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Cognitive Emissions of 1/f Noise

David L. Gilden
University of Texas at Austin

The residual fluctuations that naturally arise in experimental inquiry are analyzed in terms of their time
histories. Although these fluctuations are generally relegated to a statistical purgatory known as
unexplained variance, this article shows that they may harbor a long-term memory process known as 1/f
noise. This type of noise has been encountered in a number of biological and physical systems and is
theorized to be a signature of dynamic complexity. Its presence in psychological data appears to be
associated with the most elementary aspect of cognitive process, the formation of representations.

The work described here concerns memory and the temporal
evolution of cognitive activity. Although many of the ideas pre-
sented make little contact with current cognitive theories, almost
all of the empirical work derives from the well-known observation
that memory inevitably makes an appearance in repeated episodes
of measurement. Explicit memory, for example, was a bedeviling
factor in the early studies of magnitude estimation, signal detec-
tion, and absolute identification. People have a tendency to repeat
themselves so that if they have just said "loud," they are likely to
say "loud" again (Luce, Nosofsky, Green, & Smith, 1982; Stad-
don, King, & Lockhead, 1980), or if they have just said "yes,"
another "yes" is likely to follow (Verplanck & Blough, 1958;
Verplanck, Collier, & Cotton, 1952; Verplanck, Cotton, & Collier,
1953). More important in modern applications are the implicit
associations that lead to hysteresis and sequential priming. Were it
not for the threat of systematic bias, threshold measurement, for
example, would not require interleaved staircases or randomization
of stimulus presentation. The use of Latin squares in the analysis
of variance has the same motivation—the avoidance of order
effects. The implicit understanding that underlies all efforts to
minimize the role of memory in repeated measurement is that
sequential correlations are not relevant to the particular construct
being measured—say an auditory or visual threshold. Deciding
what is or is not relevant in psychology is a very subtle undertak-
ing and at least demands that one knows what causes sequential
correlations. In this article, I show that there is considerably more
to these correlations than has been presumed. Sequential correla-
tion is not only an intrinsic part of psychological measurement; its
structure may provide new perspectives on the mechanisms of
thought that lead to discrimination and choice.
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The methods used here are primitive and consist solely of
constructing the consequences of introducing time as an essential
component of measurement. Standard methods of assessment in
cognitive psychology are, in contrast, state-based as opposed to
time-based. What this means in practice is that data deriving from
a single observer are generally not kept intact as a response history
but are diced up among treatment cells that express the design. In
a successful experiment, different treatment cells come to be
associated with different mental states. How mental states stochas-
tically evolve in time is generally not an issue, but here it is the
single focus of inquiry. As a consequence, in all of the work
described here, I either dispense with stimuli altogether, present a
single stimulus in the course of an entire experiment, or subtract
from the data the effects attributable to treatments. In this way, I
obtain signals that have no conceivable relevance to how psycho-
logical states are differentiated but that do contain all of the
temporal correlations that are induced by choice and discrimina-
tion behavior.

Fluctuations in Speeded Response

The constellation of ideas that provides the setting for this work
is well outside of experimental psychology. Most of the relevant
articles and congresses derive from statistical physics, solid state
physics, and biophysics. However, the principal findings are not
esoteric and have immediate application to both psychological
theory and practice. So I begin with a series of demonstrations in
speeded response that make this point, and the best way to do this
is to work through a concrete example in some detail. In order for
this example to be effective, it should be one that is familiar, has
been replicated by many independent investigators, and has as
solid a theoretical foundation as might be hoped for. Mental
rotation, a paradigm developed by Shepard and coworkers (Shep-
ard & Cooper, 1982), satisfies these requirements admirably. In
Figure 1, the data from a mental rotation experiment (Gilden,
1997) are presented (six observers; 1,056 trials each; judgments
made on the mirror inversion of R, P, or F at angles of 0°, 60°,
120°, 240°, and 300°; trials were self-paced with no feedback).
The data shown in Panel A resemble those typically presented in
textbooks and in a myriad of research articles on this subject. The
asymmetry between 120° and 240° even has an interpretation in
terms of the consistent rightward frame of the character set. These
data surely create the impression that judgments of mirror reflec-
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Figure I. Results from a typical study of mental rotation. Letters appeared at various angles, and observers
made speeded judgments about whether they were mirror-inverted or not. Panel A shows how the error is usually
presented in the literature in terms of standard errors of the mean. Panel B shows error bars that depict the
standard deviation of the raw data.

tion are dominated by angular deviation and motivate the inter-
pretation that visual imagery has spatial properties, and so forth.
This impression, however, is not entirely faithful to the data. The
error bars related to reaction time measurement reported in text-
books (not generally defined) and in research articles (almost
always defined) are standard errors of the mean and so reveal
much about the degree to which the mean can be localized and
quite little about the true variability in the data. Although this
observation may appear truistic, it underscores an important prop-
erty of reaction time data. Our ability to localize the mean does not
entail that the treatment effects explain the data (the treatments
here are the different angles of presentation). Panel B shows the
same data plotted with error bars, which are standard deviations of
the reaction time distributions at each angle. This way of looking
at the data reveals that the angle variable has only a small influence
on the time required to make a judgment of letter inversion, and in
fact treatment effects in this experiment account for only about
10% of the total reaction time variance within individual observ-
ers. In a sense, 90% of what observers give in the way of reaction
time data has nothing to do with mental rotation. It is this 90% that
I am interested in here.1

Latent Structure in Reaction Time Histories

Although it is clear that most of the data received in the mental
rotation experiment cannot be used to understand the mapping
between response latency and letter orientation, there is no reason
to suppose that there are not other kinds of structure latent in the
sea of fluctuations. To explore this possibility, I treat the data as an
intact history of trials. Figure 2 displays the reaction times for a
single observer and their decomposition into means and residuals.
The top sequence shows the raw response latencies in the exact
order that they were produced by the observer. The middle se-
quence is a fluctuating signal over 12 discrete values that is simply
a record of the cell means corresponding to a random counterbal-
anced presentation of stimuli (six angular deviations, two levels
corresponding to whether the letter was mirror-inverted or not).
The bottom sequence is the history of residual fluctuations formed
as a difference between the raw and cell mean sequences. The fact

that the raw data and the residuals look alike is due to the small
influence of the independent variables on responding. More im-
portant, the raw data, and consequently the residual fluctuations,
have little waves running through them. These little waves are
visual evidence of positive correlation. Reaction time latencies
have an imperfect but manifest tendency to replicate themselves.
Such waves are not seen in the record of the cell means because
this sequence is explicitly counterbalanced and randomized. The
waves in the residuals have a structure that is reminiscent of
random fractals—a nested structure within a wide range of scale,
where scale in this context is indexed by trial number. Where does
this structure come from? It must arise from memory processes
within the observer. Were there no memory, the residuals would
resemble the sequence of cell means at larger amplitude.

In order to understand the kind of structure that these waves
represent, it is necessary to introduce the more general context of
correlated noises. The central issue is that noises or fluctuations
come in a variety of forms; there is not just one thing called
"noise." It is the case that the important noises in physics, biology,
and psychology are members of a single family that is parameter-
ized by the internal correlations between successive increments.
The noises in this family are referred to as fractional Brownian
motions and are most easily described in terms of their power
spectra. Fractional Brownian motions have power-law power
spectra, power «» 1/f. In the log-power/log-frequency plane, the
spectra are simply straight lines with slope — a. a = 0 corresponds
to no correlation between successive increments, whereas noises
with positive sequential dependencies have a > 0 (for a discussion
of the transformational properties of this family, see Gilden,
Schmuckler, & Clayton, 1993).

Three especially important noises are illustrated in Figure 3 with
their associated power spectra. The top panel displays an example
of white noise. White noise has a flat power spectrum reflecting

1 The variability in reaction time attributable to readout from the key-
press makes a negligible contribution. The standard deviation of the read-
out error is 4 msec, a value that is much smaller than any feature of interest
in this article.
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the lack of correlation between increments. This type of noise is
generally assumed to characterize the fluctuations in the collection
of data. Recall the first and most fundamental equation of statis-
tics:

observation = cell mean + error. (1)

Analysis of variance (ANOVA) assumes that the observations
collected in the course of an experiment have independent error
terms (i.e., they are random and independent samples from some
distribution). At face value this is not a bad assumption, although
it is by now clear that it is violated in data deriving from a single
individual. White noise is the garden variety encountered most
generally in natural systems. The fluctuations observed in the cell
means in Figure 2 are a white noise because the random interleav-
ing of trials is guaranteed to produce random and independent
samples.

Another commonly encountered noise is illustrated in the lower
panel. Brown noise is called such because of its relation to Brown-
ian motion, the path that particles execute as they diffuse in a
random walk. Brown noise can be formally constructed by com-
puting a running sum over the increments of a white noise. At any
moment, the running sum gives the current position of a random
walk. Random walks are highly self-correlated because successive
positions have an entire history in common and differ by only a
single displacement. Positive self-correlation is manifested in ran-
dom contour by the appearance of slowly undulating hills and
valleys that support jagged high-frequency structures (see Gilden
et al., 1993, for a discussion of how people perceive Brownian
motions). It is not happenstance that landscape terminology seems
apt in the description of random-walk contour. Natural landforms
are typically random walks (Burrough, 1981; Keller, Crownover,
& Chen, 1987; Sayles & Thomas, 1978a, 1978b; van der Schaaf &
van Hateren, 1996; Voss, 1985, 1988). The spectral signature of
this kind of structure is a rapid drop-off in power with frequency;
low frequencies (large scales) have large amplitude whereas high
frequencies (small scales) have low amplitude. Random walks
have power spectra that fall off precisely as I//2.

raw data

cell means

residual
fluctuation

Figure 2. Raw mental rotation reaction times from a single observer. The
data are plotted in the trial order in which they were collected. The top
series shows the raw data, the middle series shows the cell mean for each
particular stimulus (defined by angular orientation and mirror reflection) in
the order in which it was shown, and the bottom row shows the trial-
ordered residuals.
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Figure 3. The three canonical types of fractional Brownian motion.
Examples of each motion are shown along with its power spectrum. These
motions are self-affme fractals; frequency scaling can be offset by ampli-
tude scaling.

Sandwiched exactly between noises with random increments
(white noise) and noises that are sums over random increments
(brown noises) is a type of noise that has particular physical
significance. This noise is referred to variously as 1/f (the power of
such noises varies inversely with frequency), flicker noise, and
pink noise.2 1/f noise is illustrated in the middle panel of Figure 3.
In the past quarter century, 1/f noise has been discovered in the
temporal fluctuations of an extraordinarily diverse number of
physical and biological systems (Press, 1978; see articles in Han-
del & Chung, 1993, and references therein). Examples of its
occurrence include fluctuations in tide and river heights, quasar
light emissions, heart beat, firings of single neurons, and resistivity
in solid state devices.

The most accessible introduction to the significance of 1/f noise
is one given by Martin Gardner (Gardner, 1978) in his Scientific
American column "Mathematical Games." In this particular col-
umn, Gardner asked for the sense in which music imitates nature.
Sounds in nature are not musical in that they tend to be either too
repetitive (bird song, insect noises) or too chaotic (ocean surf,
wind in trees, and so forth). The answer to this question was given
in a statistical sense by Voss and Clarke (1975, 1978), who showed
that pitch and loudness fluctuations in speech and music are 1/f
noises. So music is like tides not in terms of how tides sound, but
in how tide heights vary. In expounding this result, Gardner
pointed out that the sense we have that music is interesting and
enjoyable to listen to is in large part due to its statistical correla-
tions. Gardner considered three modes of piano performance to
illustrate this point. In the first mode, the performer hits keys at
random. This produces a white noise (flat spectrum) that is diffi-

2 The vision community has recently taken to referring to landscapes as
1/f noises because they prefer to make reference to the amplitude spectrum
rather than to the power spectrum. The power spectrum is the square of the
amplitude spectrum.
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cult to listen to because notes can never be anticipated. White
melodies are characterized by continuous surprise. The second
mode is to execute a random walk on the keyboard. The rule for
this mode is start at a random note and move to the left or right by
one note with equal probability. Here the increments are uncorre-
lated, but the absolute position of the current note is highly
correlated with the past. Such a melody is a brown noise (spectrum
decaying as the square of frequency), and it is difficult to listen to
because each note can be perfectly predicted within a three-note
window. Brown melodies suffer from too much anticipation. What
is interesting, musically speaking, are sequences that are neither
too predictable nor too chaotic. From a purely statistical point of
view, the noise exactly between these two modes is 1/f noise, and
this is what music is at the level of two-point correlation.

The connection between 1/f noise and music provides a heuristic
for understanding what kind of thing 1/f noise is: It is the statistical
embodiment of the synthesis between disordered high information
activity (white noise) and highly ordered low information activity
(random walk noise). This synthesis, although intuitive and easy to
state, turns out to be quite difficult to realize in statistical or
physical models of nature.

Two Sources of Fluctuation in Speeded Response

With this background, the problem of identifying the types of
noise produced by mental rotation may be meaningfully addressed.
The first issue is to determine if the residual fluctuations are
contained within the family of fractional Brownian motions. An-
swering this question involves reducing the wave structure that is
visible to the eye in terms of its correlational structure. Spectral
analysis provides exactly the tool required. The average power
spectrum of mental rotation latency residuals is shown in Figure 4.
Note that in this context the received data (reaction times) are
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Figure 4. The power spectrum of mental rotation residuals together with
the optimal fit from a two-source model that blends colored and white
noise. Frequency here refers to inverse trial number. The axes have scales
that are fixed up to the addition of a constant. Logarithms here and
elsewhere are base 10.

indexed by the trial on which they occurred rather than, say, the
time of their occurrence. For this reason, frequency here has the
dimensions of cycles per trial rather than the more familiar unit of
cycles per second (Hz). The spectral power is fixed up to an
arbitrary normalization, which in the log-log plane means that the
intercept will not be interpreted. The spectrum was computed
using methods that provide the minimum variance at each esti-
mated point (Press, Flannery, Teukolsky, & Vetterling, 1992).
These techniques are described fully in Press et al. (1992) and in
Gilden, Thornton, and Mallon (1995).

The first and most obvious feature of this spectrum is that the
sequence of reaction time residuals does not conform to the as-
sumptions that are generally made in interpreting reaction time
data. The residuals are not independent samples drawn from any
distribution. This is an important point and deserves emphasis.
Regardless of the shape of the distribution of reaction times—ex-
Gaussian, log normal, or whatever—random and independent sam-
ples will always produce a white noise. White noises have flat
spectra, and this spectrum is not flat. More important than the
rejection of residual independence is that the spectrum has an
identifiable shape: It monotonically increases with decreasing fre-
quency. Although these data are ordered by trial number, the
interpretation that frequency receives is essentially the same as in
applications where frequency is hertz or wave number (inverse
units of distance). Low frequencies correspond to large blocks of
trials and high frequencies to neighboring trials. The fact that the
power increases at low frequencies means that there are waves of
all scales running though the data, and that the waves with the
largest amplitudes exist at the largest scales. This structure is
produced by some kind of memory that persists over long periods
of time (tens of minutes) and over hundreds of trials. This is an
unanticipated result, and it suggests that there is an underlying
coherence in residual structure.

The spectral representation of the mental rotation residuals
provides clear and immediate evidence that the latency residuals
are not a pure form of one of the members of the fractional
Brownian motion family; the spectrum is not a straight line. As a
first step toward understanding what this spectrum signifies, the
residual fluctuations have been modeled in terms of a constrained
mixture of two members of this family. The constraint is that one
of the members be a pure white noise. The rationale for this
constraint is that reaction time measurement integrates across both
cognitive and motoric responses to a stimulus, and there is con-
siderable evidence that timing fluctuations in keypress activation
are truly independent (Wing & Kristofferson, 1973; Wing, 1980).
That is, at least some of the variability in reaction time is a white
noise. There may also be white fluctuations arising from the
decisional and perceptual parts of the task, but it is clear that there
is an active source of correlated fluctuations. The model of the
reaction time residuals groups all sources of white variation to-
gether and represents the residual on the nth trial as being embed-
ded in an ordered sequence of the following form:

residual,, = (l/P)n + /3N(0, 1), (2)

where (l/f\ is the nth term in a 1/f" noise scaled to have zero
mean and unit variance, N(0, 1) denotes a sample from the normal
distribution with zero mean and unit variance, and j3 is a constant
free parameter that determines the relative contributions of the two
types of variability. For each choice of a and /3, there is a unique
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spectrum, and it is a relatively straightforward matter to find the
values that provide a best fit to the spectrum shown in Figure 4.
The best fit is displayed as the solid curve in this figure, and it is
defined by a = .7 and /3 = 2.

Two conclusions are entailed by the application of the two-
source model to these data. First, the correlated component is
claiming a substantial fraction of the residual variance, 20% to be
exact. In this sense, 20% of the original unexplained variance has
now received some definition. To put this number into perspective,
recall that letter orientation accounted for only 10% of the total
variance. The second point is that although the correlated compo-
nent is not exactly 1/f, it is quite close and would fall within the
purview of 1/f phenomenon in the biology and physics literature.

Finally, it should be understood that although this discussion has
been framed in terms of latency residuals, the treatment effects in
mental rotation are so marginal that the same spectra are obtained
for the raw latencies. The signal that is emitted in a mental rotation
experiment patently contains more information about the observer
than it does about the stimuli. The conception of the perceiver as
a noisy information channel is not falsified by these data, but it
misses the crucial point that people add information in their
responses, and this information comes about in the first place
because the decision process is occurring within a nervous system.

A Class of Fluctuations

The generality of these findings was explored in Gilden (1997)
by examining fluctuations in response latency over three additional
domains: lexical decision, serial visual search, and parallel visual
search. The tasks and methodologies used in these studies clearly
do not exhaust the practice of experimental psychology, but they
do provide a sampling of the usage of speeded response in typical
applications. The basic results are reviewed both for their rhetor-
ical value in the present argument and as preparation for the usage
of latency fluctuations in the Monte Carlo simulations below.

The search data described here were generated as part of con-
tinuing study into the perception of motion fields (Thornton &
Gilden, 2000). We use a method of multiple target search (van der
Heijden, La Heij, & Boer, 1983) that ideally has the power to
distinguish a serial process from one that is parallel but of limited
capacity (see Townsend, 1990, for a discussion of these issues). In
the studies described here, set sizes were one, two, or four, and
there could be as many targets as the set size permitted. In the
rotation experiment, targets were clockwise rotating disks and
distractors were counterclockwise rotating disks. In the translation
experiment, targets were rightward moving gratings and distractors
were leftward moving gratings. Six observers made speeded deci-
sions as to the presence of at least one target over 1,152 trials. The
pattern of means suggested that rotation sign is processed serially
whereas translation sign is processed in parallel. The lexical deci-
sion task, on the other hand, was fabricated simply to generate
residuals. The stimuli in this experiment were lists of five real
words or pronounceable pseudowords (taken from Juola, Ward, &
McNamara, 1982). The number of real words was either one, two,
three, or four in each list, and the task for the six observers was to
identify this number. There were 1,280 trials in this experiment. As
in the mental rotation study, trials in search and lexical decision
were self-paced, and no feedback was given. The average data

expressed in terms of means (upper panels) and power spectra of
the residuals (lower panels) are shown in Figure 5.

These additional studies show that the residual structure found
in the mental rotation study is not unique. The paradigms assem-
bled here are diverse in terms of what the observers are thinking
about, the set size of possible responses, the set size of possible
stimuli, and how long it takes the observers to arrive at a decision.
Yet there is a clear consistency in the correlational structure of the
residual fluctuations. The two-source model, plotted as a curve in
each lower panel, validates what is obvious to the eye: There is
little difference in the model parameters required to fit the spectra
(Table 1 in Gilden, 1997). The derived exponents all fall in the
range [.7, .9]. The only notable difference was in the proportion of
variance attributable to white noise. There is more white noise in
lexical decision and mental rotation residuals (80%) than there is
in search residuals (65%).

Priming Correlations and Their Decay Over Time

Sequential priming is an inevitable outcome of stimulus presen-
tation and response. Implicit associations naturally occur when
successive stimuli share common features (Maljkovic & Na-
kayama, 1994, 1996). These associations do not necessarily facil-
itate response, and negative priming will generally occur whenever
stimulus attributes that were to-be-ignored become relevant. In
addition, the motor aspects of the keypress response that is com-
monly used in this form of measurement will create correlations—
fingers are activated and inhibited throughout a trial sequence.
Priming correlations must be contributing to the spectral structure
displayed in Figures 4 and 5, and consequently the role of priming
is of considerable importance to this work. If priming were capable
of producing spectra with increasing power at increasing trial
scale, there would be little motivation to persist with this inquiry.
There are two straightforward ways to evaluate the role of priming
in the overall context of correlated fluctuations. The first is to
determine experimentally how 1/f correlations vary under a set of
treatments that are designed to suppress priming. The second is to
explicitly calculate the range of influence that priming may have in
situations where stimulus presentation is random. Both methods
are presented here.

Two elementary discrimination experiments were conducted in
order to obtain a corpus of priming correlations. Keypress response
was purposely confounded with stimulus attribute in order that the
correlations be maximal. The point here is not to disentangle the
different ways priming influences data, but to separate priming
from everything else. In the color experiment, a circle colored
either red, green, or blue was presented on each trial. In the shape
experiment, a black circle, square, or diamond appeared. In either
case, the observer's task was to indicate with a keypress response
which item appeared. There were seven conditions in each exper-
iment defined by the size of a time delay that was interposed
between trials. The time delays were 0 (self-paced tri-
als), 0.5, 1.0, 1.5, 2.0, 2.5, and 5.0 s. The same eight observers
completed two blocks of 540 trials in each condition in each
experiment. The instructions were to respond as fast as possible
but to try and keep errors down to about 10%. All of the observers
were experienced psychophysical observers and were paid for their
participation.
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Figure 5. Plots of the means and residual power spectra for three additional studies of speeded response. In the
search studies, the inset numbers and dot type indicate the number of targets present (filled = 1 target,
half-filled = 2 targets, open = 4 targets). The dashed line shows trials on which all stimuli were targets.

Prior to analyzing the correlations between trials, all main
effects (color or shape) were removed, the linear trends were
removed, and each response sequence was recast in terms of z
scores to equate the total variability across observers in all condi-
tions. Priming effects were computed by sliding a moving window
across the response sequences and computing the reaction time on
trial N, given the stimulus presented (and consequently keys
pressed) on trials N,N— 1, N — 2, and so on. A concrete example
is clarifying here. Suppose that one is interested in determining the
priming induced by two previous trials. In this experiment, there
are three alternatives on each trial, so there are 3 X 3 X 3 = 27
possible stimulus histories that include a given trial and its two
predecessors. Priming effects are computed by associating each
reaction time latency with one of the 27 priming combinations.
Across a sequence of 1,080 stimuli, each combination arises at
random about 40 times, and the average latency for each combi-
nation is the desired statistic.

The main priming results for the color and shape experiments
are displayed separately in Figure 6. The ordinate is the literal
keypress sequence for the trial in question and for the two previous
trials: R refers to the ring finger, M to the middle finger, and L to
the index finger. The abscissa is the average reaction time z score

for the trial in question. Negative z scores correspond to response
latencies that are shorter than average. A few examples elucidate
the presentation of these data. First, consider the 0-s delay condi-
tions where a new stimulus appeared immediately on a keypress
response. Note that RRR, MMM, and LLL have the most negative
reaction time z scores. These trials had a shape or color that also
appeared on the two previous trials. This is the sort of priming
effect that is expected—agreement between physical and response
characteristics across trials leads to faster responding. The next
most negative z scores correspond to trials of the form ABB, where
the present trial is in agreement with the previous one but in
disagreement with the trial two previous. The slowest trials are
those having the form ABA, where there is agreement two back
but disagreement one back. This pattern of data is an example of
a pervasive attentional phenomenon referred to generally as inhi-
bition of return. There are a number of reflection symmetries in
Figure 6 that arise whenever priming magnitudes are invariant
under substitutions such as L —> M, M —» R, R —>• L. However,
there is not perfect symmetry, as L and R are generally inter-
changeable but neither is generally interchangeable with M. For
this reason, the response identities are displayed in favor of the
more familiar stem and leaf plots (Luce, 1986).
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Figure 6. Second order priming in the shape and color discrimination studies. Average latency z scores are
plotted as a function of the 27 different ways that three successive trials (t denoting the current trial, t - 1
denoting the previous trial, and t — 2 denoting two trials back) can be ordered in a three-alternative forced
choice. L, M, and R indicate the correct keypress responses on the trials in question and refer to the index,
middle, and ring fingers, respectively. Each panel shows priming functions for trials that were self-paced (open
circles) and for trials that were delayed by 5 s (filled circles). RT = reaction time.

The central finding in this experiment is that sequential priming
correlations decay with time. There is some amount of priming in
the 5-s delay condition, but in both color and shape discriminations
it is clearly weaker than that produced by self-paced trials. A
measure of the total priming effect is a quantity referred to here as
the priming distance. The priming distance is computed as the root
mean square (RMS) z score and is formally the length of a data
vector in the space of all three-tuples in keypress. Figure 7 displays
the priming distance as a function of the interpolated time interval.
For the most part, these functions are monotonically decreasing
with delay time, implying the existence of lawful relation between
time and priming magnitude. In fact, sequential priming decay is
an example of cooling; the magnitude decreases exponentially
over time.

In contrast to priming, the overall level of intertrial correlation
does not decay with increasing intervals of time between trials.
Figure 8 shows the power spectra of the exact same sequences that

were used to compute priming correlations. The power at all
frequencies is intact in the delayed sequences. There is no evidence
of whitening at low frequencies, which would be expected if the
long-range correlations were also decaying. If there is any effect of
time delay at all, it is to increase the amplitude of correlation at
long trial intervals (low frequencies). This situation is true for both
color and shape discriminations. This experiment shows, then, that
priming can be dissociated from the long-term memory structures
of interest here.

A more direct route to evaluating the contribution that priming
makes to the overall level of correlation is simply to remove the
priming correlations as completely as possible and then to compute
the power spectra of the de-primed sequences. The number of trials
(1,080) that were collected from each observer places a constraint
on the depth to which sequential priming effects can be analyzed
and therefore expunged. In a three-alternative-choice experiment,
there are 81 possible stimulus combinations that arise in third-
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Figure 7. The decay of sequential priming as a function of imposed time
delay between successive trials. The priming distance is the root-mean-
square z score computed over the 27 combinations of three-tuples shown in
Figure 6.

order priming where a trial and its three immediate predecessors
are taken into account. On average, each combination occurs
about 13 times in a sequence of 1,080 trials. In fourth-order
priming, the number of possible combinations (243) is too numer-
ous, and their individual occurrence too infrequent, to calculate
reliable priming statistics. From a practically standpoint, then,
priming effects can only be eliminated up to third order. However,
this depth is sufficient because priming effects decay rapidly with
trial separation. For example, although observers are faster when
two or three stimuli are repeated, there is little benefit from a
fourth or fifth repetition in reaction time. Exact calculations in both
the color and shape experiments showed that 80% of priming
effects are realized by consideration of only the two previous trials.

With these caveats, the removal of sequential priming from the
color and shape experiments was straightforward.

Purging of priming correlations was done on each observers'
data individually. The average latencies associated with the 81
stimulus combinations in third order were initially calculated.
These average values were then subtracted on a trial-by-trial basis
from the sequence of latency residuals. The procedure is formally
identical to removing means, say, in mental rotation, except that
now there are 81 conditions instead of 10. Consider, for example,
a particular stimulus sequence RMRL that has a mean latency of
X. X is subtracted from all trials on which L is the present response
and where it was preceded by RMR—in exactly that order. This
procedure effectively removed all priming correlations in all or-
ders. The third order has been removed exactly, orders less than
three are removed by virtue of being resolved by the third order,
and higher orders are almost completely nullified because most of
the priming in fourth and higher orders is due to lower order
priming. The average power spectra of self-paced latencies with
intact priming and with priming removed are shown respectively
in the first and second columns of Figure 9. The top row refers to
color discrimination and the bottom row to shape discrimination.
The self-paced condition had the greatest level of priming and so
is the relevant condition for this test. It is clear that extracting all
of the priming correlations has little effect on the global structure
of correlation. The power spectra with or without priming show the
same increase with decreasing frequency, independent of the dis-
crimination task.

The converse issue, of how much priming does contribute to
latency spectra, may be addressed using Monte Carlo simulation.
In this technique, the mean and standard deviation for each of
the 81 stimulus combinations in the third order were calculated
from a given observer's data, and then these distribution statistics
were used to create a matched observer—one that makes only
sequential priming correlations. The output of a matched observer
was constructed by stepping through the stimulus sequence that
was actually used in the experiment, looking at each trial and its
three predecessors, finding the appropriate mean and variance for
that combination, and then selecting a random number from a
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Figure 9. Influence of priming up to the third order on the power spectrum in the color (top panels) and shape
(bottom panels) discrimination experiments. The first column shows the power spectra of the residuals in the
condition of self-paced trials. The second column shows the power spectrum for residuals where the priming
correlations have been removed to third order. The third column shows the power spectrum that would result
were only priming correlations present.

normal distribution so defined (using other distributions with pos-
itive skew does not have an effect on the conclusions here).
Matched sequences have exactly the same priming correlations as
the original data to three orders, but that is all—they have no other
source of correlation. The average power spectra for such matched
observers are shown in the third column of Figure 9. The important
feature in this representation is that the power spectra are flat at
almost all frequencies except the very highest (small trial scale)
where priming is active. Flat spectra are white noises, noises that
have uncorrelated increments. This result implies that priming
cannot produce correlations on long trial scales when stimulus
presentation is randomized across trials, as was done in these
experiments. If the stimuli are not presented at random, however,
then virtually any structure is possible in the spectrum. Long
time-scale hysteresis can arise, for example, even in systems
where only a single previous state is encoded.

These experiments make the case that 1/f-type correlations in
response latency are not reducible to sequential priming. Priming
effects have a very limited lifetime, decaying over a timescale of
a few seconds. This lifetime sets an upper bound on the range of
trials that can be correlated through priming. It also establishes a
characteristic interstimulus interval beyond which priming effects
are extinguished. The memory processes responsible for 1/f noises,
on the other hand, do not decay on the time scale of seconds.

Fractal correlations extend over scores of trials, and the imposition
of delay times has little effect on spectral shape or amplitude. 1/f
noise is an example of a long memory process, whereas priming is
inherently short range.

Consistency of Mental Set in the Formation of
Correlations

There is something in the construction of the experiments so far
described that leads to the emission of 1/f noise. These experi-
ments had few shared features and differed along every dimension
that would be relevant to cognitive theory: stimuli, response, and
task. At the most trivial level of analysis, the experiments all
involved visual input, keypress output, and the demand that some
sort of speeded decision be made. As is shown below, these
properties have little to do with the formation of 1/f noises, their
presence being neither necessary nor sufficient for its production.
The experiments also share one nontrivial feature: In any given
study, the observers had only one task to perform. This constancy
has psychological import in that it creates a consistent set of
expectations and goals in the mind of the observer. That is, the
observers are induced to adopt a particular mental set while serv-
ing in a block of trials. Recognizing that there is no complete
description of what a mental set is within psychological theory, it
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is patently a meaningful construct and involves the formation of
particular perceptual organizations, specific styles of attending,
and specific task-relevant representations. So although each exper-
iment so far discussed induces a different mental set, there is
continuity in that mental set over trials within any particular
experiment. It is this continuity that I wish to inspect as potentially
causal in the formation of 1/f noises in response.

Mental set is manifestly an aspect of cognition that is not always
constant. It changes whenever the goals and intentions of the
observer change. There may, however, be another sense in which
mental set is inconstant. In order to develop this second sense, one
key idea that is fundamental to the theory of dynamic systems is
required: Even when all of the parameters describing a system are
held fixed, it may still exhibit unpredictable and complex behavior.
Dissipative systems—those that are not energy conserving, and
this includes all of biology—are capable of displaying point at-
tractors, limit cycles, strange attractors, as well as fractional
Brownian motions. The fluctuations that issue from such a system
are intrinsic because they arise from its internal logic—the way it
is put together. A system that is capable of generating intrinsic
fluctuations does not need an external source of variability to
exhibit variability in behavior. External noise, rather, typically has
a disruptive effect by perturbing the underlying orbits away from
their attracting states. If the constituent processes of mental set are
not static fixtures, but have intrinsic fluctuations, then a tenable
thesis is that these fluctuations are mirrored by latencies and
observed as 1/f noises.

The thesis that latency fluctuations provide a window into the
dynamics of mental set is not easily proven. However, the thesis
has sufficient definition that it makes a number of nontrivial
predictions. The first prediction is that decorrelation of mental set
will induce trial independence in response. Were the task param-
eters to change unpredictably so that the observer's representations
and response mappings are forced to be uncorrelated, then any
aspect of performance that relies on intrinsic fluctuations should be
destroyed. Random assignment of task is formally equivalent to a
large amplitude noise source, and if anything in this dynamical
picture is correct, reaction times must decohere and lose their
long-term correlations when the task is not constant across trials.
If decorrelation of mental set does not whiten reaction time, then
this framework is provably wrong. The second prediction is that
1/f noise should be generic to response. It should be generic
because it is a property of the thing being measured, not of the
measuring tool. This issue will be dealt with extensively in the
analysis of production and discrimination data.

The purpose of the following experiment was to create a context
in which the observer would be unable to maintain a set of
consistent representations that would suffice for all required re-
sponses. To be specific, this experiment created uncertainty by
forcing the observer to discover what task he or she was in on a
given trial. The experiment was done in two variations, each of
which consisted of three parts: a mixed condition in which two
tasks were switched at random and two control fixed conditions in
which the task was constant. The mixed condition was designed
around the notion of contingency; If X, then task Y is relevant, else
task Z, where X, Y, and Z are the stimulus dimensions color,
position, and shape. Contingency is an ideal construct for the
creation of uncertainty; until a decision is made on X, the observer
cannot create a representation of what is relevant in the stimulus.

The two variations of this experiment differed in the assignment of
response dimensions (Y and Z) and cueing dimension (X). In the
first variation, position served as the cue. Two outline boxes
appeared side by side and so defined a local determination of left
and right. Stimuli were the conjunction of a color (red, blue, green)
and shape (circle, square, diamond). The observer's task was to
make a speeded judgment of color if the object appeared in the left
box or of shape if it appeared in the right box. In a block of 540
trials, the 18 possible combinations (3 colors X 3 shapes X 2
positions) appeared 30 times at random. The response keys were
purposely mapped in a 2-to-l fashion to prevent the formation of
consistent response mappings. Circle and red required a keypress
of 1, square and blue mapped to 2, and diamond and green mapped
to 3. This task is naturally quite confusing because both color and
shape are obvious to the observer but only one is relevant and this
decision is based on a completely arbitrary (but fixed) positional
assignment. This confusion is both the signature and the unavoid-
able consequence of not being able to maintain a consistent mental
set. In the fixed conditions, the exact same stimuli were presented
again in new random orders, except that now the observer had only
to respond to variation on a single dimension and the response
mappings were 1-to-l. So in this first variation, observers did two
additional blocks of color discrimination ignoring position and
shape and two additional blocks of shape discrimination ignoring
position and color.

In the second version of this experiment, position and color
reversed roles. The position dimension was augmented to three
levels, again defined by adjacent outline boxes, so that it now
included left, middle, and right. The color dimension was reduced
to red and blue. The observer's task in the mixed condition was
now to report on position if the object was red or on its shape if the
object was blue. Again the response keys were confounded so that
left and circle mapped to 1, middle and square mapped to 2, and
right and diamond mapped to 3. In a block of 540 trials, the 18
possible combinations (3 positions X 3 shapes X 2 colors) ap-
peared 30 times at random. Fixed conditions for this variation were
defined as above. The exact same stimuli were presented in new
random orders, and each observer completed two blocks of posi-
tion discrimination ignoring color and shape and two blocks of
shape discrimination ignoring color and position. In both experi-
ments, six observers completed two blocks of self-paced trials with
no feedback. The same observers participated in all three condi-
tions of both variations. The order (fixed dimension 1, fixed
dimension 2, or mixed 1 and 2) was counterbalanced across
participants. In both variations of the mixed conditions, observers
were given 100 practice trials so that they could learn the contin-
gencies and response mappings. The mixed conditions were not
cognitively simple tasks.

The data from these experiments were analyzed using the same
tools and protocols that have been described earlier. In all condi-
tions, cell means for the 18 distinct stimuli were removed. This
subtraction nulls all possible main effects and interactions attrib-
utable to stimulus or response identity. Each block of trials was
then linearly detrended, and each sequence of response latencies
was then standardized so that it had mean zero and unit variance.
The sequences were then ready to be analyzed for priming con-
tingencies and spectral trends.

The priming contingencies displayed in Figure 10 illustrate the
psychological costs of task and response switching. In this figure,
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reaction time.

the focus is only on the first-order contingencies and the data have
been organized into a 2 X 2 matrix defined by crossing task
compatibility with response compatibility. The cells of this matrix
are the average reaction time z scores on the ith trial, contingent on
whether the task defining the discrimination dimension was same
or different and keypress response was same or different on the
(i - l)th trial. Error bars depict between-subject standard error.

The principal effect in this experiment is the enormous influence
that task compatibility has on response latency, F(l, 10) = 311,
p < .0001. Almost a full standard deviation separates response
latencies when the task switched on two successive trials versus
trials when the task remained the same. This result in itself
demonstrates the difficulty observers have in, say, making a color
discrimination on one trial and shape discrimination on the next.
When tasks switch, attention must be deployed onto a new feature
dimension and the meanings of the keypress responses change.
This difficulty is not limited to a particular set of tasks; switching
between shape and color (contingent on position) is just as difficult
as switching between shape and position (contingent on color).
This finding is not unexpected and really serves only as a check
that the experiment succeeded in creating the desired incoherence
in mental set. In addition to this main effect, the crossed interac-
tions, F(l, 10) = 65, p < .0001 in Figure 10 reveal how response
preparation is nested within task congruency. People behave as if
they expect consistency in the implied dimension of change per se.
If there is a change of task, responding is faster if there is also a

change in the required keypress. Responding is fastest if neither
changes. The availability of a particular response is conditioned by
consistency of mental set, not by consistency of response. This
finding underscores the decoherence that is produced by task
switching. Response consistency generally induces large facilitat-
ing priming effects. Here response consistency impairs perfor-
mance whenever the task changes.

Whereas Figure 10 demonstrates the presence of strong sequen-
tial effects in mixed tasks, Figure 11 shows that task switching
destroys the long-range correlations in the histories of response
latency. Spectra are illustrated for fixed tasks done in isolation
(Panels Al, Bl, A2, B2) and when they are mixed together (Panels
A3, B3). The two rows refer to the two variations in which the
experiment was run. Figure 11 makes a simple but crucial point:
Only when mental set can be consistently maintained are there
long-term memory effects over the history of reaction time resid-
uals. The inset numbers in each panel give the proportion of
variance accounted for by a linear trend in the low frequency
portion of the data (high frequencies are invariably whitened by
motor fluctuations and are not shown here). The existence of
long-term memory correlations is signified by a negative linear
trend. This trend is evident in every case when the tasks are
isolated so that mental set can be consistently maintained and is
greatly reduced or absent when the tasks are mixed and mental set
is forced to be incoherent. The flat spectra in Panels A3 and B3
suggest that discrimination and choice are not themselves suffi-
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Figure 11. Power spectra of latency residuals at low frequencies for the two task-switching studies. The top
panels show color discriminations alone (Al); shape discriminations alone (A2); and the mixed condition (A3),
where color and shape discriminations alternated randomly conditional on position. The bottom panels show
position discriminations alone (Bl); shape discriminations alone (B2); and the mixed condition (B3), where
position and shape discriminations alternated randomly conditional on color. The lines in each panel represent
best fit linear trends, and the inset numbers show the percentage of variance accounted for by the trend.

cient for the formation of 1/f noises; they must also be embedded
in a consistent set of expectations and representations.

There is an alternative interpretation of spectral whitening under
task mixing that deserves consideration. It may be the case that
changing mental set does not interrupt anything like an intrinsic
dynamic, and the observed decoherence in reaction time is simply
due to the fact that there are two coincident patterns of correlated
fluctuation that are resident in the individual histories of the
separate tasks. Because the separate tasks are randomly inter-
leaved, the two signals are mixed and so produce an uncorrelated
white noise. However, were they to be disentangled, two separate
correlated structures might be found, one for each of the tasks. It
is a straightforward procedure to extract the reaction time history
for each discrimination task from the composite mixture and to
compute the power spectra for each extraction separately. The
results of this analysis for both conditional variations are illus-
trated in Figure 12. The top panels show spectra for the two
extractions from the color-shape mixture, and the bottom panels
show the corresponding spectra from the position-shape mixture.
In no case does the power increase at low frequencies; all four
panels depict examples of white noise spectra. The implication is

that task mixing does not produce two separate correlated reac-
tion time histories. Rather, the random interleaving of two
tasks disrupts the memory processes that produce fractal 1/f-type
noises.

The picture that emerges from this experiment is distinctly
physical. Mental set behaves qualitatively like any system de-
scribed by equations whose solutions are functions of a set of
control parameters. When mental set can be consistently main-
tained, the parameters are fixed at constant values and the solutions
reflect the intrinsic dynamics. This is the default case in most
experiments; the observers' expectations, focus of attention, object
representations, and response mappings are fixed from the first
trial. Task switching and the resultant loss of consistency in mental
set is formally equivalent to intermittent and nonadiabatic (sudden)
resetting of the control parameters. Under these circumstances, no
system would behave coherently, and the dynamics in this case
simply reflect the uncorrelated transients. A system as simple as a
string pendulum will show this kind of behavior. It is not necessary
to consider arcane examples of chaotic dynamics. In the sections
that follow, this perspective is taken seriously and its consequences
are explored in some detail.
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Fluctuations in Representation

Mental set is a highly complex construct and is not suffi-
ciently well defined to provide a clear theoretical underpinning
for understanding the formation of 1/f-type fluctuations. Mental
set is, in a sense, too globally involved in decisions to be
analytically useful. It influences the perceptual organization of
the stimulus, it selects representations, it frames the context for
decision, and it mediates the availability of response. There are
patently too many processes involving mental set in typical
experimental settings for individual sources of fluctuation to be
isolated. The desire to reduce the complexity of experimental
design leads to the following question: What is the simplest
experiment that can be run on a behaving intact person? If
residual structure is all that is required, then there is no reason
to create different treatment cells in the first place. At most, one
stimulus and one kind of response are necessary. Such a format
is plainly unsatisfactory for use in discrimination paradigms
because the uniqueness of the stimulus and response ensures
that no discrimination need take place. However, stimulus-
response designs are in no way mandated, and all of the prob-

lems of response uniqueness may be bypassed by eliminating
the responding-to aspect of experimental designs and by just
having people make things out of their imaginations. As a
consequence, all of the experiments described below have the
following design: The observer was instructed to produce some
fixed quantity repeatedly, say 500 to 1,000 times. If the quantity
was not immediately familiar, then an example was given prior
to the observer's efforts. There was no feedback, and the data
were simply the history of what the participants took to be the
quantity they were attempting to replicate. In this way, the
moment-to-moment fluctuations in their representations were
produced with a minimum of interference. There is, however,
always some interference because the intention to perform an
act is not identical to the act itself. In all of the experiments
described here, some hand movement was required, and there is
inevitably some error associated with motor performance that is
independent of what the movement signifies. This methodology
provides the purest titration of fluctuations in representation
that can be behaviorally acquired. Consistency of mental set is
reduced to the maintenance of a single intention.
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Fluctuations in Representations of Time

In Gilden et al. (1995), observers were asked to make a keypress
every time they thought a target interval of time had elapsed.3 In
this set of experiments, the same six observers made repeated
estimates of intervals having the following durations in seconds:
10.0, 5.0, 1.5, 1.0, 0.5 and 0.3. The number of estimates was 1,000
in all cases except for the 10-s condition, where mercy required
that the number be limited to 400. Each observer contributed one
sequence in each target condition following a 1-min presentation
of the target interval from a metronome. The metronome was not
on during the collection of data. The sequences were timed so that
the keypress that signaled the end of one interval also initiated the
timer for the next. In this way, the observer could tap his or her
finger to a rhythm for those targets that permitted such an
organization.

The average power spectra for all conditions are shown collec-
tively in Panel A of Figure 13. The spectra are labeled by the target
duration. In this figure, the overall scaling of power is arbitrary,
but the same scale is used for all data. Timing errors are roughly
Weberian (error proportional to target magnitude); consequently,
there is more spectral power in production errors at longer dura-
tions. The frequency scale has been placed on a hertz (inverse
seconds) scale by normalizing the inverse trial frequency by the
target duration. This is the only experiment where it makes sense
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Figure 13. Power spectra of temporal duration estimates and a model.
Panel A displays the average spectra from six experiments as a function of
temporal frequency (in Hz) and the magnitude of the target interval (in
seconds). Also shown is a line depicting an exact 1/f power spectrum.
Filled and open circles are used alternately with target interval so that the
spectra are adequately individuated. Panel B shows the best fits to the data
from a two-source model on the basis of separate cognitive and motor
components. The different curves are indexed by the ratio u (cognitive
noise)/<r (motor noise) that provided the best fit to the data in the least
squares sense.

to use hertz as a frequency scale because in this single case the data
are estimates of temporal intervals.

Estimation of temporal duration proved to be an efficient 1/f
noise source. In every target condition, 1/f noise dominates the low
frequencies. Descending from top to bottom, at frequencies less
than 0.1 Hz, best fit lines to the power spectra had slopes —1.1,
-1.0, -1.1, -0.90, -1.2, and -0.94 respectively. There is,
however, an equally clear non-l/f component of noise that is
manifest primarily at high frequencies. The non-l/f component is
increasingly dominant at shorter target durations where responding
is naturally at higher frequency. In order to make sense of these
data, a variation of the two-source model was used. This model is
formally identical to that used in standard treatments of timing
error (Wing, 1980; Wing & Kristofferson, 1973). In a simple
model of timing, the production of temporal intervals is composed
of two parts: an internal clock (C) that mediates the judgment of
time passage and a motor program that actuates the responses that
signal the beginning and ending of each interval. The motor
program in this model does not operate instantaneously, and all
responses have an assigned motor delay (MD). In terms of these
two components, the j* observed interval Ij is written as

Ij = Cj + MDj - MDj-i. (3)

The difference in motor delays arises from the particular boundary
condition typically used in timing studies; the ending of the (/ —
l)st interval is also the beginning of the/h interval. Recall that in
the analysis of reaction time, the motor component was contained
in a single term because the timer began not with a keypress but
with the presentation of a visual stimulus.

This model is algorithmically completed by specifying the func-
tional forms of the clock (C) and motor delay (MD) components.
In the analysis of reaction time, a rather general model was used
that was composed of a source of correlated fluctuation and a
source of white fluctuation. The spectral power of the correlated
source was not specified and was left as a free parameter. The
spectra in this experiment are virtually uncontaminated by white
noise at low frequencies, and it is possible in this case to fix the
power to be exactly — 1: That is, the spectral power of fluctuations
issuing from the internal clock (C) is exactly proportion to 1/f. As
a consequence, any white noise that enters into the estimates does
so through motor error. This model is highly constrained and has
but one free parameter: the ratio of the standard deviations of the
fluctuations emitted by the two sources. Simulations of the optimal
models are shown in Panel B of Figure 13. The inset numbers give
the derived ratio of standard deviations that provided the best fit to
the data in the least squares sense.

It is evident from Figure 13 that this simple timing model is
quite successful at describing the data; the model spectra look like
the data. The model also makes it clear why the spectra take on the
particular shapes they do at the various target durations. At long
target durations, the magnitude of the clock error is larger than that
of the motor error, entailing that the spectra are dominated by 1/f

3 The observers were free to count because there was no way to prevent
them from doing so in the absence of some secondary attention-demanding
task. The presence of a secondary task was not appropriate here, and so
counting was tolerated although it was not encouraged.
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noise. At shorter durations, this inequality changes direction and
the difference signal of white noise predominates. A difference
signal does not have a flat spectrum but one that increases (lin-
early) with frequency (the Fourier transform of the derivative of
any function is the Fourier transform of that function multiplied by
the frequency). This fact accounts for the increasing power at high
frequencies, where the motor terms make substantial contributions
to the spectra.

The derived ratios of standard deviations that result from fitting
this model to the data have a straightforward psychophysical
interpretation. If the motor error has a constant variance indepen-
dent of the target duration, then the derived ratios are, up to a
constant of proportionality, the standard deviation of the internal
clock source. The motor error arises from the point of decision to
the moment of keypress, and this interval should depend weakly,
if at all, on the absolute magnitude of the duration interval. Un-
der this assumption, the implied clock source is almost exactly
Weberian: The target durations are linearly related to the derived
standard deviations (r2 = 1). There is some controversy over
whether timing errors are Weberian (Allan, 1979; Wearden, 1991),
but this analysis provides compelling evidence that at least the
internal clock is Weberian.

The clarity of these spectra, were they presented in isolation,
might suggest that 1/f noise is in some way related to internal
clocks. However, similar correlated fluctuations have been seen in
reaction time, and even though time is also the mediating variable
in measures of speeded judgment, reaction time is not a measure of
perceived duration. These data, rather, acquire their shape because
of intrinsic fluctuations in representation, and it matters little what
is being represented. Further evidence for this claim is presented in
the next section, where representations of distance, angle, and
force are analyzed.

Fluctuations in Representations of Space and Force

Production data should generally be rife with 1/f noise if it is
true that the production paradigm offers the most direct access to
the dynamics of representation and that this dynamic has a 1/f
noise signature. Observing these noises should simply be a matter
of finding appropriate measurement devices. Digital tablets, rheo-
stats, and pressure plates work admirably in this regard. These
devices were used respectively for estimates of spatial interval,
angle of rotation, and applied force. Mark Schmuckler of the
University of Toronto collected the rotation and force data. In the
following designs, the trials were self-paced and no feedback was
given.

Spatial intervals. Six participants estimated distances of W,
1", and 4" 1,000 times each in three separate sessions. Estimates
were made on a digital tablet that had a resolution of 1,000
intervals per inch. Each trial began with a pen placement on a
premarked position, followed by a second pen placement at what
the observer took to be the target distance.

Rotation. Participants estimated rotations of 45°, 90°, and
180° using a hand-held rheostat with a resolution of 2,048 intervals
in 360°. The rheostat was placed behind a partition so that no
visual feedback was available and was returned to the vertical
position prior to each trial. The vertical position was well defined,
and the angular interval was marked off in the clockwise sense by

the participants, who were all right-handed. In the 45° condition,
nine participants completed between 1,700 and 3,000 trials. In the
90° condition, nine participants completed between 1,600
and 3,200 trials. In the 180° condition, six participants completed
between 1,400 and 2,300 trials.

Force. Participants were instructed to press down on a force
plate at a comfortable but firm level of force. The participants
understood that their selected level of force should be chosen so
that it could be repeated without fatigue. Six participants com-
pleted between 1,200 and 2,000 trials.

The power spectra of the production sequences were computed
as before following linear detrending. The average spectra are
shown in Figure 14 together with lines that have a slope of — 1.
The spectra in each panel are quite similar, and they are all good
examples of 1/f noise over a wide range of frequency. Unlike the
fluctuations of reaction time latencies, there is very little whitening
in these noises. There was also negligible whitening in the esti-
mates of temporal intervals that could not be attributed to motor
errors. These spectra provide confirming evidence that represen-
tation has intrinsic fluctuations, and that these fluctuations have
behavioral consequences. An experimental setting was provided
where the processes of representation had the most favorable
opportunity to be observed, and it is in this setting that the clearest
examples of 1/f noise are recorded.

The high-frequency portion of the spectra in Figure 14 is also of
interest. In each condition, there is a critical frequency above
which the spectrum whitens. The same phenomenon was observed
in the timing studies except there the keypress boundary condition
(the ending of one trial starts the timer for the next) led to upturns
in the spectrum. The scaling of this transition frequency with the
magnitude of the target quantity is not the same in angle and
distance estimation. The transition frequency for spatial intervals
decreases as the interval decreases. This behavior was also ob-
served in the estimates of temporal intervals and has the same
interpretation: The cognitive component of the error is roughly
Weberian, and the motor error, in this case attributable to hand
positioning, is roughly constant in amplitude. Constancy of the
motor error makes sense in the case of distance estimation in that
the pointing errors associated with pen placement on a digital
tablet should be independent of the absolute position of the
pen—so long as the arm or hand is not strained into an unnatural
position. In contrast, the transition frequency for estimates of angle
is roughly the same at 45°, 90°, and 180°. Analysis of the rotation
data revealed that the growth of error was roughly Weberian, with
a coefficient of variation of about .12. The constancy of the
transition frequency in the spectra implies that both the white and
1/f contributions are growing at this rate. The reason for this must
ultimately have to do with the obvious fact that the hand is not in
the same position when it is at rotated at different angles and is
under greater stress at larger angles of rotation.

Fluctuations in the Accuracy of Discrimination

One of the principal problems in using physical concepts to
interpret psychological data is the absence of a uniform and
coherent system of reference. Reference is a problem for all
sciences, but in psychology it is especially severe. So for example,
the claim that the river Nile exhibits 1/f height fluctuations is
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Figure 14. Power spectra for estimates of applied force, angular rotation, and spatial intervals. Each data set
is accompanied by a line that depicts a pure 1/f noise.

physically sensible because both the river Nile and its height have
meaningful referents. The basis for such a statement would pre-
sumably be the history of fluctuations as measured by some
instrument, but the reference is ultimately to a body of water and
not to the history of a measuring device. In contrast, the assertion
that reaction time or production exhibits 1/f trial fluctuations does
not succeed in making reference to the distal source whose behav-
ior is being commented on. This issue is particularly important
here because these data are interesting only if they are a signature
of a cognitive process and not an artifact of methodology. Cogni-
tive psychology is, however, completely informal, and there is no
fundamental theory of discrimination or decision that can be
written down in such a way that one may point to a term and
identify it as the fluctuating quantity. In the absence of an explicit
theoretical understanding of what constitutes a cognitive act, the

strongest implications about process arise from converging oper-
ations, or more formally, from demonstrations of measurement
consistency.

Consistency between speed and accuracy measurement is
entailed by any theory that associates 1/f noises with the pro-
cesses of representation. If there is in fact a dynamic intrinsic to
information acquisition that causes 1/f fluctuations in latency,
then this dynamic should also cause similar fluctuations in
accuracy. In both methods, the observer's task is essentially the
same: to interpret the stimulus and to make a decision. The
demand for consistency is a strong test of the theoretical frame-
work presented here: that 1/f fluctuations are the dynamic trace
of representation. A negative finding would imply that the
correlations that have been observed in reaction time and pro-
duction are probably due to artifacts specific to these para-
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digms.4 The issue of whether accuracy fluctuations harbor 1/f
noises is not a question that has been previously addressed, and
there is nothing in the methodology of two alternative forced
choice (2AFC) that decides this question.

Streaky Performance in Signal Detection

The impression that positive correlation leaves on a trial se-
quence depends on what is being measured. Positive correlation in
the measurement domain of response latency generates nested
waves. These waves may be of sufficient amplitude that they are
visible to the eye. Positive correlation in accuracy measurement,
however, does not generate waves for the simple reason that
accuracy is a discrete binary variable. Instead of waves, positive
correlation in a binary variable will induce nontrivial conditional-
ization between outcomes. Deviating from the standard terminol-
ogy and referring to correct responses as hits and incorrect re-
sponses as misses, positive correlation is signified by hits tending
to follow hits and misses tending to follow misses. When the focus
is on an entire sequence of discriminations in a repeated measures
design, positive correlation is manifest as clustering of like out-
comes. Clustering is what waves look like when discretized. In the
deployment of motor skills, the phenomenon of clustering is re-
ferred to as streakiness (Gilovich, Vallone, & Tversky, 1985). A
clustering process yields fewer runs of greater length than would
be expected from a Bernoulli process operating at the same overall
hit rate. The Bernoulli process is the discrete equivalent of the
white noise generator. It is a process defined by stationarity (trial
independence) in the instantaneous probability of a hit.

Gilden and Gray Wilson (1995) investigated the structure of
outcome sequences in a variety of two alternative and two interval
forced choice signal detection tasks, which are described briefly
below. In each of these studies, between 4 and 10 participants
completed on the order of 1,000 trials over two sessions. Every
participant was individually calibrated prior to each testing session
so as to maintain accuracy near 75%.

Ovateness. Random dot kinematograms depicted either spheres or egg
shapes. The task was to categorize each stimulus as a sphere or an egg.

Distance ratio. Two line segments of different sizes were shown, each
with a dividing line. One segment was a standard that served as a
reference. The task was to decide whether the dividing line on the
other segment should be moved to the left or right to achieve an equal
ratio of internal segments.

2Fractal. Two line drawings of fractional Brownian motions were
shown. The task was to decide which noise was smoother.

I Fractal. Line drawings of fractional Brownian motions were created
from two classes. The task was to decide from which class the noise
on a particular tria) was selected.

Tone 2IFC. Two intervals of acoustic white noise were presented. In
one interval, a pure tone was also embedded. The task was to locate
the interval containing the tone.

Tone 2ears. Acoustic white noises were presented to both ears inde-
pendently. In one ear, a pure tone was also presented. The task was to
locate the ear containing the tone.

Luminance. Two adjacent squares differing in luminance were pre-
sented for 500 msec. The task was to judge which was brighter.

Orientation. Two lines, one vertical and one tilted to the right, were
presented for 16 msec. The task was to decide which was tilted.

Side missing. An outline square that had either the left or right side
missing was presented for 70 msec. The task was to identify the
missing side.

Flash. Two squares were shown side by side. During a 16-msec
interval, one square brightened. The task was to decide which square
this was.

The outcome sequences of hits and misses were first analyzed in
terms of the number of runs they contained. For a given hit rate
(proportion of correct responses), the probability that a Bernoulli
process would generate the observed number of runs or fewer was
computed exactly (Hays, 1988) and then converted to a z score—
the runs z score—by inverting the cumulative normal distribution.
In this way, every outcome sequence is associated with a runs z
score, and Figure 15 displays their distributions by task. Remem-
ber that positive correlations between outcomes (hits tending to
follow hits) leads to fewer runs and so to negative run z scores. It
is evident that positive correlation and streakiness are the rule in
visual and auditory discrimination. Ovateness categorization was
the single task that generated outcomes consistent with Bernoulli
trials.

One of the central findings of this work was that the magnitude
of the runs deficit was related to attentional demand. The bottom
four tasks in Figure 15 are all of one kind. At superthreshold
contrasts, these discriminations would have led to so-called pop-
out in singleton search, and they generate a common level of
streakiness at threshold contrasts with run z scores near — 1. The
experience of pop-out is formalized in singleton visual search by
the independence of target acquisition times from the number of
distractors. Independence of response time from set size implies
that targets and distractors are analyzed in parallel with little
(potentially zero) capacity limitation. This limit is referred to as
preattention, and there is evidence that it exists at the threshold
levels of contrast where discriminations in 2AFC are obtained
(Palmer, Ames, & Lindsey, 1993). The other tasks all involve
some type of shape, temporal, or direction discrimination and
would show signs of capacity limitation.5 The capacity-limited
discriminations differ from the pop-out variety in two ways: They
are not as streaky (z scores are closer to the expectation of trial
independence) and they are more variable. The implication here is
that capacity limitation either suppresses the memory processes
that create positive correlation or that the effortful usage of atten-
tion acts as a source of white noise. Preattention is the lower bound

4 For example, there may be instability in the setting of decision criteria.
Speeded judgment requires that an information threshold be passed before
judgment can be made, and there is no reason to believe that such
thresholds are fixed.

5 It must be recognized that the preattentive-focused attention distinc-
tion has an uncertain empirical foundation and that attentional capacity is
probably graded in a continuous manner. Nevertheless, luminance and
orientation differences clearly support highly efficient search, and this is
not the case with subtle shape differences such as interval ratios or fractal
roughness. Ultimately, it may be that analysis of outcome fluctuations
provides a better characterization of attentional resource usage than search
methods. At least run counting is not muddled by speed-accuracy trade-
off, favored position effects, or uncertain classification of reaction time-set
size functions.
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Figure 15. Plot of the runs z score for 10 signal detection studies. Six tasks requiring focused attention occupy
the upper gray region. Four tasks that would lead to pop-out at superthreshold levels of contrast occupy the lower
gray region. Negative i scores correspond to runs deficits relative to the expectation of trial independence.

to capacity limitation and so forms an equivalence class in the
level of outcome clustering among all such discriminations.

These results make a clear and consistent case that memory
processes create nonstationarity in perceptual sensitivity. The act
of making a discrimination at one time influences the outcome
probabilities at later times. Stimulus and motor priming are inca-
pable of creating the observed correlations for the same reasons
they could not in latency. Sequential priming is a local process that
has minimal impact on scales larger than about five to eight trials.
As is shown immediately below, memory processes are effective at
creating nonstationarity on scales of at least 50-100 trials. Again,
mechanisms that have inherent persistence are implicated. Poten-
tial mechanisms include fatigue, learning, and wavelike rhythms in
attention. Gilden and Gray Wilson (1995) developed a series of
statistical analyses that eliminated fatigue and learning from this
set and presented evidence in favor of a wave model. Here the
statistical analysis is substantially broadened, the wave model is
shown to be inadequate, and the issue of nonstationarity in 2AFC
outcome is raised in an entirely new context. Decisions about
models require more complete descriptions of sequence structure
than is given by the runs z score. The following section develops
a variety of statistical tools for analyzing patterns of outcome in
order to provide benchmarks that models have to meet.

The Fine Structure of Signal Detection

There are a variety of ways of characterizing the statistical
structure of binary outcome sequences. Gilovich et al. (1985) used
four .groups of statistics in their analysis of streaks in human
performance; the number of runs, the serial correlation, the set of
conditional probabilities, and the hit density. The runs z score is
equivalent to the serial correlation at a lag of 1 (when transformed
to the Fisher Z), and although useful as a simple measure of
streakiness, it does not contain much information about the way
sequences are put together. Conditional probabilities (probability
of a hit given a hit, given two hits, given a miss, and so forth) have

the power to completely characterize sequence structure, but they
are most useful when the effects of nonstationarity are limited to a
few trials as the number of conditionals increases geometrically
with look-back time. Priming effects, for example, have short
lifetimes and are best summarized in terms of conditional proba-
bilities. This is not the case for discrimination outcome, and
ultimately conditional probabilities offer more information than
can be analytically assimilated. The hit density is a medium
resolution statistic that provides excellent discrimination between
theoretical models and is used extensively here. As this statistic is
not in wide use, a brief description of its formulation is required.

The hit density measures the probability of encountering a
subsequence of size N with K hits, where 0 :£ K s N. Its*
dependence on scale (N) makes it a much richer statistic than the
runs count, and its pooling of hits makes it much more tractable
than statistics that require keeping track of the exact order in which
hits and misses occurred. Hit densities are computed by partition-
ing an outcome sequence defined by a block of trials into non-
overlapping windows of size N and counting the number of such
windows that contain 0, 1,2,... N hits. Hence, there are N + 1
statistics associated with each scale N. Hit densities can be com-
puted exactly under the null hypothesis of independent Bernoulli
trials, and this provides the appropriate comparison for assessing
local effects of nonstationarity. It is important to note that here, as
in the computation of the expected number of runs, each outcome
sequence is compared with a Bernoulli process uniquely specified
by that sequence's average hit rate. The departure of the observed
hit densities from a matched Bernoulli process is referred to as the
density difference.

The hit density is not the only measure that has scale sensitivity
without the burden of exact order information. The power spec-
trum also has these properties, and it provides a more highly
resolved description of sequence structure. Additional resolution
comes at the price of greater variability, and this makes the statistic
less suitable for detailed model fitting. The power spectrum is used
here primarily as a check that there are no salient aspects of the
data not captured by the best-fit models. That the outcome signal
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is binary makes little practical difference in Fourier transforma-
tion. The power spectrum is still computable and meaningful, and
it comes equipped with a unique realization for the null hypothesis
of stationarity: the white noise spectrum with a slope of zero.
Figure 16 displays both forms of medium resolution statistic across
the four preattentive discrimination tasks (flash, orientation, side
missing, and luminance). The density differences are displayed
here at five window sizes, N = 5, 10, 15, 20, and 25. Each
window-size N is resolved by N + 1 counts: the number of

windows of size N that contained K = 0 hits, 1 hit,. .. ,N hits. The
N + 1 counts are displayed in order of increasing K as probabilities
relative to the expectation of a Bernoulli process.

The observed density differences depart from the expectation of
Bernoulli trials primarily through the formation of twin peaks
surrounding a trough near K = .15N. This structure is caused by
the way that positive correlation associates hits in sequences where
the modal value of K is .15N (the average hit rate being .75). A
clustering process can be thought of as a type of diffusion where
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Figure 16. Density differences and power spectra for the four preattentive discrimination studies. The density
differences are shown at five window sizes, N. There are N + 1 points plotted at each window size—the relative
probability of encountering a window of size N with K = 0, 1,.. ., N hits.
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hits migrate toward each other. Diffusion causes some of the K =
.15N windows that would have existed under trial independence to
become enriched with hits so that they are transformed into win-
dows with K > .15N. Because the number of hits in a sequence
defined by a given base rate is fixed, every time a window with
K > .75N is created from a potential K = .75/V window, a window
with K < .75N results. In this way, streakiness leads to peaks on
either side of a dip at K = .75M The curves are likewise con-
strained to approach zero at small values of K because hit-empty
windows are neither expected nor observed when the basal prob-
ability of a hit is .75.

Figure 16 illustrates two key properties of preattentive discrim-
ination outcome: the sequence structure is task independent and
scale free. Both results suggest that outcome histories are governed
by a lawful generating process. The logic of this process is not
given by any psychological theory, but it may be deduced using
Monte Carlo simulation. To be specific, the goal here is to specify
a rule structure that generates outcome sequences that are statisti-
cally indistinguishable from the data actually received. Gilden and
Gray Wilson (1995) developed a wave model of nonstationarity
that was quite successful in creating simulated sequences that
looked like preattentive 2AFC data on small trial scales. Wave
models, however, create line spectra and for this reason must be
discarded. A successful model of 2AFC outcome must be able to
produce a continuum of spectral energy that does not select pre-
ferred scales of fluctuation.

A Reaction Time Model of Discrimination

Latency residuals and discrimination outcomes are both exam-
ples of a noise process that is positively correlated and scale free.
This congruence is presumably not coincidental but is merely the
result of using multiple measurement tools to observe a single
cognitive structure. That is, streaks may be what latencies look like
when accuracy measures are used to probe cognitive activity. If
this interpretation is true, then speed and accuracy measurements
are consistent at the level of fluctuation. This kind of consistency
is much stricter than implied by speed-accuracy trade-off and
would provide necessary empirical support for the claim that 1/f
noise is an inherent aspect of decision and discrimination. Trade-
off involves only a comparison of means, whereas the analysis of
fluctuations involves the full correlation function at all lags. In
formal terms demonstrating consistency comes down to finding a
relation between latency and accuracy that maps 1/f noises into
streaks. The following Monte Carlo simulation provides a numer-
ical recipe for constructing a relation that has exactly these
properties.

The simulation takes as its point of departure the notion that
both speed and accuracy reflect a common cognitive source and
that it makes sense to identify fluctuations in speed with fluctua-
tions in accuracy. Insofar as there is no empirical or theoretical
work to confirm or deny this approach, the identification is made
with the sole purpose of determining its consequences. The key
step in the simulation is placing latency residuals on the interval [0,
1] so they can be interpreted as probabilities. This was done
through the following linear transformation:6

(4)

where pi is the probability that the ith trial yields a correct dis-
crimination and ei is the i01 residual latency in a reaction time
sequence. This mapping permits the construction of simulated
binary outcome sequences that fluctuate like reaction times but are
interpretable as the outcomes of 2AFC discrimination. The inter-
cept, p0, determines the average hit rate (proportion of successful
trials) in a simulated outcome sequence, and A determines the
magnitude of its autocorrelation relative to that already present in
the latency residuals. Furthermore, pQ is a property of individual
sequences and may be chosen in any number of ways so long as
there is variability in hit rate. It makes little difference if p0 is
selected randomly on the interval [0.5, 1.0], the range of hit rates
in 2AFC, or if it is chosen so that the simulated sequences have the
same hit rate distribution as the observed sequences. The latter
choice was made in the simulations presented here. The scaling
factor, A, is the single free parameter in these simulations, and it
controls the transfer of the 1/f signal in latency into nonstationarity
in discrimination. A is not a property of individual sequences but
is fixed as a constant over the entire ensemble. Furthermore, the
only constraint imposed on A is that both simulated and observed
sequences have the same average runs z, score.

There is a practical issue of how constraints on hit rate and run
count affect the medium resolution statistics. That is, once it is
demanded that simulated sequences have the same hit rate distri-
bution and the same average runs z score as the data, how much
freedom is there for the simulation to fail to produce the rest of the
statistics as well? This question was addressed by simulating a test
case where the constraints were maximized: Random sequences
were constructed to match exactly both the runs z score and hit
rate, p0, of observed sequences. This constraint differs from that
used in the actual modeling by requiring that the simulated se-
quences not only have the same average runs z score as the data,
but also the exact runs z score distribution. From a formal stand-
point, this simulation determines how much of the medium reso-
lution statistics are captured by the lowest order moment (average
hit rate) and lowest order correlation (the serial correlation at a lag
of 1).

The ensemble of matched sequences was created using a brute
force algorithm. The procedure consisted of selecting an observed
sequence from the preattentive group and then defining a Bernoulli
process that operated at its average hit rate. From the ensemble of
all random sequences that share the observed hit rate, 25 were
isolated that by chance also happened to have the same runs z score
as the observed sequence. This number was sufficient to give
stable estimates of the average spectra and density differences for
the group satisfying the runs constraint. The procedure terminated
when 25 matches had been generated for all 209 sequences in the
preattentive group. Average density differences and power spectra
were then computed over the entire matched ensemble. Figure 17
illustrates the structure that this selection process induces in these
statistics. Open circles are averages over the preattentive studies—
essentially averages over the curves in Figure 16. Filled circles

6 The sign of A makes no difference to this transformation even though
it is sensible to associate a spate of short reaction times with a hot streak,
implying that A should be negative. All of the results reported here are
invariant under any transformation of the reaction times that preserves the
power spectrum.
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Figure 17. Density differences and power spectra for the subset of random sequences that are matched on hit
rate and runs z score to observed sequences from the preattentive studies. Open circles show average preattentive
task data, and filled circles show the ensemble averaged matched sequences.

show averages for random sequences that have the same hit rate
and runs z score distribution as the data. The basic form of the
results is as expected: Correlations at small trial scales are con-
strained to fit the data, but correlations at large scales are absent.
In the density differences, this trend appears as nonstationarity at
sizes TV = 5 and A' = 10 (but with smaller amplitude than the data)
and convergence to Bernoulli trials as the window size increases.
In a similar manner, the spectrum of the matched sequences is
tilted at high frequencies (small trial scales) and whitens at low
frequencies (large trial scales). It is important to underscore that
this example illustrates the maximum effect a runs constraint can
produce. In the simulations, only the average runs z score was
constrained—not the entire distribution. So the models may show
greater disagreement with the data than the matched sequences
depicted here.

The latencies collected for the demonstrations in Gilden (1997)
were used as input to the linear probability mapping. The four
studies were split into two groups on the basis of their 1/f noise
content. The residuals deriving from translation and rotation search
have about 40% of their variation in 1/f noise. This percentage is
halved in mental rotation and lexical decision. Differences in 1/f
content are mapped directly into differences in the runs z score;
consequently, search residuals will naturally create streakier binary
sequences than mental rotation or lexical decision. For this reason,
the search residuals were isolated from the mental rotation and
lexical decision residuals, and two independent simulations were
run, each with its own value of A. It is inevitable that A (search)
must be less than A (mental rotation, lexical decision) when fit to
the same set of observed outcome sequences.

Ensembles of simulated 2AFC outcomes were created by ap-
plying the linear probability map to all of the latency residuals
contained within a given set of reaction time studies. Each out-
come sequence was fabricated by literal interpretation of the
probability map; random uniform deviates were scored as hits if
they were less than the mapping of a latency residual obtained for
a given trial. A was varied until the ensemble-averaged runs z score
was -1, matching the value found for preattentive discrimination.
The optimal values of A were unique for a given set of latency
residuals and turned out to be A (mental rotation, lexical deci-
sion) = 1 and A (search) = .65. Once ensembles had been created

that satisfied the runs constraint, density differences and power
spectra were computed for each simulated sequence.

Figure 18 shows the medium resolution statistics for simulated
outcome sequences generated from the two sets of latency resid-
uals. The agreement between simulated and observed sequences
that is evident in this figure is not a trivial result. From a compu-
tational standpoint, the agreement is remarkable because the free
parameter A was chosen not to optimize fit on the densities and
spectra but, rather, to replicate the observed average runs deficits.
As the runs z score is numerically equal to the Fisher Z transfor-
mation of the serial correlation (lag 1), this simulation demon-
strates that once the serial correlation is constrained, the correla-
tions at all scales follow suit. This situation can occur only if
discrimination and latency fluctuations are different manifestations
of the same fractional Brownian motion. The quantitative agree-
ment between observed data and latency driven 2AFC outcomes
represents a convergence of experimental paradigms that used
different observers, different stimuli, and different modes of as-
sessment. This is an extreme form of cross-validation, and it
implies that the dynamic signified by 1/f noise is not a fiction or an
artifact of methodology. Although this dynamic does not yet have
a theoretical interpretation, it reveals itself across the fundamental
forms of measurement.

Summary

In this article, I have shown that there is a memory process that
is generally active in choice and discrimination. This memory
process makes itself known by the presence of 1/f noise in the
three major measurement paradigms in psychophysics: speeded
judgment, accuracy of discrimination, and production. It is not
reducible to sequential priming or any other kind of correlative
process that has been invoked in psychological theory. It is not an
encoding of experience. Rather, it is the kind of memory that arises
in dynamical systems (Beran, 1994) and is an embodiment of how
the system moves forward in time. The data presented in this
article suggest that 1/f noises are a consequence of an intrinsic
dynamic associated with the formation of representations.

The significance of 1/f noise is that it is a very specific kind of
memory structure, and it arises in nature only under highly par-
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Figure 18. Evaluation of reaction time based simulations of hit rate nonstationarity. Open circles depict the
density differences and power spectra averaged over the four preattentive discriminations studies. Filled circles
depict models that are based on mental rotation and lexical decision latency residuals (top) and search latency
residuals (bottom).

ticularized conditions. Understanding what these conditions are is
a central and open problem in theoretical physics. There are many
models for the generation of 1/f noise, and they vary in degree of
generality as well as in the theoretical constructs they invoke. A
common thread that connects a large class of these models is that
1/f noises are byproducts of dynamics that intertwine aspects of
order and disorder. These models include random walks in random
environments (Marinari, Parisi, Ruelle, & Windey, 1983), tangent
bifurcation (Keeler & Farmer, 1986; Pomeau & Manneville,
1980), extremal dynamics (Miller, Miller, & McWhorter, 1993),
and self-organized critically (Bak, 1990, 1992; Bak & Chen, 1991;
Bak, Chen, & Creutz, 1989; Bak, Tang, & Wiesenfeld, 1987,1988;
Christensen, Olami, & Bak, 1992; Jensen, Christiensen, & Fo-
gedby, 1989; Kertesz & Kiss, 1990). This latter theory is unique in
the scope of its explanatory power and the nonspecificity of the
mechanisms that it requires.

The central idea in the theory of self-organized criticality is that
complex systems evolve naturally (self-organization), independent
of the particular physics governing the dynamics, to a thermody-
namic transition (critical state) that marks the borderline between
stability and chaos. In the critical state, a system loses its charac-
teristic temporal and spatial scales with the results that (a) corre-
lations run through the system at all scales and (b) the system emits

fractal structure—structure that has no intrinsic scale. In this view,
1/f noise is the fractal structure in time that signifies the critical
state. Self-organized criticality provides a definition for what it
means for a system to be complex, it provides an experimental
procedure for establishing complexity, and it accounts for the
ubiquity of systems in nature that exhibit 1/f noises. As complex
cellular automata find application in the study of adapting systems
(Ito, 1995; Maslov, Paczuski, & Bak, 1994), the theory becomes
relevant to biology and perhaps, eventually, to psychology. For
example, it has been shown that the Game of Life (Alstrom &
Leao, 1994; Bak et al., 1989) is an example of self-organized
critical system. These ideas have also been used in models of spike
rate variability (Usher, Stemmler, Koch, & Olami, 1994; Usher,
Stemmler, & Olami, 1995). It is interesting that the latter simula-
tions found 1/f noise at the single neuron level but not in ensem-
bles of neurons. Whether the brain does exhibit self-organized
criticality is an open question that is of clear relevance given the
data presented here.

The finding that cognition generates a dynamical signature as a
consequence of its own activity motivates a different perspective
on what is signal and what is noise in data. A fair fraction of what
experimental psychologists have been calling unexplained vari-
ance is literally the engine noise. Its status as unexplained variance
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derives mainly from the fact that experimental designs and the
ensuing ANOVAs are unable to contemplate any structure not
anticipated by the narrow portal on the world offered by a grid of
treatment cells. What is in fact occurring in any experimental
situation is that responses to stimuli are always attended by a 1/f
carrier signal. This signal is loud and present in all paradigms that
have the power to reveal it. There is some irony here in that the
techniques that have been developed to isolate treatment means so
as to consolidate informal theories of mind may in fact be burying
one of the most important signatures of what happens when a mind
is working.
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