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OBSERVATIONS

Understanding Natural Dynamics

Dennis R. Proffitt and David L. Gilden
University of Virginia

When making dynamical judgments, people can make effective use of only one salient dimension
of information present in the event. People do not make dynamical judgments by deriving
multidimensional quantities. The adequacy of dynamical judgments, therefore, depends on the
degree of dimensionality that is both inherent in the physics of the event and presumed to be
present by the observer. There are two classes of physical motion contexts in which objects may
appear. In the simplest class, there exists only one dynamically relevant object parameter: the
position over time of the object's center of mass. In the other class of motion contexts, there are
additional object attributes, such as mass distribution and orientation, that are of dynamical
relevance. In the former class, objects may be formally treated as extensionless point particles,
whereas in the latter class some aspect of the object's extension in space is coupled into its
motion. A survey of commonsense understandings showed that people are relatively accurate
when specific dynamical judgments can be accurately based on a single information dimension;
however, erroneous judgments are pervasive when simple motion contexts are misconstrued as
being multidimensional, and when multidimensional quantities are the necessary basis for
accurate judgments.

In this article we present an account of dynamical event
complexity and a variety of research findings that support its
predictions. In essence, we propose that people make judg-
ments about natural object motions on the basis of only one
parameter of information that is salient in the event. By this
account, people encounter difficulties when construing dy-
namical events that are inherently multidimensional, or that
have been incorrectly defined by them as being multidimen-
sional.

Our account of dynamical event complexity begins with a
distinction take"n from physics: The dynamically relevant
properties of objects are defined by the motion contexts in
which they are found. Many contexts, particle motions, can
be dynamically analyzed by treating the object as a particle
located at its center of mass. Free-fall is a good example of a
particle motion; an object's shape, orientation, size, and so
forth are all irrelevant to its dynamical behavior in free-fall
(assuming a vacuum). Other contexts, extended body mo-
tions, require that the object be treated as a multidimensional
entity. The rolling of a wheel is a good example of an extended
body motion. A wheel's moment of inertia (mass distribution)
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affects its rolling behavior; thus, it cannot be dynamically
treated as a particle. It is important to emphasize that this
categorization depends not on whether objects are particulate
or extended, but rather on the motion context in which they
are encountered.

We propose that people base their commonsense dynamical
judgments on one information dimension within an event.
People do not make dynamical judgments by deriving mul-
tidimensional quantities. This proposal predicts that people
will generally make accurate dynamical judgments in (a) one-
dimensional (particle motion) contexts, or (b) multidimen-
sional (extended body motion) contexts in which circum-
stances are such that specific judgments can be accurately
based on a single information dimension. People are predicted
to make erroneous judgments in (a) one-dimensional contexts
that are misconstrued as being multidimensional, and (b)
multidimensional contexts in which multidimensional quan-
tities are the necessary basis for accurate judgments.

This article is divided into two parts. In the first we develop
our account of dynamical event complexity, and in the second
we present a variety of research findings that support its
predictions.

Complexity in Natural Motions

Successful appreciations of natural motions depend on the
kind of object that is being viewed and the dynamical context
in which the viewing takes place. Psychological theories of
commonsense understandings of natural dynamics must ul-
timately refer to classical mechanics, because it is in this field
that the dynamics of object motions are articulated. The
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following treatment of analytical dynamics introduces those
notions that provide the basis for assessing human abilities in
understanding natural motions.

We want to make two basic ideas explicit in this section.
The first is that from a formal point of view, the laws of object
motion are independent of both the object and the motion
under consideration. All equations of motion are derived from
a single minimum principle. The second idea is that there is
a hierarchy of object complexity that is manifested when the
symmetries in dynamical systems are analyzed from the point
of view of invariances in the equations of motion. This
hierarchy is especially interesting because there exists a defi-
nite limit to object simplicity, and, as will be discussed in
later sections of this article, this limit is reflected in human
performance: Human competence at understanding dynami-
cal systems approaches adequacy only for those systems in
which object simplicity is maximum.

The Formal Unity of Natural Motions

Classical mechanics has a historical primacy in physics due
to the perceptibility of relevant information. In the other three
major branches of physics—electrodynamics, thermody-
namics, and quantum mechanics—the individual motions of
the relevant particles are invisible. Mechanics, however, treats
the motion of rigid bodies that can be seen. Mechanical
systems were the first studied because the objects that consti-
tute them were the first noticed.

The familiarity that we have with mechanical systems is,
however, highly deceptive. There is a coherence in mechanical
systems that is revealed only when attention is withdrawn
from how these systems appear phenomenally and an abstract
point of view is taken. This point of view begins with the
replacement of the three-dimensional space of world experi-
ence with an appropriate mathematical space that more ade-
quately describes the environment of the mechanical system.
This idea is developed more fully and generally in the Appen-
dix. Here we will take a somewhat more elementary and
specific point of view, and discuss the mathematical transfor-
mation that relates linear momentum and angular momen-
tum systems.

One of the key themes of this article is that people are
relatively competent in making judgments about systems
governed by linear momentum conservation, but that they
are much poorer in judging systems where angular momen-
tum is relevant. Mathematically, these two systems are iso-
morphic, in that there is a single operation that carries the
linear domain into the angular domain. This operation is the
cross product with the position vector. In this way forces are
mapped into torques, linear momentum is mapped into an-
gular momentum, and Newton's third law, F= ma, is mapped
into r = dL/dt. This mapping is in fact the manner in which
angular systems are introduced pedagogically. Physics text-
books begin with a discussion of linear momentum systems.
Not only are these systems simpler in terms of their mathe-
matics, but, as we will argue, people have fairly good intuitions
about their behavior. In a subsequent section of physics
textbooks, the cross product is introduced, and the equations
for angular momentum systems are derived. At this point,

students are introduced to a set of amazing demonstrations
that capitalize on precession and the orthogonality of torque
and angular momentum to perceived object motions. The
difficulty that students have with these concepts is discussed
below. The learning of physics requires that students under-
stand the nature of the isomorphism that relates linear and
angular systems, and it is, in fact, this isomorphism to which
experienced physicists return when asked to explain the un-
usual behavior of angular systems. They will simply state that
F= ma.

A Duality in Motion Contexts

The unity and elegance that characterize a mathematical
description of natural motions do not characterize common-
sense understandings. Here we introduce the notion that there
is a hierarchy of dynamical event complexity, and that human
understanding is most competent with those systems at the
bottom of the hierarchy. There are three concepts that are
critical in the determination of this complexity hierarchy. The
first is that complexity is defined in terms of the motion
context in which objects appear—not in terms of the objects
themselves. The second idea is that the complexity of a
mechanical system is related to the symmetries that it pos-
sesses. The systems with the greatest degree of symmetry are
the least complex. Finally, there is a special class of mechan-
ical systems in which symmetry is maximal; such systems
treat the objects within them as extensionless point particles.
In all other mechanical systems there is some aspect of the
extension of the object in space that is relevant for its motion.
What it means for an object to appear in a motion context,
and the sense in which a mechanical system has symmetries,
are the subjects of this section.

A mechanical system is a collection of objects moving under
the action of external and internal force fields. The properties
of individual objects that are dynamically relevant are deter-
mined by the motions that they are executing. In this sense,
a mechanical system is a context for the objects within it.
This notion is best illustrated by a simple example.

Consider the two following contexts for the motion of a
top: (1) free-fall of a top that has been dropped in a gravita-
tional field and (2) precession of a spinning top that is
balanced on a pedestal in a gravitational field. Both are
examples of a top falling, but the two motions are quite
different; the properties of the top that are of dynamical
relevance also differ depending on the context. For example,
the shape of the top matters only if a torque is applied to it.
The trajectory of the center of mass of a spinning top in free-
fall is identical to that of a nonspinning one. For any object
in free-fall in a uniform gravitational field, the integrated
torque, computed about the center of mass, is zero. On the
other hand, a top that is supported by a pedestal is subject to
a gravitational torque about the point of contact. In this
situation, spinning is relevant to the nature of the top's fall.
A nonspinning top falls down; a spinning top falls sideways—
that is, it precesses. Spinning tops have many more dynami-
cally relevant features. The basic point here is that it is not
the object per se that determines its motion; it is the motion,
or more precisely the mechanical system, that characterizes
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the object. The complexity of objects is a reflection of the
complexity of the mechanical systems in which they appear.

The complexity of a dynamical system is determined by its
symmetries. Symmetry in a dynamical system is related to
the more familiar notions that people have of figural sym-
metry, but it is not quite the same thing. Figural symmetries
are defined in terms of invariance under a class of transfor-
mations that include translation, rotation, and reflection.
Figures with a high degree of symmetry will be invariant
under several of these transformations. Symmetry in dynam-
ical systems is similarly defined, except that the object that
undergoes the transformation is a mathematical equation (one
of the equations of motion), and the transformation can be
quite general. The transformations are generated by changing
object attributes, and the result of a transformation is deter-
mined by the resulting form of the equations of motion.

An important event, of particular interest in this article, is
the motion of a wheel rolling down an inclined plane. We
present here the physics of the rolling wheel to illustrate the
concept of dynamical symmetry. In Figure 1, we illustrate
two rimlike wheels. One is perched on an inclined plane; the
other is held by a thread that will be cut. These two situations
define two mechanical systems. Conservation of energy for
these systems is written

| Mv2 + | Iw2 = Mg(H0 - h): rolling (1)

| Mv2 = Mg(h0 - h): free-fall, (2)

where M is the mass of the wheel, B is its inner radius, A is
its outer radius, v is its instantaneous velocity, w is its angular
velocity about its center of mass (Cm), and the moment of
intertia is written

7 = M(A2 + B2).

B

(3)

Figure I . Two motions contexts for a rimlike wheel. In Panel A the
wheel is perched on an inclined plane. In this context the mass
distribution, given by the ratio B/A, influences the rate at which the
wheel rolls. Mass and the overall size of the wheel are not relevant.
In Panel B a wheel is attached to a thread that will be cut, resulting
in free-fall. In this context there is no attribute of the wheel that
affects its velocity. A free-fall context regards all objects as being
extensionless point particles located at their center of mass (Cm).

We suppose here that the wheel rolls without slipping, so that
its velocity down the ramp can be written v = Aw. Solving for
the instantaneous velocity of the wheel as a function of the
vertical height yields

2g(h0-h)
[3/2 + \/2B2/A2\ '

v = [2£(A0 - A)]'/2: free-fall.

rolling (4)

(5)

Analysis of these equations reveals their symmetries. These
two systems are essentially distinguished by the fact that, for
the rolling wheel, kinetic energy is partitioned into both a
translational part and a rotational part, whereas for the falling
wheel, all kinetic energy is translational. We have canceled
out mass from both of these equations, indicating that the
mass of the wheel does not influence its motion. This is a
symmetry that the systems share. When the mass term is
canceled, there is nothing left in the equation for the falling
wheel that tells that a wheel is being described. A falling wheel
can be distorted in any manner, and it will fall along the same
trajectory; free-fall is a motion context in which objects are
treated as extensionless point particles. The rolling wheel,
however, does not possess this symmetry. The ratio B/A is
present; it defines how mass is distributed in the rim. Note
that any transformation of the rim that leaves the ratio B/A
invariant will have no effect on the motion. Thus, the rolling
wheel is invariant under an overall size transformation, A —»
pA, B —» pB, but it is not invariant under a fattening or
thinning transformation, A —»pA, B —»B. The existence of a
transformation on the spatial properties of the rolling wheel,
for which the equation of motion is not invariant, is crucial;
the rolling wheel is not being treated as an extensionless point
particle—its extension in space is reflected in its motion.

To summarize, objects may appear in mechanical systems
in two distinct ways. The distinction is defined by the sym-
metries of the mechanical system. If a mechanical system is
invariant under all transformations that operate on the three-
dimensional shape and orientation of the objects in motion,
then those objects are being treated by the system as exten-
sionless points. Such objects are referred to as point particles.
The point particle is characterized only by its position in space
and is the simplest object that can exist in a mechanical
system. All other objects are treated by their systems as being
extended. Examples of extended body systems are ones in
which the objects are subjected to torques, are floating, or are
moving through a resistive medium.'

' The notion of dynamical symmetry is related to that of generali-
zation in understanding. The more object properties that cancel out
of the equations of motion, or alternatively the higher the degree of
symmetry in the mechanical system, the more easily any given
encounter with the system will generalize. For example, one has only
to see a single example of a relatively heavy object fall to understand
free-fall. All objects not affected by environmental circumstances,
such as wind, free-fall along parabolic trajectories. On the other hand,
every top behaves differently depending on the details of its construc-
tion and on the precise manner in which it is launched. Those systems
that have maximum generality are those that treat their objects as
point particles.
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Extended Bodies and Multidimensionality

The symmetry of a mechanical system is reflected in the
amount of information required to represent its dynamics.
Those systems in which symmetry is maximal, point particle
systems, have exactly one relevant category of information. It
is in this sense that particle motions are one-dimensional and
are treated in dynamics as a special case.

The dimensionality of an object in a mechanical system is
determined by the number of object attributes that can influ-
ence its motion. Point particle systems contain particle posi-
tion as their single category of information. The very act of
looking at the event being displayed is simultaneous with
noticing the single dimension required for dynamical analysis
of the event.

The vast majority of mechanical systems define extended
body motions. Extended body motions are inherently multi-
dimensional, in the sense that there is some spatial property
of the object, apart from where it is located, that is coupled
into its motion. The distinction between point particles and
extended bodies is essentially between motion contexts that
couple into only particle location and contexts that couple
into additional spatial attributes of the body.

The first and most important step in the analysis of multi-
dimensional systems is the formation of multidimensional
quantities. Such quantities are formed through some sort of
multiplication; it does not make sense to add quantities that
have different units (dimensions). The kind of multiplication
that is appropriate depends on the quantities being combined.
For example, torque is formed by the cross product between
position and force. Construction of the moment of inertia
requires an integration over the mass distribution weighted
by the squared distance. Unlike position, such multidimen-
sional quantities are not categories of perception.

In Table 1, we list five extended body mechanical systems
that we have studied in terms of commonsense understand-
ings. For each system we show (a) the different dimensions of
information that are of dynamical relevance, (b) the appro-
priate physical representation for the system, and (c) the
operations by which dynamically relevant multidimensional
quantities are formed.

Commonsense Understandings of Dynamics

We believe that people do not derive multidimensional
quantities when observing natural motions. Thus, we predict
that their accuracy in making dynamical judgments will be
related to event dimensionality. In particular, we predict that
people will exhibit pervasive failures when construing ex-
tended body motions. The following section summarizes ob-
servations and research that support this prediction.

People's Dynamical Understandings of Extended Body
Motions Are Relatively Poor

As previously discussed, dynamical analyses of extended
body motions are far more complex than are analyses of
simple particle motions. A particle motion manifests only one
dimension of dynamical relevance—the position over time of
its object's center of mass. This single category of information
can be placed directly into all dynamically relevant represen-

tations of the event. On the other hand, an extended body
motion, by definition, manifests multiple categories of dy-
namical information, and thus introduces additional process-
ing requirements. For such events, multiple parameters of
information must be noticed and combined through multi-
plicative operations; only after performing these operations
can the resulting multidimensional quantities be composed
within dynamical representations.

Students in introductory physics courses encounter numer-
ous difficulties when they move from treatments of particle
motions to extended body dynamics. We asked 19 high-school
physics teachers to provide an ordered list of the three con-
cepts that their students find most difficult to understand
(Proffitt, Kaiser, & Whelan, 1989). The most frequently men-
tioned concept was angular momentum. It was mentioned by
18 of the teachers and was listed first by 10 of them, as
compared with 4 first-place listings for the next most fre-
quently mentioned concept. The difficulty of teaching ex-
tended body dynamics came up again in follow-up discussions
with these teachers, interviews with University of Virginia
physics professors, and a personal communication with Jearl
Walker, author of "The Amateur Scientist" in Scientific Amer-
ican.

Typically, introductory physics courses start with a review
of measurement issues, and then move to treatments of point
particle kinematics (pure motion considerations for particle
systems). With this background established, dynamics is in-
troduced, beginning with Newton's laws, and the treatment is
restricted to point particle systems. The kinematics and dy-
namics of extended body motions are addressed next, and it
is at this juncture in the course that many students begin to
experience profound difficulties, and for some a catastrophe,
in understanding the material. In learning the principles of
extended body motions, students are exposed to a more purely
mathematical treatment of the topic, and are required to
reason abstractly about motions that cannot be perceptually
appreciated or imagined. Typically, what was learned about
particle motions could be reconciled with commonsense views
about the workings of the world. On the other hand, the
dynamics of extended body motions defy assimilation into
commonsense reasoning.

The following is an initial assessment of people's compe-
tence in dealing with dynamics in a sample of extended body
motions. Although this work is still quite preliminary, it
clearly reveals a dearth of dynamical understandings.

Top and gyroscopic motions. The best example of percep-
tion's failure to penetrate the dynamics of complex extended
body motions can be experienced by watching a top or
gyroscope. Tops and gyroscopes are enduring toys because
their wonder-producing motions are not penetrated by per-
ceptual experience.

The Nobel laureate, Feynman (1975) wrote in his lecture
series to the freshmen at California Institute of Technology,
"The precession of a top looks like some kind of miracle
[italics added] involving right angles and circles, and twists
and right-hand screws" (pp. 20-26). In a similar vein, Walker
(1985) wrote,

Rotation is fascinating because in spite of its common occurrence
it is difficult to understand . . . . For example, when I spin a top
I am always amazed that it stands upright in spite of the gravity
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Table 1
Five Extended Body Mechanical Systems

System

Tops and gyroscopes

Rolling wheels

Balances

Collisions

Displacements

Information

Mass distribution,
angular velocity,
torque

Mass distribution,
rotation/translation

Weight and distance
from fulcrum

Speed and angle

Floating/sinking,
mass, volume

Representation

Algebra of cross
products, motion
in effective potential

Energy conservation

Leverage

Energy /momentum
conservation

Archimedes' principle

Computation

Cross products:
L = rx v
r = rxg

Energy partition,
moment of inertia

Multiplication
(cross product)

Multiplication
(dot product)

Boolean algebra

tugging at it. Even when it leans over, it does not fall. Instead it
processes, that is, the central axis about which it spins circles
around the vertical. Such motion is magic [italics added]. (Pre-
face)

In the above quotation, Walker (1985) pointed out an
important aspect of people's failure to comprehend the ap-
parent gravity-defying behavior of gyroscopes: Rotating ob-
jects are common in everyday experience. It is not the case
that tops and gyroscopes are difficult to understand simply
because people have limited experience with their motions.

Proffitt, Kaiser, and Whelan (1989) interviewed 50 under-
graduates about their understanding of bicycles and gyro-
scopes. With respect to bicycles, one of the questions asked
why a rapidly moving bicycle was easier to balance than one
that was barely moving. Not one subject mentioned that it
might have something to do with the rotation of the bicycle's
wheels. In fact, bicycle wheels act as gyroscopes and contribute
to stability in proportion to their angular velocity. (Although
there is controversy in the physics community about what
factors influence bicycle stability, it is agreed that the gyro-
scopic properties of bicycle wheels have a large influence
[Jones, 1970; Kirshner, 1980; Lowell & McKell, 1982].) Most
subjects gave erroneous reasons that related to linear momen-
tum (e.g., because the bicycle is moving forward, it is harder
to tip over) or to such invisible factors as the wind (e.g., the
faster one goes, the more the wind builds up on the sides,
forming a resistance to falling over).

These subjects were also asked to predict the behavior of a
spinning gyroscope. Most subjects predicted that it would fall
off its pedestal at an orientation in which it would, in fact,
balance. The subjects then viewed a spinning gyroscope;
however, this experience afforded only amazement, as none
of the subjects could provide a reasonable account of its
apparent gravity-defying behavior. Commonly given answers
to the question about what prevents a gyroscope from falling
were "the wind," "the spinning wheel acts as a propeller," or
"the wheel is spinning." Never was it correctly mentioned
that the precession of the gyroscope is the natural result of
gravity. In fact, precession is a relatively slow motion com-
pared with the spinning of the wheel, and it seemed to have
been essentially ignored by these subjects.

Proffitt, Kaiser, and Whelan (1989) also conducted similar
interviews with 25 members of the University of Virginia
Bicycling Club. These bicycle racers rode their bicycles about
100 mi (161 km) per week on average. Interviews in greater

depth with these individuals revealed that their understanding
of what accounts for the stability of a moving bicycle differed
little from that of those subjects with far less familiarity with
bicycles. In particular, only 2 of the cyclists predicted that if
they leaned while riding their bicycle, then the bicycle's front
wheel would turn in the direction of the lean without their
having to turn the handle bars. (This turning of the bicycle's
wheel is an example of precession.) Moreover, these cyclists
did not show an appreciably better understanding of the
gyroscope's motions.

As is witnessed in the above quotations from eminent
physicists, and in our own interviews with university and
high-school physics teachers, gyroscopic motions are under-
stood by physicists in only a formal mathematical way, and
are not appreciated by them at a perceptual level. Physicists
attest to their enjoyment of the seemingly magical behavior
of tops and gyroscopes because their formal appreciation of
the dynamics of these objects is not grounded in their phe-
nomenal acquaintance with these motions.

Rolling wheels. Recent experiments have made it increas-
ingly evident that when confronted with problems in which
the rotation of extended bodies gives the relevant physical
description, people very frequently fail to understand the
system's dynamics (Proffitt, Kaiser, & Whelan, 1989). Fifty
subjects were shown and allowed to handle wheels that varied
in mass, radius, or mass distribution (solid wheels vs. rims).
On each trial, two wheels were paired with each other such
that two of the variables were held constant (e.g., mass and
mass distribution) and the other attribute varied (in this case,
radius). The wheels were placed at the top of an inclined
plane, and subjects were asked to predict whether both wheels
would arrive at the bottom at the same time or at different
times, and, if at different times, which wheel would reach the
bottom first. The results were as follows: (a) When mass and
radius were varied, subjects chose as correct each of the three
alternatives in about equal numbers. (Only about a third of
the subjects correctly stated that the wheels would reach the
bottom at the same time.) (b) When mass distribution was
varied, more than 80% of the subjects incorrectly predicted
that the wheels would roll down at the same rate. As discussed
in the earlier section on natural motions, the only relevant
variable in this experimental situation is mass distribution;
the more the mass is concentrated toward the rim, the slower
the wheel will roll. In the only case in which the subjects had
a strong systematic bias as a group, then, that bias was
incorrect. Releasing the wheels and allowing the subjects to
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observe the outcomes caused the subjects to become per-
plexed, and did not enlighten them about why the wheels
rolled at the rates that they did.

This experiment was run with experts in angular systems—
University of Virginia Department of Physics faculty mem-
bers—and with people who are especially familiar with rolling
wheels—25 members of the University of Virginia Bicycling
Club. When the former group was prohibited from solving
the problems analytically, neither group did appreciably better
than the naive undergraduates.

In another study, undergraduates were assessed for their
perceptual appreciation of the influence of mass distribution
on rotational dynamics (Kaiser, Grunwald, & Proffitt, 1987).
The observers were shown a simulation of a satellite spinning
in space. The satellite could undergo changes in its mass
distribution by the opening or closing of panels. The observ-
ers' task was to judge whether the resulting change in angular
velocity was natural or could have been caused only by the
application of some external, unseen force. When the satel-
lite's panels opened, the natural event showed the angular
velocity decreasing. Anomalous events showed the satellite's
angular velocity (a) changing direction, (b) stopping alto-
gether, (c) slowing down too much, (d) remaining unchanged,
and (e) speeding up. It was found that observers judged the
events in which the satellite stopped or changed direction as
appearing anomalous, but judged all the other events as
looking equally natural. The observers, that is, showed a
qualitative appreciation for the preservation of angular veloc-
ity direction, but no sensitivity to the principles governing the
conservation of angular momentum—specifically, the influ-
ence of changing mass distribution on angular velocity. This
result converges with the results of the previous study that
showed observers to be insensitive to the influence of mass
distribution on the rate at which wheels rolled down an
incline.

Balances. In a preliminary study, we gave 180 undergrad-
uates five paper-and-pencil balance problems. In each of these
problems, some blocks were depicted as placed on the left
arm of a two-arm balance. In addition, there was a set of
blocks depicted to the right of the balance. The task was to
indicate where the blocks should be placed on the right arm
to balance with the blocks on the left. In the instructions that
accompanied the problems, there was an explicit warning that
there might be no place where the blocks could be placed on
the right arm for the given configuration of blocks on the left
arm. Subjects were instructed to mark such a configuration
with a question mark. There was, in fact, one impossible
problem included in the quiz. The results were that 29% made
no mistakes, 28% missed one, 20% missed two, 11% missed
three, 9% missed four, and 3% missed all five problems.
About 75% of those that missed only one erred on the
impossible problem. If this problem had been omitted, about
half of the sample would have scored perfectly.

It is evident that about half o" our subjects did not under-
stand fully the principle of the balance, and that at least a
quarter of them were severely incompetent in this domain.
These results are consistent with those found by Siegler (1978).

Collisions. When a moving object strikes a stationary one
(imagine billiard balls with unequal masses), the motions of
the objects provide sufficient information to specify the

unique relative masses of the objects involved. In particular,
the projection of postcollision velocities onto the collision
axis forms a ratio equivalent to the objects' mass ratio. The
relevant information for mass ratio judgments, then, is the
multidimensional quantity of projected velocity.

Gilden and Proffitt (1989) required observers to make mass
ratio judgments while viewing computer simulations of nat-
ural collisions. They found that people based their judgments
not on projected velocity but rather on one or the other of
two information parameters. Judgments were based either on
velocity (fast-moving balls were judged to be lighter) or on
ricochet (the ball that bounced backward was judged to be
lighter). In many situations this heuristical reasoning resulted
in accurate judgments; however, when these two parameters
were placed in conflict, performance for the group dropped
to almost the level of chance performance.

We take this result to be a general finding: Dynamical
intuitions about extended body motions are good only when
specific judgments can be accurately based on a single infor-
mation dimension.

Volume displacements. The structure of extended forms
obviously comes into consideration when one is making
judgments about volume displacement. Understanding dis-
placement problems requires that displacing objects be con-
strued in terms of the parameters of mass and volume.

There is a famous anecdote in which Robert Oppenheimer
(the leader of the Manhattan project), Felix Bloch (1952,
nobel laureate), and George Gamow (a celebrated quantum
theorist) were given a seemingly simple displacement prob-
lem: Consider a boat with a weight on it floating in a tank of
water. The water level is marked on the tank. If the weight is
taken off the boat and placed in the water, will the water level
be higher, lower, or the same as the original mark? All three
physicists answered incorrectly that the water level remains
unchanged (Walker, 1977). The correct answer is that the
water level goes down, because when the weight is in the boat
it is displacing the volume of water equal to its mass, and
when it is in the water it displaces only its own volume.

Whelan (1987) asked undergraduate subjects displacement
questions of two sorts: simple questions that could be an-
swered correctly by referring to one parameter of the displac-
ing object and complex questions that required that two
parameters of the displacing object be noticed. The following
is an example of a simple question: Two objects of equal size
but of different weights are placed in identical containers
holding the same amount of water. Both objects float. Will
the water levels in the two containers remain the same, or will
one be higher than the other; and, if one container will have
a higher water level, which one will it be? In this question the
only relevant parameter of the displacing object is its mass.
In questions in which the displacing object is sunken, object
volume is the only relevant dimension. The complex ques-
tions asked were like the problem mentioned above regarding
the weight on the boat. In such questions, the displacing
object has two relevant parameters: mass, when the object is
floating with the boat, and volume, when the object has sunk.
Whelan created a wide variety of simple and complex ques-
tions, distinguished by whether the displacement context
made a single object parameter relevant or required an appre-
ciation of two object parameters.
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It was found that observers gave correct answers 78% of
the time for the simple questions and responded correctly
only 35% of the time for the complex questions (chance
performance being 33% correct for both types of question).
Thus, when they considered problems of displacement in
contexts in which only one object parameter was relevant,
people acted as if they had a good knowledge of Archimedes'
principle. When the context made two parameters dynami-
cally relevant, people's performance fell dramatically.

In another experiment, Whelan (1987) had people view an
enactment of the weight-on-the-boat problem. An aquarium
was modified so that its water level could be raised or lowered
quickly and without creating turbulence. Moreover, the ob-
server could not see the mechanism that caused this change.
A toy boat carrying a heavy weight was placed in the water,
and the observer was instructed to watch as the weight was
lifted off the boat and placed into the tank. After being
informed that the water level could be manipulated at the
moment when the weight went into the water, the observer's
task was to judge whether the water achieved its natural level
or had been influenced by the experimenter.

It was found that the people were very good at judging
when the tank's water had been manipulated by the experi-
menter. Although most people answered the weight-on-the-
boat problem incorrectly when it was asked verbally—most
reported that the water level would be the same when the
weight was on the boat and when in the water—almost
everyone who made this erroneous prediction saw the enact-
ment of the event as highly anomalous; in fact, this contrived
event was typically viewed with considerable amusement. The
reason for the improved performance in this ongoing, percep-
tual context was clear: In the weight-on-the-boat problem, the
relevant parameters of the displacing object were separated in
time during the ongoing event.

The superior performance that was observed when people
were presented with an ongoing enactment rather than a
verbal presentation of the problem, is a general finding to
which we will turn in a later discussion. In some mechanical
systems, object dimensionality is segregated in time when the
ongoing event is observed. In the above example, observing
the weight as it is tak^n out of the boat allows one to see how
this heavy object produced a large displacement. Observing
the small weight being placed into the tank, and watching the
water level rush back to its initial level, induces considerable
mirth, because the object's size has now become so salient.
The dimensions of weight and size are separated in time in
the ongoing event but not in the verbally presented problem.
Commonsense understandings of Archimedes' principle ap-
pear to be good when assessed in simple contexts, but poor
when assessed in complex ones.

People Perform Poorly in Particle Motion Contexts
That Are Misconstrued as Being Multidimensional

Recently a large number of investigations have been pub-
lished on people's commonsense beliefs about dynamics (Car-
amazza, McCloskey, & Green, 1981; Champagne, Klopher,
& Anderson, 1980; Clement, 1982; Kaiser, Jonides, & Alex-

ander, 1986; Kaiser, McCloskey, & Proffitt, 1986; Kaiser,
Proffitt, & McCloskey, 1985; McCloskey, 1983a, 1983b;
McCloskey, Caramazza, & Green, 1980; McCloskey & Kohl,
1983; McCloskey, Washburn, & Felch, 1983). These studies
on dynamical understandings, "Intuitive Physics" (Mc-
Closkey, 1983a), have been interpreted as showing that people
often hold erroneous beliefs about simple object motions. We
propose a somewhat different interpretation for this literature.

Although seemingly unintentionally, almost all intuitive
physics studies investigated people's understandings of mo-
tions in point particle systems. Even though the objects pres-
ented in these studies were extended forms, such as balls
rolled through C-shaped tubes, bombs dropped from air-
planes, and coins tossed in the air, the relevant dynamics in
these events are fully specified by the motion of the objects'
centers of mass.

We believe that people become muddled on these problems
because they misconstrue them as being extended body sys-
tems. McCloskey and his colleagues constructed problems
that typically presented an extended body system—for ex-
ample, a pendulum swinging back and forth. Something
happens that transforms this system into a particle motion—
the pendulum tether breaks—and the participants are asked
to predict the ensuing motion. In this problem, the object's
dimensionality must be segregated by reasoning across the
event's pre- and post-tether-breaking epochs.

Kaiser, Proffitt, and Anderson (1985) and Kaiser and Prof-
fitt (1986) investigated most of McCloskey and his colleagues'
(Caramazza et al, 1981; McCloskey, 1983a) situations by
having people make judgments first in paper-and-pencil con-
texts and then when viewing animated computer graphics
simulations of these events. The results McCloskey and his
colleagues had obtained were replicated for the paper-and-
pencil problems; however, it was found that when viewing
ongoing displays, people view their erroneous predictions as
anomalous, and select natural motions as being correct. As
was found in the Archimedes' principle study, animation
segregates the dimensionality of these events in time.

Consider the example of the pendulum problem. Most
incorrect responses to the paper-and-pencil problem occur
when subjects are asked to predict the trajectory that the bob
would take if the tether broke at the instant when the bob was
at the apex of its arc. Most erroneous responses predict that
the bob will fall along a parabolic path rather than straight
down. At the instant that the bob is at its apex, it is stationary.
Ask anyone what happens when a stationary object is
dropped, and they will predict a straight-down trajectory. The
difficulty that people have with the pendulum question clearly
involves their inability to construe the state of the bob's
motion at the instant when the tether breaks. When a person
is viewing the ongoing event, the object's extended and par-
ticle motion contexts—swinging versus falling—are clearly
separated in time.

It should be emphasized here that the advantage that on-
going displays have been shown to have in eliciting accurate
dynamical intuitions is restricted to situations in which ac-
curate judgments can be based on single object dimensions.
For cases in which impressions of emergent multidimensional
quantities must be formed, for example, when a person is
evaluating the dynamics of a spinning top, viewing the on-



OBSERVATIONS 391

going event does not spontaneously result in better dynamical
intuitions.

Conclusion

In this article we have provided an account of dynamical
event complexity, and have related this account to what is
known about commonsense dynamical understandings. We
find that commonsense dynamical understandings are good
only when people can accurately base their judgments on a
single dimension of information present in the event.

Our account of dynamical event complexity begins with a
recognition that there exists a definite limit to the simplicity
of mechanical systems. By placing all object motions that
adhere to this limit within one class of object motions, we
define two categories of dynamical events: particle motions
and extended body motions. These two classes of events are
distinguished by the number of object properties of dynamical
relevance to the motion context. For particle systems, only
the motion of the object's center of mass is relevant to its
dynamics, whereas for extended body systems, mass distri-
bution, orientation, rotation, and other properties are dynam-
ically relevant variables. It is important to keep in mind that
the relevance of object properties depends not on the object
itself but on the motion context in which the object is ob-
served.

Dynamical analyses of particle motions are much simpler
than are those of extended body motions. This is due to the
increased number of variables that must be included in an
adequate dynamical representation of extended body events.
Particle motions can always be represented by equations that
relate only one category of information: position over time.
In essence, particle systems can be understood in terms of
center-of-mass displacements. Dynamical representations of
extended body motions always relate more than one category
of information. In extended body motions, it is not sufficient
to know where an object's center of mass is located; rather,
such relational properties as mass distribution—how much of
the object's mass is located where—must be appreciated. The
relating of different categories of information is performed
through multiplicative processes and results in multidimen-
sional quantities that are not categories of perceptions.

The definition of dimensionality that we have provided was
obtained from physics, and thus does not serve to define
dimensionality in perception. With regard to human perform-
ance, there are two questions. The first is, What configural
and kinematic patterns can be distinguished to form clear and
identifiable dimensions? The second is, Which of these per-
ceptual dimensions will be construed to be relevant for dy-
namical judgments? These questions are far from being an-
swered. Be this as it may, our account, drawn from a physical
analysis of dimensionality, defines limits on human perform-
ance. It has been shown for a variety of situations that people
tend to treat multidimensional problems as unidimensional
ones (Shepard, 1964). Extending this finding to dynamical
contexts implies that dynamical intuitions must suffer as the
boundary is crossed between particle and extended body
motion contexts.

People's commonsense understandings are fairly good for
particle motions. Although people sometimes make erroneous

predictions due to their misrepresenting the dimensionality
of these simple systems, their dynamical judgments are quite
accurate when they are actually observing the ongoing events.
Animation often segregates event dimensionality in time.

When people attempt to form dynamical understandings
of extended body motions, dynamical competence begins to
break down, when asked to reason about simple balances,
people perform about as well as when asked difficult particle
motion problems; however, when people are asked to predict
the behavior of rolling wheels, almost no one anticipates that
mass distribution will affect the rate at which a wheel rolls
down an inclined plane. Observing the complex object mo-
tions found in tops and gyroscopes produces in people a
perceptual catastrophe that is experienced as wonder. Percep-
tion in such situations informs people that forces exist that
they cannot appreciate. Tops and gyroscopes are wonderful,
in part, because in perceiving their apparent gravity-defying
behavior, people become aware of their own perceptual limi-
tations.

Gravity is, of course, also wonderful in this sense; it acts as
an invisible force. However, the perceived effect of gravity is
profoundly different in particle motions and extended body
motions. Dropping a spinning top and a nonspinning top off
a tower will produce equivalent falling trajectories that are
easily assimilated by common sense. Placing these objects on
a pedestal results in quite different motions: The nonspinning
top falls down, whereas the spinning top falls sideways, and
thereby precesses. The latter event cannot be assimilated by
common sense.

There are people, physicists, who have a dual awareness of
the characteristics of mechanical systems. This awareness
schism is quite interesting to observe and is easily elicited.
Most of the problems discussed above were presented to a
group of 19 high-school physics teachers, individuals who,
more than any other group, are responsible for explaining the
elementary principles of classical mechanics to naive students.
These teachers were forced to answer the questions fairly
rapidly, and were thereby prohibited from generating the
formal representation for each problem that would allow for
an analytical derivation of the correct answers. The perform-
ance of this group was no better than that found for the tested
undergraduates or university physics professors interviewed
under similar time constraints.

Prevent competent physicists from making explicit calcu-
lations about such events as rolling wheels, and they exhibit
the basic confusions that are found in naive observers; they
are generally aware that mass is not relevant, as the equiva-
lence principle (that all objects are accelerated at the same
rate regardless of mass) is second nature; however, they are
often not so sure about radius and mass distribution. How-
ever, if given time, most physicists could work the problem
out in a few minutes. The average physicist will then inform
you that the rolling wheel problem is trivial. This is the second
awareness: the formal understanding of the mechanical sys-
tem.

It is the goal of physics educators to encourage in their
students the development of this second awareness. The in-
tuitive physics literature has been influential in framing the-
ories of what constitutes the learning of physics. In particular,
it has been frequently suggested that physics instruction
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should take into account the naive beliefs that students bring
to the learning situation (Carey, 1986; Champagne et al.,
1980, Clement, 1982, McCloskey, 1983a; Reif 1986). We
believe that this prescription is likely to be misapplied. Our
preliminary investigations suggest that for complex, extended
body motions, people's dynamical understanding failures are
not due to their holding erroneous theories; rather, these
failures result from intrinsic limitations in processing dynam-
ical information. When presented with the rolling wheel prob-
lem, people are more often muddled than misguided. More-
over, physicist and physics teachers share with naive individ-
uals a sense of befuddlement regarding the extended body
motions that we have examined. We propose that the ade-
quacy of commonsense dynamical judgments depends on the
degree of dimensionality that is both inherent in the physics
of the event and presumed to be present by the observer.

What, then, constitutes learning physics? And what is going
on when a physicist spends a quarter of an hour working out
a problem and then tells you that it is trivial? We do not
propose a theory of learning in this article, but we do offer
the following idea: Learning physics is the transportation of
commonsense notions of symmetry and simplicity to the
mathematics that describe dynamical events. In this sense,
learning physics is concerned with a change in the domains
of understanding: a shift from the phenomenal world to the
formal world captured by the calculus of variations. What
makes the rolling wheel problem trivial is that its mathemat-
ical structure is very simple; the manifest symmetries between
the rotational and translational degrees of freedom are easily
displayed in a simple and compact notation. Furthermore,
the equation of motion can be solved analytically in terms of
elementary functions and integrals. Even if it is not possible
to see what is going on with a rolling wheel, it is easy to see
what is going on with its mathematics. What are common to
commonsense and the formalisms of physics are their inher-
ent symmetries, symmetries that form the basis for their
intelligibility.
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Appendix
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A Minimum Principle for Natural Motions

All mechanical systems are put on equal footing by abstractly
representing them as a single point in a multidimensional configura-
tion space. The dimension of the space is the number of coordinate
specifications that have to be made to place and orient every object
in the system exactly. In general, there are six degrees of freedom that
a rigid body has in its placement and orientation. Three spatial
coordinates are required to place the center of mass of an object
unambiguously, and three angles are required to specify the orienta-
tion of the principle axes. A mechanical system containing jV objects
will therefore require at most 6N coordinate specifications to specify
its instantaneous state; that is, the configuration space has 6N dimen-
sions. As the dynamical system evolves in time and the objects in the
system take on new coordinate values, the system point traces out a
path in the configuration space.

The configuration space can also be thought of simply as an
abstract multidimensional space. A point in this space can be thought
of simply as a vector, that is, as an ordered list; alternatively, a point
can be thought of as the state of a mechanical system. In the same
sense, a path in the configuration space may represent the evolution
of a mechanical system, or the path may be simply the graph of a
continuous function. Not all paths in the configuration space are
generated by mechanical systems. In fact, most paths represent im-
possible motions, that is, motions that are inconsistent with Newton's
laws. Between any two points in the configuration space there is at
most one path that could be generated by a mechanical system. Such
a path has a special property; it minimizes a quantity known as the
action. (For a rigorous development of these ideas, see Goldstein,

1981, or Landau & Lifshitz, 1982. For a more leisurely treatment of
minimum principles in nature, see Hildebrandt & Tromba, 1986.)
The action is a path integral and is therefore a global property of each
curve in the configuration space. For each path a different action is
associated. The path on which a mechanical system moves is that
path with the least action. The evolution of a mechanical system is a
single example of a much more general class of problems that are
treated by the calculus of variations (see Courant, 1962). In this
branch of mathematics one attempts to identify curves and surfaces
that possess some sort of global minimum property. The property
being considered can be quite general. As an illustrative example,
consider the problem of a hanging chain suspended between two
points. What shape will it naturally assume? There are an infinite
number of possible chain shapes, but there is only one shape that
minimizes the total gravitational energy. When the problem is worked
out to minimize the total energy, it is found that the chain shape
describes a curve called a catenary. The dynamics of mechanical
systems are treated in essentially the same way, but instead of energy
being minimized, a related quantity, action, is minimized. (Action
has the dimensions of Energy x Time.) From a mathematical point
of view, the problem of describing a chain shape differs from the
description of a dynamical system only in the nature of the quantity
that is minimized. The problems are posed in the same way.
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