a timescale of obvious ecological
consequence, and it will scale with the square root of height.
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Figure 17
Regression Models of Probe Standard Deviations Against Height in the Log–Log Planes

Note. Panel A shows a slope of essentially zero at short stimulus onset asynchrony (SOA; averages over 150, 400, and 600 ms).
Panel B shows a statistically resolved negative slope at longer SOA (averages over 800, 1000, and 1200 ms).
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The notion that gait period might be a factor accounting for
individual differences in specific perceptual tasks is not novel,
particularly in relation to tasks involving rhythmic pulse, an expe-
rience that is typically expressed through body motion. Todd et al.
(2007), for example, invoked individual differences in gait period to
explain their finding that body size was related to the transitional
tempo at which perceptually ambiguous meters were resolved in a
classification task. This same perspective was reiterated by Dahl
et al. (2014) in a study showing that preferred dance tempo is
correlated with body size. It is noteworthy that Todd et al. did not
explicitly derive the pendular period exponent from an allometric
regression model. Rather, the relevance of pendula to perceived
meter arose as part of a hypothesis—that a perceptual task involving
rhythm might be informed by physical properties of the way human
bodies are constructed and move.

Metabolic Scaling

The physical processes associated with thermogenesis and radia-
tive heat loss create a specific allometric exponent for key time
intervals associated with life—heart-beat period, respiration period,
blood circulation period, and animal lifetime. Across mammals, the
M¾ version of the Kleiber Law for total energy production leads to a
M¼ scaling law for this class of periods. This exponent, however,
may not hold for human populations (or for any particular species),
and as t-horizon applies to humans, here we will derive a metabolic
allometric law that is specific to humans.
There are two approaches to the derivation of the relevant

exponent. One avenue is through regression analysis of human
metabolic data. The appropriate statistical description has been
developed by Johnstone et al. (2005) who constructed a Kleiber-
type law for human adults. Based upon a sample of 150 adults (ages
21 to 64 years), a multiple regression model of log (basal metabolic
rate—BMR) was formed that included log(fat free mass—FFM),
log (fat mass—FM), and age as regressors. This three-factor model
accounted for 71% of the variance in log(BMR), most of this due to
one factor—FFM. log(FFM) accounted for 63% of the variance with
a slope of 0.62, while log(FM) and age accounted for only 6.7% and
1.7%, respectively. So, to a fair approximation, BMR in human
adults is determined by FFM and scales almost isometrically with it
(0.66 is nominal surface area geometric scaling). Metabolic time-
scales (heart beat period, respiration period, blood circulation time)
are derived as the reciprocal of the mass specific BMR, implying that
temporal attributes of human metabolism scale roughly as FFM.38.
To put metabolic timescales onto a footing that can be used for
comparison with t-horizon, we desire a relation that is based just on
stature. It has been known since Quetelet (1842) that weight in
adults’ scales as height squared. This measurement was refined by
Heymsfield et al. (2007), in breaking out the separate contributions
of FFM and FM. FFM was found to have a power law relationship
with height with exponents of 1.86 and 2.05 in men and women,
respectively—sufficiently close to two for our purposes. From these
power laws, we deduce that metabolic timescales roughly satisfy a
height.76 law in human adults.
A second and perhaps more straightforward route to the allome-

tric scaling of heart beat period would be to simply access the height
and resting pulse data that are collected routinely by health profes-
sionals. It appears, however, that such data are rarely amassed for the
purposes of regression analysis. One study that did perform this

analysis was conducted by Smulyan et al. (1998), and their simple
regression of heart period on height (their Figure 2) permitted us to
determine an empirical power law for heart period in terms of height.
From their data, the inferred relation is heart period ∼ height.79,
which is in close agreement with the exponent derived from FFM
scaling.

The measurement of t-horizon in adults produced four distinct
estimates of height exponent: 0.64 ± 0.24 in a first round time series
visual analysis, 0.81 ± 0.24 in a second round time visual series
analysis that also benefited from lag-1 autocorrelations and coeffi-
cients of variation, 0.72 ± 0.27 from Madison’s diffusion rate
statistic, and finally 0.82 ± 0.16, produced on the basis of second
round estimates in an ANCOVA with children. Taking these
exponents and associated errors at face value, it does appear that
t-horizon and metabolic timescales obey similar scaling relations
with body size. If the ANCOVAmodel is taken as a best estimate for
the t-horizon scaling exponent, the square root law for locomotion is
more than two standard deviations removed, while there is obvious
close agreement with heart period scaling in humans.

This finding, although not explaining the t-horizon exponent, is
nevertheless theoretically important and demonstrates how this
approach goes beyond simple correlational analysis. First, disas-
sociating t-horizon from locomotion is interesting in itself. In the
early stages of this investigation we wondered whether the gait cycle
might literally create temporal proximity constraints. From a per-
haps naive ecological point of view, every step we take does take us
to a new point of observation and so potentially to a new scene.
Again, naively, it does seem reasonable that the time to complete a
gait cycle might then serve as proximity constraint for scene
formation. And, it is the case that the pendular period that sets
the gait cycle period is close to 2 ± 1 s, and so is numerically in
agreement with observed proximity constraints. This story, however
compelling, turns out to be improbable if the standard error of the
estimate of the t-horizon exponent is credible. The positive result,
that t-horizon has heart period scaling, appears to be coincidental,
but it is nevertheless interesting in view of the circumstance that both
are related to cooling. Heart period becomes related to cooling by
virtue of its scaling exponent being set by the balancing of thermo-
genesis with radiative losses at the body’s surface (Johnstone et al.,
2005). t-horizon is related to cooling by virtue of what it is; it is
conceptualized here as being a measurement of τ, which is by its
nature a cooling timescale. In essence, our work on t-horizon can be
summarized by the idea that the shedding of memory activation has
the isometric scaling of body cooling.

Perspective on the Exponents Derived for
Measures of Precision

Measurement of precision in drumming and probe positioning
also led to scaling laws with body size, but the derived allometric
exponents do not invite an analysis framed in terms of physical
properties. Precision is a behavioral outcome, and within the
framework we have developed, its scaling is inherited from the
underlaying scaling of a proximity constraint such that the associ-
ated exponents are unlikely to be susceptible to biological or
physical explanation. Specifically, the theoretical outline shown
in Figure 10 clarifies that there are three independent contributions
to a precision exponent: the exponent of the proximity constraint,
the width of the residual distributions, and the jump in variability
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between the regime of temporal integration and the regime of
succession. Of these three factors, only the scaling properties of
the proximity constraint may be amenable to a biological or
psychological explanation.
The widths of the residual distributions play a key role in the way

precision acquires allometry. That residuals play a role in setting
precision exponents is problematic, in so far as residuals represent
variability unexplained by allometry. In this sense, residuals are
outside of the scope of allometry, even if they are explained by other
aspects of physics or biology. In fact, the residuals may have
interesting but unknown properties that have nothing to do with
the body. For example, in previous work, we showed that the much
of the unexplained variance in reaction time residuals may be
explained as 1/f noise (Gilden, 2001), a type of fluctuation of
significance in physical theory (Press, 1978), but which is entirely
unrelated to the experimental designs that generated the residuals in
the first place. Similarly, theories of allometry may have nothing to
say about the residual variation that enters into the production of
precision exponents.
The final factor, the discontinuity in variability across the prox-

imity constraint, is based on a number of factors that are by their
nature ill defined. The principal problem is that only on the temporal
integration side of the proximity constraint is variability likely to be
linked to a lawful process. Variability in regimes of temporal
integration presumably reflects lawful properties of a perceptually
organized state. This is at root the reason that it is meaningful to
inquire, for example, into whether rhythmic behavior exhibits the
Weberian property—the property of perceptual systems that just-
noticeable differences are proportional to the magnitude of ambient
stimulation. On the succession side of the proximity constraint, the
situation is substantially different for the single reason that behav-
ioral variability does not reflect upon a perceived quantity. In
drumming performance, for example, variability in the regime of
succession involves attempts to place drum strikes in time in the
absence of a sense of beat relatedness and where pulse is not
emerging. Probe placement variability in the succession regime
of apparent motion arises from attempting to place a probe onto a
path that has not emerged. Succession is generally the experience of
temporal distribution when perceptual integration has failed, and
any response that in fact requires integration can only reflect the
strategies of a person struggling toward a meaningful response.
These strategies may not lead to well-defined and quantifiable
behavior. As an example, random walking in the time series of
interbeat intervals is observed when rhythmic pulse is lost during a
drumming performance. As random walks exemplify an inherently
nonstationary process, cv values that are based upon random walks
are also nonstationary and so are not fixed properties of any system.
In the context of probe placement onto an illusory path in the
succession regime, precision depends critically on how people
respond to the requirement that a probe be placed onto a path
that is not perceived. In this case, probe positions can only reflect the
sense, demand characteristic actually, that the choices be proximal
to the inducing rectangles and not, say, at the screen’s edge. The
implication then is that contrasts in precision across a proximity
constraint may not be meaningful or interpretable. As these contrasts
factor into the derived value of the slopes in an allometric regression,
the slopes (exponents) are also difficult to interpret. The conclusion
here is that nonzero exponents in precision allometry have meth-
odological utility, in that they imply the existence of allometry in

a proximity constraint, but caution must be taken in interpreting the
exponent magnitudes.

Concluding Remarks

In this article, we propose the theory that temporal proximity
constraints arise from an autonomous memory process of activation
decay. In this theory, proximity constraints reflect decay lifetimes,
and this identification led to the conjecture that proximity constraints
as a class might obey allometric laws. This conjecture departs in
several ways from asking whether a particular percept, judgment, or
behavior is correlated with body size. First, the class of proximity
constraints is unbounded and includes all instances of temporal
integration where organized states dissolve into succession as the
event arrival rate decreases. In essence, the conjecture concerns the
myriad processes that fuse the flux of temporal experience into
meaningful scenes. Second, producing an allometry is not quite the
same thing as producing a correlation. Allometry is a form of
measurement, and while it necessarily involves a correlational
analysis, the focus of allometry is on the production of a power-
law exponent. In physical and biological contexts, the exponents are
of fundamental importance in theory building. Allometry has not
heretofore been an issue in psychological science, and it remains to
be seen what role allometric exponents will play in theory
construction.

A conjecture about the class of proximity constraints cannot be
tested in its entirety, but evidence was presented that allometric laws
exist for the proximity constraints limiting the formation of rhythmic
pulse and the perception of illusory apparent motion paths. The
quality of data inherent in the time series produced by a drumming
performance allowed a more or less direct measurement of the
power-law exponent governing rhythmic pulse. This exponent had a
magnitude that was remarkably close to the exponents for timescales
associated with basal metabolism. Further work may clarify if
proximity constraints for other forms of grouping have similar
scaling.

In the context of apparent motion, our method was ill suited to
measuring a proximity constraint, but it was able to produce a
measure of precision in probe placement that turned out to have
exactly the same allometric properties as the cv in drumming
performance. Such a convergence between two very different
experiences suggests that placing a drum strike into a metrical
context and placing a probe onto an apparent motion path are
tapping into a common process. That process, in the framework
we have developed, is that of activation decay.

This work clearly opens up other avenues of investigation. Any
methodology that produces a behavioral variable indexed to the
strength of temporal integration may be able to produce an allome-
try, if one exists. There may also be further generalizations beyond
proximity constraints. In fact, any behavior that involves the
discrimination of temporal intervals may be in play, in so far as
judgments that involve the sense of time passage may be utilizing
mechanisms of activation decay.
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Appendix

The first issue to be addressed in a study of proximity constraint
scaling is how the constraint might be measured. In the context of
rhythmic pulse, the measurement of a proximity constraint comes
down to finding the slowest limiting tempo at which a person is able
to perform a rhythmically stable performance. The interbeat interval
corresponding to this tempo serves as a measurement of the maximal
time interval, t-horizon, over which successive beats can be tempo-
rally fused to support the emergence of pulse. The technique that is
used for assessing t-horizon is of fundamental importance in this
context, as the quality of the assessment tool directly impacts the
degree to which variation may be reliably attributed to underlying
scaling structure. This is not a form of measurement that involves
rote computation as might be involved in ANOVA and the assess-
ment of statistical significance. Some degree of invention is
required. As this study is not the first to attempt measurement of
t-horizon, it is worthwhile to review and evaluate previous efforts.
To appreciate what is involved in assessing t-horizon, it will help to
review what drumming data look like at various tempi.

Elementary Rhythm Phenomenology

Figure A1 (reprinted from Gilden and Marusich, 2009) plots the
time series of interbeat intervals for one participant, drumming (on a
real drum with midi output) at a variety of tempi in a continuation
paradigm. In the continuation method, the participant drums or taps
along with an auditory click track for a preset number of beats or
period of time, after which the participant’s task is to continue
drumming or tapping at the preassigned tempo. The time series of
interbeat intervals is formed by computing the time intervals
between temporally adjacent drum strikes and is the raw form of
drumming data. A simple visual inspection suffices to make most of
the relevant points about what drumming data might display at
various tempi in a continuation paradigm.
The first observation to be made is that this person is on occasion

able to drum in a regular and stable fashion. At tempi ≥ 40 bpm, the
respective time series of interbeat intervals appear to be statistically
stationary in the sense that the mean and standard deviation are fairly
constant over the duration of the performance. That the amplitude of
fluctuation increases monotonically with decreasing tempo, σ
(120 bpm) < σ (60 bpm) < σ (40 bpm), may be largely explained
in terms of the Weberian property that timing errors increase in
magnitude in proportion to the magnitude of the interval being
expressed. That is, the fluctuations in Figure A1 would be expected
to be some three times larger at 40 bpm than they are at 120 bpm. The
Weberian property is well documented for rhythmic tapping in
continuation paradigms (see McAuley et al., 2006 and Madison,
2001), as well as in time interval discrimination more generally
(Friberg & Sundberg, 1995). The second observation is that perfor-
mances slower than 40 bpm are manifestly not stationary but rather
wander in tempo. These visual distinctions are striking, and it is this
kind of discriminating evidence that gives the continuation method its
power. We interpret the two regimes of performance as indicating the
presence and absence of the feeling of rhythmic pulse, a conclusion
that cannot be formally proven but which will be defended through-
out, as we review the various ways rhythm has been investigated.

To fully understand what the time series at the two slowest tempi in
Figure A1 are illustrating, it is useful to contemplate what the partici-
pant might be experiencing. The task confronting a performer when
asked to drum even when lost is admittedly difficult, but it must be
encountered in any study that attempts tomeasure proximity constraints
in beat organization. It is especially difficult in a continuation paradigm
where there is no click track that can corral the performer back onto the
beat. In real performance situations, the general rule when one has lost
rhythmic pulse is to stop and listen to the other performers, and then to
resume when the measure structure has been reacquired and the “one”
beat has been located. Here, there are nomeasures, no other performers,
and the drummer must suffer through whatever they can manage to
produce for the period of time they have been allocated. Consider then
the options available to a performer who is attempting to strike a drum
at regular intervals in a duple meter at a tempo that is so slow that they
are unable develop an adequate sense of rhythmic pulse. One option is
to attempt to subdivide the target interval by counting out loud or
subvocally. This strategy must be either prohibited through instruction
(Madison, 2001) or through tying up the vocalization apparatus through
a secondary task (Gilden & Marusich, 2009). Other strategies for
subdivision that involve movement of limbs or head must also be
prohibited, and in practice, it is essential for an experimenter to be
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Figure A1
Time Series of Interbeat Intervals for Nonsynchronized Drumming
at Target Tempi of 15, 30, 40, 60, and 120 bpm (Target Time
Intervals of 4, 2, 1.5, 1, and 0.5 s, Respectively), Reprinted From
Gilden and Marusich (2009)

Note. Trial number here refers to the ordering of successive drum strikes.
The ith trial number defines the interbeat interval between the ith and (i − 1)
st drum strike. Loss of rhythm is evidenced by wandering in the time series at
tempi slower than 40 bpm.

(Appendix continues)
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present in all phases of data collection. The only permissible recourse
available to a lost performer is to strike the drum when they think an
appropriate amount of time has elapsed. The performer, in this instance,
does not know the true appropriate amount of time, in that they have
lost rhythmic pulse and so have no sense of pattern into which they
might place the next drum strike. One interval of time that may be
available, and which could serve as an appropriate interval, is their
recollection of the previous interval, the interbeat interval terminated by
their last drum strike. In this circumstance, the performer effectively
enacts a recursive relation; the current interval is executed as the
memory of the last interval. This recursive relation may be expressed
by a simple generating function for a random walk, X(t + 1) = X(t) +
Randomdeviate, or by somemore elaborate version of autoregression.
For the purposes here, it suffices to note that attempts to replicate the
previous interval will invariably generate a contour depicting diffusion.
The performance at 30 bpm in Figure A1 is typical of a performance
that slowly diffuses in tempo. At extremely slow tempi, even the last
interval may not be memorially available for replication. In this case,
the performer is truly and hopelessly lost, knowing only that they are
in an experiment and are expected to strike the drum periodically at
long intervals. This last state of affairs describes the performance at
15 bpm, beat separations of 4 s, which, while showing some diffu-
sion, is also substantiallywhitened by large point to point fluctuations.
The practical problem of measuring proximity constraints in free

rhythmic performance comes down to the detection of random
walking or other forms of erratic performance. In the context of
synchronized performance (drumming or tapping with a click track),
diffusion is not possible, and other statistics must be invented.
Below, we review how proximity constraints for the experience of
rhythm pulse have been measured in both paradigms as preface to
the methods we have adopted here. Recognizing that rhythmic
expression is universal in human cultures, it makes sense to begin
with a brief discussion of what cultural knowledge tells us about
proximity constraints. This is one area of cognitive psychology
where some degree of definite knowledge is commonly available.

Prepsychophysics: Cultural Knowledge
About Musical Performance

Unlike many of the abilities that are assessed formally using
psychophysical techniques, people have been striking drums and
playing music for millennia, and consequently, quite a bit is
understood about what constitutes appropriate tempi for playing
music. We are also in possession of a specific numerical value that is
the accepted norm for the slowest tempo that is advised for
attempting rhythmical performance. This value is found on metro-
nomes that are fabricated, where the limit is literally set in the
materials out of which the metronome is constructed, Seth Thomas
metronomes being a prime example. The limiting tempo is 40 bpm,
or an interval between beats of 1.5 s. The deliberate instantiation of
40 bpm in hardware reflects tacit knowledge of the psychophysical
fact that music played any slower will be quite challenging for
performers as well as for conductors who are attempting to signal the
quarter note. This limit does not imply that nobody can feel rhythmic
pulse at slower tempi, but it does invite caution. The time series
shown in Figure A1, although displaying the capacities of a single
person, is unequivocally in agreement with the notion that people
are rhythmically challenged at tempi slower than 40 bpm.

As a matter of practice, musicians often partition the quarter note
interval at slow tempi by counting off subdivisions, something that
can be accomplished subvocally. In fact, there is psychophysical
evidence that subdividing through counting is a viable and improv-
ing strategy for any tempo slower than 50 bpm (Grondin et al.,
1999). The obviousness and universality of this strategy suggests
that isolated studies reporting that people can competently keep
rhythm at tempi slower than 40 bpm (see White, 2017 for some
instances) should be questioned. Seth Thomas metronomes repre-
sent verified cultural knowledge and unquestionably supply a
benchmark for a proximity constraint in rhythmic pulse.

Subjective Assessment of t-horizon: Self-Reports
of Rhythmic Pulse Disintegration

Comprehensive developmental studies of the human capacity for
rhythm have been conducted by Drake et al. (2000) and by McAuley
et al. (2006). Both sets of studies develop the entrainment perspec-
tive on what makes rhythm possible, and both included a treatment
where participants were instructed to tap as slowly as possible while
maintaining a “regular” or “smooth” rhythm. To the extent that
people are able to competently assess the stability of their tapping
performances and so obey these instructions, the tempi they settled
on might reflect a measurement of t-horizon, effectively the slowest
tempo that a person can in fact execute a regular rhythm. However,
the results from these studies are in substantial disagreement with
each other, with metronome limits, and with other measurements of
t-horizon that will be reported below.

The slowest attempted performances received by Drake et al.
(2000) were statistically characterized in terms of the interbeat
interval (or IOI—interonset interval). In their Figure 6, they
show a positive monotonic age-related trend with average IOI.
As this study was focused mostly on development through child-
hood, adults in this study are represented as a single point at an IOI
of 2 s—adulthood presumably being a single asymptotic state. An
IOI of 2 s corresponds to a tempo of 30 bpm, well beyond the limit
imposed by manufactured metronomes. This violation does not
imply that the adults in this study could not execute regular and
smooth performances at 30 bpm, but it does create concern. A
tempo of 30 bpm is quite slow (the performance shown in Figure
A1 is certainly not stable at 30 bpm), and this suggests that what
people might attempt is not commensurate with what they are
actually able to achieve in the way of stable rhythmic performance.
That there may be a distinction between what people think they can
do in slow performance and what they can in fact manage gains
additional support from McAuley et al. (2006) who replicated this
condition of Drake et al. In Table 2 of McAuley et al., the average
IOIs of the slowest attempted performances are listed by age group.
McCauley et al. report substantially slower attempted performances
than Drake et al.; people in the age range of 8–74 generally
attempted slow but regular performances at tempi slower than
24 bpm (2,500 ms IOI). The 10–12-year-old children are espe-
cially remarkable in attempting performances near 20 bpm. The fact
that identical instructions lead to inconsistent findings, and that the
instruction method itself seems to lead to inflated values of the
slowest tempi at which rhythmic performance is possible, suggests
that the method does not accurately assess t-horizon. The problem
with both of these studies is that, while they do meaningfully assess
what people will attempt, average IOI does not speak to whether the
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received performances were in fact regular and smooth, that is,
whether the performances reflect the instructions.
Time series analyses of drumming performances, described below,

are consistent in their finding that people generally cannot produce
regular and stable performances below 40 bpm, testimony to the notion
that metronome manufacturers in the last century had a good sense of
what people are capable of executing. The findings reported in these
two studies suggest that either the performances were erratic, and this
was not detected, or that the participants subdivided the intertap
intervals, and this strategy was not detected. To the first issue, it is
not possible to interpret average IOI values deriving from the instruc-
tion to tap in a regular and smooth fashionwithout a subsidiary analysis
of the stability of the performances received. An average IOI may be
computed on any time series of interbeat intervals, regardless of
whether the time series is statistically stationary or whether it displays
erratic wandering. The average IOI is, however, only meaningful,
having a true convergent value, when computed on a statistically
stationary signal. Regarding counting and its detection, if these very
slow performances were made possible by subdividing the moments
between recorded taps, it is not clear why participants chose to tap every
few seconds and not at intervals of tens of seconds or minutes. There is
effectively no slowest tempo if subdivision is occurring, and the
received data may in this case reflect demand characteristics.

Measurement of t-horizon Using Click-Tap
Asynchrony in Synchronized Tapping

Mates et al. (1994) appears to have priority in attempting to
psychophysically capture the transition tempo that marks the bound-
ary between the experience of rhythmic pulse and the experience of
being lost. The logic underlying their method derives from an
established but nevertheless curious phenomenon that arises in
synchronized tapping (tapping along with a click track) at tempi
that are typical of musical performance.When tapping along with an
auditory click track, people generally tap ahead of the auditory click
track by a few tens of milliseconds. This phenomenon has been
investigated in its own right (Aschersleben, 2002) and seems to exist
only when the pacing signal and motor tap are separated into two
modalities (Müller et al., 2008). Mates et al. interpret negative
asynchrony as evidence that people are assembling temporally
distributed beats (taps) into templates, and it is the existence of
these assemblies that provides the necessary context for beat
anticipation. The idea being that only when the beat is anticipatable
can the circumstance arise that motor execution reliably leads the
auditory feedback. Conversely, at tempi where people cannot feel
rhythmic pulse, people lose both the sense of beat groupings into
metrical templates, as well as the corresponding ability to anticipate.
When beat anticipation fails, the performer must wait for the guiding
click track to tell them where in time the beat belongs, and this leads
to positive asynchrony. In this way, the transition from negative to
positive asynchronies may be used as an implicit signature to infer
the integration span for rhythmic pulse.
The utility of this method for inferring proximity constraints on

rhythmic pulse depends entirely on the interpretability of the
asynchrony distributions. Mates et al. (1994) illustrate the relevant
distributions across a range of interbeat intervals (their Figure 2),
and the problems with the method are manifest. Similar asynchrony
distributions are reported in Matsuda et al. (2015; their Figure 3)
and Engström et al. (1996; their Figure 8). Referring to Mates et al.,

at ISIs of 900 ms and shorter (tempi 67 bpm and faster), the
asynchrony distributions are strongly peaked at negative values,
recapitulating the basic finding that motivates the method. In
addition, the distributions are strongly peaked at positive values
at an ISI of 4,800 ms (12.5 bpm), justifying the supposition that
there are slow tempi where people are so lost that they must wait for
the auditory click track. At these two limits, the situation regarding
the feeling of rhythm is clear but hardly an improvement on what is
commonly known from musical practice. At intermediate ISIs, the
situation regarding template formation is markedly less clear, as the
asynchrony distributions straddle zero with increasing variability as
a function of ISI in the range [1,200 ms, 3,600 ms]. For the two
participants tested in Mates et al., their asynchrony distributions
appear to become centered around 0 (neither leading or lagging) at
ISI between 1,200 and 1,800 ms.Although not conclusive, centering
does get at the notion of being at a transition ISI and suggests that
these participants have a t-horizon somewhere in this interval. This
estimate is consistent both with the idea that counting strategies are
recommended when beats are separated bymore than 1.2 s (Grondin
et al., 1999) and with typical metronome cutoffs at 40 bpm.

Measurement of t-horizon Using Time Series
Analysis of Tempo Diffusion

Madison (2001) made considerable progress toward the measure-
ment of t-horizon through the construction of an algorithm that is
sensitive to whether the time series of interbeat intervals is stationary or
diffusing as in a randomwalk. The algorithm has two stages. In the first
stage, a diffusion function is computed in terms of how far the interbeat
intervals have diverged over the course of w taps, or drum strikes:

ΔðwÞ = medianffor all i∶jXðiÞ − Xði + wÞjg:

Here, X(i) is the interbeat interval (essentially the instantaneous
tempo) formed between the ith and (i − 1)st taps. Δ(w) is a measure
of the typical (in the sense of median) tempo separation over the
course of w taps or drum strikes.Δ(w) will be an increasing function
of w if there is growing tempo variation over the course of the
performance, and it will fluctuate about zero if the performance
stably fluctuates about a single tempo—as is the goal in most
musical performances. The derivative of Δ(w) with w, denoted
here byΔ′(tempo), provides a measure of drift rate in the time series
of interbeat intervals at a given target tempo. Madison (2001)
computes the derivative Δ′(tempo) through the expedient of deriv-
ing the slope ofΔ(w) as a function ofw in a simple regression model.

Madison (2001, Figure 5) demonstrated that Δ′(tempo) provides
a potentially useful statistic for assessing t-horizon in the continua-
tion method, at least when aggregated over participants. Most
striking is that Δ′(tempo) is relatively small for all performances
at target interbeat intervals of 1,300 ms or less and relatively large
(by a factor of 2) for all performances at interbeat intervals of
1,400 ms or larger. The existence of a sudden and clear jump in
Δ′(tempo) is really quite extraordinary and is the clearest possible
signature that rhythm, on average, is compromised at interbeat
intervals of 1,400 ms. This value is obviously in substantial agree-
ment with the 1,500 ms built into manufactured metronomes, with
the estimate of 1,200–1,800 ms that we deduced from asynchrony
distributions of Mates et al., and again, it suggests that the slowest
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attempted performances recorded by Drake et al. and McAuley
et al. may not have been smooth and regular.
Although the diffusion analysis employed by Madison (2001)

appears to measure t-horizon with much greater resolution than the
method based on asynchrony distributions, there are several issues that
arise here of a signal detection nature. First, although a nonzero value of
Δ′(tempo) might be evidence of the kind of random walking in
interbeat interval that indicates that the performer has lost rhythmic
pulse (as the 30 bpm performance in Figure A1 depicts), Δ′(tempo)
will also take on nonzero values if the performer secularly speeds up or
slows down from the target tempo. It is not uncommon for experienced
musicians to do this even when they have an intact sense of rhythm.
More problematic is thatΔ′(tempo) may be close to zero both when the
performer is executing a stable performance and also when they are
completely lost and executing a white noise of interbeat intervals.
Random independent increments will lead to Δ(w) fluctuating about
zero for all values of w, and therefore, so too will be the slope
(derivative) of Δ(w) with w, Δ′(tempo). In view of this dual pathway
to zero, Δ′(tempo) may not be monotonically increasing with decreas-
ing tempo. Although Madison’s presentation of participant-averaged
performances gives the impression that Δ′(tempo) saturates at large
values at slow tempi, the analysis of single-participant data from our
study will present a more nuanced picture. It will be evident that
assessments of t-horizon based on this algorithm are not rote.

Measurement of t-horizon Using Linear
and Nonlinear Methods of Prediction

Gilden and Marusich (2009) developed a number of statistical
techniques for assessing t-horizon as part of a drumming study
designed to characterize the nature of attention deficit hyperactivity
disorder (ADHD) temporality. Of note, three of the four statistics
characterized the predictability of interbeat intervals. The rationale
for focusing on prediction follows from the phenomenology of
drumming performance; stable drumming generates fluctuations
about a target tempo, while unstable drumming tends to be diffusing.
Stable drumming is weakly predictable, in that it expresses a 1/f
noise (Gilden et al., 1995), while diffusion processes generate hills
and valleys in time series portraits. Hills and valleys essentially
define what it means to be highly predictable in the context of a
stochastic process. The statistics employed were the cv, the lag-1
correlation and its generalization to the power spectrum, and the
sample entropy. The cv is not itself a predictive statistic, but in the
context of drumming performances, low precision and high predict-
ability tend to co-occur. The power spectrum is aligned with
Madison’s diffusion rate measure in that the steepness of the power
spectrumwill covary with the diffusion rate. The sample entropy is a
nonlinear measure of predictability that has found application in
diagnosis of cardiomyopathy (Richman & Moorman, 2000—
predictability of heart beat intervals due to random walking is a
signature of disease). All four statistics proved to be useful, and they
all converged on a common interpretation.

Nonalgorithmic Measurement of t-horizon

The formal approaches that have been developed to measure
proximity constraints for rhythmic pulse have the problems encoun-
tered generally in methods of signal detection with low resolving

power. Distributions of click/tap offsets (Mates et al., 1994;
Engström et al., 1996) turn out to have poor resolving power at
the level of the individual in the critical tempo regime near 40 bpm
where rhythm is compromised. Madison (2001) diffusion rate
statistic may be able to resolve the onset of random walking in
ensemble averages, but our experience with this statistic, described
in the first experiment, is thatΔ′(tempo) is not monotonic at the level
of the individual. And finally, the predictive statistics employed by
Gilden and Marusich (2009) are also inherently noisy, and experi-
ence with these statistics have proven that they are ill suited for
resolving proximity constraints at the level of the individual. This
latter suite of statistics sufficed in the analysis of ADHD temporality
only because their coarse resolution could be sharpened through the
expedient of ensemble averaging. However, in ordeto investigate
allometric laws, each individual must contribute their own unique
proximity constraint. At this time, it appears that the inference of
individual proximity constraints from rhythmic performance does
not have a demonstrable algorithmic solution, and we have been
compelled to develop strategies that go beyond formal mathematical
characterizations of time series data.

In contexts outside of the analysis of psychological data, there is
often recourse to visual inspection. From a formal point of view, what
something looks like is mostly controlled by the phase spectrum,
aspects of image structure that arise from conditional probabilities
connecting three or more points. The statistics employed by Gilden
and Marusich (2009) and Madison (2001) are mostly picking up
information that is contained in the power spectrum, image informa-
tion arising from conditional probabilities connecting two points. This
distinction, although somewhat technical, is critical to image analysis.
If the visual system used only the statistics that have been used to
algorithmically assess t-horizon,wewould be essentially blind, unable
to recognize objects, and living in a world consisting only of oriented
light and dark patches. It is a fact that most of the information in
drumming time series is not being picked up by the statistics that have
been used, and this is a handicap that is not necessary.

Visual assessments of data are not typically a part of confirmatory
statistical analysis, bias being an obvious problem, but in the context of
allometry, bias may be substantially mitigated through ignorance.
Visual inspection of drumming time series with the purpose of finding
the inflection tempo where the performer loses rhythmic pulse would
be permissible so long as the assessment is done in ignorance of the
performer’s body size. In this way, the visual inspection would not be
able to create an allometry beyond whatever chance could supply. A
second problemwith visual analysis is that it is not rote because it is not
explicitly algorithmic. In the same way that an experienced physician
can read amagnetic resonance image better than a novice, a personwho
has been looking at drumming data for some time may see things that a
novice might not. Considerations of expertise are not welcome in
statistical analysis, but it is a problem here only in the sense that, if the
people judging our time series are not familiar with the domain of
interbeat intervals, the worse they can do is generate noise in whatever
underlying allometric relations may exist. The technique of visual
analysis to locate t-horizon is described and illustrated in the main text.
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