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Making Sense of Randomness" 
Implicit Encoding as a Basis for Judgment 
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People attempting to generate random sequences usually produce more alternations than expected 
by chance. They also judge overalternating sequences as maximally random. In this article, the authors 
review findings, implications, and explanatory mechanisms concerning subjective randomness. The 
authors next present the general approach of the mathematical theory of complexity, which identifies 
the length of the shortest program for reproducing a sequence with its degree of randomness. They 
describe three experiments, based on mean group responses, indicating that the perceived randomness 
of a sequence is better predicted by various measures of its encoding difficulty than by its objective 
randomness. These results seem to imply that in accordance with the complexity view, judging the 
extent of a sequence's randomness is based on an attempt to mentally encode it. The experience of 
randomness may result when this attempt fails. 

Judging a situation as more or less random is often the key 
to important cognitions and behaviors. Perceiving a situation as 
nonchance calls for explanations, and it marks the onset of 
inductive inference (Lopes, 1982). Lawful environments en- 
courage a coping orientation. One may try to control a situation 
by predicting its outcome, replicating, changing, or even by 
avoiding it. In contrast, there seems to be no point in patterning 
our behavior in a random environment. 

Although people feel that they know what they mean when 
speaking of randomness (Kac, 1983) and they communicate in 
everyday and professional affairs using their shared intuitive 
understanding of the term, it.is one of the most elusive concepts 
in mathematics. Randomness resists easy or precise definition, 
nor is there a decisive test for determining its presence (Ayton, 
Hunt, & Wright, 1989, 1991; Chaitin, 1975; Falk, 1991; Lopes, 
1982; Pollatsek & Konold, 1991; Wagenaar, 1972a, 1991; Za- 
bell, 1992). Attempted definitions of randomness involvo intri- 
cate philosophical and mathematical problems (Ayer, 1965; 
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Fine, 1973; Ford, 1983; Gardner, 1989, chap. 13; Gilmore, 1989; 
Kac, 1983; Spencer Brown, 1957). 

Despite these difficulties, psychologists have been carrying 
out, since the early 1950s, extensive research on people's subjec- 
tive sense of randomness. This research uses our knowledge of 
the sampling distributions of several major statistics characteriz- 
ing sequences of any length to serve as the normative back- 
ground against which people's responses are evaluated. 

Conclusions concerning participants' conceptions of ran- 
domness have been drawn from experiments employing diverse 
tasks. The earliest were probability-learning tasks consisting of 
successive predictions (with feedback) of elements of random 
sequences (e.g., Hake, 1955; Hake & Hyman, 1953; Jarvik, 
1951; Nicks, 1959; Ross & Levy, 1958) and psychophysical and 
ESP studies (see review in Tune, 1964). It was generally 
claimed that participants cannot perceive sets of stimuli as ran- 
dom. Cohen (1960) summarized a series of experiments (mostly 
of the probability-learning paradigm), saying that "nothing is 
so alien to the human mind as the idea of randomness" (p. 
42). Most of the sequences predicted by participants in these 
experiments deviated from randomness, mainly by alternating 
too frequently between different outcomes. However, the claim 
that participants' performance is a direct reflection of their dis- 
toned image of randomness has been seriously contested. The 
sequences produced in probability-learning experiments may be 
affected by participants' own previous responses and the ob- 
tained feedback. They may reflect participants' hypotheses con- 
cefning the nature of the experiment (Peterson, 1980) and their 
problem-solving strategies. 

The majority of studies in this area looked at participants' 
generation of randomness. Participants were required to simulate 
the outcomes of some random mechanism, such as tossing a 
coin (see reviews in Tune, 1964, and Wagenaar, 1972a; studies 
by Kubovy & Gilden, 1991; Neuringer, 1986; Teigen, 1984; 
Wagenaar, 1970b; Wiegersma, 1982; and references to genera- 
tion studies in Table 1 ). Other studies asked directly for partici- 
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pants' perception or judgment of randomness by obtaining their 
ratings or by having them select (classify) random sets of stim- 
uli (see Falk, 1981; Lopes & Oden, 1987; and references to 
perception studies in Table 1 ). A recent comprehensive review 
of subjective-randomness research can be found in Bar-Hillel 
and Wagenaar ( 1991 ). 

Despite the important lessons gained from generation-of-ran- 
domness research, we regard the perception-judgment studies 
as more appropriate for revealing subjective concepts of ran- 
domness (Wagenaar, 1970a, 1972a). A person could perceive 
randomness "accurately" and still be unable to reproduce it, 
just as many people cannot satisfactorily draw a scene that they 
can recognize as one they have observed (Falk, 1975, 1981). 
Generation of randomness may confound participants' concepts 
with various performance variables. We use perception and 
judgment interchangeably because we have in mind an intuitive, 
nonanalytic response concerning the randomness of the experi- 
mental stimuli. 

In this article, we first summarize the basic findings of and 
views on generation and perception of randomness. We focus 
mainly on binary sequences in which the symbol types are equi- 
probable and on sequential dependencies of the first order (i.e., 
probabilities conditioned only on one preceding event). Then 
we describe the algorithmic definition and quantification of ran- 
domness by the mathematical theory of complexity, which is 
based on the length of the most concise description of the se- 
quence. Finally, we report our three experiments that suggest 
that people's perception of randomness may depend on a similar 
approach. We construe judging a sequence's degree of ran- 
domness as based on a covert act of encoding the sequence. 
Perceiving randomness may, on this account, be the consequence 
of failure to encode. 

Subjective Randomness  Research 

Main Findings 

The most prominent and consistent finding of the research 
on both generation and perception of randomness of binary 
sequences (and two-dimensional [2-D] grids) is that people 
identify randomness with an excess of alternations between 
symbol types (Bar-Hillel & Wagenaar, 1991; Budescu, 1987; 
Falk, 1975, 1981; Lopes & Oden, 1987; Wagenaar, 1970a, 
1970b, 1972a, 1972b). Typical random sequences--those con- 
taining the modal number of alternations expected by chance--  
are not perceived by participants as maximally random because 
the runs appear too long to be random (Gilovich, Vallone, & 
Tversky, 1985; Wagenaar & Keren, 1988). The sequences that 
participants produce when they attempt to simulate a random 
process contain too many short runs, relative to randomness. 
This bias, often termed negative recency, is an expression of 
the gambler's fallacy. Some recent studies (Budescu & Rapo- 
port, 1994; Kareev, 1992; Rapoport & Budescu, 1992) also 
report overalternations when participants generate randomness 
under standard instructions, but more randomlike results under 
modified and more motivating instructions. 

These biases characterize people's average responses to judg- 
ment and production tasks involving randomness. Substantial 

individual differences were, however, reported by Budescu 
(1987) and Falk (1975). A minority of participants usually 
exhibit a positive-recency bias (see also Wagenaar's [1972a] 
summary of subjective-randomization results). 

Before proceeding to summarize additional findings, we need 
to define a sequence's degree of alternation. The alternation rate 
of a binary sequence containing n symbols is greater, the greater 
the number of runs (r) in the sequence. There are n - 1 transi- 
tions between successive symbols, and the number of actual 
changes of symbol is r - 1. We characterize every sequence by 
its probability of alternation, P(A), which is computed as (r  
- 1)/(n - 1). For a binary grid, P(A) is computed similarly 
by counting changes along horizontal and vertical transitions. 

When the frequencies of the two symbol types are equal, the 
expected P(A) of a random sequence (grid) is close to .5, and 
deviations of magnitude _+ d from P(A) = .5 are about equally 
probable. The sampling distribution of the statistic P(A) for all 
sequences (grids) of the same size is thus nearly symmetric 
around the modal point at .5. This distribution may provide 
researchers an anchor displaying the behavior of objectively 
random binary sequences when first-order dependencies are 
considered. 

Likewise, a unimodal and symmetric function is obtained 
when second-order entropy (EN) is plotted as a function of 
P(A), as shown in Figure 1. The computation of second-order 
EN, which is a measure of the sequence's (objective) ran- 
domness, is based on the relative frequencies of all ordered pairs 
(digrams) of symbols. This is a measure of the new information, 
in bits, contributed by the second member of the pair. Because 
every member of the sequence (except the first, which is negligi- 
ble) is the second member of some pair, EN may be conceived as 
the new information (that was not contained in the immediately 
preceding symbol) added by each symbol in the sequence. Sec- 
ond-order EN is maximal (1) when all the four digrams are 
equiprobable, that is, when P(A) = .50 and no (first-order) 
dependencies exist between successive symbols. It is minimal 
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Figure 1. Entropy (EN) and linearly transformed mean apparent ran- 
domness (AR) as functions of probability of alternation. AR[ is the mean 
(n = 219) for sequences, and AR, is the mean (n = 341) for grids 
(based on the results of Falk, 1975). 
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(0) in the case of perfect alternations. In this case P(A) = 1.00, 
every symbol is completely determined by its predecessor, and 
the frequencies of the four digrams deviate maximally from 
equality. An excellent exposition of the rationale and computa- 
tion of entropy of different orders is given in Attneave ( 1959, pp. 
19-  26). Though the general problem of defining and measuring 
randomness is still unsolved because of the limitation of consid- 
ering only digrams and ignoring redundancies of higher orders, 
second-order EN affords a workable measure of objective ran- 
domness once we focus on dependencies on one preceding 
symbol. 

Falk (1975) obtained participants' randomness ratings (on a 
scale from 1 to 20) for sequences of length 21 whose P(A)s  
went from .10, .20, .30, through to 1.00 and also for binary 
grids of 10 x 10 cells with P(A)s varying from .08 to .92. 
Participants' responses were averaged for each P(A). Figure 1 
presents the apparent randomness (AR) function, which con- 
sists of these means linearly transformed to range from 0 to 1 
to allow comparison with EN. (ARx denotes apparent ran- 
domness for sequences, and ARH denotes that of grids.) As can 
be seen, the maximum of the two subjective functions is at P(A) 
= .60 instead of at .50 (the mode of EN). Sequences and grids 
with P(A)s  equally distant from .50 are not judged equally 
random. AR is negatively skewed as a function of P(A). Note, 
however, that thege functions present results averaged over many 
participants, thus suppressing the noise that characterizes indi- 
vidual responses. 

Figure 2 presents three 10 × 10 grids of 50 white cells and 
50 black cells, selected for illustration from 46 grids used by 
Falk (1975). The grids appear in the same order as their mean 
rated randomness. The P (A) of Grid B (.51 ) equals the expected 
value of such grids (the slight increase over .50 is due to the 
deviation from Bernoulli process because of the constraint of 
having 50 ceils of each color). Yet, this grid was perceived as 
less random than Grid C, which has a higher than expected 
P(A) of .63. As in the case of runs, the contiguous same-color 
zones that occur by chance make the grid appear too clustered 
to be random. Feller's (1968, pp. 160-161 ) classic example of 
people's illusory beliefs that the pattern of hits during the bomb- 
ing of London in World War II could not be random is a case 
in point. 

Figure 2. Three grids presented for randomness judgment by Falk 
(1975), ordered according to their probability of alternation and per- 
ceived randomness. 

Table 1 displays, for a variety of studies, the mean alternation 
rate (a) generated under standard instructions and (b) perceived 
as most random. Whenever necessary and possible, we con- 
verted reported summary measures into P(A). As can be seen, 
the preferred subjective P(A) of about .6 is stable over many 
studies and experimental variations. ~ 

Implications o f  Biased Randomness Judgment 

Cognitive illusions documented in several contexts outside 
the laboratory match the biases found in studies of people's 
subjective randomness. For example, Gilovich et al. (1985) 
studied beliefs concerning sequential dependencies in successive 
shots in basketball (see also Tversky & Gilovich, 1989a). They 
found a robust and widely shared belief in the phenomenon of 
the "hot hand" or streak shooting. Players, coaches, and fans, 
all believed that once a player makes a basket, his chances of 
making the next shot increase. However, massive records of 
individual players in real games analyzed by these authors show 
that actual sequences of hits and misses are largely compatible 
with the expected output of a Bernoulli process (see Larkey, 
Smith, & Kadane, 1989, and Tversky & Gilovich, 1989b, for 
the hot-hand debate). Apparently, the perception of a hot hand 
in sequences of basketball shots and of definite clustering in the 
2-D distribution of the bombing of London (Feller, 1968) are 
real-world equivalents of the experimental results in which 
chance binary sequences and grids are rated as less than maxi- 
mally random. 

In a similar vein, casino gamblers interviewed by Wagenaar 
and Keren (1988) attributed outcomes of their games not only 
to chance and skill but to another factor called luck. Good (bad) 
luck is believed to produce longer streaks of wins (losses) than 
would be obtained at random. When luck is at work, there is 
an increase in the conditional probability of winning at the 
roulette wheel given a previous win. The correspondence be- 
tween the lay theories of hot hand and luck is striking. Only a 
substitution of terms is necessary. In both cases, people con- 
fronted with random sequences of successes and failures are 
struck by the subjectively overlong runs. Rather than adjusting 
their idea of what typically happens by chance, they invoke an 
idle theory to account for these apparent deviations. 

When people invent superfluous explanations because they 
perceive patterns in random phenomena, they commit what is 
known in statistical parlance as Type I error The other way of 
going awry, known as Type H error, occurs when one dismisses 
stimuli showing some regularity as random. The numerous ran- 
domization studies in which participants generated too many 
alternations and viewed this output as random, as well as the 
judgments of overalternating sets as maximally random in the 
perception studies, were all instances of'Pype II error in research 
results. The error sometimes creeps deviously into the experi- 
mental design as well. Alberoni (1962) presented his partici- 
pants with a supposedly random binary sequence of length 49. 
Indeed, they unanimously perceived the sequence, whose P(A) 
was .81, as random. We suspect, however, that Alberoni gener- 
ated that sequence himself as a "good example" of a random 
sequence. 
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Table 1 
Mean Alternation Rate, P(A), Generated or Perceived as Most Random in Different Studies 

Reference Randomness task Size of set P(A) 

Generation 

Bakan (1960) Sequence 300 .59 
Falk a (1975) Sequence (constrained) 40 (20 of each type) .61 
Falk a (1975) 2-D grid (constrained) 10 x 10 (50 of each type) .63 
Wiegersma (1986) Sequence 120 .56 b 
Budescu c (1987, Table 2 & Sequence 20; 40; 60 .59 

Table 3) Sequence 20; 40; 60 .58 
Rapoport & Budescu (1992) Sequence 150 .59 
Kareev a (1992) Sequence 10 .61 
Budescu & Rapoport Sequence 150 .58 

(1994, Exhibit 6) 

Perception 

Wagenaar (1970a) Select most random Not reported .6 
Falk" (1975) Rate sequences 21 .60 
Falk" (1975) Rate 2-D grids 10 x 10 .6 
Wiegersma (1982) Select most random Not reported .65 
Diener & Thompson (1985) Rate sequences 20 .58 
Gilovich et al. (1985) Classify as "chance," 21 .7-.8 

"streak," ' 'alternate" 
Wiegersma Select most random 40 .63 

(1987, Experiment 1 
Experiment 2 40 .64 
Experiment 3) 40 .57 ° 

Note. The expected and most probable probability of alternation, P(A), in random productions is .5. 
Differences in decimal accuracy partly reflect differences in the reported accuracy of the original works 
(plus occasional transformations by our calculations). 2-D = two-dimensional. 
a Averaged over different age and sophistication levels. 
b As read from Figure 1 in Wiegersma (1986, 1987). 

q~vo different estimates based on the same data (of participants exhibiting negative recency). 

Explanatory Mechanisms 

Many different accounts for the biases of subjective ran- 
donmess have been proposed. The similarity of  people 's  biases 
across generation and perception tasks and experimental varia- 
tions suggests an underlying biased concept of randomness 
(Falk, 1975; Wagenaar, 1970a). This view is supported by 
Budescu's  (1987) results indicating consistent individual styles 
in randomization and by Falk's (1975) findings of moderate 
correlations between responses of the same participants to dif- 
ferent randomness tasks. Similar responses in the face of  varied 
tasks seem to indicate that the participant's performance is 
guided by the same underlying image of  randomness. In addi- 
tion, Lisanby and Lockhead ( 1991 ) reported that human-gener- 
ated strings were judged by another group of  participants to be 
random significantly more often than were random-generated 
strings. 

Psychologists are, however, not unanimous in presuming one 
underlying subjective notion of randomness. Wiegersma ( 1982, 
1986, 1987) found either no correlations or low correlations 
between participants' performances of different randomness 
tasks. A class of  explanations attributes suboptimality in ran- 
domization to variables such as motor tendencies, response sets, 
boredom, and limited attention (Tune, 1964). See Wagenaar 
(1970b, 1972b) and Budescu (1987) for a critique of these 

explanations. Treisman and Faulkner' s (1987) suggestion of  an 
internal aleatory generator, affected by the same variables as 
psychophysical responses, also belongs to the category of expla- 
nations of  generation results that reject the idea of a faulty 
concept of randomness. The same is true for Wiegersma's  
(1982) control hypothesis, which attributes repetition avoidance 
to participants' attempts to overcome perseveration of  previous 
responses, a tendency considered undesirable in speech and 
everyday situations. 

Memory-based accounts are of two apparently opposing 
types. Kareev (1992) maintains that participants' attempts to 
produce typical sequences are subject to the limitations of short- 
term memory. The shorter the subsequence within which the 
participant tries to balance the two frequencies, the greater the 
resultant alternation rate. He thus attributes suboptimality in 
generation of randomness to shortcomings of our memory. Ac- 
cording to the other approach, good memory interferes with 
participants' optimal ability: A certain level of  distraction is 
required to attain maximal independence between responses 
(Weiss, 1965). Wagenaar (1972b) found that factors that intro- 
duce diversion or increase the memory load improve the ran- 
domness of  productions. Budescu and Rapoport (1994) inter- 
fered with their participants' memory by having them compete 
in a two-person, zero-sum game (where the optimal strategy is 
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to act randomly). These participants produced sequences that 
more closely approximated randomness than did a control group 
under standard instructions. 

These two views of the role of memory in people's failure to 
mimic randomness--one blaming the finiteness of our memory 
(Kareev, 1992) and the other its very existence (Budescu & 
Rapoport, 1994) - - c a n  be subsumed under one contention: The 
culprit is our intermediate memory span. A creature with infinite 
memory capacity would achieve perfection by taking into ac- 
count all of its previous responses, whereas a creature with zero 
capacity would also produce random responses by starting from 
scratch on each step, which is the very definition of statistical 
independence (see also Bar-Hillel & Wagenaar, 1991 ). 

The explanations involving memory cannot, however, be eas- 
ily applied to perception of randomness. In particular, they can- 
not be applied to tasks in which participants view several entire 
sequences simultaneously and compare them with each other, 
as in Wagenaar (1970a), Wiegersma (1982, 1987), and our 
experiments reported later in this article. Kareev (1995a) sug- 
gests an interesting and elaborate thesis claiming that limited 
capacity of working memory, together with participants' expec- 
tation of typical subsequences, account for the biases observed 
in perception-of-randomness studies. Typical subsequences, in 
which the two symbols appear in the same percentages as in 
the entire sequence, are noted by overalternations, relative to the 
complete sequence; whereas atypical segments (subsequences) 
contain excessively long runs. The notorious negative-recency 
bias occurs because typical segments serve as a norm with which 
other segments are compared. However, Kareev's experiments, 
which support his thesis, did not present tasks of perception 
of randomness of complete sequences but rather probability- 
leaming-type tasks. These, indeed, depend strongly on partici- 
pants' memory span. 

Lopes (1982) and Kareev (1995a) puzzle over the persistence 
of people' s misperceptions of randomness in spite of experience 
and evolutionary pressures. They wonder whether these biases 
could be adaptive. People show what Kareev (1995a) calls posi- 
tive bias in their perception of the sequence's degree of serial 
correlation: They view overaltemating sequences (whose serial 
correlation is negative) as random (zero serial correlation), and 
they view random sequences as containing streaks that are too 
long (positive serial correlation). Kareev's analysis reveals that 
when the binary events in a sequence are not equiprobable 
(which occurs frequently in the real world), positive correla- 
tions are inherently more informative than negative ones. Posi- 
tive serial correlations may be profitably used to improve se- 
quential prediction at lower absolute values than negative corre- 
lations. A tendency toward repetitions may reach the point of 
allowing practically perfect prediction when the correlation is 
close to 1. In contrast, excessive alternations cannot attain the 
minimal serial correlation of - 1. Hence, he claims that people' s 
positive bias is a rational predisposition for early detection of 
a potentially more informative relationship. 

Moreover, Kareev (1995b) points out that the sampling distri- 
bution of the product-moment correlation (Pearson's r) is nega- 
tively skewed when the population correlation is positive, and 
the more so, the smaller the sample size. It follows that most 
samples (of positively related variables) one encounters in real 

life indicate a greater correlation than that in the population. 
Thus, the limited capacity of working memory may serve as an 
amplifier that helps people to avoid missing positive 
relationships. 

A compelling account of people's intuitions of randomness 
is offered by Kahneman and Tversky (1972). To be considered 
random, a sequence should be representative of its parent popu- 
lation and the process by which it was generated. Thus, a se- 
quence of coin tosses should comprise about equal numbers of 
heads and tails and display an irregular order. Furthermore, these 
essential characteristics should be manifest not only globally in 
the entire sequence, but also locally in each of its parts, thus 
satisfying what the authors call local representativeness (LR).  
A locally representative sequence contains too many alternations 
relative to chance. The gambler's fallacy is a corollary of view- 
ing chance as a self-correcting mechanism, which promptly 
takes care to restore the balance whenever disrupted. Tversky 
and Kahneman ( 1971 ) describe participants as applying the law 
of large numbers too hastily, as if they believe in "the law of 
small numbers." The presence of LR in participants' produced 
sequences and grids (under instructions of randomness) was 
tested and confirmed by Falk (1975) and was reconfirmed for 
sequences by Budescu (1987). 

Although some testable implications of representativeness 
have been repeatedly confirmed experimentally by Kahneman 
and Tversky, and the concept was fruitful in inspiring a host of 
related studies, there is no established procedure for deducing 
how the heuristic will be implemented in a specific task. It 
requires a new interpretation in every context (Kubovy & 
Gilden, 1991; Teigen, 1983). There is some circularity in LR's 
description because the irregularity, which is supposed to be 
manifest even in short segments, is as undefined as randomness. 

Although LR is convincing as an account of what many par- 
ticipants actually do when judging and generating random se- 
quences, the concept's predictive power is weak. This heuristic 
seems to offer little more than an insightful redescription of the 
phenomenon it purports to explain (Gigerenzer, 1991 ). Though 
one can infer from LR that overalternations are expected in 
subjectively random sequences, the extent of the bias cannot be 
predicted. The LR heuristic specifies neither how local partici- 
pants' span of consideration is nor how representative these 
local subsequences are supposed to be I (Falk & Konold, 1994). 

In Search o f  a Subject ive Definit ion o f  Randomness  

Despite insights gained from past attempts to account for 
people's biases in perception of randomness, the question that 
interests us m o s t - - " W h a t  is the basis of the subjective experi- 
ence of randomness?"- -has  not been answered satisfactorily. 
If we understood the processes involved in judging stimuli for 
randomness, or what implicit definition of randomness partici- 
pants employ, we might then know why they judge sequences 

Promising attempts to delineate participants' span of localness and 
the type of representativeness they try to implement when generating 
randomness are reported by Kareev (1992) and Kubovy and Gilden 
( 1991 ). 
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as they do. However, this raises again difficulties inherent in 
defining randomness. 

One major source of confusion is the fact that randomness 
involves two distinct ideas: process and pattern (Zabell, 1992). 
It is natural to think of randomness as a process that generates 
unpredictable outcomes (stochastic process according to Gell- 
Mann, 1994). Randomness of a process refers to the unpredict- 
ability of the individual event in the series (Lopes, 1982). This 
is what Spencer Brown (1957) calls primary randomness. How- 
ever, one usually determines the randomness of the process by 
means of its output, which is supposed to be patternless. This 
kind of randomness refers, by definition, to a sequence. It is 
labeled secondary randomness by Spencer Brown. It requires 
that all symbol types, as well as all ordered pairs (digrams), 
ordered triplets (trigrams) . . . . .  n-grams in the sequence be 
equiprobable. This definition could be valid for any n only in 
infinite sequences, and it may be approximated in finite se- 
quences only up to ns much smaller than the sequence's length. 
The entropy measure of randomness (Attneave, 1959, chaps. 1 
and 2) is based on this definition. 

These two aspects of randomness are closely related. We 
ordinarily expect outcomes generated by a random process to 
be patternless. Most of them are. Conversely, a sequence whose 
order is random supports the hypothesis that it was generated 
by a random mechanism, whereas sequences whose order is 
not random cast doubt on the random nature of the generating 
process. 2 

Which definition do participants adopt when they assess the 
randomness of sequences (grids) ? Our experience is that a small 
minority of participants focus on the generating process. These 
participants rate all the sequences equally, maintaining that all 
sequences of the same length are equiprobable under ran- 
domness. They are right, of course, with respect to ordered 
sequences. 3 Most participants, however, seem to realize that they 
do not have access to the unobservable source and must rely on 
properties of the output. 

What do participants attend to in this output? Are they sensi- 
tive to the information (entropy) of the sequences? There are 
some indications in the literature that behavioral variables such 
as reaction time (RT) apparently covary with the informational 
content of the stimuli. Hyman (1953) manipulated sequences' 
entropy in three ways: by changing the number of symbol types 
(zero order), the probabilities of different symbol types (first 
order), and by introducing sequential dependency of increased 
alternation rate between successive symbols (second order). He 
found that participants' RT in a choice task was linearly related 
:o the sequence' s entropy and indifferent to the method by which 
this measure of information was varied. However, Hyman 
did not investigate equal degrees of overalternations and 
overrepetitions. 

As previously described, perceived randomness is sensitive 
to different manipulations of second-order entropy. Sequences 
(and grids) with equal degrees of overalternations and underal- 
ternations are rated very differently (see the AR functions in 
Figure 1 ). This means that participants' sense of randomness 
is not based on deviations of n-grams from equiprobability, not 
even for n = 2. To find out whether some other principle may 

be guiding people's judgments, we turn to a mathematical notion 
of randomness known as complexity. 

The Algor i thmic  Definit ion o f  Randomness  

Sequences comprising a simple pattern can usually be de- 
scribed concisely. This is not the case with random sequences. 
Consider, for example, the two following binary sequences of 
length 21: 

a. O X O X O X O X O X O X O X O X O X O X O  
b. X O X X X X O O O X O O O O X O X X X O X .  

Sequence a can be described by "start with O, then X, and 
alternate all the way" or by "O  X O X . . . .  " No comparable 
condensed description can be given to Sequence b, whose P(A) 
= .50. The meaning of " . . . "  would not be clear following 
the first few characters of Sequence b, which do not allow 
extrapolation. 

The length of the most efficient description that enables recon- 
struction of a sequence conveys its complexity, a concept that 
became the focus of interest in recent years in various scientific 
and technical fields (Li & Vit~inyi, 1993 ). A popular exposition 
can be found in Gell-Mann (1994). The definition and quantifi- 
cation of complexity led to a new conceptualization of ran- 
domness of different degrees. It is intuitively clear that patterned 
sequences can be easily handled in many ways: They are easy 
to compress, memorize, dictate to a secretary, or copy, whereas 
all these tasks are much harder with a complex sequence. When 
typing the two sequences above, we gave Sequence a one quick 
look and reproduced it successfully in one attempt, whereas 
Sequence b required careful attention and repeated viewings and 
was typed in several chunks. 

In the 1960s, Kolmogorov (1965), Chaitin (see his 1975 and 
1988 articles), and Solomonov (1964) independently defined 
the complexity of a string by relying on its minimal description 
(Koppel, 1988). The concept rapidly became popular and is 
known by a variety of names (Gell-Mann, 1994, p. 35; Li & 
Vit~nyi, 1993, p. vi). Whereas Gell-Mann prefers algorithmic 
information content and Li and Vit~nyi Kolmogorov complexity, 
the labels most suitable for our discussion are algorithmic ran- 
domness or, simply, complexity. 

The algorithmic randomness of a binary-digit sequence is the 
bit length of the shortest computer program that can reproduce 
the sequence. The subjectivity or arbitrariness inherent in the 
choice of computer or language can be avoided by reference to 

2 But there are exceptions. Seemingly patternless sequences, such as 
the decimal expansion of 7r, are sometimes generated by a deterministic 
process and are therefore utterly predictable (they are considered pseu- 
dorandom, see G~ics, 1986, and Gell-Mann, 1994, pp. 46-47). On the 
other hand, primarily random processes may occasionally yield some 
finite patterned sequences (Falk, 1975; Gell-Mann, 1994, pp. 44-50; 
Zabell, 1992). 

3 This reminds us of an episode told by Gell-Mann (1994, p. 44). 
On one of his early visits to the RAND Corporation in Santa Monica, 
California, he was handed a stack including the "RAND Table of Ran- 
dom Numbers." A small piece of paper fluttered out of it and fell to the 
floor. When he picked it up, he found it was an errata sheet to the tables. 
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an idealized computer, or a universal Turing machine (see Kop- 
pel, 1988). In fact, the strength of the algorithmic approach lies 
in the essential invariance of this measure of complexity, despite 
different hardware and software (Chaitin, 1975; G~ics, 1986; 
Li & Vitfinyi, 1993). 

Although it cannot always be determined easily (Gell-Mann, 
1994, pp. 38-41) ,  algorithmic randomness can be viewed as 
an intrinsic, or objective, attribute of a sequence. A finite string 
is random when it has maximum complexity. (Infinite sequences 
having maximum complexity are incalculable by any finite algo- 
rithm.) A sequence of maximal complexity cannot be calculated 
by any algorithm whose bit length is appreciably less than the 
bit length of the sequence itself. The simplest way to specify a 
random sequence is to provide a copy of it. Such a sequence is 
incompressible. 

This definition of randomness has strong intuitive appeal be- 
cause strings that are incompressible must be patternless. A 
pattern could have been used to reduce the description length 
(Ford, 1983; Li & Vit,~inyi, 1993). The definition also has the 
advantage of applying to outputs rather than to processes and 
to finite and infinite sequences as well. The complexity measure 
provides quantification of different degrees of randomness on 
a continuum between the extremes of complete predictability 
and total randomness, as does entropy. Unlike entropy, however, 
the complexity definition is not limited to a certain order of 
dependency. Additionally, complexity is the easier of the two to 
understand. 

Another way to quantify the randomness of a sequence, de- 
scribed in Garner (1970), is by using the size of the set of 
similar sequences. All sequences of size n, with equal frequen- 
cies of Xs and Os, may be sorted into disjoint sets according 
to their P(A). Sequences within each equivalence set are similar 
in having the same number of runs, which is linearly related to 
P(A). The smallest sets comprise the most redundant, or least 
random, sequences such as OXOX . . . .  which belongs to a 
set of Size 2 because only XOXO . . . has the same P(A). 
Similarly, there are only two sequences of two runs, corroborat- 
ing the title of Garner's (1970) article, "Good Patterns Have 
Few Alternatives." In contrast, the most random sequences, 
whose P(A) = .50, can be made up in many different ways, 
and their set size is maximal (see also Kubovy & Gilden, 1991; 
Teigen, 1984). The same picture emerges by considering the 
sampling distribution of the number of runs (Feller, 1968, p. 62; 
Siegel, 1956, p. 138). This distribution peaks over the number of 
runs, which renders P(A) of about .5 and is lowest at the two 
ends. 

However, judging the randomness of a sequence by its loca- 
tion on the sampling distribution of the number of runs is based 
only on dependencies of the first order, whereas algorithmic 
randomness captures (in principle) all types of regularities in 
the sequence. For instance, the sequence O O X X O O X X . . .  is 
clearly patterned to permit a concise description (given a di- 
gram, the next symbol is determined). However, P(A) of the 
sequence is .50, and its number of runs is as expected under 
randomness. A runs test is "fooled" by this sequence (Mogull, 
1994), as is second-order entropy, which is maximal (i.e., 1) 
for this sequence. 

When the complexity measure is used to sort long sequences 

into random and nonrandom (based on some reasonable cutoff 
point), the results usually agree with those obtained by means 
of stafistcal tests (which are based on a predetermined level of 
significance). A detailed exposition of the relation between the 
complexity and the statistical definitions of randomness can be 
found in Fine (1973). The mathematician Martin-L6f (1966) 
found that sequences that are incompressible can be shown to 
possess the various properties of randomness (stochasticity) 
known from the theory of probability. On the whole, we can 
satisfactorily identify incompressibility with randomness (Ford, 
1983; Li & Vitfinyi, 1993, chap. 2). 4 

The concept of complexity and its algorithmic definition 
aroused interest beyond their technical use in mathematics and 
computer science. Physicists have written on complexity (Ford, 
1983), and it has recently found its way into popular scientific 
literature (Gardner, 1989, pp. 169-170; Gell-Mann, 1994; 
Paulos, 1991, pp. 47-51,  1995, pp. 120-125) as well as into 
philosophical writings (Dennett, 1991 ). Recently, Chater (1996) 
based his argument, that the simplicity and likelihood principles 
in perceptual organization are equivalent, on mathematical re- 
suits in complexity theory. Psychologists who study subjective 
randomness have also described randomness as complexity 
(Gilmore, 1989; Kahneman & Tversky, 1972; Kubovy & 
Gilden, 1991; Lopes, 1982). However, they did not investigate 
the possibility that mathematical complexity's approach could 
provide an explanation of the way people view randomness 
intuitively. In what follows, we present our recent attempts to 
do so. We first describe the background and rationale of this 
research and briefly review a preliminary experiment. Then we 
report three new experiments that probe the relationship be- 
tween apparent randomness and subjective complexity. 

Apparent  Randomness  as Subjective Complexity 

We suggest that participants asked to judge the randomness 
of a sequence attempt to make sense of the sequence in some 
way. For example, they might implicitly try to encode the se- 
quence before passing judgment. Kahneman and Tversky (1972) 
raised this possibility. They argued that "random-appearing se- 
quences are those whose verbal description is longest" (p. 436), 
and that "apparent randomness, therefore, is a form of complex- 
ity of structure" (p. 437). However, they did not pursue this 
psychological hypothesis experimentally. 

Subjective complexity, in turn, has been studied by psycholo- 
gists independently of the study of perceived randomness (e.g., 
Garner, 1970; Glanzer & Clark, 1962, 1963; Vitz & Todd, 
1969). A comprehensive review of theories and behavioral tasks 
involving patterned sequences can be found in Simon (1972). 
Tasks in which participants have to deal with a sequence's com- 
plexity included judgment of "goodness," verbal description of 
the sequence, reproduction, memorization, and discrimination 

4 The equality between incompressible and what is ordinarily consid- 
ered random is, however, not perfect. According to the algorithmic ap- 
proach, the random-number generator built into most computers is not 
properly named. It is really a program describable in a few bits (Dennett, 
1991 ), although its productions have the appearance of randomness 
relative to a certain set of tests (Lopes, 1982). 
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between sequences. Variables such as accuracy of pattern recall, 
description length, and rated complexity all correlated consider- 
ably with each other, suggesting that diverse measures of subjec- 
tive complexity are essentially interchangeable. 

The Research Hypothesis 

Our goal was to test the psychological validity of the complex- 
ity approach to randomness. In particular, we tested the hypothe- 
sis that randomness judgments are arrived at through some tacit 
attempt to encode the sequence. A close alternative formulation 
is that participants tacitly assess the sequence's difficulty of 
encoding (complexity) in order to judge its randomness. 

In our experiments, we measured the subjective complexity 
of binary sequences of the type used for perception of ran- 
domness. We correlated these measures with independent ratings 
of the sequences' randomness. We used several alternative meth- 
ods to quantify subjective complexity, all based on measuring 
the difficulty of encoding these sequences. Participants were 
given two different tasks of encoding sequences: either memoriz- 
ing or copying. In both cases, we obtained measures of their 
difficulty in performance of these tasks and of their assessment 
of how difficult the task would be without actually doing it. All 
these measures were meant to quantify participants' difficulty 
in encoding a given sequence. 

Two different predictions, both based on plausible arguments, 
can be made. According to the first prediction, difficulty of 
encoding would be highly correlated with the sequence's en- 
tropy (EN). Irrespective of the direction of deviation of the 
sequence's P(A) from .50, overalternating and underalternating 
sequences whose P(A) is equally distant from .50 are objec- 
tively as redundant. Regardless of how they might rate se- 
quences, participants, in principle, should use this redundancy 
equally well for encoding the two kinds of sequences. 

According to the second prediction, difficulty of encoding 
would be highly correlated with the sequences' apparent ran- 
domness (AR) and less so with EN. This prediction differs from 
the first one in expecting encoding difficulty to be negatively 
skewed as a function of P(A) and to peak at values greater than 
.50. This would obtain if our hypothesis that the judgment of 
randomness is mediated by an implicit attempt to encode the 
sequence is true. 

While Hyman's (1953) study (reported earlier) seems to 
support the first prediction, we found in two studies some indica- 
tions that support the second. Glanzer and Clark (1962) asked 
participants to decide whether two binary sequences were the 
same or not. An accuracy score was computed for each sequence 
and plotted against the number of runs in the sequence 
(Glanzer & Clark, 1962, Figure 2). Converting number of runs 
into P(A), and low (high) accuracy scores into high (low) 
difficulty of encoding, yields a negatively skewed function peak- 
ing over P(A) = .71. Diener and Thompson (1985) found that 
in making a decision of whether a given sequence was generated 
by a random process, RT was longer for "yes" than for "no"  
responses. This result is compatible with the hypothesis that 
judging randomness entails some form of processing (encoding) 
the sequence and that encoding is hardest when randomness is 

perceived to be maximal (i.e., when the sequences overalternate 
to some degree). 

Preliminary Experiment 

In our first small-scale study (Falk & Konold, 1994), we 
used the same two sets of sequences of length 21 (10 Xs and 
11 Os or vice versa) for which Falk (1975) had obtained ran- 
domness judgments from 219 participants. A set comprised 10 
sequences with P(A)s  of .10, .20 . . . . .  1.00. We chose the 
task of memorization for measuring subjective complexity. Each 
of 10 participants viewed in random order all 10 sequences of 
one set on a computer's screen. Participants were instructed to 
study each sequence until they could type it out from memory. 
Memorization time was recorded; typing time was not (see 
Konold & Falk, 1992, for details of the method). 

It turned out that participants failed to utilize the cues, or the 
redundancy, inherent in some of the overalternating sequences. 
Mean memorization time (MT) was maximal for P(A ) of .70, 
and it was negatively skewed as a function of P(A), much like 
mean apparent randomness(AR; see Figure 1 ). The correlation 
between AR (as obtained by Falk, 1975) and MT (as obtained 
by Falk & Konold, 1994, for the same sequences) was .89, 
whereas between AR and EN it was .54. These results accord 
with the second prediction. Perceived randomness was better 
predicted by the sequence's difficulty of encoding than by its 
objective degree of randomness. The hypothesis that participants 
base their judgment of randomness on an implicit attempt to 
encode the sequence is compatible with the results. 

Difficulty of encoding, which we suggest accounts for per- 
ceived randomness, is a subjective variable. To find a simple 
objective way to predict sequences' difficulty of encoding and 
judged randomness, we adopted a technique developed by Falk 
(1975). This method assigns each sequence a numerical score 
based on the number of pure runs and runs of alternations. 

Kahneman and Tversky (1972) suggest that when trying to 
dictate a sequence of binary symbols, one uses shortcut expres- 
sions such as "four Xs," or "XO three times." The number of 
these chunks might provide an index of the difficulty of encod- 
ing of the sequence. However, forming the chunk XO three times 
is probably more difficult than four Xs. The former requires 
more counting and checking. Therefore, the proposed score, 
which we call the difficulty predictor, assigns double weight 
to alternating runs. To quantify the subjective complexity of a 
sequence, one adds twice the number of alternating runs to the 
number of pure runs. Weighing runs of alternations twice as 
heavily makes sense considering the fact that the unit repeating 
itself in these runs is twice as long as in pure runs. 

The procedure does not render a unique score for a given 
sequence, because there are no clear boundaries between pure 
and alternating runs. For instance, the sequence "X X X O X 
O" could be assigned a score of 4 (X X X O X O) or 3 (X X 
X O X O) depending on how the sequence is partitioned. A 
unique score for the sequence may be obtained if we agree to 
partition the sequence to achieve the lowest possible number. 

Consider a sequence of P(A) = .20: 

X X X X X X O O O X X O O O O O O O X X X .  
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The score of  this sequence is 5, as obtained by listing five 

uniform runs. Another sequence, 

X X O X O X O X O X O O O X X O X O X O X  

whose P(A)  = .80, is partitioned into five chunks, two of  which 
are doubly weighted because they are runs of  alternations. The 
score of  this sequence is 7. This may explain why, although 
these two sequences deviate equally from the expected P(A)  = 
.50, the overalternating one is harder to encode and is also 

perceived to be more random. 
The difficulty predictor was computed retrospectively for all 

the sequences used by Falk (1975) in an attempt to account for 
the AR function of these sequences. She found a correlation 
coefficient of  .90 between mean difficulty predictor (DP) and 
AR (as compared with .54 between entropy and AR).  Prospec- 
tively, DP, as predictor, yielded a correlation coefficient of .96 
with MT of  these sequences (Falk & Konold, 1994). Thus, 
whatever strategies participants employ in memorizing the se- 
quences, the difficulty of  the task is highly predictable by the 

above weighted sum. 

Overview o f  the Exper iments  

The number of  participants in the preliminary experiment was 
small, and only one task (memorizat ion)  was used to measure 
difficulty of  encoding. To replicate and extend these findings, 
we carried out three experiments. The first was an extended 
replication of  Falk and Konold 's  (1994) pilot study. In addition, 
we examined the relationship between assessments of difficulty 
of  memorization and apparent randomness in order to test the 
hypothesis that implicit assessments of  encoding difficulty medi- 
ate the judgment  of randomness. In the second experiment, we 
used a different operational definition of  subjective complexity 
based on performing a copying task. 

Sequences of  length 21 were used in the first two experiments. 
In the third experiment, we extended the inquiry to longer se- 
quences. We also used a more concrete method of  eliciting 
participants'  assessments of  the difficulty in copying a sequence. 

A between-subjects design was used in all the experiments. 
All the results were summarized at group level and analyzed by 
using group means. In all cases, we tested the efficacy of  our 
a priori difficulty predictor. 

E x p e r i m e n t  1 

In this experiment, memorization time measured a sequence 's  
difficulty of  encoding (subjective complexi ty) ,  and participants'  
ratings assessed the randomness of  sequences and their difficulty 

of  encoding. 

Method  

Materials. Four alternative sets of sequences of length 21 were used 
(two of the four were the same as the sets used by Falk, 1975, and 
Falk & Konold, 1994). Each set comprised 10 sequences whose P(A )s 
ranged from. 10 to 1.00 in intervals o f .  10. Half the sequences had 11 
Os and 10 Xs, and the other half vice versa (in a counterbalanced 
design). All sequences began and ended with the character of frequency 

11. In this way, there were 10 transitions after Xs and 10 after Os, and 
the conditional probability of alternation following either X or O was 
the same as the sequence's total P(A). Moreover, these transition proba- 
bilities obtained whether a participant read the sequence from left to 
right or from right to left (the first language of some of our participants 
was Hebrew). 

Barring the constraints mentioned, the structure of each sequence was 
randomly determined. We computed the difficulty predictor score for 
every sequence. The score was 3 when P(A) was .10 or 1.00, and 5 for 
P(A) of .20. When P(A) was in the range .30 to .90 there was some 
variation in the scores of sequences of the same P (A) in the four different 
sets. Linearly transformed mean difficulty predictors (DP) are displayed 
as a function of P(A) in Figure 5, together with the results of Experi- 
ments 1 and 2. 

For the judgment of randomness, the 10 sequences of every set were 
printed, in random order, in 10 lines on a one-page form. This allowed 
participants to view the sequences simultaneously and compare them 
with each other. Each set of sequences appeared in four different random 
orders, which resulted in 16 forms. These same 16 sets of sequences, 
in the same format but with different instructions, served for the task 
of assessing how difficult a sequence would be to memorize. For the 
actual memorization task, the sequences were displayed, one at a time, 
on a computer screen. 

Participants. Ninety-seven volunteers participated in the ran- 
domness judgment part of the experiment. About the same number of 
participants received each of the 16 forms. Another 80 participants com- 
pleted the memorization task; they were equally divided among the four 
alternative sets of sequences. These participants included high school 
and college students from the United States (Massachusetts and Minne- 
sota) and Israeli students mostly from the Hebrew University of Jerusa- 
lem. Another group of 136 participants assessed sequences' difficulty 
of memorization. They were roughly evenly distributed among the 16 
forms. These were all students (high school, teachers college, and univer- 
sity) from Israel. None of our participants were students majoring in 
statistics or mathematics. 

Procedure. The judgment-of-randomness forms were administered 
to small groups of participants in a classroom setting. They were in- 
structed to "rate each sequence on a scale of 0 to 10 according to your 
intuition of how likely it is that such a sequence was obtained by flipping 
a fair coin." They were advised to inspect all 10 sequences before 
assigning any rating and then to give a value of 10 to the sequence or 
sequences most likely and a value of 0 to the sequence or sequences 
least likely tO have been obtained by flipping a coin. Only then was it 
recommended that they rate the remaining sequences. The procedure 
and instructions for assessing memorization difficulty were essentially 
the same. Instead of rating randomness, the participants were asked to 
rate the difficulty of memorizing the sequence. 

For the actual memorization task, participants were individually pre- 
sented with the sequences on a Macintosh computer. Each sequence was 
displayed separately on a line numbered from 1 to 21 (Figure 4A). 
Participants were instructed to study each sequence until they could 
reproduce it from memory. When a participant was ready, he or she hit 
the return key. This caused the target sequence to be masked. The partici- 
pant then typed the response sequence on a numbered line provided on 
the screen. When finished, the participant again hit the return key. If the 
response sequence was correct, the participant could go on to the next 
sequence. If it was incorrect, the display showed the target sequence 
again and informed the participant where the first error occurred and 
how many errors were made. Then the participant got another chance 
to view and then type the sequence. This process could be repeated until 
the sequence was correctly reproduced. The participants had the option 
to skip to the next sequence after five failed attempts. 

The computer recorded the total time the target sequence was dis- 
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played. Participants were informed that time spent typing and editing 
the sequence was not being recorded and that the objective was to try 
to minimize their total viewing time. 

The order of presentation of the 10 sequences was randomly deter- 
mined for each participant by the computer program. The 10 experimen- 
tal sequences were preceded by four practice sequences (from another 
set) whose P (A) s were .20, .90, .50, and .30 (always presented in that 
order). Participants were not informed that these were practice trials. 
The experiment lasted about 45 minutes. Completing the task required 
effort and concentration, but most participants appeared highly moti- 
vated by the task. 

Results and Discussion 

No differences were evident between the results of  U.S. and 
Israeli participants or between college and high school students. 
We therefore pooled the results across all participants in a given 
task. 

We used the following abbreviations for the three response 
variables measured in this experiment: apparent randomness: 
AR; memorization time: MT," and assessed difficulty of memori- 
zation: AD. Technically, these labels designate group means of  
the respective raw measurements, subject to some additional 
transformations as explained below. 

For every P(A), we computed the mean randomness rating 
across the four sets and 97 participants and the mean rating of  
memorization difficulty across the four sets and 136 partici- 
pants. The 10 AR values were obtained by linearly transforming 
these means so as to range from 0 to 1. The same was done to 
obtain the 10 ADs. This permits comparison of AR and AD with 
second-order entropy (EN), which is an objective measure of  
the randomness of  these sequences, satisfying 0 --< EN <- 1. 

In the memorization task, 19 participants who had skipped 
at least one sequence were deleted from the analysis, leaving 
80 participants who memorized all 10 sequences. Because there 
were substantial differences among participants in memorization 
times, the 10 memorization times of  every participant were stan- 
dardized prior to averaging across all participants for each 
P(A). This procedure gives equal weight to every participant. 
The 10 MT values were obtained by transforming these means 
linearly to range from 0 to 1. 

Figure 3 presents AR, MT, and AD alongside EN as functions 
of  the sequences' P(A). Comparing the three response functions 
with the sequences' (objective) randomness (EN), we see that 
the response variables peak at P ( A ) s  greater than .50, where 
EN is maximal, The two highest points of  all three functions 
occur at P ( A ) s  of  .60 and .70. As in previous studies, AR is a 
negatively skewed function. Moreover, difficulty of  encoding, 
whether measured by participants' performance (MT) or by 
their assessments (AD), behaves very much like AR. These re- 
suits fit the second prediction concerning the difficulty-of-en- 
coding function. 

Some incidental performance results replicate the asymmetry 
of  the MT function. Participants were not instructed to minimize 
the number of  times they viewed a sequence when memorizing 
it (they were only instructed to minimize total viewing time).  
Nevertheless, the number of  times a sequence was viewed is 
another indicator of  its difficulty because every viewing beyond 
the first is a result of  an error in reproducing the sequence. Mean 

number of  viewings was negatively skewed as a function of  
P(A), peaking over .60. In addition, the 48 sequences skipped 
by the 19 participants deleted from the analysis were similarly 
distributed as a function of  P(A) with a mode of  .70. The 
correlations with MT were .96 for mean number of  viewings 
and .93 for number of skipped sequences. 

Table 2 presents the correlations between all the pairs of  
variables involved in this experiment and in Experiment 2. The 
pattern of  the correlations clearly shows that perceived ran- 
domness (AR) is correlated more strongly with memorization 
difficulty (MT and AD) than with the sequence's objective de- 
gree of randomness (EN). Furthermore, the difficulty predictor 
(DP) is highly correlated with the response variables (MT, AD, 
andAR). The respective correlations of  entropy (EN) with these 
response variables are lower. 

Difficulty of  encoding (whether measured by performance or 
by assessments) thus predicts perceived randomness better than 
does the sequence's degree of  randomness. This result is com- 
patible with the hypothesis that implicit encoding (or an assess- 
ment of  the difficulty thereof) mediates the judgment of a se- 
quence's  randomness. 

It should be noted that participants had to concentrate and 
persist to memorize some of the sequences of  length 21. It may 
seem that a participant would take advantage of  any kind of 
regularity in the stimuli to succeed in such a demanding task. 
The first prediction, that participants' encoding difficulty would 
closely follow the informational content of the sequences, was 
based on such a premise. Yet, participants were oblivious to 
slight-to-moderate degrees of  deviations from randomness in 
overaltemating sequences. Moreover, these sequences were even 
harder for them to memorize than were the most random se- 
quences. This was a real performance difficulty. No judgment 
of randomness or of local representativeness in the sequence 
could have been involved in performing this task. Although 
the LR heuristic could have been used to judge the sequences' 
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Figure 3. Entropy (EN) and linearly transformed means of apparent 
randomness (AR; n = 97), memorization time (MT; n = 80), and 
assessed difficulty (AD; n = 136), as functions of the sequence's proba- 
bility of alternation (Experiment 1 ). 
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Table 2 
lntercorrelations Between Entropy, Difficulty Predictor, and Response Variables: Experiments 1 and 2 
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Variable DP MT AD CD AR 

EN: entropy; determined by P(A) 
DP: difficulty predictor; computed, based on the actual sequences 
MT: memorization time; standardized; mean of 80 participants; Experiment 1 
AD: assessed difficulty of memorization; mean of 136 participants; Experiment 1 
CD: copying difficulty; standardized no. of chunks plus standardized copying time; mean of 80 

participants; Experiment 2 
AR: apparent randomness; mean rating of 97 participants; Experiment 1 and 2 

.81 .79 .92 .82 .63 
- -  . 99  . 97  . 97  .95  

- -  . 9 4  .91 . 9 4  

- -  . 9 6  . 87  

- -  . 9 4  

Note. All variables are means, computed for each probability of alternation, P(A), across four alternative sets of sequences of length 21. 

randomness, the similarity between difficulty of  memorization 
and AR supports the underlying mechanism of tacit encoding. 

E x p e r i m e n t  2 

In this experiment, we compared the randomness ratings of  
the 97 participants obtained in Experiment 1 with the difficulty 
of other participants in copying these sequences. The copying 
could be conducted in stages by breaking the sequence into 
chunks to ease the encoding task. This might presumably give 

the participant a better chance of  spotting helpful cues in the 
sequences and thus perform more in accord with the sequences' 
informational content (EN). 

Method 

Materials. The same four sets of sequences used in Experiment 1 
were used for the copying task. 

Participants. Eighty volunteer high school and college students from 
Massachusetts performed the copying task. Each set of sequences was 
given to 20 participants. 

Figure 4. A: Screen display of the target sequence in Experiments 1 and 2, prior to masking. B: Screen 
display for Experiment 2, in which the target sequence is masked (top) while the participant enters the first 
chunk. 
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Procedure. Every participant performed the copying task individu- 
ally. Each sequence was displayed separately on the computer, as in 
Experiment 1 (see Figure 4A). Participants were instructed to look at 
each sequence carefully and copy it making no errors while trying to 
do so as efficiently as possible. Pressing the return key caused the target 
sequence to be masked. The participant then started typing the sequence 
as far as they remembered on a numbered line provided on the screen 
just below the target sequence. Figure 4B shows the first chunk typed 
by a participant while the target sequence is masked. After entering 
as much of the sequence as they remembered, the participant hit the re- 
turn key. 

If the first chunk was copied correctly, the rest of the sequence, 
beginning just to the right of the copied chunk, would reappear. The 
participant would then proceed to learn and copy another segment of the 
sequence. The process continued until the entire sequence was correctly 
copied. If there was a mistake in any chunk, a note would appear on 
the screen. That chunk would reappear for extra viewing and retyping 
until copied correctly. A practice sequence of P(A) = .20 was used to 
demonstrate the task. Participants were told that time spent viewing the 
target sequence wa~ recorded by the computer, whereas time spent copy- 
ing the sequence was not. They were instructed to minimize total viewing 
time and the number of chunks without making errors. 

Following the first practice trial, three additional practice sequences 
whose P(A)s were, in turn, .90, .50, and .30 were presented without 
informing the participants that these were practice trials. These were 
followed by the 10 experimental trials. The order of presentation of the 
10 sequences was randomly determined for each participant. All the 
participants completed the task, which lasted about 15 minutes. 

Resu l~  

Many participants copied highly patterned sequences com- 
pletely in one chunk. In this case, the task reduced to the memo- 
rization task of  Experiment 1, and viewing time tended to be 
short. In the case of  harder sequences, most participants accom- 
plished the task in several chunks, and the overall viewing time 
tended to be longer. However, the association between number of  
chunks and viewing duration is far from perfect. The correlation 
coefficient between the two sets of  800 raw scores (80 partici- 
pants, each responding to 10 sequences) is .  12. After standardiz- 
ing the 10 scores of  each variable for every participant, this 
correlation becomes .44 (individual correlations range from .02 
to .90) indicating that each of the two variables contributes 
some new information. Indeed, there is possibly some trade-off 
between these variables. We, therefore, used a composite mea- 
sure of  both variables to quantify a sequence's copying difficulty. 

For every participant, we standardized the 10 viewing times 
and the 10 numbers of  chunks. Then we added the two standard 
scores to obtain a difficulty score for each sequence. These 
difficulty scores were averaged across the 80 participants for 
each P(A) .  The function of  copying difficulty (CD) was ob- 
tained by linearly transforming these means to range from 0 to 
1. Figure 5 presents CD as a function of the sequence's P(A)  
alongside the difficulty predictor (DP) of the same sequence 
and AR and MT of Experiment 1. 

In places, it is not easy to distinguish between the curves of  
the different functions in Figure 5. These four curves, which 
display means of group responses (or of  several sequences' 
scores),  are very similar to each other. Indeed, CD as well as 
M T - - t h e  measure of  encoding difficulty in Experiment 1 - -  

behave much like the apparent-randomness function, as does 
the (a priori computed) DP. The two highest points of  all four 
functions correspond to P ( A ) s  of  .60 and .70. The vertical line 
at P(A)  = .50 (the axis of  symmetry of  the objective-ran- 
domness function) highlights the negative asymmetry of these 
functions. 

In addition, as can be seen in Table 2, CD is highly correlated 
with DP and withAR. The results of  Experiment 2 thus replicate 
the findings of  Experiment 1: Difficulty of  encoding, operation- 
ally defined by CD in the present experiment, is largely predicted 
by the DP variable, and it deviates from objective randomness 
in the same direction and to the same degree as does apparent 
randomness. Copying the sequence in parts does not seem to 
reduce the bias characterizing the one-stage memorization task 
of Experiment 1. 

E x p e r i m e n t  3 

In this experiment, we asked participants to assess the diffi- 
culty of  copying a sequence by breaking their assessments into 
stages. Conceivably, this more analytic procedure increases the 
chance of  discovering statistical regularities. To extend the gen- 
erality of  our findings, we used longer sequences and obtained 
randomness ratings for them as well. 

Method 

Materials. Eight new alternative sets of sequences of length 41 were 
created at random, subject to the following constraints. As before, a set 
comprised 10 sequences of P(A)s ranging from .10 to 1.00. Half the 
sequences had 20 Xs and 21 Os and the other half vice versa, the 
character of frequency 21 always being the first and last in the sequence. 
All these features were counterbalanced with respect to each other. We 
computed the difficulty-predictor score (number of pure runs plus twice 
the number of alternating runs) for each sequence and averaged these 
scores across the eight sets for each P (A). The function DP was obtained 

0.6-] " O; 
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0.2 CD 
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Figure 5. Linearly transformed means of difficulty predictor (DP; 
across 4 sets), copying difficulty (CD; n = 80), and apparent ran- 
domness (AR) and memorization time (MT; repeated from Figure 3), 
as functions of the sequence's probability of alternation (Experiments 
l and 2). 
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Table 3 
lntercorrelations Between Entropy, Difficulty Predictor, and 
Response Variables: Experiment 3 

Variable DP SR AR 

EN: entropy 
DP: difficulty predictor; computed 

on actual sequences 
SR: segmentation and rating; 

mean of 60 or 58 participants a 
AR: apparent randomness; mean 

rating of 175 participants 

.87 .90 .68 

- -  .98 .95 

- -  .91 

Note. All variables are means, computed for each probability of alter- 
nation, P(A), across eight alternative sets of sequences of length 41. 

Sixty participants received odd (.10, .30 . . . . . .  90) P(A)s, and 58 re- 
ceived even P(A)s. 

Figure 6. Entropy (EN) and linearly transformed means of difficulty 
predictor (DP; across 8 sets), apparent randomness (AR; n = 175), 
and segmentation and rating (SR; n = 60 or 58), as functions of the 
sequence's probability of alternation (Experiment 3). 

underneath each segment a number from 1 to 3 signifying how 
difficult it would be to copy ( 1 = easy; 2 = medium; 3 = difficult). 

Results  

by linearly transforming these 10 means to range from 0 to 1 (see Fig- 
ure 6). 

For the judgment of randomness, the 10 sequences of every set were 
printed on one form, as in Experiment 1. Each set appeared in two 
different random orders, thus yielding 16 different forms. For the assess- 
ment-of-copying-difficulty task, the sequences of each of the eight sets 
were split into two halves, yielding 16 different forms. One half con- 
tained sequences with odd P(A)s (,10, .30 . . . . . .  90) and the other 
contained even P(A)s.  This was done to reduce the time required to 
complete the task. The five sequences of each half were printed spa- 
ciously, in a random order, below the task instructions. A second page 
with additional instructions was stapled to each form. 

Participants, Randomness ratings were obtained from 175 volun- 
teer, undergraduate biology students from the Hebrew University of Jeru- 
salem. About the same number of participants responded to each of the 
16 forms. Another 118 volunteer participants from Israel of a range of 
ages and variety of occupations participated in the difficulty-assessment 
task. They were divided fairy evenly among the 16 forms. No statisti- 
cians, mathematicians, or students majoring in these areas were included. 
Sixty participants responded to forms with odd P(A)s  and 58 to even 
e(A)s.  

Procedure. Participants responded to the randomness-judgment 
forms in groups in a classroom setting. The instructions were as in 
Experiment 1 except that the scale ranged from 1 to 10 instead of from 
0 to 10. The assessment-of-copying-difficulty task was administered 
individually to each participant. The instructions were: 

Below are 5 sequences of 41 characters each. Imagine that you 
have to copy the sequences on the back side of the page. Usually, 
such sequences are copied in chunks. Try to divide each sequence 
as you would if you were to copy it in the fastest and most efficient 
way. On one hand, the number of segments (no. of page turnings) 
should be minimized, and on the other hand, one has to remember 
them as accurately as possible. Mark your division by perpendicular 
lines that cut the sequence into chunks. 

When the participants finished the task of dividing the sequences, they 
turned to the next page where they were instructed: 

Now, please go back to the sequences that you have divided, Write 

As before, randomness  ratings were averaged across all parti- 
cipants (175 )  and sets (8 )  for each P(A) ,  The function AR in 
Figure 6 shows these 10 means t ransformed linearly to [0, 1]. 
In the difficulty-assessment task, we first summed the ratings 
of  all segments to obtain a difficulty score for each sequence 
as rated by every participant. These scores were averaged across 
all participants for each P(A ). The segmentation and rating 
(SR) function was obtained by linearly t ransforming these 
means to [0, 1]. 

Figure 6 presents AR, SR, DP ( the sequence 's  computed dif- 
ficulty predictor) ,  and the objective randomness  index EN as 
functions of  P(A) .  Clearly, the negatively skewed AR function 
is replicated for sequences of  length 41 ( the two highest  points 
are again over .60 and .70).  The SR function, al though peaking 
over .50, is also negatively skewed (its second-highest  point  is 
at .70).  Apparent  randomness  (AR) is better approximated by 
the assessed difficulty of  encoding, SR, than it is by EN (see 
also correlations in Table 3) .  As in Experiment  1, DP is highly 

Table 4 
Some Features o f  Three Studies of  the 
Apparent-Randomness (AR) Function 

Source 

Present research 
Falk 

Study's feature (1975) Experiment 1 Experiment 3 

N 219 97 175 
Sequence length 21 21 41 
Alternative sets 2 4 8 
Rating scale 1-20 0-10  1 - 10 
Procedure of rating Sequential a Simultaneous b Simultaneous b 

a Sequences (shown one by one) comprised cards of two colors. Judg- 
ment required: likelihood that the deck of cards had been well shuffled. 
b See Method section for Experiments 1 and 3. 
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predictive of the assessed-difficulty measure (SR) and of judged 
randomness ( AR ) . 

General Discussion 

The Apparent-Randomness  Funct ion 

Three studies (Falk, 1975; and our Experiments 1 and 3) 
independently obtained the complete mean-rated-randomness 
function of sequences of equiprobable binary symbols for a wide 
range of P(A)s. The experiments differed in several respects 
including the length of sequences, rating scale, and format of 
sequence presentation (see Table 4). Despite these variations, 
the results of the studies are remarkably uniform. The three 
functions have the same negatively skewed shape (see the AR 
functions in Figures 1, 3, and 6). The palrwise correlation coef- 
ficients between the AR values of the three studies are .96, .98, 
and .99. These coefficients are exceptionally high, even when 
allowing for the inflation of correlations when means are used 
(Freedman, Pisani, Purves, & Adhikari, 1991, pp. 140-141 ). 
The high correlations attest to the robustness and prevalence of 
the bias toward alternations in the perception of randomness. 

We computed weighted means of ARs of the three studies for 
each p ( A )  and linearity transformed the results to obtain the 
aggregate variable AR, which ranges from 0 to 1. Table 5 shows 
these aggregated AR values (N = 491 ) along with second-order 
entropy (EN) of the same sequences. The correlation coefficient 
between AR and EN is only .62. 

One should bear in mind that the AR function in Table 5 is 
averaged over many participants. Individual participants' func- 
tions vary considerably (Budescu, 1987; Wagenaar 1972b). 
Still, this function is universal in the sense of holding, on the 
average, for varied groups of participants (American, Israeli, 
different ages, educational levels, etc.). 

Our studies are restricted to binary sequences in which each 
alternative appears about equally often. Future research should 
generalize the apparent-randomness results and the findings con- 
cerning encoding difficulty to two or three dimensions and to 
more than two symbols in different relative frequencies. 

Table 5 
Summary: Apparent Randomness (AR) and Entropy (EN) as 
Functions o f  the Sequence's Probability of  Alternation, P(A) 

P~)  AR EN 

• 1 0 .47 
.2 .27 .72 
.3 .41 .88 
.4 .66 .97 
.5 .83 1.00 
.6 .99 .97 
.7 1.00 .88 
.8 .90 .72 
.9 .62 .47 

1.0 . 24  0 

Note. AR values are (linearly transformed) weighted means of results 
of three studies (Experiments 1 and 3 and Falk [1975]; N = 491). 

The Diff iculty-of-Encoding Function 

The results regarding the peak of the apparent-randomness 
function substantiate a phenomenon previously observed by psy- 
chologists. The results concerning the different functions (MT, 
CD, AD, and SR ) that measure difficulty o f  encoding (DE) are 
more surprising. We refer to these four variables collectively as 
DE. In all three experiments, DE is negatively skewed as a 
function of P(A)  regardless of task and of whether the measure 
of difficulty is based on performance or on assessment. 

Results of the performance tasks, in particular, cannot easily 
be explained as artifacts of task interpretation. When partici- 
pants must efficiently and accurately transcribe a sequence, 
whether by memorizing it as a whole or by copying it in parts, 
they probably take advantage of any sequence regularities they 
notice. It is therefore surprising that one type of regularity (over- 
repetitions) is readily utilized, whereas the same degree of regu- 
larity of the complementary type (overalternations) is appar- 
ently not detected and seems even to interfere with performance 
(see Kareev, 1995a). 

That DE would not closely follow the informational content 
(EN) of the sequence was not a priori self-evident. On the 
contrary, the alternative hypothesis--that DE would be maximal 
for maximally random sequences and that it would decrease to 
the same extent when sequences depart from randomness to the 
same degree--is compelling. This makes all the more instruc- 
tive the finding that DE (in its different manifestations) is nega- 
tively skewed as a function of P(A) .  To quote Dawes (1992), 
"Unless we can reject something that we previously believed 
to be true, we have not learned anything new" (p. 2). 

It seems that the mathematician's view of randomness as 
maximal complexity captures people's intuitive approach to this 
concept. This can be interpreted as a reprieve, of sorts, of the 
soundness of intuitive thinking. The high similarity found be- 
tween the DE and AR functions suggests that participants equate 
randomness with difficulty in encoding a sequence. It is possible 
that they attempt some kind of instantaneous (perhaps prever- 
bal) encoding and use the difficulty of that attempt to decide 
the randomness of a sequence. Their point of maximal difficulty 
is, however, misplaced relative to the mathematician's point of 
maximal complexity. Kahneman and Tversky (1972) were thus 
right in contending that apparent randomness is a form of com- 
plexity, that is, if one refers to subjective complexity. The latter, 
as measured by encoding difficulty, differs from the objective, 
or mathematical concept in a systematic way, just as apparent 
randomness differs from entropy. 

A scrutiny of Tables 2 and 3 reveals that the various DE 
functions are somewhat closer to EN than is AR. This suggests 
that perceived randomness is somewhat more biased toward 
alternations than difficulty of encoding would lead us to believe. 
Our anticipation that actual and perceived encoding-difficulty 
measures would serve as equivalent indexes of subjective com- 
plexity is confirmed by the high correlations between either MT 
or CD and AD. Performance DE variables ( MT and CD ) are 
perhaps slightly better predictors of AR than are assessed DE 
variables (AD and SR). We do not understand the reason for this 
difference, which is negligible relative to the high correlations of 
all four DE variables with AR (they range from .87 to .94). 
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Implicit Encoding Versus Judgment of 
Representativeness 

Both the hypothesis that participants tacitly encode a sequence 
to evaluate its randomness and the hypothesis that they judge 
its local representativeness (LR)  for making that judgment are 
compatible with the obtained AR results. Our experiments do 
not enable us to decide between these two accounts of  people '  s 
perception of  randomness. 5 The crux of  the problem is that 
locally representative sequences are the most difficult to encode. 
It is not impossible that judgments of  LR involve implicit encod- 
ing as well. In that case, LR and encoding difficulty are not 
alternative accounts but rather two aspects of  the same 
phenomenon. 

The LR heuristic and the mechanism of implicit encoding 
both predict the direction of  deviation from perfect randomness. 
The hypothesis of  implicit encoding, however, has the experi- 
mental advantage that DE, measured independently, succeeds in 
parametrically predicting the peak of  perceived randomness and 
the shape of  the function. It is hard to imagine a task in which 
participants could be instructed to judge sequences for LR, with- 
out reference to randomness. It would be difficult in such a case 
to explain what it is one is supposed to judge, that is, what is 
meant by local and of  what the judged stimuli are supposed to 
be representative. 

Quantifying Encoding Difficulty and Apparent 
Randomness 

Our results, and those of  other experimenters, indicate that 
sequences with overalternations are perceived as more random 
than their entropy and algorithmic randomness warrant. From 
a mathematical point of  view, a run of  alternations is as redun- 
dant as a uniform run. Both allow perfect prediction within the 
boundaries of  the run. Psychologically, however, they appear not 
to be equivalent. These two kinds of  deviations from randomness 
weigh differently both in judging how random a sequence is 
and in the difficulty in encoding it. Thus, one should not treat 
overalternations and underalternations equally when trying to 
predict human perceived randomness or encoding difficulty. 

Our difficulty predictor (DP)  takes only first-order dependen- 
cies into consideration and assigns runs of  alternations twice the 
weight of  pure runs. This measure seems to fit our experimental 
sequences, which were created by manipulating only first-order 
dependencies. 6 The double weight for alternating runs is a rough 
commonsensical guess of  the increased cost in terms of  diffi- 
culty due to the double length of  the recurring unit in such runs. 

DP was first computed (in Falk, 1975) as a post hoc attempt 
to account for the AR function. It was then cross-validated by 
Falk and Konold (1994) and was found to be highly correlated 
with memorization time as well. In the present research, DP 
was highly predictive of  judgments of  randomness and encoding 
difficulty. The success of  DP as an a priori predictor was repli- 
cated in all three experiments 7 (see Figures 5 and 6 and Tables 
2 and 3).  

Like other  var iables  in our analysis,  DP is averaged over  
several al ternative sequences for every P(A). It remains to 
be established to what  extent  variat ions in DP, for a constant  

P ( A ) ,  affect  par t ic ipants '  responses.  Al though our study 
was not des igned to answer this question,  our results suggest  
that measures  o f  encoding difficulty (such as MT and CD) 
fo l low DP somewhat  more closely than does apparent 
randomness.  

Concluding Comments 

The subjective experience of  encoding difficulty seems to 
account for the perception of  completed sequences. It was not 
shown to describe the way in which participants attempt to 
generate random sequences. However, our results, combined 
with those of  generation of  randomness, including the evidence 
that human-generated sequences are virtually indistinguishable 
from those judged by participants as being most random (see 
also Table 1), suggest that people generate just the kind of  
sequences that they perceive to be random. If one assumed that 
people are capable of  reproducing their image of  randomness 
(an assumption that we doubted on a priori grounds in the 
introduction), one could speculate that during the generation 
process, participants evaluate their productions by the subjective 
encoding-difficulty criterion. For example, a long uniform run 
would stand out as too easy to memorize or to communicate. 
The same, only to a lesser degree, would be true for a long run 
of  alternations. Both would therefore be relatively avoided. Long 
same-symbol runs, in particular, would not be tolerated. 
Applying the LR criterion would obviously bring about similar 
results. 

Repetitions, even those occurring by chance, are readily uti- 
lized for encoding a sequence and are perceived as violations 
of  randomness, whereas streaks of  alternations have to be much 
more pronounced to be put to use and induce the impression of  
nonrandomness. "More  of  the same"  seems to be the easiest 
to encode. Conceivably, change is harder to encode and is more 
suggestive of randomness s than is perpetuation of  the status 

5 See Diener and Thompson's ( 1985 ) interpretation of their results in 
favor of the model of perceiving randomness after eliminating all tenable 
alternative hypotheses, as opposed to the model of judging by 
representativeness. 

6 There are several indications in the literature that pure and alternating 
runs capture most of participants' attention when dealing with binary 
sequences. Vitz and Todd (1969) reported that the most common coded 
elements in human processing of sequential binary events were runs of 
like events and runs of alternations. A close scrutiny of the accent points 
chosen by Garner's (1970) participants as a start for organizing a melody 
of binary tones that they heard played cyclically, shows that they pre- 
ferred the beginning and the first note after either a long pure run or a 
long alternating run. Budescu's (1987) results also supported the first- 
order Markovian model for the random series-generation task. 

7 Despite the predictability of participants' performance afforded by 
DP, we could not confirm the use of pure and alternating runs as 
encoding units by inspecting the chunks that participants formed in the 
copying task of Experiment 2 and in the segmentation-and-rating task 
of Experiment 3. Participants cut mostly larger segments, lumping to- 
gether runs of both kinds. 

s It seems as if people's mental anchor for randomness is the state of 
perfect alternations. They sense, however, that this could not be right 
because it is too regular, so they disrupt it a little. But their adjustment 
is insufficient, much like that of Tversky and Kahneman's (1974) partici- 
pants whose anchor was determined experimentally. 
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quo. Indeed, only change of outcomes can make the sequence 
locally representative. Yet, excessive alternations do help an 
encoder by affording a long (doubly weighted) encoding chunk, 
thereby decreasing the value of DP. This explains why perfect or 
near-perfect alternations are judged as nonrandom. The double 
difficulty in encoding an alternating chunk also suggests an 
explanation of why subjective complexity differs from objective 
complexity and why the former is negatively skewed as a func- 
tion of P(A). 

Diener and Thompson (1985) describe the evolvement of the 
perception of randomness after eliminating all tenable alternative 
hypotheses for the sequence's production. Their description 
shares an important feature with our tacit-encoding hypothesis: 
The judgment of randomness results from the repeated failure of 
attempts to find regularities (confirm hypotheses; detect encoding 
shortcuts). The idea that subjective randomness is built on our 
failure to make sense of the world is not new. Piaget and Inhelder 
(1951/1975) attribute the emergence of the idea of chance to 
children's realization of the impossibility of predicting oncoming 
events or of offering causal explanations. In the same vein, Alber- 
oni (1962) showed that university students resorted to chance 
only after admitting their failure to discover a regular pattern in 
the stimuli they were shown. To use Holden's (1985) words in 
his article on chaos, "To call this irregularity 'randomness' is a 
confession of ignorance: it is not an answer" (p. 15). 

Our interpretation of the experimental results is that people 
tacitly endorse the same principle as in the mathematical ap- 
proach to randomness and apply the criterion of compressibility. 
When data fail to meet this criterion, they are considered ran- 
dom. Participants' application of this criterion is, however, bi- 
ased relative to mathematical prescription. In one sense, though, 
these misperceptions of randomness could be considered valid 
and perhaps even adaptive. People demonstrate an accurate intu- 
ition for which sequences are hardest for them to encode. Their 
biased judgment of randomness would prove beneficial if it 
spared them futile attempts to encode information they would 
find too complex to handle. 

The view of perceived randomness as a result of tacit encod- 
ing is compatible with a picture of mind that grounds cognition 
in action in the world. Action is a key feature in Piaget's and 
others' developmental theories of cognition. A host of data indi- 
cate that in early development, cognition and physical activity 
cannot be easily disentangled. In an attempt to mark the limita- 
tions of the representational-computational view of mind, Sha- 
non (1993) suggests that the principles of operation underlying 
language, memory, perception, reasoning, and problem solving 
are akin to those used negotiating the world and manipulating 
objects. "Even when confined to the internal domain, cognitive 
activity may be carried out through the simulation of action in 
the theater of one's mind" (Shanon, 1993, p. 268). 

In analogy to Piaget's operations, which are conceived as 
internalized actions, perceived randomness might emerge from 
hypothetical action, that is, from a thought experiment in which 
one describes, predicts, or abbreviates the sequence. The harder 
the task in such a thought experiment, the more random the 
sequence is judged to be. Several accounts of tasks involving 
sequences (Glanzer & Clark, 1962, 1963; Vitz & Todd, 1969) 
stress the primacy of covert verbalization. Perceptual organiza- 

lb. 

Figure 7. Random blobs or a familiar figure? (Based on Street, 1931 ). 

tion of the sequence and an assessment of its randomness would 
depend, according to these accounts, on the length of a silent 
verbalization. 

The boundaries between tacit verbal encoding and (the Ge- 
stalt) perceptual organization are, however, not always clear. In 
Figure 7, the initial apparent randomness of the blobs dissipates 
once the pattern of a dog is noticed. Pattern recognition is closely 
connected, in this case, with reducing the length of the verbal 
description to one word. 

Examples abound of the interconnectedness of seeing the un- 
derlying structure (i.e., removing randomness) and hitting upon 
an efficient encoding. 9 Learning a foreign language is one such 
instance; forming a scientific hypothesis is often another. In 1946, 
E. B. Lewis set out to investigate mutations in a cluster of genes 
that affect wing development in Drosophila flies: Some mutations 
transformed the normally degenerate second wing pair to appear 
more winglike, others caused degeneration of the wings proper, 
and still others caused the development of winglike and leglike 
structures on abdominal segments of the flies. More and more 
difficult-to-relate details accumulated, and accounts of his obser- 
vations became longer and more cumbersome from decade to 
decade (reaching a length of 31 pages in Lewis, 1967). Finally, 
in Lewis (1978), he came forward with a mere six-page article 
that parsimoniously presented a model of the bithorax complex 
organization. Once a pattern has been recognized, the description 
of the same phenomena can be considerably condensed. 

9 We thank David Gilden for suggesting the dog-pattern and foreign- 
language examples. 
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