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INTRODUCTION AND SCOPE

Diagnostic problems abound for individuals, organizations,
and society. The stakes are high, often life and death. Such
problems are prominent in the fields of health care, public
safety, business, environment, justice, education, manufactur-
ing, information processing, the military, and government.

Particular diagnostic questions are raised repetitively, each
time calling for a positive or negative decision about the pres-
ence of a given condition or the occurrence (often in the future)
of a given event. Consider the following illustrations: Is a
cancer present? Will this individual commit violence? Are
there explosives in this luggage? Is this aircraft fit to fly? Will
the stock market advance today? Is this assembly-line item
flawed? Will an impending storm strike? Is there oil in the
ground here? Is there an unsafe radiation level in my house? Is
this person lying? Is this person using drugs? Will this appli-
cant succeed? Will this book have the information I need? Is
that plane intending to attack this ship? Is this applicant legally
disabled? Does this tax return justify an audit? Each time such
a question is raised, the available evidence is assessed by a
person or a device or a combination of the two, and a choice is
then made between the two alternatives, yes or no. The evi-
dence may be a x-ray, a score on a psychiatric test, a chemical
analysis, and so on.

In considering just yes–no alternatives, such diagnoses do
not exhaust the types of diagnostic questions that exist. Other
questions, for example, a differential diagnosis in medicine,
may require considering a half dozen or more possible alter-
natives. Decisions of the yes–no type, however, are prevalent
and important, as the foregoing examples suggest, and they are
the focus of our analysis. We suggest that diagnoses of this
type rest on a general process with common characteristics
across fields, and that the process warrants scientific analysis
as a discipline in its own right (Swets, 1988, 1992).

The main purpose of this article is to describe two ways, one
obvious and one less obvious, in which diagnostic performance
can be improved. The more obvious way to improve diagnosis
is to improve its accuracy, that is, its ability to distinguish
between the two diagnostic alternatives and to select the cor-
rect one. The less obvious way to improve diagnosis is to

increase the utility of the diagnostic decisions that are made.
That is, apart from improving accuracy, there is a need to
produce decisions that are in tune both with the situational
probabilities of the alternative diagnostic conditions and with
the benefits and costs, respectively, of correct and incorrect
decisions.

Methods exist to achieve both goals. These methods depend
on a measurement technique that separately and independently
quantifies the two aspects of diagnostic performance, namely,
its accuracy and the balance it provides among the various
possible types of decision outcomes. We propose that together
the method for measuring diagnostic performance and the
methods for improving it constitute the fundamentals of a sci-
ence of diagnosis. We develop the idea that this incipient dis-
cipline has been demonstrated to improve diagnosis in several
fields, but is nonetheless virtually unknown and unused in
others. We consider some possible reasons for the disparity
between the general usefulness of the methods and their lack
of general use, and we advance some ideas for reducing this
disparity.

To anticipate, we develop two successful examples of these
methods in some detail: the prognosis of violent behavior and
the diagnosis of breast and prostate cancer. We treat briefly
other successful examples, such as weather forecasting and
admission to a selective school. We also develop in detail two
examples of fields that would markedly benefit from appli-
cation of the methods, namely the detection of cracks in air-
plane wings and the detection of the virus of AIDS. Briefly
treated are diagnoses of dangerous conditions for in-flight air-
craft and of behavioral impairments that qualify as disabilities
in individuals.

Enhancing the Accuracy of Decisions

As implied, there are four possible decision outcomes in the
two-alternative diagnostic task under consideration: two cor-
rect and two incorrect. In one kind of correct outcome, the
condition of interest is present, or “positive,” and the decision
is correspondingly positive. Such an outcome is termed a “true-
positive” outcome. For example, cancer is present and the ra-
diologist says it is. In the other kind of correct outcome, the
condition is absent, or “negative,” and the decision is properly
negative. It is called a “true-negative” outcome. For example,
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cancer is not present and the radiologist says it is not. Simi-
larly, of the two incorrect outcomes, one is “false-positive”
(condition absent, decision positive) and the other is “false-
negative” (condition present, decision negative). Accuracy
may be increased by increasing the relative frequency of one or
the other of the two types of correct decisions, or equivalently,
by decreasing the relative frequency of one or the other of the
two types of errors.

Let us be explicit about why both correct and erroneous
decisions occur. The reason is that the evidence available for a
decision is usually ambiguous. According to a well-established
model of the process, we may think of the degree of evidence
as being represented by a value along a single dimension, with
high values tending to be associated with the positive diagnos-
tic alternative and low values tending to be associated with the
negative alternative. For example, a high pressure in the eye is
usually associated with glaucoma, and a low one not. But the
tendencies are merely that; low values of evidence can none-
theless arise from the positive alternative and high values from
the negative alternative. The distribution of the degrees of evi-
dence produced by the positive condition overlaps the distri-
bution of the degrees produced by the negative condition.
Hence, the accuracy of a series of diagnoses depends on the
amount of overlap between the two distributions—that is, the
inherent confusability of the two alternatives. In sum, diag-
noses are not certain; errors will occur.

This conception of the diagnostic process is shown pictori-
ally in Figure 1. Concretely in the figure, the problem is to
distinguish eyes with glaucoma from normal eyes and the evi-

dence is the amount of pressure measured in the eye. The
figure shows the pressure values to vary along the evidence
continuum from 0 to 50. The two distribution curves show the
probability (the height of the curve) that each value will occur
in connection with each of the diagnostic alternatives. The
figure reflects (only for our illustrative purposes) a distribution
of pressure values at the left, observed for normal eyes, ranging
from 0 to 40. Meanwhile, pressure values associated with glau-
coma vary from 10 to 50. Hence, the two distributions of
values overlap between 10 and 40. Those values are inherently
problematic; they can arise from either a diseased or normal eye.

We describe a class of computer-based decision-support
methods that increase accuracy by providing a better quality of
evidence—distributions with less overlap—by developing for
the diagnostician statistical combinations and implications of
relevant diagnostic data. Calledactuarial techniques,or statis-
tical prediction rules(SPRs), they use statistical analyses of
cases with known outcomes to determine which pieces of di-
agnostic information, or which “predictor variables,” are rel-
evant to a given diagnostic decision and to what extent (most
diagnoses depend on more than one variable as in our glau-
coma example). As applied to each case in subsequent diag-
noses, a SPR accepts case-based values of the variables and
combines them, with appropriate weight given to each, to give
the best possible assessment or summary of the available evi-
dence. Many SPRs are programmed to evaluate and express the
evidence as an estimate of the probability that the diagnostic
condition of interest is present.

Enhancing the Utility of Decisions

Even though the accuracy of a given type of diagnosis in a
particular setting may be constant, depending on the quality of
evidence available and the ability of the diagnostician, the
utility of the decisions can vary. In some situations, positive
decisions should be more frequent than negative decisions,
perhaps (1) because the probability of the positive diagnostic
alternative is high (for example, most patients at a certain clinic
will have glaucoma), or perhaps (2) because the value of being
correct when the positive alternative is present is very high
(treating glaucoma immediately may be very efficacious). Al-
ternatively, some situations will favor negative decisions (glau-
coma screening in a broad population without symptoms may
not turn up many instances of the disease). We assume, how-
ever, that the diagnostician will not achieve more decisions of
one or the other kind when more are indicated simply by mak-
ing more of them on randomly chosen trials, irrespective of the
degree of evidence on a trial. Rather, the diagnostician will
strive for consistency, making the same decision each time for
any given evidence value, and hence vary deliberately the
amount of positive evidence that will be required to issue a
positive decision.

Given the picture in Figure 1, the decision maker can make
decisions most consistently by setting a cutpoint on the con-

Fig. 1. Probability distributions of amounts of evidence (here, units of
pressure as measured in the eye) for the negative (normal) and posi-
tive (diseased) diagnostic alternatives. Each value on the evidence
continuum occurs for the negative and positive diagnostic alternatives
with a probability equal to the height of the curve for that alternative.
An illustrative decision threshold is shown at 30 on the evidence scale,
meaning that values of 30 or greater will elicit a positive decision.
That threshold yields the false-positive and true-positive probabilities,
P(FP) and P(TP), as indicated by hatch marks. The two probabilities
are equal, respectively, to the proportions of area under the curves that
lie to the right of the decision threshold. They vary together when the
threshold is varied.
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tinuum of evidence values, such that values above the cutpoint
lead always to a positive decision and values below it lead
always to a negative decision. The cutpoint is called adecision
threshold.A decision threshold is illustrated in Figure 1 by the
dashed vertical line, at 30 pressure units. That cutpoint can be
adjusted up or down to produce more or fewer positive deci-
sions in a rational way, e.g., to make additional positive deci-
sions in connection with higher amounts of positive evidence.
In the preferred diagnostic procedure, adjustments of the de-
cision threshold are made to produce the best ratio of positive
to negative decisions and ultimately to produce the best bal-
ance among the four possible decision outcomes for the situ-
ation at hand, and hence to maximize the utility of the set of
decisions made over time.

We must make a fine distinction, but a critical one. We have
spoken of events called “decision outcomes,” which arejoint
occurrences of a particular diagnostic alternative and a particu-
lar decision—for example, a positive alternative and a positive
decision occur together. In addition, we need the concept of a
conditionalevent, which (for our purposes) is a particular de-
cision made when, or given that, a particular diagnostic alter-
native occurs (past or future). Both joint and conditional events
will occur in four ways, depending on the combination of
positive and negative alternatives and decisions; each way will
have a probability associated with it. There are two central
probabilities for us, as will be seen shortly: the conditional
probability that a decision is positive given that the positive
diagnostic alternative occurs, which we call simply the “true-
positive probability,” and denote P(TP); and the conditional
probability that a decision is positive given that the negative
alternative occurs, which we call the “false-positive probabil-
ity,” and denote P(FP).

It is now widely recognized, for a diagnostic process of
constant accuracy, that adjusting the decision threshold will
exhibit a fundamental correlation between P(FP) and P(TP). If
the threshold is made more “lenient” (requiring less evidence
for a positive decision to be made) to increase P(TP), then
P(FP) will also inevitably increase. More “yes” decisions will
be correct/true with the more lenient threshold, but more also
will be incorrect/false. Alternatively, if the threshold is made
more “strict” to decrease P(FP), then P(TP) will necessarily go
down.

In Figure 1, P(TP) is equal to the proportion of the area
under the positive (right) distribution to the right of the deci-
sion threshold (as hatched) and P(FP) is equal to the proportion
of the area under the negative (left) distribution to the right of
the threshold (cross hatched). It is clear that those proportion-
ate areas will increase or decrease together as the threshold
point moves. The conditional probabilities of the other two
decision outcomes, true-negative and false-negative, are the
complements of P(TP) and P(FP), respectively, and equal the
proportionate areas under the distributions to the left of the
threshold. Hence, they will also vary when the threshold is
moved. However, because they are complements of the main

two probabilities, they offer only redundant information and
we shall generally not attend to them.

We describe later a formula that shows where the decision
threshold should be set to maximize the utility of a decision
process, to maximize a decision’s benefits, on average, relative
to its costs. The formula takes into account the relative prob-
abilities that the positive and negative diagnostic alterna-
tives will occur in the situation at hand, independent of the
decision process. In general, the higher the probability of
the positive alternative, the more lenient the best setting of the
decision threshold (and alternatively). The formula also takes
into account the benefits of being correct (in both ways) and
the costs of being incorrect (in both ways). In general, the more
important it is to be correct when the positive alternative
occurs, the more lenient the decision threshold should be (and
alternatively).

Although several experimental uses and some routine uses
of statistical prediction rules exist to demonstrate increases in
diagnostic accuracy, there have been relatively few attempts to
evaluate methods for choosing the best decision threshold.
However, analyses of certain diagnostic tasks described in this
article make clear the large potential gain to be provided by
threshold-setting methods.

Scope of Our Discussion

We begin by further identifying the two particular diagnos-
tic tasks that will be presented in detail to illustrate improve-
ments in accuracy and also the two tasks chosen to suggest
improvements in decision utility that can stem from appropri-
ate setting of the decision threshold. We proceed to describe
some general characteristics of diagnostic tasks and how both
objective and subjective data are used in compiling the evi-
dence for a diagnostic decision. There follows a review of the
measures of accuracy and decision threshold that are used
throughout to evaluate those aspects of performance. These
measures are based on the now-common “ROC” technique, the
term abbreviated from “receiver operating characteristic” as
used in signal detection theory, a theory developed for elec-
tronic signals (Peterson, Birdsall, & Fox, 1954) and then
widely applied in psychology and in diagnostics generally
(Swets, 1996).

We proceed to describe the functioning of SPRs: first, how
statistical methods determine which pieces of information or
which predictor variables are relevant for any given task; and
second, how SPRs combine case-specific values of the vari-
ables to estimate a diagnostic probability for any given case.
We then discuss optimal ways to set a decision threshold.
Diagnostic illustrations follow. Our concluding sections, as
suggested earlier, present possible reasons for the limited use
of these decision-support methods and possible ways to extend
their use.

Our intent is to promote a national awareness among the
public and its policy makers of the potential for these decision-
support methods in many important areas. Our orientation is
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toward affecting policy and practice. We do not treat inherently
statistical or psychological topics, so we do not make a com-
parative analysis of different types of SPRs nor an analysis
of various techniques people use in making inferences and
decisions.

Four Illustrative Diagnostic Tasks

Increasing accuracy
Two diagnostic tasks will illustrate in some detail the ca-

pability of SPRs to increase diagnostic accuracy: (1) A psy-
chiatrist or clinical psychologist seeks to determine whether a
particular patient in a mental health facility will, if discharged,
engage in violent behavior; (2) A radiologist must determine
whether or not a woman being examined with mammography
has breast cancer. A parallel task is considered in which mag-
netic resonance (MR) imaging is used to determine the extent
to which prostate cancer has advanced. Although these ex-
amples may illustrate improvements in setting decision thresh-
olds as well as improvements in diagnostic accuracy, they are
focused here on experimental demonstrations of increased
accuracy.

Increasing utility
Two other diagnostic tasks will provide analyses of the

benefits of optimizing the placement of the decision threshold:
(1) A blood test is used to screen individuals for the presence
of the human immunodeficiency virus (HIV) of the acquired
immunodeficiency syndrome (AIDS); (2) An imaging test,
e.g., an ultrasound display, is used by an electronics technician
to detect cracks in airplane wings.

COMPONENTS OF DIAGNOSTIC
DECISION MAKING

Characteristics of Diagnostic Tasks

Several or many pieces of relevant information
A fundamental characteristic of most diagnostic tasks is that

several variables enter the evidence for a decision. Some vari-
ables are “objective,” i.e., demonstrable facts; others are “sub-
jective,” i.e., include at least an element of a human
diagnostician’s judgment. In the prognosis of violence, for ex-
ample, objective items with predictive power include (a) prior
arrests, (b) employment status, and (c) age. Subjective items
relevant to violence diagnosis include clinical judgments about
(d) psychopathy, (e) schizophrenia, and (f) substance abuse.

Similarly for breast cancer, roughly 20 variables may weigh
in a radiologist’s diagnosis. Again, some are subjective, such
as the interpretation from visual impressions of the mammo-
gram of features that may seem to be present. Examples of
such features include (a) a “mass” (tumor or a cyst); (b) “cal-

cifications” (sand−like grains); or (c) a change from a previous
mammogram. Objective variables include demographic, clini-
cal, and biological data, such as: (d) patient’s age, (e) having a
previous biopsy or not, and (f) presence of a malfunctioning
cancer-suppressing gene. Clearly, all relevant pieces of infor-
mation must be combined in a constructive way to make their
appropriate contributions to the sum of evidence.

Merging information into a diagnostic probability
The sum of evidence often, and with the SPRs of interest to

us, boils down to an estimate of a probability: the probability
that a given condition exists (e.g., breast cancer) or that a given
event will occur (e.g., a violent act). Statistical procedures may
be used to ensure that each piece of evidence contributes to the
over-all probability estimate in proportion to its diagnostic
weight or predictive power. These procedures also ensure that
an item of data contributes to the degree that its information is
independent of that in other items, because including the same
information twice would artificially double its impact and so
distort the final estimate of probability.

Setting a decision threshold on the probability continuum
A probability estimate, of course, is merely that. It is a

continuous variable that must be converted into a decision
about the case at hand, usually a choice between two diagnostic
alternatives, such as cancer present or cancer absent. A thresh-
old probability of .05 that cancer is present may be deemed
appropriate in diagnosing breast cancer. A higher probability
of cancer will then lead to some action or actions, such as
additional imaging examinations (perhaps enlarged X-rays or
ultrasound), earlier than usual re-examination by routine mam-
mography, or biopsy. A more lenient threshold, such as a prob-
ability of cancer of .02, will find more cancers but at the
expense of telling more women who do not have cancer that
they might have cancer, which will cause duress and likely
require further costly examinations. This vignette illustrates
our point that adjusting the decision threshold will affect both
P(FP) and P(TP) while a constant accuracy is maintained. By
way of example, those two probabilities may be .20 and .80,
respectively, for the stricter threshold atp 4 .05; and .50 and
.95 for the more lenient threshold atp 4 .02. The more lenient
threshold therefore detects correctly an additional 15 of 100
present cancers (from 80 to 95) at the price of “detecting”
incorrectly an additional 30 of 100 cancers not there (from 20
to 50). The question of which threshold is better calls for an
analysis of costs and benefits of the sort we discuss later.

As a refinement of the foregoing point, note that the diag-
nostic question may be framed as a choice between a specified
action and no action, rather than as the choice between the
presence and absence of a condition. Also, there may be more
than one action available, perhaps a set of graded actions cor-
related with the size of the probability estimate. In such a
setting, one might simultaneously set two or three decision
thresholds on the probability variable.
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Merging Objective Data and Subjective Judgments

Objective data
For several decades in certain diagnostic fields, relevant

items of objective data (numerical or categorical) have been
combined by statistical methods to provide an estimate of a
diagnostic probability. In some cases, the method of combina-
tion is relatively simple; such a method might consist simply of
counting how many of a set of listed symptoms of a disease are
present, for example. In other cases, multivariate statistical
analysis may merge predictor variables in a more sophisticated
way, taking quantitatively into account their predictive power
and the degree to which they provide predictive power inde-
pendent of the other variables considered.

Subjective judgments
For several decades, the validity of a SPR’s probability

estimates, or the accuracy of its diagnoses, as based solely on
objective data has been compared and contrasted to the esti-
mates or accuracy of decisions based largely on subjective
judgment. In some settings, principally in psychiatry and clini-
cal psychology, actuarial instruments have been shown repeat-
edly to be more accurate than clinical judgment (Meehl, 1954;
Dawes and Corrigan, 1974; Dawes et al., 1989), leading some
investigators to recommend that the clinician’s judgment/
diagnosis be totally supplanted by the statistical device (e.g.,
Grove and Meehl, 1996; Quinsey et al., 1998). In other set-
tings, such as clinical medicine or weather forecasting, there
has been less of a tendency to consider objective methods and
human judgments as competing alternatives. In such settings,
the prevailing practice is to supply the objective method’s
output to the human diagnostician who then makes the final
decision.

Subjective data
In a parallel to the procedure of calculating a probability

based on objective data, one can merge judgments about sub-
jective variables by using the same statistical apparatus used
with objective data. This procedure might begin with the hu-
man suggesting as relevant certain items of evidence, e.g.,
perceptual features of a medical image, that may turn out by
analysis of outcomes in proven cases to be of diagnostic im-
portance. Diagnosticians and methodologists can then work
together to devise apt names and rating scales for the items
retained. Finally, the human diagnostician supplies the ratings
for each item for a given case under diagnosis that are then
merged statistically into a probability estimate (e.g., Getty et
al., 1988; Seltzer et al., 1997). A similar approach has been
taken to decisions about prison parole (Gottfredson et al.,
1978).

Combining objective and subjective data statistically
Still a third possibility is to combine both objective and

subjective evidence in a single SPR and either use directly the

probability estimate it provides or supply the estimate to the
human diagnostician for final judgment (Getty et al., 1997). In
the latter event, the SPR’s result can be considered by the
diagnostician as a kind of “second opinion.” The exact nature
of what the human can or should add at that point may not be
totally clear. However, the human might opt for a higher or
lower probability than the rule estimates, depending on what
he or she knows about the composition of the rule and the
particulars of the case at hand. We will return to this ques-
tion, with specifics developed in our illustration of violence
prognosis.

The diagnosis of breast cancer by mammography seems to
be consistent with constructing an SPR on the basis of all of the
evidence while leaving the human in control. The human, in
this instance, is often essential to supply perceptual data to the
SPR that is beyond the capability of machines to generate
objectively; humans continue to see certain critical features of
medical images that computers fail to see. But humans must
concede to computers superior ability to see and assess certain
other features in an image and further, superior persistence to
call exhaustively for examination of every relevant feature for
every case, without succumbing to “satisfaction of search” af-
ter a few salient features are noticed. Computers, of course,
retain more precisely the numerical values assigned to the sev-
eral items of information that are considered for each case,
including those assigned by the human. And the computer’s
statistical algorithm exceeds by far the human’s capability to
calculate weights and to merge the calculated values optimally.
In contrast to the position sometimes taken that the SPR should
supplant the clinician, however, such as in the prediction of
violence, we sense little sentiment to replace the radiologist by
a SPR or to suppress any further, final opinions he or she may
have after the SPR has had its say.

Balancing objective and subjective contributions
The view governing this article is that the appropriate role

of the SPR vis a vis the diagnostician will vary from one
context to another, and will be disputed in some. Nonetheless,
the ability of SPR techniques to increase diagnostic accuracy
should be ascertained in diagnostic settings for which they
seem to have promise and their enhanced accuracy should be
used wherever it can be supplied in a cost-effective manner.
The roles and interactions of human and computer that are
most appropriate can be determined for each diagnostic setting
in accordance with the accumulated evidence about what
works best.

STATISTICAL MACHINERY

Diagnosis, as we have seen, is intrinsically probabilistic or
statistical. We describe next the probability theory and statis-
tical tools that are used to measure and to enhance diagnostic
performance. Though not essential to an appreciation of this
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article’s theme, an appendix presents basic probability con-
cepts in somewhat greater depth for the interested reader.

Measures of Accuracy and the Decision Threshold

The two independent aspects of diagnostic performance,
accuracy and decision threshold, should of course be reflected
in separate, independent measures. Two such measures are
provided by a ROC graph where “ROC,” as mentioned, stands
for “receiver operating characteristic.” The ROC’s origin in
electronic signal detection theory, its wide use in psychology
for sensory and cognitive processes, and its wide and growing
use in diagnostic fields are described elsewhere; described in
the same publication are the inadequacies of measures not
derived from a ROC (Swets, 1996). Suffice it to say here that
the half dozen or so measures developed in various diagnostic
fields are intended to be measures of accuracy; however they
vary in a predictable, but unappreciated, way with changes in
the decision threshold. Because the decision threshold is not
assessed in connection with these accuracy measures, they are
confounded by changes in the threshold and are unreliable to
that extent. Their lack of a companion measure of decision
threshold ignores an important aspect of performance.

The ROC graph
The ROC graph is a plot of the two basic probabilities we

have emphasized in the previous discussion—the probabilities
that the decision is positive when the condition of interest is
present, or positive, and that the decision is positive when the
condition is absent, or negative—denoted P(TP) and P(FP).
They are calculated from proportions of observed frequencies
as displayed in a two-by-two table of data, as described in the
Appendix.

The ROC graph, specifically, is a plot of P(TP) on the y-axis
and P(FP) on the x-axis, and shows how the two quantities vary
together as the decision threshold is varied for a given accu-
racy. An example of a ROC is shown in Figure 2. The two
probabilities vary together from the lower left corner of the
graph in the form of a curved arc to the upper right corner. At
the far lower left both probabilities are near 0, as they would be
for a very strict decision threshold, under which the diagnos-
tician rarely makes a positive decision. At the far upper right
both probabilities are near 1.0, as they would be for a very
lenient decision threshold, under which the diagnostician al-
most always makes a positive decision. In between the curve
rises smoothly, with a smoothly decreasing slope, to represent
all of the possible decision thresholds (for a given accuracy).
Hence, the position of the curve (in the square) is independent
of whatever decision threshold is chosen in a particular task. It
should be noted that the curve shown in the figure is idealized.
Actual, empirical ROCs will vary somewhat in form, though
usually not by much (Swets, 1996, chapter 2; Hanley, 1988).

Note, fundamentally, that if an empirical ROC is not avail-
able, one would not know whether two different observed pairs

of P(FP) and P(TP) represent the same or different accuracies.
For example, earlier we exemplified in the context of mam-
mography one pair of these values as .20 and .80 and another
pair as .50 and .95. Do those two pairs represent different
accuracies (as well as different decision thresholds) or only
different decision thresholds with the same accuracy? The
ROC is needed to show if they lie on the same ROC, for a
given accuracy, or on different curves, representing higher and
lower accuracy as described shortly.

Measure of the decision threshold, S
Because the ROC’s curve rises with smoothly decreasing

slope, the slope of the curve at any point along the curve will
serve as a measure of the decision threshold that produces that
point. This measure is denotedS.The slope approaches infinity
at the strictest threshold, or lower left corner, and 0 at the most
lenient threshold, or upper right corner. Practically observed
decision thresholds, however, are well within the graph and vary
from about 5 for a relatively strict threshold to 1/5 for a relatively
lenient threshold. Illustrative thresholds at values ofSequal to 2
and 1/2 are shown in Figure 2. It can be seen that the threshold
at S = 2 is relatively strict; the positive decision is made rarely
and both ROC probabilities are relatively small (see dashed

Fig. 2. Illustrative ROC (receiver operating characteristic), for a par-
ticular accuracy. True-positive probability, or P(TP), is plotted against
false-positive probability, or P(FP). The curve extends from the lower
left corner in an arc of decreasing slope to the upper right corner, as
the decision threshold is varied from strict to lenient. Two selected
points on the curve, where the curve has slopes of 2 and 1/2, respec-
tively, are identified to indicate how the slope of the curve at any
point, symbolized asS, may be used as a measure of the decision
threshold that produced the point.
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lines). A threshold atS = 1/2, on the other hand, is lenient and
produces fairly large probabilities of a positive decision.

Note that any value ofS can be referred back to a cutpoint
on the evidence or decision variable, however that variable is
expressed, e.g., as an observer’s rating, a probability, or some
physical quantity. Indeed, the value ofS is identical to a value
of a point along the evidence continuum when the continuum
is quantified as the so-called “likelihood ratio.” This is the ratio
of the probability that a given degree of evidence will arise
when the diagnostic alternative is positive to the probability
that the degree of evidence will arise when the diagnostic
alternative is negative. It is thus a ratio of the heights of the two
overlapping distributions of degrees of evidence as shown in
Figure 1. (Notice in the figure that the positive distribution is
roughly twice the height of the negative distribution at 30 on
the pressure variable, and soS4 2 corresponds to a threshold
set at 30. The height of the positive distribution is roughly
one-half that of the negative distribution at 20 on the pressure
variable, and soS 4 1/2 corresponds to a threshold at 20.)
Other measures of the decision threshold are sometimes pre-
ferred toS, but it, as will be seen, lends itself to calculation of
the optimal threshold.

Measure of accuracy, A
Figure 3 shows several illustrative ROCs, which represent

different levels of accuracy. The higher the curve, the greater

the accuracy. That is, the accuracy is greater when P(TP) is
higher for a given P(FP). Referring to Figure 1, the curve will
be higher and the accuracy greater when the overlap between
the two probability distributions is less, when the diagnostic
alternatives are less confusable. Hence, the accuracy of diag-
nosis is conveniently represented by the proportion of the
graph’s area that lies beneath a given curve. This area measure,
denotedA, ranges from .50 for accuracy equal to chance, up to
1.0 for perfect accuracy. Specifically,A 4.50 for a ROC lying
along the diagonal that runs from lower left to upper right,
which is a ROC signifying accuracy no better than chance
performance; that is, P(TP) is no higher anywhere than P(FP).
A 4 1.0 for a ROC that follows the left and upper axes, which
is a curve that signifies perfect accuracy; that is, P(TP) is 1.0
for all values of P(FP), including 0. Some intermediate values
of A are shown in Figure 3. (The reader can determine visually
whether the two pairs of ROC probabilities mentioned earlier,
(.20, .80) and (.50, .95), lie on the same curve or different
curves.)

Another way to think ofA may subjectively help to calibrate
its various values. Consider a series of trials in which a ran-
domly selected pair of diagnostic alternatives is presented on
each trial—one alternative always positive and the other al-
ways negative (e.g., a mammogram from a patient with proven
cancer and another from a patient without cancer). The deci-
sion maker is asked to make a “paired-comparison” and is
instructed to identify the (more likely) positive alternative on
each trial. Then the quantityA is equal to the proportion of
times the decision maker (correctly) selects the positive alter-
native. Hence, A4.75 means that in a paired-comparison task,
the radiologist can correctly identify the mammogram that is
associated with disease on 75% of the trials.

Other ROC measures of accuracy are sometimes used, such
as the distance of the curve from the positive diagonal. One
virtue of the area measure is that it is relatively insensitive to
small variations in the shape of empirical ROCs. ThatA is the
measure of modern choice is indicated by the ROC’s listing as
a keyword in over 700 articles per year in the medical litera-
ture—almost all of these articles’ usingA. Computer programs
are available to fit ROCs to data and give values of the mea-
suresA andS, along with their confidence limits. A variety of
useful ROC programs can be accessed via the website: http://
www.radiology.arizona.edu/∼mo-/rocprog.atm.

Constructing an empirical ROC
The simplest and most efficient way to construct a ROC to

represent the accuracy of a given diagnostic system is to work
directly with the graded or continuous output of the system.
Thus, a radiologist may give a rating of confidence that a
lesion/disease is present, say, on a 5-category scale ranging
from “highly confident positive” to “highly confident nega-
tive.” Or the radiologist, or SPR, may give an estimate of the
probability of a positive condition (effectively a 100-category
scale). Most diagnostic systems give such a continuous out-

Fig. 3. Illustrative ROCs (receiver operating characteristics), for four
levels of accuracy. Each curve is labeled by its area measure of
accuracy,A. The measureA is defined as the proportion of the graph’s
area that lies below a given curve. Values ofA range from .50, at the
(solid) diagonal line that corresponds to chance accuracy, up to 1.0,
for perfect accuracy.
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put—a pressure test for glaucoma, for example, or a probability
of precipitation, or a likelihood of violence. Using defined
categories of judgments, or breaking a continuum into arbitrary
categories, approximates the simultaneous setting of a range of
thresholds. One can picture several thresholds set simulta-
neously and spread along the evidence variable in Figure 1.

In analysis, the investigator can adopt the multiple decision
thresholds afforded by the categories used by the diagnostician,
or taken from the categories defined just for purposes of analy-
sis. So, if the variable is probability, the investigator can set
thresholds for analysis, say, atp 4.90,p 4.80,p 4.70, and so
forth, and compute the ROC coordinates P(FP) and P(TP) for
outputs that exceed each successive threshold: the strict one at
.90, the less strict one at .80, and so on. In this way, a series of
ROC points march up along the curve and define a ROC for the
diagnostic system or task at hand.

How Statistical Prediction Rules (SPRs) are Developed

A SPR is constructed by means of statistical analysis to
quantify the power of candidate predictive variables to dis-
criminate between the positive and negative instances of the
diagnostic alternatives under study. Though not true of all
methods, variables may be added to a SPR and assigned their
respective weights in a stepwise fashion; that is, a particular
candidate variable is selected next for the mix if it adds the
largest increment to the power of the variables already se-
lected, and then it is weighted according to the size of that
increment. In this way inter-correlations among variables are
neutralized; each subsequent variable is assessed according to
its independent, additional predictive power. The stepwise pro-
cedure is repeated until the investigator decides that additional
variables are adding little of practical value and then the ex-
isting set can be regarded as necessary and sufficient.

The SPR, as a set of variables and weights, is able to func-
tion as an aid to diagnosticians because for each new case
submitted to it, essentially as a collection of values for the
SPR’s variables, it gives an estimate of the probability of oc-
currence of the positive instance of the two diagnostic alterna-
tives. (This is an “inverse” or “Bayesian” probability as
defined in the Appendix.) The SPR can function directly as a
decision maker if supplied a decision threshold. (Note that
some computer programs for developing an SPR supply only a
categorical decision, rather than a probability, that is based on
some often unexplained decision threshold, perhaps one that
maximizes the number of correct decisions. Such programs
show an insensitivity to the need to set different thresholds
appropriate to different settings.)

Alternative methods
Several statistical methods have been used to develop SPRs,

including “discriminant analysis” (e.g., Lachenbruch, 1975),
“logistic regression” (e.g., Hosmer & Lemeshow, 1989), and
“artificial neural nets” (e.g., Hertz et al., 1991). They can be

thought of as choosing predictor variables and weights to maxi-
mize the discrimination between diagnostic alternatives—as
measured, for example, by an index similar to the ROC area
indexA as defined in preceding paragraphs. In general, there is
little to choose among the several methods as to the goodness
with which they select variables and weights, and hence their
accuracy as a decision maker or aid, so the choice among them
often devolves to their relative effectiveness in different prob-
lem settings and the convenience with which they are handled
(Gish, 1990; Richard & Lippman, 1991).

Validating statistical prediction rules
The accuracy or predictive validity of SPRs can be assessed

in two ways. In what is termed “cross validation,” the SPR is
“trained” on one set of cases and then “tested” on a separate
set. The goal is to make sure that the SPR works well for other
(similar) cases than just those on which it was built. If, for
example, 200 qualified mammograms are available, the SPR
might be trained on 100 of them and tested on the other 100.

However, the sample sizes in this example are small enough
to make marginal both the reliability with which the SPR will
operate and the reliability with which it can be assessed, and
investigators can often only obtain smaller samples than they
would like. Under “statistical” validation, modern computer
techniques are used to permit all 200 cases (in this example) to
enter both training and testing of the SPR, whereas approxi-
mating the results of cross validation. These techniques include
a resampling method called “bootstrapping,” which is con-
ducted to estimate the standard deviation or confidence interval
of a SPR’s accuracy (Efron, 1982; Gong, 1986). In our ex-
ample, 50 to 200 random samples of size 200 would be taken,
with replacement of each item before another draw, from the
set of 200 cases.

An alternative to a sampling procedure is to be systematic
and exhaustive in varying the cases that enter training and
testing. In the method called “leave-one-out,” for example, 200
different SPRs would be constructed, each SPR based on 199
cases and leaving out a different, single case. Each SPR is then
applied to give a diagnostic probability for the single case left
out of its own construction. In our experience with medical
images, the SPRs developed and tested on twice the number of
cases (not saving half for testing) are appreciably more robust
on several statistical dimensions. The attrition in the indexA
stemming from a statistical validation procedure has been
about two or three percent. (One should remember, how-
ever, that application of an SPR to samples differing in sub-
stantial respects from the original sample will produce lowered
accuracy.)

Determination of truth
Clearly, a valid and accurate SPR will rely on adequately

valid assessments of the occurrence, or not, of the condition of
interest on each diagnostic trial. The adequacy of these so-
called “truth data” will also affect the validity of evaluations of
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diagnostic accuracy. That is to say, ideally one should know
with certainty for every case whether it is positive or negative;
otherwise the score assigned to a diagnosis, right or wrong, will
not always be correct. Incorrectly classifying cases in the
sample will depress a SPR’s accuracy and measures of accu-
racy in general. However, diagnostic settings vary a good deal
in the validity of the truth determinations they can supply,
ranging from good to poor.

Medical diagnosis gives truth determinations generally re-
garded as quite good. The “gold standard” is surgery or au-
topsy followed by analysis of tissue. Still, surgery and
pathology are not perfectly matched in space or time: The
image interpreter and the pathologist may look at different
locations and a pathological result observed might not have
been present when the image was taken. Moreover, the pa-
thologist’s code or language for describing lesions differs from
the radiologist’s. Further, this pathology standard is applied
primarily to positive cases (the cases that tend to reach that
point); negative truth is often based necessarily not on pathol-
ogy but rather on years of follow-up without related symptoms.

Aptitude testing also gives reasonably good truth: One can
determine reliably whether the student graduates or whether
the employee stays on the job. In weather forecasting, one can
measure amount of precipitation in limited areas, but not know
if the weather event occurred throughout the area of the fore-
cast. Panel judgments of the relevance of documents retrieved
by a library query system may be generally adequate, but their
validity may depend somewhat on how technical the language
is in the field of the query. Truth in the field of polygraph lie
detection is surely problematic: Judicial outcomes may catego-
rize incorrectly and even confessions may not be true.

We mention some other issues related to truth determination
to indicate further the need for care. Truth determination
should not be affected by the diagnostic system under test. If,
for example, results of MR imaging help determine the positive
or negative statuses of medical cases when MR is under evalu-
ation, because one wishes to use all available evidence in an
effort get the best truth estimates, then the MR result for any
case will be scored against itself, in effect, and its measured
accuracy will be inflated. Also, procedures used to establish
truth should not affect the selection of cases for training or
testing SPRs; if pathology is the sole standard for selecting
medical cases, then the case sample will tend to be made up of
cases that reach that advanced stage (quite possibly cases that
show lesions relatively clearly on diagnostic imagery), which
will tend to be the easier cases. More detail on issues concern-
ing the definition of truth data, and the improperly selective
sampling of cases, is given elsewhere (Swets, 1988).

Methods for Optimizing the Decision Threshold

We discussed earlier how the slopeSat any point along an
empirical ROC can be taken as a measure of the decision
threshold that produced that point. Here we observe that the

best decision threshold for a given diagnostic task in a particu-
lar setting can be specified by computing the optimal value of
S. “Optimal” means the best threshold for a given, well-
defined, decision goal. Computing the optimal value ofS is a
concept that should advise diagnostic decision making in gen-
eral, but is little known or used.

Alternative decision goals
Several different decision goals can be defined, all seeking

to maximize some quantity or other. One simple goal is to
maximize the over-all percentage of correct diagnostic deci-
sions, without regard to the balance of true-positive and true-
negative decisions (not a very useful goal for having ignored
that balance). Another simple goal is to maximize P(TP) for a
fixed P(FP); this goal may be used when it is possible to state
that P(FP) of some value, e.g., .10, is acceptable and that a
greater value is intolerable.

A general decision goal
The most general decision goal is defined in terms of two

situational variables: (1) the prior probabilities of positive and
negative diagnostic alternatives, and (2) the benefits of the two
types of correct decision outcomes and the costs of the two
types of incorrect outcomes. This decision goal attempts to
maximize the “expected value” of a decision, i.e., to maximize
its payoff in the currency of the benefits and costs. It can be
expressed in a formula, as seen below.

To develop needed notation, we speak of the presence or not
of the diagnostic condition of interest as the “truth” about the
condition and designate the two truth states as T+ (condition
present) and T− (condition absent). The prior probabilities of
those truth states, i.e., probabilities before a decision or “base
rates,” are denoted P(T+) and P(T−). The positive and negative
decisions are symbolized as D+ and D−.

Let us denote benefits of decision outcomes as B, and costs
as C. Now, for the benefits and costs associated with the joint
occurrence of a particular truth state and a particular decision,
we have B(T+ & D+) and B(T− & D−) for benefits, when truth
and decision agree, and C(T− & D+) and C(T+ & D−) for
costs, when they differ.

The formula to specify the optimal decision threshold for
this general goal of maximizing expected value was derived in
the context of signal detection theory by Peterson, Birdsall, and
Fox (1954). They showed (with more algebra than we want to
repeat) that the value ofS that maximizes expected value is
expressed as the product of (1) the ratio of prior probabilities
and (2) a ratio of benefits and costs, as follows:

S~optimal! =
P~T−!

P~T+!
×

B~T− & D−! + C~T− & D+!

B~T+ & D+! + C~T+ & D−!
.

Hence, when one knows the quantities involved or is willing to
estimate them, the optimal “operating point” on the ROC, and
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hence the optimal decision threshold, can be determined. When
lacking the ability or desire to estimate individual benefits and
costs, one can settle for taking their ratio. Note that the nu-
merator of the equation refers to negative diagnostic alterna-
tives, T−, and the denominator to positive diagnostic
alternatives, T+. So it is possible, for example, that we would
twice as rather be right when a positive alternative occurs as
when a negative one does, perhaps in predicting severe
weather. Then the ratio of benefits and costs is 1/2. For equal
probabilities in this case,S(optimal)4 1/2 (and the decision
threshold is rather lenient). In equation form:

S~optimal! =
.50

.50
×

1

2
= 1/2.

If all benefits and costs are considered equal, then their ratio is
1.0 and the prior probabilities alone determine the optimal
threshold; for example, if P(T+)4.33 and P(T−)4.67, then
S(optimal) = 2. Figure 2 shows where these last−mentioned
values ofS fall on a ROC.

EXAMPLES OF ENHANCED DECISION MAKING

We proceed now to two prominent examples of how accu-
racy in diagnosis has been increased by application of statis-
tical decision rules: first prognosis of violence committed by
individuals, and then image-based diagnosis of breast and pros-
tate cancer. Also in this section, we analyze for two diagnostic
fields how decision utility could be increased by quantitative
consideration of the decision threshold: first in the detection of
the virus of AIDS, and then in the detection of flaws in metal
structures, especially cracks in airplane wings.

Increased Accuracy

Predicting violence
Violence risk assessment is a critical and expanding part of

the practice of psychiatry and clinical psychology. “Danger-
ousness to others” replaced “need for treatment” as a pivotal
criterion for involuntary hospitalization of people with mental
disorders in the 1960s. Tort liability was first imposed on cli-
nicians who negligently failed to predict their patients’ vio-
lence in the 1970s. Statutes authorizing involuntary treatment
in the community for otherwise “dangerous” patients were en-
acted in many states in the 1980s. Risk assessments of violence
were explicitly mandated during the 1990s in the Americans
with Disabilities Act, which protects the employment rights of
people with disabilities unless those disabilities result in an
employee becoming a “direct threat” of violence to co-workers
or customers.

Despite the pervasiveness of violence risk assessment, the
research literature on the validity of clinical prediction has
been disconcerting for decades and remains so. The most so-

phisticated study of clinicians’ unstructured violence risk as-
sessments, for example, found them to be modestly more
accurate than chance among male patients and no more accu-
rate than chance among female patients (Lidz et al., 1993). It
was in response to such findings of low validity that many have
called for the use of statistical prediction in violence risk as-
sessment and in recent years a number of relevant SPRs have
been developed. We take two of them to illustrate this actuarial
turn in the field of violence risk assessment.

Violence Risk Appraisal Guide.The most studied SPR for
risk appraisal among criminal patients is the Violence Risk
Appraisal Guide (VRAG) (Harris et al., 1993; Quinsey et al.,
1998; Rice & Harris, 1995). A sample of over 600 men from
a maximum-security hospital in Canada served as subjects. All
had been charged with a serious criminal offense. Approxi-
mately 50 predictor variables were coded from institutional
files. The criterion variable to be predicted was any new crimi-
nal charge for a violent offense, or return to the institution for
a similar act, over a time at risk in the community that averaged
approximately 7 years after discharge. A series of stepwise
regression models identified 12 variables for inclusion in the
final SPR, including the Hare Psychopathy Checklist-
Revised, elementary school maladjustment, and a diagnosis of
schizophrenia (which had a negative weight). When the scores
on this SPR were dichotomized into “high” and “low,” the
results were that 55% of the group scoring high committed a
new violent offense (115/209), compared with 19% of the
group scoring low (76/409). Using a wide range of decision
thresholds to calculate a ROC gave aA index of .76, well above
chance.

Iterative Classification Tree.More recently, a SPR for as-
sessing risk of violence among persons being discharged from
acute psychiatric facilities has been developed by a group
sponsored by the MacArthur Foundation (Steadman et al.,
2000), in a project that included one of this article’s authors
(JM). A sample of over 900 men and women from three civil
hospitals in the United States served as subjects. None had a
criminal charge pending. Based on a review of the patients’
files as well as interviews with the patients, 134 risk factors
were coded. The criterion variable of violence was measured
by arrest records, hospitalization records, patient self-report, or
the report of a collateral informant, over a time at risk in the
community of 20 weeks after hospital discharge.

A variant of a “classification-tree” approach, which the
MacArthur group called an Iterative Classification Tree (ICT),
was used to construct their SPR. A classification tree reflects
an interactive and contingent model of violence, in that di-
chotomous (or trichotomous) classifications are made on indi-
vidual predictive variables in a conditional sequence, with each
classification determining the variable considered next. This
procedure serves to tailor the scoring to the case at hand: it
allows many different combinations of risk factors to classify

PSYCHOLOGICAL SCIENCE IN THE PUBLIC INTEREST

Improving Diagnostic Decisions

VOL. 1, NO. 1, MAY 200010



a person as high or low risk, unlike a “main effects” linear
regression analysis, which applies the same risk factors to all
persons being assessed.

Risk factors identified for the ICT for given groups of pa-
tients included a screening version of the Hare Psychopathy
Checklist, serious abuse as a child, and whether the patient was
suicidal (which had a negative weight). Of the patients scoring
in the low-risk category on this SPR, 4% committed a violent
act during the follow-up, whereas of the patients scoring in the
high-risk category, 44% committed a violent act. ROC analysis
gave aA index of .82. Figure 4 shows the paired values of
P(TP) and P(FP) that may be attained withA 4.82.

Such an accuracy level is relatively high for predicting be-
havior and it suggests that any information loss that might have
resulted from the classification-tree approach of adopting a
decision threshold (or two) for each individual predictive vari-
able, rather than just for a final, combined variable, is not very
large. This suggestion of small loss is consistent with another
study that compared classification-tree and logistic-regression
techniques in the emergency-room diagnosis of myocardial
infarction; both methods gaveA 4.94 (Tsien et al., 1998).

Clinical vs. actuarial prediction.The question of whether or
not a clinician’s making adjustments in the SPR’s probability
estimate (or categorization) helps or hurts the accuracy of prog-
nosis has been debated actively in the violence field. The
VRAG developers once thought it might help (Webster et al.,

1994) and now believe it hurts (Quinsey et al., 1998). Others
believe adjustment by the clinician is desirable (Hanson, 1998).
Two factors are adduced to support the clinician’s option of
making an adjustment. One is “questionable validity general-
ization,” an issue that arises when using a SPR based on one
population to predict for another—for example, using the
VRAG, which is based on male offenders who were predomi-
nantly white Canadians, to predict for the MacArthur sample of
male and female white, African-American, and Hispanic pa-
tients not referred by a court, who consented to participating in
the research—or vice versa. Although some evidence indicates
that risk factors found in both the VRAG and the MacArthur
ICT are predictive of violence in diverse groups (see a review
by Hemphill et al., 1998), attempts to generalize the validity of
some other SPRs for violence have not found success (Klassen
and O’Connor, 1990).

The second factor used to support a clinician’s option to
adjust the actuarial prediction has been termed “broken leg
countervailings” (Grove and Meehl, 1996, following Meehl,
1954). The story is simple: a SPR predicts with great accuracy
when people will go to the movies and yields an estimate of
probability .84 that Professor X will go to the movies tomor-
row. But the clinician has learned that Professor X has just
broken his leg and is immobilized in a cast. The story could be
taken to be an analogue, for example, of the situation where a
direct threat of violence by a patient to a named victim occurs,
although such threats do not occur frequently enough to appear
as a variable in the VRAG or the MacArthur ICT. As to the
aptness of the analogy, interested parties have disagreed.

Diagnosing cancer
The potentially beneficial use of SPRs in the diagnosis of

breast and prostate cancer has been shown during the past 15
years in studies by a research team in which an author of this
article (JAS) participates, as well as by several other investi-
gators. These studies focused on image-based diagnoses: on
mammography for the detection and/or the malignant-benign
classification of breast abnormalities and on magnetic reso-
nance (MR) imaging for staging the extent of prostate cancer.
In each instance the relevant perceptual features of the image
were determined for inclusion as variables in the SPR and, in
some instances, demographic and laboratory data were also
utilized in the same SPR. A general discussion of approach is
followed here by some specific results of the studies. Some
earlier work on SPRs in medical diagnosis and a few other
contemporary examples in medicine are cited briefly at the
conclusion of this section.

General approach.The initial step in constructing a SPR for
an image-based diagnosis is to obtain an exhaustive list of
possibly relevant perceptual features in the image. This step is
accomplished mainly by literature review and through close
observation of, and interviews with, radiologists who special-
ize in interpreting the kind of image in question. Secondly,

Fig. 4. Empirical ROC (receiver operating characteristic) for the SPR
(statistical prediction rule) of the Iterative Classification Tree (ICT)
for predicting violence. A computer program for fitting ROC data
sorted the nearly continuous output of the rule into categories to yield
10 decision thresholds and their corresponding ROC data points.
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perceptual tests analyzed by amultidimensional scaling(MDS)
technique (e.g., Shiffman et al., 1981; Young and Hamer,
1987) may supply other features that are not verbalized by the
radiologists, but are nonetheless used or usable in diagnosis.

In brief, in such perceptual tests, radiologists are invited to
rate (on a ten-point scale) the degree of similarity between
members of pairs of images; various representative images are
presented successively in all possible pair-wise combinations.
MDS analysis converts those similarity ratings into distances
between the various pairs of images in a conceptual geometric
space of several dimensions, wherein ratings of greater dis-
similarity correspond to greater inter-image distances. The
dimensions of the space (or the axes of its representation) are
calculated in a manner to rationalize the total set of ratings
and thereby to reveal the various aspects of appearance along
which the images vary, or the perceptual dimensions in-
herent in the structure of the images. (To imagine how this
analysis is accomplished, think of rating the straight-line dis-
tances between all pairs of state capitals to solve for a map of
the U.S. showing its two dimensions, or measuring the dis-
tances between selected pairs of stars to give a space of three
dimensions.)

The dimensions calculated by MDS are candidate features
for the SPR. To determine which ones might actually be rel-
evant features, the investigator successively arrays all the im-
ages along each dimension according to their respective
coordinate values on that axis and asks the experts each time
what perceptual feature is varying along that array. For some
arrays, expert radiologists will give consistent feature names
and express the belief that the feature is indeed diagnostic. The
candidate features for a particular type of image and disease, as
determined by interview alone or by interview plus MDS, have
numbered between 30 and 70 in the studies discussed here.

Some paring of the set of candidate features may take place
in discussion among radiologists and investigators; for ex-
ample, it may be evident that a given feature is present twice
because different radiologists gave it different names, or that
two distinct features are highly correlated in occurrence. Rat-
ing scales are designed for the features remaining, on which a
rating may signify the observer’s confidence that the feature is
present, a measurement of the size or extent of the feature, or
a judgment of grade or degree or clarity. A consensus group of
radiologists gives names to the features and selects particular
images to represent points along the scale (particularly anchors
at the endpoints).

In the next step, several radiologists view a set of a hundred
or more “known” images, whose truth (presence or absence of
cancer) has been established by pathology examinations (and
possibly long-term, negative follow-up), and they rate each
candidate feature for each case. At this point, one or another
multivariate statistical analysis or pattern recognition technique
(as described above in the section on SPRs) is applied to de-
termine quantitatively how diagnostic or predictive each fea-
ture is in combination with others, and the features meeting

some criterion of diagnosticity or predictive power are se-
lected. The result is converted to a SPR that takes ratings of all
features for any given case and issues an estimate of the prob-
ability that cancer is present in that case. A typical number of
perceptual features contained in a SPR is about a dozen; this set
is deemed necessary and sufficient for the required diagnosis.

Breast cancer.The first SPR for breast cancer in our series
of studies (Getty et al., 1988) was developed with six mam-
mography specialists of a university hospital and used to aug-
ment the diagnostic performance of six general radiologists in
community hospitals. The task was to determine whether cases
with evident focal abnormalities were malignant or benign.
Specifically, the specialists helped with the choice of a master
list of features, and rated a set of (100) training cases (half
malignant, half benign) on those features to provide the basis
for a SPR. The generalists first read (interpreted) a set of (118)
test cases in their usual, unaided manner and months later read
those cases with the checklist of the features that were incor-
porated in the SPR. In that augmented reading, they rated the
SPR features for each case, and were given the SPR’s prob-
ability estimate for each case before making their own judg-
ment, on a five-category scale, of the likelihood that cancer
was present. The second reading by the generalists provided a
cross-validation of the SPR based on the specialists.

The ROCs for the generalists’ baseline and augmented read-
ings are shown in Figure 5. Each curve is based on four thresh-
olds (and hence four points) corresponding to the internal
boundaries of the five categories of the rating scale. The curve
for the augmented readings is uniformly higher, having aA
index of .87, compared to .81 for the baseline reading. The
specialists, aided by the master checklist of features, and with
a different set of cases, produced a ROC (not shown) with the
sameA index as the augmented generalists, .87. The SPR, by
itself, with the generalists’ feature ratings, yieldedA 4.85. All
of the differences are statistically significant, so the results are
that the generalists given the SPR probability estimate were
more accurate than the SPR alone (which used their feature
ratings), and the SPR enabled the generalists to reach the level
of the specialists.

To see the clinical significance of these results, a decision
threshold for the baseline ROC was chosen that approximated
the thresholds obtained in four clinical studies of mammogra-
phy accuracy that were comparable and available at the time
(as described by Getty et al., 1988). This threshold point has
ROC coordinates P(FP)4.20 and P(TP)4.67. The threshold
point for the augmented ROC at the same P(FP) has a
P(TP)4.80, i.e., .13 higher than the baseline performance (see
vertical dashed line in Figure 5). So, if one chose to take the
accuracy gain in additional TPs, there would be 13 more can-
cers found in 100 cases of malignancy. If it were desired to
utilize the accuracy gain to reduce P(FP) rather than to increase
P(TP), one can read the graph of Figure 5 in the horizontal
direction: The augmented curve has a false-positive probability
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.12 less than the baseline curve, with P(FP) dropping from .20
to .08 (see horizontal dashed line in Figure 5). These prob-
abilities can be translated into numbers of (additional) cases
correctly diagnosed. Assuming a succession of 1000 cases in a
referral hospital with a base rate of cancer of .32, the SPR
procedure could find an additional 42 malignancies present or
make 82 fewer false-positive decisions. Other ways to distrib-
ute the accuracy gain between increased TPs and decreased
FPs could be achieved by adjusting the decision threshold.

We note, however, that although these calculations were
likely valid when they were made, they may overestimate gains
available now. Recent development of a less invasive (needle)
biopsy technique, with relatively low morbidity, has served to
reduce the cost of a false-positive diagnosis, with the result that
the decision threshold in practice may have shifted to a more
lenient setting (to the right along the ROC). We do not have
data to enable estimating just where this current setting may be
and hence can not estimate the size of currently available gains,
but we point out that the gains may be smaller than those
previously attainable: The relevant comparison of aided and
unaided decision making may be at a point where their ROCs
are closer together, especially on the TP axis. On the other

hand if the SPR is used only for difficult cases, which may be
a practical way to use it, then the typical threshold may again
be near the middle of the graph, as in Figure 5, and the poten-
tial gains shown there may continue to be a good estimate.

The second study in this series (Swets et al., 1991) showed
that the amount of increased accuracy provided by a SPR de-
pends on the difficulty of the cases in the test set, with larger
accuracy improvement for more difficult cases. Whereas for
the full set (of 146 cases) the increased true-positive or de-
creased false-positive proportions were about .05, for the most
difficult (56) cases, the changes in these proportions were on
the order of .16. Their ROCs are seen in Figure 6. The differ-
ence between the top two curves (all cases) in theA index is .02
and for the bottom two curves (difficult cases) the difference is
.12, from .60 to .72. Note particularly that the SPR had a
beneficial effect even when the baseline performance was close
to the chance level (the dashed diagonal running from lower
left to upper right).

Another study showed the potential for determining relevant
perceptual features not verbalized by image experts by means
of multidimensional scaling (MDS) analyses of perceptual
tests, as described above. Working with the experimental, un-
tried image modality of diaphanography (light scanning), 9 ofFig. 5. Empirical ROCs (receiver operating characteristics) for gen-

eral radiologists reading mammograms to distinguish malignant from
benign lesions. The lower curve represents a baseline accuracy, for
readings in the usual manner. The upper curve shows the accuracy
obtained when the radiologists gave feature ratings and received the
probability estimate of the statistical prediction rule (SPR). Curves are
based on the pooled ratings of five radiologists who used a five-
category rating scale for likelihood of malignancy. Two possible re-
alizations of the gain in accuracy are indicated: an increase of .13 in
the true-positive probability, P(TP), and a decrease of .12 in the false-
positive probability, P(FP).

Fig. 6. Empirical ROCs (receiver operating characteristics) showing
relative enhancement effects of a SPR (statistical prediction rule)
applied to an easy and a difficult case set, with a larger gain for
difficult cases. The curves are based on the pooled data of six radi-
ologists. Dotted lines indicate illustrative gains in true-positive prob-
ability, P(TP), at a false-positive probability, P(FP), of .15, or,
alternatively, decreases in P(FP) at P(TP)4.85. These differences are
.14 and .17, respectively, for the difficult cases. Dotted lines near the
center of the graph indicate the possibility of a simultaneous increase
in P(TP) and decrease in P(FP), of about .08 for difficult cases.
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a total of 17 features supplied by multivariate analysis for the
SPR were provided by the MDS analysis (Getty & Swets,
1991). The diaphanography study also showed the importance
of enhancing a new imaging modality by feature analysis and
SPR methods before conducting an evaluation study to esti-
mate its potential. Whereas unaided readers yielded aA index
near .60, a SPR based on their ratings of the full feature set
gave aA near .80. The implications of such a difference can
range from likely rejection to possible further consideration of
a new technique.

Prostate cancer.Magnetic resonance (MR) imaging is used
to determine the extent of biopsy-proven prostate cancer, pri-
marily to determine whether the cancer is contained within the
gland and is therefore likely to be curable, or has spread be-
yond the gland and hence can be treated only palliatively. Our
first study employed five radiologists who specialized in pros-
tate MR and four radiologists who typically read MR of the
body generally, each group reading one of two sets of 100
cases (Seltzer et al., 1997). Figure 7 shows ROCs obtained
from the specialists, the lower curve when they gave ratings to
the master set of features for each case to provide data for
construction of a SPR, as well as giving their own estimates of
the probability of extended cancer, and the higher curve based

on the SPR calculated from their ratings. TheA indexes are .79
for the lower curve and .87 for the higher curve. Even the
specialists could be improved.

Figure 8 shows the ROCs from the generalists, the lower
curve from a standard, baseline reading, and the upper curve
from the SPR developed in their second reading with feature
ratings of the same case set. TheA indexes are .66 and .79,
respectively. As in the breast study, the SPR brought general-
ists to the level of (feature-aided) specialists. As in the diapha-
nography study, it could bring a decision about potential usage
of a technique from rejection to acceptance.

A second study showed the improvement of accuracy in
prostate staging that could be achieved by constructing suc-
cessively more inclusive SPRs (Getty et al., 1997). The objec-
tive variables of patient age, PSA (prostate specific antigen)
test value, and the biopsy Gleason score (based on a patholo-
gist’s evaluation of tissue specimens) were considered along
with a SPR based just on the perceptual features of the MR
image. SPRs were constructed based on age only, on age plus
PSA, on those two variables plus Gleason score, and on those
three variables plus MR features. Figure 9 shows the ROCs of
the four prediction rules, withA indexes progressing from .58
to .74 to .81 to .86. In a subset of difficult cases for which the
PSA value and Gleason score were in an intermediate, incon-

Fig. 7. Empirical ROCs (receiver operating characteristics) for spe-
cialists’ readings of magnetic resonance (MR) images to determine
the extent of prostate cancer. Pooled data from five radiologists. The
lower curve was obtained when the readers were making feature rat-
ings as well as an estimate of the probability of advanced cancer. The
upper curve shows the performance of a SPR (statistical prediction
rule) based on those feature ratings. For both curves, a computer
curve-fitting program placed the probability estimates in categories to
yield 19 decision thresholds and data points.

Fig. 8. Empirical ROCs (receiver operating characteristics) obtained
from general body radiologists reading magnetic resonance (MR) im-
ages to determine the extent of prostate cancer. The curves are based
on the pooled data of four radiologists. The lower curve represents a
baseline reading and the upper curve represents the performance of a
SPR (statistical prediction rule) developed from the radiologists’ fea-
ture ratings in a second reading. A computer curve-fitting program
placed the probability estimates, of both radiologists and the SPR, in
categories to yield 19 decision thresholds and data points.
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clusive range, theA index for the SPR based on age, PSA, and
Gleason score was .69; adding MR data to that SPR gaveA
4.79. In terms of the conditional probabilities: at P(FP)4.10,
the value of P(TP) was increased by enhanced MR from .29
to .47.

Successful application of a SPR for prostate cancer.The
staging of the extent of prostate cancer has provided an out-
standing example of a highly useful SPR widely used in clini-
cal practice (Partin et al., 1997). Data from three major medical
centers were combined to predict the pathological stage of
cancer, for men with clinically localized cancer, from the vari-
ables of PSA, clinical stage, and biopsy Gleason score. Four
pathological stages considered were organ-confined disease
and three levels of invasion beyond the organ. Charts were
constructed so that for any combination of the predictive vari-
ables one can read the probability of cancer at the various
pathological stages (along with 95% confidence intervals). So,
for example, a patient having cancer of clinical grade T1c
(cancer discovered only by biopsy following a PSA test), a
PSA value between 4 and 10, and a Gleason score of 6, has a
probabilityp 4.67 of organ-confined disease,p 4.30 of cap-
sular penetration,p 4.02 of seminal-vesicle involvement, and

p 4.01 of pelvic lymph-node involvement. The charts are used
productively to counsel patients having a choice to make
among alternative therapies. The authors give references to a
dozen other studies providing confirmation of their results.
Such data are the basis for the decision trees of the Treatment
Guidelines for Patients published by the American Cancer
Society.

Other work. Work on SPRs in medicine from the early
1960s, including some of his own on bone diseases, was re-
viewed by Lodwick (1986). Current studies of breast cancer
include some using an artificial neural network as the basis for
a SPR (e.g., Jiang et al., 1996; Lo et al., 1997). Another recent
study used automated computer analysis of the mammogram
image without human viewing, along with a linear discriminant
SPR, and foundA =.87 without the SPR andA =.91 with it
(Chan et al., 1999). Other MR prostate studies include that of
Yu et al. (1997).

Increased Utility: Setting the Best Decision Threshold

Concern for setting an appropriate decision threshold
emerged early in medicine. The cost-benefit formula presented
earlier in this article was promoted, for example, in influential
books by Lusted (1968) and Weinstein et al. (1980), who were
among the founders of the Society for Medical Decision Mak-
ing. The following examples show how diagnostic decision
making can be enhanced by optimizing decision thresholds.

Screening for the HIV of AIDS
Prominent screening tests for the virus (HIV) of AIDS con-

sist of blood analyses that yield a continuous scale of a physical
quantity (optical density). The selection of a decision threshold
for any of the several tests available, as approved by the Fed-
eral Drug Administration, was made by its manufacturer. There
is some suggestion that these thresholds were chosen to best
discriminate between positive and negative cases (maximize
the percent correct decisions of either kind), but there seem to
be no published rationales for the particular thresholds chosen.
Moreover, they vary considerably from one manufacturer’s test
to another. Informal and published recommendations that some
formula for setting an optimal threshold be used for such medi-
cal tests (e.g., Lusted, 1968, and Weinstein et al., 1980) have
not been heeded. An offer made to a drug company, of soft-
ware that physicians might use to define an appropriate deci-
sion threshold for the company’s test in any particular
situation, was not accepted (A. G. Mulley, personal commu-
nication, 1990).

ROC data for the HIV.Three widely used HIV tests were
evaluated by Nishanian et al. (1987) and the data were sub-
jected to ROC analysis by Schwartz et al. (1988), as shown in
Figure 10. They are seen to yield values of the threshold mea-

Fig. 9. Empirical ROCs (receiver operating characteristics) for deter-
mining the extent of prostate cancer, based on SPRs (statistical pre-
diction rules) using one, two, three, or four predictor variables.
Additional variables were added in the order in which they become
available in the clinic. PSA is the test value of prostate specific an-
tigen; BGS is the biopsy Gleason score; MR represents the SPR
developed for readings of magnetic resonance images. For each rule,
probability estimates of advanced cancer were categorized to yield 19
decision thresholds and data points. The accuracy measuresA in the
inset show the more inclusive SPRs to be increasingly more accurate.
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sureS of .40, 1.20, and 1.15. That is, one threshold is on the
lenient side of neutral and two are on the strict side. Their pairs
of P(FP) and P(TP) values were (.17, .95), (.05, .92), and (.12,
.79) , respectively. Consider the first and second tests listed;
the first test picks up a few more TPs than the second (from .92
to .95) at the expense of issuing three times as many FPs—17
per hundred versus 5 per hundred. It is difficult to imagine a
good reason for both tests to be approved for use in the same
settings with their diverse thresholds. Incidentally, those two
tests were substantially more accurate (A =.97) than the other
(A 4.92) for the case sample tested.

Fixed vs. changing threshold.Of further concern is the fact
that the thresholds for these tests were originally chosen when
the tests were used to screen donated blood and then left un-
changed when the tests became used to diagnose people. The
difference between the costs of an FP decision for discarding a
pint of uncontaminated blood, on the one hand, and for pur-
suing further tests for an uninfected person, on the other, would
seem large enough to call for some shift in threshold. Similarly,
thresholds were not reconsidered when the tests were applied
to different populations characterized by very different rates, or

prior probabilities, of the disease. Thresholds remained fixed
across low-risk blood donors, high-risk blood donors, military
recruits, and methadone-clinic visitors, for which the numbers
of infected individuals per 100,000 were estimated to range
from 30, through 95, through 150, to 45,000, respectively
(Schwartz et al., 1998). Assuming for the moment constant
benefits and costs of decisions, that amount of variation in the
base rates would move the optimal threshold value ofSover a
large range, from 3,000 to near 1, i.e., from a point very near
the lower left corner of the ROC graph to a point near the
center. The corresponding variation in P(FP) and in P(TP)
would be very large, on the order of .50.

Other cost-benefit factors that might affect the placement
of the decision threshold include whether the test is voluntary
or mandatory, and mandatory for what group of persons, for
whose good. For example, testing is done in connection with
life-insurance and health-insurance examinations, where false-
positive decisions can have significant lifetime costs to indi-
viduals. There are other mandatory tests, such as those for
certain international travelers, for which the benefits of detec-
tion are small. Still other factors that might affect the threshold
setting are whether the results are confidential or anonymous
and how effective the therapy may be (Meyer & Pauker, 1987;
Weiss & Thier, 1988).

Screening low-risk populations.Consider another instance
of screening low-probability populations, namely a company’s
employees, for whom the prior probability of HIV is about .003
(Bloom & Glied, 1991). Ordinarily in such settings, a positive
outcome on a typical screening test is followed by a more
conclusive (and expensive) confirmatory test to reduce the
number of false-positives (Schwartz et al, 1988). The College
of American Pathologists’ estimates of P(TP) and P(FP) for the
best screening and confirmatory tests lead to the result that
after a positive result on both tests, the probability of HIV is
.13 (Bloom & Glied, 1991). Hence, six of seven individuals
diagnosed as positive in this manner would be told they have
the HIV when in fact they do not (Swets, 1992).

Detecting cracks in airplane wings
The principal techniques for nondestructive testing of metal

structures provide a visual pattern for interpretation by techni-
cians, for example, ultrasound and eddy current. In both cases,
the basis for a decision is the judged weight of the perceptual
evidence and so the observer acquires a degree of confidence,
or probability estimate, that a flaw is present. The two-valued
diagnosis of flaw present or not, usually a crack caused by
metal fatigue, requires that a decision threshold be set along the
scale.

In looking for cracks in airplane wings, the costs of incor-
rect decisions are large and obvious. A false-negative decision,
missing a crack actually there, can jeopardize the lives of many
passengers. On the other hand, a false-positive decision takes a
plane out of service unnecessarily, possibly at great inconve-

Fig. 10. Empirical ROCs (receiver operating characteristics) for three
screening tests for the human immunodeficiency virus (HIV). The
tests are called enzyme-linked immunoassays, abbreviated EIA; the
three tests are numbered. The curve for each test is based on the points
of five decision thresholds; curves for a given test are symbolized by
circles, squares or triangles. The open data points with the tests’
identifying numbers indicate the threshold used for each test in prac-
tice. The inset gives the measureSfor each of these thresholds and the
corresponding values of the false-positive probability P(FP) and the
true-positive probability P(TP). (Note that this graph includes only the
upper left quadrant of the usual ROC graph.)
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nience and large dollar cost. On the face of it, the benefits and
costs point toward a lenient threshold for declaring a flaw—
lives versus dollars. Still, the prior probability of a flaw is very
low and such low prior probabilities, even with moderate to
strict thresholds, tend to produce an unworkable number of
false-positive decisions. Setting the best decision threshold,
again, must involve probabilities as well as benefits and costs.
There are a few tentative references to the problem and the
solution in the nondestructive-testing literature, e.g., Rau
(1979), Rummel (1988), and Sweeting (1995), but no instances
of experimental, let alone systematic, use of reasoned thresh-
olds seem to have been made.

Test data in this field are hard to come by: A reliable de-
termination of “truth” for flaw present or not in each specimen
requires destructive testing of the entire test set of specimens
which then, of course, are not available for comparative evalu-
ation of the next diagnostic technique or the next group of
technicians to come along. A classic, atypically ambitious
study was mounted by the U. S. Air Force in the 1970s. It was
characterized as “Have Cracks, Will Travel” because it brought
149 metal specimens to 17 bases where they were inspected by
121 technicians using ultrasound and 133 technicians using
eddy-current displays.

ROC data.As reviewed in earlier publications (Swets,
1983, 1992), the study asked the technicians for only a binary
response and hence obtained just a single ROC point from
each. The data, however, are highly revealing. Figures 11 and
12 show that the ROC points obtained cover almost the entire

usable ROC space, for both imaging techniques. The spread
of data points from P(FP)4 0 to almost 1.0 demonstrates
total inconsistency among, and no control over, the techni-
cians’ decision thresholds. No publication, either in the report
or open literature on materials testing, has appeared to us to
suggest that there has been an adaptive response to this state of
affairs.

A note on accuracy.A break down by air-force base of the
data points in Figures 11 and 12 (not shown) indicates that
accuracy varied extensively from one base to another, with
technicians at a given base being quite consistent, and with the
average accuracies of the bases varying uniformly across the
full range of possible accuracies. Roughly, bases had an aver-
age ranging fromA 4.95 to .55 (see Figure 3). The strong
suggestion is that the perceptual features and weights used by
technicians at the highly accurate bases could be analyzed in
the manner used for mammography experts as described above
and the result carried to the under-performing bases. Thus,
Figures 11 and 12 point up the potential of an SPR to increase
accuracy as well as the potential for threshold analysis to in-
crease utility.

A confirming study.A study of a commonly used eddy-
current display for examining steam generators showed wide
variation among technicians to persist in non-destructive ma-
terials testing (Harris, 1991). For one representative fault, for
example, the observed variation in P(TP) across technicians
was nearly .40. The (plus and minus) one-standard-deviation

Fig. 11. Single, empirical ROC (receiver operating characteristic)
points for each of 121 technicians inspecting 149 metal specimens for
cracks with an ultrasound image.

Fig. 12. Single, empirical ROC (receiver operating characteristic)
points for each of 133 technicians inspecting 149 metal specimens for
cracks with an eddy-current image.
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range was from .69 to .93, indicating that one-third of the
technicians fell outside of that range.

Other Examples in Brief

Weather forecasting
The National Weather Service estimates the risk of certain

hazards, such as tornadoes, hurricanes, and heavy rains, which
pose a threat to life or property. To assist in assessing risk,
information is routinely collected on variables (e.g., barometric
pressure, wind speeds, cloud formation) known to be predictors
of one or another of these hazards. This information is ana-
lyzed by regression-based computer programs that incorporate
models of the association between patterns of these predictors
and the occurrence of given hazards in the past. These pro-
grams yield objective predictions of various weather events.
These objective predictions are given at regular periods to
meteorologists in local areas. These local meteorologists may
then modify the objective predictions in light of predictors that
they believe were not adequately accounted for in the computer
model, or in response to new information that has become
available since the objective prediction was formulated. The
objective predictions, the SPR’s, are often referred to as “guid-
ance, not gospel” by the local meteorologists. A subjective
prediction is then publicly issued, and this risk message is
referred to as the forecast. Weather forecasting is one area in
which the “clinical” adjustment of a SPR’s output actually
increases, rather than decreases, predictive accuracy. The sub-
jectively adjusted SPR predictions of temperature and precipi-
tation are consistently more valid than the unadjusted objective
SPR predictions (Carter & Polger, 1986).

Weather forecasting for commercial interests adopted the
practice of setting optimal decision thresholds, indeed using
the formula presented earlier in this article, more than 25 years
ago (Miller & Thompson, 1975).

Law school admissions
Decisions about whom to admit to universities and to gradu-

ate and professional schools have for many years been made
with the help of a SPR. In the case of law schools, for example,
the admissions committee is typically presented with an “Ad-
missions Index,” which is the applicant’s score on a SPR that
predicts first-year grades at that particular law school. Two
variables usually go into the SPR: undergraduate grade point
average (GPA) and Law School Admissions Test (LSAT)
score. If an applicant scores above a certain decision threshold
on the Admissions Index, he or she is presumed to be an
“admit.” That is, it would take a flaw elsewhere in the appli-
cation (e.g., the impressive GPA was achieved by enrolling in
very weak courses) to deny the applicant admission. Likewise,
schools set a decision threshold for “presumed reject,”
whereby any applicant with an Admissions Index below this
score will be rejected absent unusual factors’ (e.g., graduate

work of extraordinary quality) being found elsewhere on the
application.

Each law school sets its own decision thresholds for pre-
sumed admit and presumed reject, with the more selective
schools setting the thresholds higher than the less selective
schools. Applicants scoring between these two thresholds have
their applications reviewed more intensively by members of
the admissions committee who can, in effect, adjust the Ad-
missions Index by taking into account additional variables not
in the SPR, such as the quality of the undergraduate institution
attended and the stringency of its grading standards (and the
farther apart the two decision thresholds are set, the larger this
middle group will be). These adjustments are made “clini-
cally,” by members of the admissions committee.

It is interesting to note, in light of issues raised earlier in this
article, that at least some of these “subjective” variables can be
quantified and incorporated into the SPR. For example, at the
University of Virginia School of Law, where one of us (JM)
teaches, a new and expanded Admissions Index is being used
as a tool in selecting the class of 2003. This index includes two
additional variables: the mean LSAT score achieved by all
students from the applicant’s college who took the LSAT (a
proxy for the quality of the undergraduate institution) and the
mean GPA achieved by students from the applicant’s college
who applied to law school (a proxy for the extent of grade
inflation, and having a negative weight in the SPR). This new
four-variable SPR predicts first-year law school grades (corre-
lation r 4 .48) significantly better than the old two-variable
SPR (correlation r4.41) (P. Mahoney, personal communica-
tion, 1999). Note that the results of this expanded SPR are still
adjusted by the admissions committee to take into account
other, harder-to-quantify variables, such as unusual burdens
borne or achievements experienced during college, to produce
the final decision to admit or reject. The degree of adjustment
is less than it was previously, however, because two formerly
“subjective” variables have become “objective” and now con-
tribute to the SPR itself.

For the related problem of making personnel decisions
based on aptitude tests, an approach akin to the formula given
above for setting the optimal decision threshold has been in use
for many years (Cronbach & Gleser, 1965).

Aircraft cockpit warnings
Based on specialized sensing devices, warnings are given to

airborne pilots that another plane is too close or is threatening
to be, that they are getting too close to the ground, there is
engine failure, or wind shear is present in the landing area. A
problem gaining recognition, for example, by the National
Aeronautics and Space Administration, is how the various de-
cision thresholds should be set to avoid missing a dangerous
condition while not crying wolf so often that the pilot comes to
ignore or respond slowly to the warning signal. Unfortunately,
the moderate diagnostic accuracies of the sensing devices
along with the low prior probabilities of the dangers conspire
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to produce many false alarms (Getty et al., 1995)—so many
that officials have asked whether just one true alarm among 20
total alarms is enough to maintain the pilot’s rapid response.
Indeed, a few years ago the Federal Aviation Administration
ordered a shutdown of collision-warning devices on commer-
cial airliners because of the serious distractions they presented
both to pilots and air traffic controllers. As a particular ex-
ample, just one aircraft responding to a wind-shear alarm by
circling the field before landing can put air-traffic control at a
busy field under additional strain for several hours. It is still
common practice, however, for purchasers of cockpit warning
systems to set specifications for the product that require only a
high P(TP), without mentioning the P(FP), and manufacturers
have been willing to comply.

That the typically low prior probabilities in some settings
can lead to extreme results is exemplified by the calculated
performance of a detector of plastic explosives in luggage as
considered by the Federal Aviation Administration. With an
apparently passable accuracy of P(TP)4.95 and P(FP)4.05, it
was estimated to produce in standard operation 5 million false-
positives for each true-positive result (Speer, 1989).

Disability determination
Applicants for disability status under the Social Security

Administration presently undergo a five-step sequential evalu-
ation. A binary (positive-negative) determination is made for
these variables in turn: (1) whether the applicant is engaging in
substantial gainful activity; (2) whether the impairment is se-
vere; (3) whether the impairment is on a list of qualifying
impairments; (4) whether the applicant is able to do work done
previously by the applicant; and (5) whether the applicant is
able to do other work. At each step, the application is denied,
accepted, or forwarded to the next step.

Four of these variables (excepting number 3) are essentially
continuous and hence require a “judgment call” for a binary
decision: substantiality of gainful activity, severity of impair-
ment, residual functional capacity for past work, or for any
work. The assessment of each variable could be made on a
rating scale, and so the question arises if accuracy of disability
determination might be increased by rating them for each case
and entering them as continuous variables in a SPR, which
would give them proper weights and then issue what is essen-
tially a “disability score.” In principle, accuracy might be en-
hanced because then the information loss that may come with
dichotomizing continuous variables would not be at risk four
times, but would be confined to the final decision variable, the
score. (There would probably be, under this scheme, different
SPRs for mental and physical disability.)

Perhaps more important, given a disability score, the place-
ment of a decision threshold for allowance could be discussed
precisely, and given “sensitivity” testing for its best location.
At present, the effective threshold changes dramatically from
the initial level of a claim evaluation to an appeals level:
roughly two-thirds of cases first denied and then appealed are

allowed at the second level; award rates at the appeals level are
more than twice those at the initial level (General Accounting
Office, 1997; Social Security Advisory Board, 1998). Indeed,
a class-action suit by a Florida legal association was brought to
remedy the plight of initially denied applicants who are not
aware of the potential of making a formal appeal.

Quality of sound in opera houses
To take some respite from ourSturm und Drang(and

crashes and diseases), consider the objective and subjective
evaluation of 23 opera houses in Europe, Japan, and the Ameri-
cas (Hidaka & Beranek, 2000). Twenty-two conductors rated
the several opera houses for acoustical quality on a five-
category scale, and the average ratings of the respective houses
were related to several physically measured acoustical vari-
ables. The purposes of the evaluation were to establish, in
effect, a SPR as a framework for evaluating existing opera
houses and for suggesting guidelines for use in the acoustical
design of new opera houses.

Five important, independent, objective acoustical variables
measured in the audience areas were: reverberation times; the
time difference and loss of loudness as sound transverses the
head from one ear to the other (related to an impression of
“spaciousness”); the time delay between the direct sound from
the stage and its first wall reflection (related to “intimacy”); the
strength of the sound; and the bass ratio. Two additional vari-
ables thought to be important, but difficult to measure physi-
cally, are “texture,” having to do with the number and quality
of early, lateral reflections, and “diffusion,” resulting from
large irregularities on the walls and ceiling where reverberant
sound is formed (e.g., niches and coffers) and small irregulari-
ties on the lower side walls and balcony fronts that give “pa-
tina” to the early sound reflections.

The four opera houses that received average ratings of 4 or
higher on the conductors’ 5-point scale, and were highly evalu-
ated objectively, are those in Buenos Aires, Dresden, Milan,
and Tokyo. The Tokyo opera house rates high despite just two
years of service; it is the one that was explicitly designed by
Hidaka and Beranek with the above-mentioned variables cen-
trally in mind.

“It’s laptop vs. nose”
This section heading is quoted from aNew York Times

article under the byline of Peter Passell (1990), entitled “Wine
equation puts some noses out of joint,” and introduces a second
topic in our small foray into aesthetics.

Among the most interesting uses of a SPR is Ashenfelter,
Ashmore, and Lalonde’s (1995) successful attempt to predict
the quality of the vintage for red Bordeaux wines. Taking the
market price at auction of mature Bordeaux wines as their
index of “quality,” Ashenfelter et al. show how the vintage of
a wine strongly determines its quality. Some vintages are very
good, some very bad, and most in between. By the time a
Bordeaux wine is mature and drinkable, there is usually con-
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siderable agreement among wine drinkers as to the quality of
its vintage. The trick is how to predict this quality (i.e., auction
price) decades in advance, when the wine is young and un-
drinkable. The typical way this is done is “clinically,” by hav-
ing wine experts swirl, smell, and taste the young wine.
Ashenfelter et al., however, observed that the weather during
the growing season is a key determinant of the quality of any
fruit, including grapes. More specifically, “great vintages for
Bordeaux wines correspond to the years in which August and
September are dry, the growing season is warm, and the pre-
vious winter has been wet.” They developed a multiple-
regression SPR, which they refer to as the “Bordeaux
equation,” that consists of the age of the vintage and indices
that reflect the above-mentioned temperature and precipitation
variables (e.g., millimeters of rain in the Bordeaux region dur-
ing certain months of the vintage year). This SPR accounts for
fully 83% of the variance in the price that mature Bordeaux red
wine commands at auction. Moreover, the SPR produces its
predictions as soon as the growing season is complete and the
grapes are picked—before any “expert” has even sipped the
young wine. As might be imagined, the reaction of the wine-
tasting industry to the Ashenfelter et al. SPR has been “some-
where between violent and hysterical” (Passell, 1990). But
drinkers of, and investors in, red Bordeaux wine have reason to
be grateful to the developers of this SPR.

CONCLUSIONS AND DISCUSSION

It seems fair to conclude from the examples provided above
that SPRs can bring substantial improvements in the accuracy
of repetitive diagnostic decisions and that decision analysis can
improve the utility of such decisions. We mention a few other
benefits that may accrue from these methods, just from having
the right set of features or variables specified.

Additional Benefits of a Systematic Approach to
Predictor Variables

Speeding the specification of diagnostic features
Consider the manner in which visual features of medical

images of a new modality are identified in typical practice.
Ordinarily, depending on their own initiative or that of the
equipment manufacturer, individual radiologists propose some
features depending on their own (and possibly close col-
leagues’) experience, and present them in seminars, teaching
files, or journal articles. The accumulation of data is slow, in
part because radiologists do not always have systematic feed-
back on the pathology results of their own patients, let alone of
other patients. Then, perhaps a few years later, a synthesis of
features may appear in a manual or textbook. Such a laissez
faire approach is unnecessarily slow and quite out of synchrony
with the pace of modern development in equipment for medical
imaging. In contrast, application of multivariate feature analy-

sis and development of a SPR can motivate fast and wide data
collection of a proven case set and reveal in a matter of months
a fairly complete set of features and their relative weights as
well. (The follow-up of normal cases needs to be pursued
longer as a refinement.) The distribution channel may be print
media, but it could also be interactive over whatever computer
network is appropriate.

Facilitating communication among diagnosticians
Even when the radiological SPR is not put into wide use, the

radiologists who have become acquainted with the technique
generally agree that the sets of features and weights it has
identified can be very useful in facilitating communication.
Features have clear advantages over a holistic approach to
image interpretation in this regard. Mammogram features iden-
tified in the work described above contributed to a standardized
reporting system, for reports from the radiologist to the refer-
ring physician and surgeon, developed by the American Col-
lege of Radiology (Kopans & D’Orsi, 1992, 1993). The
possibility that the radiologist’s quantitative ratings of the
mammogram’s features can be translated automatically, by
computer-based linguistic techniques, into a useful report of
findings has received support (Swets, 1998).

Another result of SPR-based feature analysis could be to
facilitate discussion between radiologists holding different
opinions about a given medical image. Still another use of a
well-defined feature set would be for teaching purposes, even
for highly experienced radiologists in continuing education.
Moreover, as shown above, a feature analysis has the potential
to promote general radiologists to the level of specialists for a
given organ or type of image. It may bring novices more
quickly to the approximate level of experts. Because the per-
ceptual-feature approach does not depend on knowledge of
underlying anatomy or pathology, we consider the possibility
that it may help to teach paramedics to read images, which
might have special value in countries or regions where radi-
ologists are in short supply.

Why Are These Methods Relatively Little Used?

There are several hindrances, if not roadblocks, that impede
progress on the decision-support front. Grove and Meehl
(1996) list 17 reasons that clinicians have given for not adopt-
ing SPRs for psychiatric prognoses. They focus on attitudinal
factors in a climate in which the SPR is viewed as replacing or
degrading the clinician. Other fields have more benign issues.
We imagine that the weather forecaster has no problem receiv-
ing a SPR contribution to the forecast (for example, that there
is a 31% chance that Hurricane Floyd will hit the Cape and a
33% chance that it will hit the Islands). We consider below
some purely attitudinal factors, but treat mainly logistic and
other practical matters.

Maybe the main attitudinal factor is that diagnosticians,
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perhaps especially those with patients awaiting the result, natu-
rally want to feel that they “understand” their diagnoses and
recommendations; they want to know why they arrived at some
point and they want to be able to give a narrative account of
their thought process. Such a plot line may be difficult to find
in a SPR’s results, perhaps with some of its statistically im-
portant predictor variables’ not being self evident to anyone,
and with other seemingly obvious variables not present in the
SPR (“your father’s drug use matters, your mother’s does
not”). Producing the largest area under the ROC is technical,
may seem like dust-bowl empiricism at best, and is simply not
satisfying to diagnostician or client.

These methods are little known
To be sure these methods are part of our culture; literate

people know they exist, perhaps in weather models or insur-
ance models of life expectancy. Still, “SPR” (or any synonym)
is not a household word. The concept is not very clear. Many
people know of isolated examples, but have not integrated over
enough of them to “have the concept,” to see SPRs as forming
a significant class, much less as a phenomenon that can be
studied and exploited. Similarly, making decisions based on
odds and the costs/benefits of outcomes is something every
human does. Yet, the idea that diagnostic decision thresholds
can be set deliberately and perhaps optimally is often not there.
Indeed, the existence of a very broad class of problems that
may be called “diagnostic” is not a common idea, much less
that there may be a science of diagnostics. These are hurdles
for decision-support enthusiasts when trying to persuade ad-
ministrators that their agencies need a science of diagnostics,
for examples, the Federal Aviation Agency and the Food and
Drug Administration.

The need for adaptive SPRs
In the context of our violence example we raised the issue

of whether an SPR based on one population of cases will
generalize well enough to another. That question arises in
many, perhaps most, diagnostic fields. In medicine, for ex-
ample, the characteristics of patients undergoing mammogra-
phy will vary from university to community hospitals and
across regions of the country. Again, optimal weather models
will vary with locale. SPRs for cracks in airplane wings may
differ from large commercial planes to small private planes.
Hence, it is desirable to build SPRs that can adapt their vari-
ables and variables’ weights automatically to case samples for
which different ones will be optimal. As the sample of (proven)
cases grows in any particular setting, the SPR in use there
should change, at whatever convenient interval, so that it be-
comes tuned or tailored to that setting.

Not only does the world vary from one location to another,
but it changes dynamically and thereby creates a larger prob-
lem for some fixed SPRs. For example, a fixed SPR in medical
imaging may not be current for long enough to make its imple-

mentation worthwhile. One can assemble a useful SPR for MR
imaging of some disease/organ only to have a modification of
MR technique come along in months, and by virtue of rear-
ranging the physics and perception of the image, call for a
reanalysis of the SPR’s image features as well as their weights.
In this case, automatic adaptation is not possible. Creative,
human intervention is required to ascertain what new percep-
tual features are necessarily added to the existing SPR. On the
other hand, as assumed in the preceding paragraph, the prob-
lem is less severe in fields in which the predictor variables are
largely objective. Thus, discovery of a new risk factor related
to violence can be accommodated by an SPR geared to adapt
so that a new predictor variable is as easily handled as are new
weights for a given set of variables.

Several methods for updating SPRs have recently been re-
viewed along with a successful application to law school ad-
missions (Dawes et al., 1992). However, there are apparently
not many such adaptive SPRs in routine, practical use at pre-
sent. Fortunately, the rate at which computer databases are
being assembled and shared over networks suggests that com-
mon use of self-tuning SPRs need not be far off. All of us
concerned with diagnostics should be anticipating the day
when handling data is not a problem.

Although flexibility is desirable in many settings, its desir-
ability should not be used as a reason for abandoning a SPR in
favor of human intuition. The latter is indeed flexible, but often
in an unsystematic way not open to scrutiny. An adaptive SPR
can be flexible as well, but in a systematic manner whose
validity can consequently be evaluated.

Accountability
When a human contributes subjective estimates of the val-

ues of a SPR’s predictor variables (e.g., ratings of perceptual
features of an image), then each small piece of the diagnosis is
objectified and placed indelibly on the record. Whether liable
or not in a legal sense, the diagnostician may well feel likely to
be called on to be responsible (by an employer or patient) for
the ultimate validity of that entire, detailed, quantitative record.
A more comfortable position would be to be responsible
merely for written notes of one’s impressions.

Inconvenience
The “inconvenience” of using SPRs covers a multitude of

sins, beginning perhaps with computer issues: the sheer need to
face a computer, and perhaps to have a computer selected,
purchased, installed, maintained, and upgraded. Other issues
have to do with efficiency and workflow; for example, must a
radiologist lay aside the microphone used for dictation to enter
data via a keyboard? Such questions may have answers; for
example, speech-recognition systems will allow the radiologist
full control and data entry through the microphone. Will the
data entry take more time? Perhaps, but it may also produce
automatically the “report of findings” from radiologist to re-
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ferring physician and end up saving time. In short, the “human-
factors” problems may be soluble.

The ideas are technical

Probabilities.We claim in the Appendix that probabilities
are useful and straightforward. But that does not help people
who are put off immediately and completely by their impres-
sion that a major effort will be involved in gaining an under-
standing. On the other hand, having read this far, we hope that
the reader will find it difficult to imagine diagnoses undertaken
competently without some fundamental acquaintance with
probabilities.

Forging agreement on threshold probabilities will often be
difficult. Either a lack of understanding of probabilities, or a
lack of consensus if such understanding exists, can bedevil the
process. Illustrative data on threshold probabilities obtained in
a survey of medical directors of AIDS counseling and testing
centers revealed that whereas 25% of the respondents would
initiate a discussion of decreased life expectancy with patients
having a probability of infection greater than .15, fully 50% of
them would require a probability of infection of .95 or higher
before having that discussion. Further, whereas 43% of the
directors would advise against pregnancy for patients with a
probability of infection above .15, another 30% would require
a probability of .95 to do so (Mulley & Barry, 1986).

The tools are cumbersome
A recent proposal is that complex SPRs and decision analy-

sis be replaced by “fast and frugal” versions (Gigerenzer et al.,
1999). In such simplifications, a SPR may use just one predic-
tor variable, for example, or treat all variables as having the
same weight (following Dawes and Corrigan, 1974; Dawes,
1979). We think that such simple heuristics bear study for the
day-to-day ad lib decisions of individuals. However, we do not
expect them to help generally in repetitive problems of the
same form, largely for professionals, as we have considered in
this article. For our type of problem, possibly excepting such as
the hospital emergency room, speed and simplicity are not at
issue. So the law school admissions office can set up an SPR
and decision threshold(s) and apply them cost-effectively to
its thousands of applicants in a given year; using one variable
rather than four saves nothing of consequence. Likewise, the
weather forecaster is not tempted to discard the fifth or tenth
highest rated predictor variable if it contributes to accuracy.
The radiologist should be led to rate the dozen or so perceptual
features that make a difference and the SPR might as well use
all available ratings. Predicting violence may need to be fast in
outpatient treatment, but not in a forensic facility where no-
body is going anywhere soon. Also in these cases, the selection
of a decision threshold is usually an important societal matter,
warranting a good deal of time and effort. The speed-accuracy
tradeoff is a cost-benefit question and, generally, even small
increments in accuracy or utility are to be preferred to savings
in time or effort.

Defining benefits and costs
Assessing benefits and costs can be problematic; publiciz-

ing them can leave the decision maker vulnerable to criticism.
How many safe people should be hospitalized as “dangerous”
to prevent discharging one patient who turns out to be violent?
No court has ever answered that question with a number.
Judges are notoriously reluctant to set decision thresholds that
depend on overt cost-benefit consideration, as are many other
professionals and officials. The decision analyst’s position is
that making consistent decisions requires a stable threshold;
that any threshold implies some cost-benefit structure; and that
an explicit consideration of benefits and costs may be
preferable, for some purposes, to sweeping them under the rug.
The decision maker who is explicit does indeed invite criti-
cism, but such vulnerability to criticism in itself may be a
positive source of improvement. In contrast, an appeal to in-
effable intuition ends with the appeal itself (because there is no
way of disputing it); hence it precludes critical evaluation and
consequently precludes productive modification of the way
in which the decision was made. There are certainly fields
where, realistically, benefits and costs will continue to be left
vague. To some they may suggest boundary conditions for the
sort of decision analysis advanced here; to others they will be
a challenge.

More complex computer-based systems have not
done well
It may be that computer-based systems for two-alternative

diagnoses suffer by inappropriate generalization from experi-
ence with medical systems built to contend with more complex
diagnoses, in which the diagnostician describes a patient’s
symptoms and looks for a listing of all diseases that should be
considered. Such systems have been based on artificial intel-
ligence (expert systems), probabilistic reasoning, a combina-
tion of the two, or on other methods. Performance deficiencies
of four prominent examples were reviewed by Berner et al.
(1994). An accompanying editorial inThe New England Jour-
nal of Medicinegave these examples a grade of “C” (Kassirer,
1994).

What do these hindrances add up to?
It may well be that one particular hindrance just mentioned

is sufficient to preclude use of a SPR or an analysis of decision
utility in a given situation. Together, they may seem over-
whelming. Yet, SPRs and decision analysis have been regarded
as practical and have been in routine use in some settings for
decades, weather forecasting perhaps being the main “exis-
tence proof” among the examples of this article.

Making sense of the historical pattern of use of the decision-
support methods is not easy. On the one hand, one might
understand why radiologists, who are technically oriented,
would become acquainted with the methods before adminis-
trators of broad national health programs, such as HIV screen-
ing, and of the regulatory agencies that approve the screening
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tests. On the other hand, it is not evident (to us) why meteo-
rologists have shown for decades a sophistication not mirrored
by materials scientists who provide the science for non-
destructive testing programs.

The Importance of Public Awareness of
Decision-Support Methods

This article is published inPsychological Science in the
Public Interest, featured in an accompanying press conference,
and rewritten in shorter form forScientific American, precisely
because these mechanisms were created to bring such infor-
mation to the public and its decision makers. An earlier effort
to reach decision makers was aScience and Public Policy
Seminar for government officials and congressional staff,
sponsored by the Federation of Behavioral, Psychological and
Cognitive Sciences (Swets, 1991). That presentation led to this
line of work being selected as the illustration of practical ben-
efits of basic research in the behavioral sciences in a White
House science policy report (co-signed by Clinton and Gore,
1994). In the longer run, a national awareness may help to make
inroads in the procedures and regulations of policy makers.
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APPENDIX: SOME CONCEPTS OF PROBABILITY

Though they are not all used formally in the body of this
article, certain concepts of probability are fundamental to the
ideas and analyses presented there. These concepts are not
necessary to appreciate the gist of the article, but a brief review
of them may promote a more sophisticated view. As it happens,
the same concepts are quite generally useful in human affairs.
Seemingly intricate or technical at first glance, and indeed they
are often misunderstood and confused, they can be seen to be
straightforward and likely to repay some attention.

Recall our focus on the two elements of a diagnostic task:
(1) the presence or absence of a condition of interest, and (2)
a decision that the condition is or is not present. We spoke of
the actual presence or not of the condition as the “truth” about
the condition and designated the two truth states as T+ (con-
dition present) and T− (condition absent). Similarly, we des-
ignated the positive and negative decision as D+ and D−.

Joint probabilities

We wish to make probability statements about two ways in
which T and D values may combine. One is the co-occurrence,
or joint occurrence, of a T value and a D value (say, the values
T− and D+, which together represent a false-positive outcome).
An expression such as P(T− & D+) denotes a joint probability;
the other three possible coincidences of T and D values also
have associated joint probabilities. In words, one speaks, say,
of the probability of a cancer being absent and the diagnosis
being positive.

Conditional probabilities

The second way in which T and D values may combine is
in a conditional relationship. We may ask about the probability
of D+ occurring conditional on, or given, the occurrence of T−.
Here, the notation is P(D+ | T−). In this example, note that we
are conditioning D on T. That is, the quantity of interest in this
example is the probability of a positive cancer diagnosis given
the actual absence of cancer. Another possibility is to condition
in the other direction, on the decision D. For example, P(T+ |
D+) expresses the probability of there being cancer in truth
given that the decision made is positive for cancer. It may be
noted that the direction from decision to truth gives the prob-
ability that usually interests the patient and the doctor; it rep-
resents what is termed the “predictive value” of the diagnosis.
For some purposes, it interests evaluators of diagnostic perfor-
mance. However, probabilities proceeding from truth to diag-
nosis are of principal utility in the present context: As seen in
our discussion of ROC analysis, they are the basis for valid
measures of diagnostic accuracy and the diagnostic decision
threshold.

Strictly, one should be careful to qualify any probability
referring to combinations of T and D as either a joint or con-
ditional probability. In the present context, we focus predomi-
nantly on conditional probabilities and have not carried the
qualifier along when no confusion is likely. Also, it is particu-
larly important to be clear about the direction of a conditional
probability: from truth to decision or the reverse. Confusion in
this respect is widespread and plagues communication about
probabilities in diagnostics. Still, here, where we are primarily
concerned about probabilities of decisions given the truth, we
also drop that qualifier when permissible. So here, a “false-
positive probability,” for example, is a conditional probability
and it is P(D+ | T−), or conditioned on the truth.

Prior probabilities

The third and final kind of probability required here is the
prior probability of the condition or event of interest, “prior” to
a decision, which is denoted either P(T+) or P(T−). One must
know, for example, whether the probability of breast cancer in
a given diagnostic setting is relatively low, .03, as it might be
in broad-based mammography screening, or relatively high,
.33, as it might be in a referral hospital for symptomatic cases.
As discussed, this variable affects the decision threshold that is
selected for making a positive diagnosis. So there is a need to
know the prior probability of a condition or event: of cancer,
violence, or severe weather, say, in any population or locale
under study.

Relation among the three probabilities

The joint, conditional, and prior probabilities are simply
related; the joint probability is the product of the other two.
Considering just positive quantities, for example: P(T+ & D+)
4 P(D+ | T+) ×P(T+).

Calculation of probabilities from a frequency table

The computation of the three types of probabilities is based
on frequency data in a two-by-two contingency table. Such a
table has two columns, headed by T+ and T−, and two rows,
labeled D+ and D−, as shown in Table A-I. The frequencies of
cases that fall in each of the four cells are denoteda, b, c, and
d, respectively. Thus,a is the number of cases for which T+
and D+ co-occur, and so forth. The margins give cell totals,
e.g., a+c is the total number of times T+ occurs, whether
associated with a positive decision (a) or a negative decision
(c). Likewise, a+b is the number of times that the positive
decision D+ is made, whether to T+ or T−. The total sample
size is N4 a+b+c+d. Various proportions calculated from a
sample’s table are taken as estimates of corresponding prob-
abilities in the population from which the sample is drawn.

Note that dividing the column sums by the sample size gives
the proportions of times that T+ and T− occur–which are taken
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as theprior probabilities, respectively, of T+ and T−. Specifi-
cally, the proportion (a+c) / (a+b+c+d) is equal to P(T+) and
the proportion(b+d) / (a+b+c+d) is equal to P(T−).

Dividing a cell frequency by a column or row total gives a
conditionalprobability. For example, the proportion(a) / (a+c)
is the conditional probability of a true-positive decision con-
ditioned on T+, namely, P(D+ | T+). The proportion(a) / (a+b)
is the true-positive probability conditioned on D+, namely,
P(T+ | D+).

Lastly, dividing a cell frequency by the sample size gives a
joint probability. So, e.g., (d) / (a+b+c+d) is the joint prob-
ability of a true-negative outcome, P(T− & D−).

Two basic probabilities

Two conditional probabilities based on the frequencies in
Table A-1 suffice to provide all of the information contained in
the four conditional probabilities just described. Provided they
are truth-conditional probabilities, two will do, because the
other two are their complements. That is,a / (a+c) and c /
(a+c)—namely, the two proportions derived from the left col-
umn—add to 1.0 (when T+ holds, the decision is either D+ or
D−). Similarly, their probabilities, P(D+ | T+) and P(D− | T+),
add to one. Also, the two conditional probabilities of the right
column are complements. The two probabilities often used to
summarize the data are the true-positive and false-positive
probabilities:a / (a+c) or P(D+ | T+) andb / (b+d) or P(D+ |

T−). These are the two conditional probabilities of a positive
decision, given T+ or T−. Their notation may be simplified as
P(TP) and P(FP).

These two probabilities are independent of the prior prob-
abilities (by virtue of using the priors in the denominators of
their defining ratios). The significance of this fact is that ROC
measures do not depend on the proportions of positive and
negative instances in any test sample, and hence, generalize
across samples made up of different proportions. All other
existing measures of accuracy vary with the test sample’s pro-
portions and are specific to the proportions of the sample from
which they are taken.

Inverse probabilities and Bayes’ theorem

We mentioned in passing conditional probabilities that are
conditioned on the decision rather than the truth, so called
“inverse” probabilities, and relegated them to secondary inter-
est. However, the concept of inverse probabilities is centrally
important to our developments when applied not to the deci-
sion, but to the data or evidence that underlie the decision.
Whereas the construction of a SPR is based on probabilities of
items of information (data, symptoms, pieces of evidence) that
are dependent (conditional) upon known positive and negative
instances of truth, the use of the SPR as a decision aid is based
on the inverse probability: the probability of the positive truth
state given the (collective) data. It is this latter probability that
the SPR supplies for diagnosis and forms the continuum of
evidence along which a decision threshold is set to permit a
binary, positive or negative, decision.

Inverse probabilities are often called “Bayesian” probabili-
ties because they may be calculated by means of the clergyman
Thomas Bayes’ (1763) theorem from the truth-conditional
probabilities along with the prior probabilities. Specifically,
using the symbol “e” to denote the evidence for a decision, the
theorem (stated here for just the positive alternative) is:

P~T+ | e! =
P~e | T+! × P~T+!

P~e!
,

where P(e)4 [P(e | T+) ×P(T+)] + [P(e | T−) ×P(T−)], that is,
the sum of the values of P(e) under the two possible alternatives.

The theorem illustrates that the quantity produced for the
decision maker by a SPR incorporates the prior probability.
Though that fact is sometimes forgotten, the decision maker
should be consistently aware of it and resist the tendency to
make a further adjustment for the prior probability, or base
rate, that characterizes the situation at hand.

Table A-I. Two-by-two table of truth and decision:a, b, c, d
are the frequencies of the four possible decision outcomes.
The important proportions, or probabilities, are defined.

Truth

Positive Negative

a b
Positive True positive False positive a + b

Decision
c d

Negative False negative True negative c + d

a + c b + d a + b +
c + d =N

Prior probabilities: Joint probabilities:
(a + c)/N = P (T+) a/N = P (T+ & D+ ) c/N = P (T+ & D− )
(b + d)/N = P (T−) b/N = P (T− & D+ ) d/N = P (T− & D− )

Conditional probabilities (of decision conditional on truth):
a/(a + c) = P (D+ | T+) c/(a + c) = P (D− | T+)
b/(b + d) = P (D− | T−) d/(b + d) = P (D− | T−)
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