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ABSTRACT—Reaction times in a mental rotation task were

measured across a diverse population that sorted into two

groupings based on overall variability. Although both the

low- and the high-variance groups produced data that

displayed the trends typical of mental rotation, the two

groups’ reaction time sequences had very different auto-

correlation functions. Power spectra derived from the two

groups’ data showed the presence of distinctive noise

processes with long memory. Normal levels of variance

were associated with 1/f noise, whereas high-variance

data had substantial traces of random walk contour. These

findings provide new perspectives on cognitive assessments

of attention dysfunction.

In a recent review article on the neuroscience of attention-deficit/

hyperactivity disorder (ADHD), Castellanos and Tannock (2002)

remarked that ‘‘[high] response variability is the one ubiquitous

finding in ADHD research across a variety of speeded-reaction

time tasks, laboratories, and cultures’’ (p. 624). This is an ob-

servation of some importance, and it is of both practical and

theoretical interest to understand what high response variability

entails and, for that matter, what it means. It means more than

large variance. The distributions of speeded reaction time (RT)

are positively skewed, and Castellanos and Tannock’s comment

could refer to a fatter midsection, to a more distended tail, or to

both, as Hervey (2004) found. High response variability may also

have implications that extend beyond the distributional proper-

ties of RT. RTs are almost always collected in large blocks of trials,

and within blocks the natural ordering of trials generates a kind of

historical record. The RT records of normal adults have a char-

acteristic structure (Gilden, 1997, 2001; Thornton & Gilden,

2005; Van Orden, Holden, & Turvey, 2003, 2005), and this

manner of conceptualizing RT may be of some relevance for

understanding ADHD data.1

It is now well established that RT sequences in normal adults

often show evidence of a long-term memory process known as 1/f

noise (Gilden, 2001; Thornton & Gilden, 2005), so named be-

cause its power spectrum falls inversely with frequency. This

kind of noise is found in that part of the data generally regarded

as unexplained variance, the trial-to-trial residual variability.

Although residual variability is not usually the focus of interest

in experimental studies, the amplitude of 1/f noise may easily

exceed that of the treatment effects. In typical cognitive tasks,

the 1/f noise component may account for 30 to 40% of the

variance when the treatment effects explain only about 10%

(Gilden, 1997, 2001). The correlational structure of 1/f noise

gives it weak predictability, intermediate between that of white

noise and random-walk noise. In fact, the pitch and loudness

contours in speech and music are examples of 1/f noise (Voss &

Clarke, 1975, 1978). It has attained a certain mystique in

the physical and biological sciences because it manages to be

both rare and ubiquitous. Examples of 1/f noise are found in

quasar luminosity, tide and river height, traffic flow, and human

heartbeat (Handel & Chung, 1993; Press, 1978). There is no

definite interpretation of what 1/f noise signifies, but systems

exhibiting it often have a dynamic that incorporates aspects of

both ordered and disordered flow. The question of whether such

systems have anything deeper in common is itself controversial

(Milotti, 2002), but several general mechanisms have been
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1Castellanos et al. (2005) analyzed RT sequences using Fourier techniques.
These authors found evidence for a wave with a period of 20 s in the RT histories
of ADHD male children, ages 6 through 12, in an Eriksen flanker task. In the
data presented here, there is no evidence for a spike in the spectrum at a
particular frequency. We have not analyzed data from children, nor have we
conducted an analysis of residual latencies in the Eriksen flanker task. Perhaps
the differences between our results and those of Castellanos et al. stem from the
subject population or task. Although this is not the place for a detailed review,
we believe there may be artifacts in the analysis of Castellanos et al. Their trial
blocks consisted of only 60 trials, an insufficient number for abstracting de-
tailed and statistically reliable spectral structure. Furthermore, the spectrum
depicted for a control subject does not look even remotely like the spectra
published for normal adults, and if the critical difference between studies is not
age, it must be the method of analysis.
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proposed to account for its ubiquity (Bak, 1990, 1992; Bak,

Tang, & Wiesenfeld, 1987; West & Shlesinger, 1989).

Although it is not yet clear what 1/f noise means, there is little

question that it is a general property of choice behavior, in-

cluding speeded judgment, signal detection, and matching to

sample (Gilden, 2001; Gilden, Thornton, & Mallon, 1995). This

type of noise may be the signature of a healthy nervous system. It

is in this light that high-variability (HV) choice RT data become

interesting. The processes that create large variation in RT will

influence the internal correlations, most likely whitening them.

What the spectrum of HV data looks like is unknown, as such

data are not commonly encountered in the normal undergrad-

uate subject pools, and ADHD researchers typically do not take

a time-series perspective on their data.

RT SEQUENCES

The literature on ADHD in adults does not prepare the naive

investigator for the type of data that ADHD observers generate in

RT paradigms. In the course of negative-priming assessments

(Shin, 2005),2 we first became aware of the properties of ADHD

RT data that had not been discussed in published work. Our

studies were originally designed to measure the time course of

negative priming in persons with various subtypes of ADHD,

and they were based on tasks commonplace in the literature

(Hasher, Zacks, Stoltzfus, & Kane, 1996; Neill, Lissner, & Beck,

1990). As we ran the studies, we became aware that some of the

data were quite unusual. Figure 1 shows example RT histories

for a task that involved determining if the second and fourth

letters in a five-place letter string were the same or different.

In this RT study, the observers were instructed to respond

as quickly as possible without making too many errors. The

bottom panel is an example of typical data from an undergrad-

uate, and the top panel shows the data produced by an un-

medicated adult diagnosed with the combined type of ADHD.

Not all of the data from our ADHD observers were so divergent,

but we frequently saw data of this type, and such data made

interpretation of the group differences in negative priming

difficult.

The ADHD data in Figure 1 are unusual in a number of ways.

Obviously they have a much larger variance than ‘‘normal’’ data.

The standard deviation of the normal data is about 100 ms,

typical for this task. The standard deviation of the ADHD data is

three times larger. But more important from our perspective are

the large hills and valleys in the time series of the ADHD data.

This observer seems to be cycling through some kind of process

that is continuously interrupted by large and random pertur-

bations. This picture is testimony to the benefits of viewing

data as a time series and not as a distribution. The time-series

perspective motivates spectral analysis of ADHD data and a

corresponding investigation into the kinds of noise produced by

ADHD populations.

AN EXPERIMENT INVITING HV DATA

RT data with high variability are an odd thing to study insofar as

one has to wonder what the RTs mean. The nominal laboratory

practice in speeded-response paradigms is to use young adults

who display vigilance, stamina, and speed. In this case, the RTs

are considered to reflect a chain of processes: perceptual anal-

ysis, response mapping, and response execution (Pashler &

Johnston, 1998). Although HV data might also arise from the

chaining of these processes, it seems likely that the frequent

large RTs in such data are an indication of intrusions associated

with loss of vigilance (becoming lost or distracted). If the epi-

sodes of inattention are randomly interspersed in the trial se-

quence, then they might not distort the underlying patterns

created by the normal execution chain. In terms of cell means,

data with episodes of inattention might then be characterized as

simply being slower and more variable than data without such

episodes. However, random processing glitches would poten-

tially have a more deleterious effect on the autocorrelation

function, and for this reason, the power spectrum might be a

more powerful tool than distributional statistics for character-

izing HV data.

Fig. 1. Reaction time sequences from 2 observers who were deciding
if the second and fourth letters in a five-letter string were the same
or different. The sequences are the exact records of the trial-by-trial
reaction times. The sequence at the top was produced by an observer
diagnosed with attention-deficit/hyperactivity disorder (ADHD), and the
sequence at the bottom was produced by a typical undergraduate.

2These experiments were conducted in dissertation research supervised by
one of the authors (Gilden) and by Caryn Carlson.
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To this end, we constructed an experiment with the single

purpose of collecting data that had extreme individual differ-

ences in RT variability. The task we chose was mental rotation, a

standard tool in cognitive assessment, initially devised by Shep-

ard (Shepard & Cooper, 1982) to clarify the nature of mental

transformations. In our version of the task, a letter was presented

at an angle of rotation of 0, 60, 120, 180, 240, or 3001 on each

trial. The letters were randomly drawn from a set of four (R, Q, G,

and F), and on half of the trials the letter was mirror-reflected. The

observer’s task was to determine if the letter was mirror-reflected

or not (pressing ‘‘1’’ on the keyboard if it was not and ‘‘2’’ if it was).

Each observer completed a single block of 480 trials.

The typical data pattern generated in this task is a tent

function with mean RTs that increase with angle up to 1801 and

then decrease with angle beyond 1801. The interpretation of this

function is (a) that people mentally rotate the letter to its upright

position in order to decide if it is mirror-reflected, (b) that it takes

longer to rotate objects to more extreme angles (as if the objects

actually existed in a euclidean space), and (c) that people rotate

along the shorter available route (clockwise for angles greater

than 1801 and counterclockwise for angles less than 1801). The

tent function is evident in the data described later in this article.

Selection of the subject population was guided by the use of a

questionnaire constructed to elicit reports of the ADHD symp-

toms of inattentiveness, compulsivity, and distractibility. The

items we were most interested in were typical of such assess-

ments: ‘‘I am very energetic,’’ ‘‘I tend to fidget,’’ ‘‘I find it difficult

to pay attention,’’ and so forth. Initially, students attending

psychology classes at the University of Texas were recruited,

and they generally reported few ADHD symptoms. They also

tended to generate low-variability (LV) data. This is not sur-

prising, as florid ADHD symptoms do not enhance college

performance. In order to find reliable sources of HV data, we

decided to assess adults (primarily of young college age) in

alcohol recovery (i.e., members of Alcoholics Anonymous, AA).

Alcohol abuse and ADHD go hand in hand. There are a

number of ways in which they are associated:

� Response inhibition, one of the core constructs of ADHD

(Arnsten, 2001; Barkley, 1997), is a predictor of problem

drinking (Nigg et al., 2005).

� Sober alcoholics show cognitive impairments that are asso-

ciated with ADHD (Tedstone & Coyle, 2004).

� People admitted to substance-abuse programs show high rates

of ADHD symptoms (Hoegerman, Resnick, & Scholl, 1993).

� Most important, there are now concrete neurological hy-

potheses that connect ADHD and alcohol abuse. Hypofunc-

tion in the dopamine system of reward is implicated in both

conditions (Smith, Molina, & Pelham, 2002; Solanto, 2002).

We make no claims here about the etiology of either disease, but

it is manifestly the case that recovering alcoholics provide a

large population for studying attention disorders. Indeed, almost

all of our subjects who reported ADHD symptoms were drawn

from the AA group.

Our final sample consisted of 15 undergraduates and 14

members of AA. Twenty-one of these people were of college age,

and the remaining 8 were between 29 and 52. Subjects were

rank-ordered in terms of their variability on the mental rotation

task. The 9 with the lowest variability were retained as the

LV group. The 9 with the highest variability were retained as the

HV group. All 9 LV subjects turned out to be undergraduates,

and none of them reported ADHD symptoms. Eight of the

9 HV subjects were attending AA meetings, and 1 was an

undergraduate. The middle group was mixed, consisting of 5

undergraduates and 6 members of AA, who were found to be

thoroughly shuffled when sorted on overall variability. The sort

on variance thus extracted two relatively homogeneous extreme

groups that were reliably coincident with reports of ADHD

symptoms and certainly with life outcome.

In order to help readers appreciate just how different the HV

and LV groups were, we show in Figure 2 the RTsequences from

the subjects who were at the median in RT variance in these

groups (5th ranked in each group of 9). Note that the scale in

Figure 2 extends from 0 to 6 s, three times the range in Figure 1.

Mental rotation is a more challenging task than deciding if two

letters are the same or different, and it generates both slower and

more variable RTs for comparable rates of accuracy. The graph

Fig. 2. Reaction time sequences from high- and low-variability observers
in the mental rotation task. These sequences were taken from the 2 ob-
servers at the median variability for their respective groups.
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for the HV observer in Figure 2 is filled with latencies in the

range of 3 to 5 s, a very long time to decide if a letter is mirror-

reflected. It might be difficult to credit the HV observer with a

sincere effort, yet these data are representative of the group

reporting ADHD symptoms and are quite similar to much of the

data observed in the negative-priming studies conducted by

Shin (2005). Moreover, all of our participants were willing and

gave their time freely. There is no reason to regard this effort as

insincere, and these data appear to be simply more evidence of

the original observation by Castellanos and Tannock (2002)—

that high variability in RT is typical in ADHD studies.3

TWO PORTRAITS OF DATA VARIABILITY

We performed two kinds of analysis on the mental rotation data.

In our first set of analyses, we extracted the mean RTs and de-

termined the effect of angle, the main independent variable in

mental rotation. We accomplished this in the usual way, by

dicing the data up according to the angle of rotation, regardless

of where the individual trials occurred in the sequence. Figure 3

shows the data picture that emerged from this analysis. This

figure shows that both LVand HVobservers mentally rotated the

letters, as both groups produced tent functions. The principal

difference between the two groups appears to be an RT offset of

about 600 ms. The HV observers evidently consumed time in

some activity that was independent of angle. This activity might

have been task related (e.g., response mapping), or it could just

as likely have been devoted to daydreaming, or whatever else

might occupy roughly a second, on average.

There are two ways of interpreting these results. As both

groups managed to do mental rotation, one might conclude that

this task is not a particularly useful tool for understanding

ADHD or, more generally, for learning what creates high data

variability. Although there was a group-by-angle interaction,

F(5, 80) 5 3.6, p < .005, the slightly more peaked function

produced by the HV group does little to invite interpretation. On

the basis of these data, one could not claim that attention deficits

change the rate of mental rotation, for example. Alternatively,

one could focus on the 600-ms intercept shift in the HV data.

From Figure 2, it is obvious that the entire HV data set is dis-

tinctly odd, and this is potentially a much more important fact

than whatever the pattern of means might indicate.

Our second set of analyses treated the data not as a response to

an experimental design, but as a temporal signal that was lit-

erally formed by the observers with each key press. RT latencies

make wavelike patterns, and the power spectrum tells how the

waves are nested. Prior to obtaining spectral estimates, we re-

moved all treatment effects (angle, mirror-reflected or not), and

so we effectively analyzed just the unexplained variation. The

methods we used for computing the power spectra are described

completely in a previous publication (Thornton & Gilden, 2005),

which also addresses the various issues arising in spectral

analysis, such as subject averaging, detrending of data, and

window averaging. Our methods have been calibrated on large

ensembles of both real and simulated data.

Figure 4 shows the observer-averaged power spectra for both

the LV and HV groups. The total spectral power for each group

has been normalized to unity to facilitate a comparison of

spectral shape. This transformation affects only the vertical

offset in our log-log plot. The abscissa is frequency, indexed not

by 1/seconds, as is usual in temporal records, but by 1/trial

number. Thus, low frequencies refer to RT variation over widely

separated trials, up to 256. High frequencies capture local RT

variation spanning as few as 4 trials. In this figure, power refers

to the squared amplitude of a sine or cosine wave in the RT time

series at a particular frequency. It is clear from Figure 4 that the

waves running through the RT data were of different amplitudes

in the two groups; this implies that the two groups generated RT

histories with different forms of autocorrelation. The LV power

spectrum is quite similar to what is generically produced by

normal adults in mental rotation and other choice RT tasks

(Gilden, 1997, 2001). The HV spectrum does not resemble any

published spectrum for RT sequences (Gilden, 1997, 2001; Van

Orden et al., 2003, 2005; Wagenmakers, Farrell, & Ratcliff,

2004).

Fig. 3. Reaction time as a function of angle in the mental rotation task.
Results are shown separately for the high- and low-variability groups.
Error bars represent standard errors of the means.

3It should be recognized that ADHD is not a well-defined diagnosis. There is
no unique symptom or marker that indicates its presence. Indeed, it is not really
clear what the disease label refers to. Our experience with adults diagnosed
with ADHD (Shin, 2005) and our experience with AA attendees suggests that
Castellanos and Tannock’s (2002) comment about high variability is more than
instructive; it defines a key signature of the attention-deficit disorders. Not only
is high variability often produced by people with diagnosed ADHD, but high
variability might be regarded as a principal diagnostic criterion of this disorder.
Upon observing the HV data shown in Figure 2, one must wonder about its
larger significance.
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Our concentration on the two groups with the least and most

variability is a form of extreme-group analysis, a method that

naturally generates uncertainty about the fate of the middle

group and its lost impact on model specification (Preacher,

MacCallum, Rucker, & Nicewander, 2005). In our particular

application, the LV and HV groups do seem to map onto a

meaningful taxonomic distinction (between normal attention

and attention deficit), and the middle group did not in fact

produce an intermediate kind of spectrum, as might be the case

were spectra and variability related in a linear or even nonlinear

fashion. Individual spectra from the middle group were divided

between the two varieties shown in Figure 4; there was no dis-

cernible third variety. This result is consistent with benchmark

calculations we performed on data from studies that involved

only normal subjects. Dividing normal subjects into extreme

groups based on variability did not produce two spectral classes.

In order to observe unusual spectra, it is necessary to obtain

unusual data, and although we use variability here as a measure

of normality, we do not wish to imply that the underlying con-

struct of attention deficit has continuous gradation.

To interpret the observed spectra, we fit a dual-source model

that specifies how white and correlated noises are mixed to-

gether to produce the bowed spectra illustrated in Figure 4. A

descriptive model that has provided good fits to RT data in our

previous work (Gilden, 1997, 2001; Thornton & Gilden, 2005) is

written as follows:

powerð f Þ ¼ 1

f a
þ bNð0; 1Þ;

where f refers to frequency, a is the exponent of the fractal

component, and b is the amplitude of a white noise-source with

unity variance and zero mean, N(0, 1). The first and second terms

in this equation are intended to model, respectively, the corre-

lated and uncorrelated aspects of the RT time series. The lines in

Figure 4 represent the best fits obtained with this model. These

fits are meaningful in that the model does succeed in describing

the observed spectral shapes (w2 5 0.0074 for the LV group,

w2 5 0.032 for the HV group).

The model parameters proved to be informative. For LV

spectra, the value of awas�.88, and the value of bwas 1.6. This

means that the LV group generated an RT noise that was about

28%—1/(1 1 b2)—1/f noise and about 72%—b2/(1 1 b2)—

white noise. Both the exponent and the percentages are typical

for choice RT (Gilden, 1997, 2001). The HV parameters were

quite different, with an a of�2.1 and b of 3.5. This is an unusual

finding, and its significance rests upon the fact that an exponent

of �2 indicates a random walk. The large value of b for this

group means that the signal was mostly white noise, which ac-

counted for 92% of the variance. The remaining 8% was ac-

counted for by a process that might be thought of as RT diffusion.

To put these results into perspective, one should compare the

contribution of random-walk noise with the proportion of vari-

ance explained by the angle variable—the key manipulation in

a mental rotation task. That letters were presented at different

angles accounted for at most 4 or 5% of the total variance, and

as little as 1% in the HV group. In this context, the 8% of the

variance expressed in a random walk was not negligible. What

was more negligible were the stimuli themselves.

DISCUSSION

The spectral analysis of HV data suggests that the variability

reflects more than the production of a few outliers. HV data sets

have an entirely different correlational structure than LV data

sets. This is an important point; HV data are not simply LV data

with higher gain, as might be concluded from the display of

mean trends. HV data contain a novel noise type, RT diffusion,

that has not been reported in the cognitive literature. Unlike 1/f

noise, diffusion has a straightforward meaning.

Random walks are created by a process that perseverates, that

is, a process in which new states are built from their immediate

predecessors. Formally, the random walk signal is generated by

iterating

new RT ¼ old RTþ random increment:

As simple as this recursion relation is, it is nevertheless unex-

pected in human data. There is no theory or set of prior findings

that suggests RTs would diffuse in this way. RTs are moderated

by prior stimuli and by prior motoric response—this is what

motor and stimulus priming are about—but RTs are not con-

ceived to be moderated by other RTs. Note that the RT diffusion

reported here should not be confused with the diffusion in

models that use random walks to simulate information pickup. In

Fig. 4. Average power spectra of reaction time sequences for the high-
and low-variability groups. The data are shown by circles. The lines
represent theoretical fits to the two-source model described in the text.
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such models, it is the growing evidence that diffuses, not the RTs

themselves.

The picture that emerges from this experiment is as follows.

There are some people who exhibit extremely high variability in

RT. These people often report ADHD symptoms, and they often

have life outcomes that include AA membership. The data these

people generate in a mental rotation task look fairly normal

insofar as the mean trends are concerned, although their RTs are

slow. For this reason, one may assume that the usual stages of

perceptual analysis, response selection, and response execution

are active in their decision making. However, their RT corre-

lations are not normal, and this is quite explicit when the RTs are

viewed in terms of their trial history. More than 90% of the

variance derives from an uncorrelated source of white noise, and

the remainder is formed by a random walk.

The RTcorrelation function appears to be under the control of

whatever it is that allows people to be vigilant. People who

cannot maintain vigilance lose their place at some point in the

normal processing chain. Loss of place results in the insertion of

an off-task time interval into the RT. This interval, in the case of

mental rotation, apparently may last upward of 5 s. The off-task

time intervals are not entirely independent. There is a tendency

for people to pause for as long as they have in the recent past, and

this generates the observed random walk.

The principal difference, then, between data derived from

people who can maintain vigilance and data from those who

cannot is literally in the noise. It is not that one group produces

noisy data and the other does not. In our methodology, any RT

sequence would be mostly noise. The issue is the kind of noise that

is present. Normal undergraduates produce copious amounts of

1/f noise as a natural consequence of decision making. People with

attention deficits generate an erratic signal that develops from the

intrinsic pressure of being asked to make a speeded response. This

finding must serve as a caution to researchers who wish to use

speeded judgment to test theories of attention dysfunction.

Acknowledgments—Preparation of this article was supported

by National Institute of Mental Health Grants R01-MH58606

and R01-MH065272. We wish to thank Misung Shin and Caryn

Carlson for help on numerous occasions.

REFERENCES

Arnsten, A.F. (2001). Modulation of prefrontal cortical-striatal cir-

cuits: Relevance to therapeutic treatments for Tourette syndrome

and attention-deficit hyperactivity disorder. Advances in Neurol-
ogy, 85, 333–341.

Bak, P. (1990). Self-organized criticality. Physica A, 163, 403–409.

Bak, P. (1992). Self-organized criticality in non-conservative models.

Physica A, 191, 41–46.

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality:

An explanation of 1/f noise. Physical Review Letters, 59, 381–384.

Barkley, R.A. (1997). Behavioral inhibition, sustained attention, and

executive functions: Constructing a unifying theory of ADHD.

Psychological Bulletin, 121, 65–94.

Castellanos, F.X., Sonuga-Barke, E.J.S., Scheres, A., Di Martino, A.,

Hyde, C., & Walters, J.R. (2005). Varieties of attention-deficit/

hyperactivity disorder-related intra-individual variability. Bio-
logical Psychiatry, 57, 1416–1423.

Castellanos, F.X., & Tannock, R. (2002). Neuroscience of attention

deficit/hyperactivity disorder: The search for endophenotypes.

Neuroscience, 3, 617–628.

Gilden, D.L. (1997). Fluctuations in the time required for elementary

decisions. Psychological Science, 8, 296–301.

Gilden, D.L. (2001). Cognitive emissions of 1/f noise. Psychological
Review, 108, 33–56.

Gilden, D.L., Thornton, T., & Mallon, M.W. (1995). 1/f noise in human

cognition. Science, 267, 1837–1839.

Handel, P.H., & Chung, A.L. (Eds.). (1993). Noise in physical
systems and 1/f fluctuations. New York: American Institute of

Physics.

Hasher, L., Zacks, R.T., Stoltzfus, E.R., & Kane, M.J. (1996). On

the time course of negative priming: Another look. Psychonomic
Bulletin & Review, 3, 231–237.

Hervey, A.S. (2004). Reaction time distribution analysis on Conners’
Continuous Performance Test as a function of ADHD diagnosis
and symptomatology. Unpublished doctoral dissertation, Duke

University, Durham, NC.

Hoegerman, G.S., Resnick, R., & Scholl, S. (1993). Attention deficits

in newly abstinent substance abusers: Childhood recollections

and attention performance in thirty-nine subjects. Journal of
Addictive Diseases, 12, 37–53.

Milotti, E. (2002). 1/f noise: A pedagogical review. Retrieved Sep-

tember 18, 2006, from http://www.nslij-genetics.org/wli/1fnoise/

1fnoise_review.html

Neill, T.W., Lissner, S.L., & Beck, J.L. (1990). Negative priming in

same-different matching: Further evidence for a central locus of

inhibition. Perception & Psychophysics, 48, 398–400.

Nigg, J.T., Wong, M.M., Martel, M.M., Jester, J.M., Puttler, L.I., Glass,

J.M., et al. (2006). Poor response inhibition as a predictor of

problem drinking and illicit drug use in adolescents at risk for

alcoholism and other substance use disorders. American Academy
of Child and Adolescent Psychiatry, 45, 468–475.

Pashler, H., & Johnston, J.C. (1998). Attentional limitations in dual-

task performance. In H. Pashler (Ed.), Attention (pp. 155–189).

East Sussex, England: Psychology Press.

Preacher, K.J., MacCallum, R.C., Rucker, D.D., & Nicewander, W.A.

(2005). Use of the extreme groups approach: A critical reexam-

ination and new recommendations. Psychological Methods, 10,

178–192.

Press, W.H. (1978). Flicker noises in astronomy and elsewhere. Com-
ments in Astrophysics, 7, 103–119.

Shepard, R.N., & Cooper, L.A. (1982). Mental images and their trans-
formations. Cambridge, MA: MIT Press.

Shin, M. (2005). Different time course of negative priming in the sub-
types of ADHD. Unpublished doctoral dissertation, University of

Texas, Austin.

Smith, B.H., Molina, B.S.G., & Pelham, W.E., Jr. (2002). The clinically

meaningful link between alcohol use and attention deficit hyper-

activity disorder. Alcohol Research and Health, 26, 122–129.

Solanto, M.V. (2002). Dopamine dysfunction in AD/HD: Integrating

clinical and basic neuroscience research. Behavioral Brain Re-
search, 103, 65–71.

Volume 18—Number 9 801

David L. Gilden and Hilary Hancock



Tedstone, D., & Coyle, K. (2004). Cognitive impairments in sober al-

coholics: Performance on selective and divided attention tasks.

Drug and Alcohol Dependence, 75, 277–286.

Thornton, T.L., & Gilden, D.L. (2005). Provenance of correlations in

psychological data. Psychonomic Bulletin & Review, 12, 409–441.

Van Orden, G.C., Holden, J.G., & Turvey, M.T. (2003). Self-organiza-

tion of cognitive performance. Journal of Experimental Psychol-
ogy: General, 132, 331–350.

Van Orden, G.C., Holden, J.G., & Turvey, M.T. (2005). Human cog-

nition and 1/f scaling. Journal of Experimental Psychology:
General, 134, 117–123.

Voss, R.F., & Clarke, J. (1975). ‘1/f noise’ in music and speech. Nature,

258, 317–318.

Voss, R.F., & Clarke, J. (1978). ‘‘1/f noise’’ in music: Music from 1/f

noise. Journal of the Acoustical Society of America, 63, 258–263.

Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and

interpretation of 1/f a noise in human cognition. Psychonomic
Bulletin & Review, 11, 579–615.

West, B.J., & Shlesinger, M.F. (1989). On the ubiquity of 1/f noise.

International Journal of Modern Physics B, 3, 795–819.

(RECEIVED 9/25/06; REVISION ACCEPTED 11/10/06;
FINAL MATERIALS RECEIVED 11/16/06)

802 Volume 18—Number 9

Response Variability in Attention-Deficit Disorders


