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Attentional Limitations in the Sensing of Motion Direction

Thomas Thornton and David L. Gilden

The University of Texas at Austin

Attentional constraints in the perceptual analysis of motion direction were exam-
ined using two independent paradigms: redundant target visual search and the analy-
sis of fluctuations in discrimination accuracy at threshold. Results from both meth-
ods implied that directions of object motion are analyzed in parallel when those
motions are translations, independent of the observer’sline of sight. Theregistration
of rotation direction appears to be subject to a qualitatively different protocol, one
that is highly capacity limited and serial-like. These results suggest that scene-based
descriptions, as opposed to image-based descriptions of motion, mediate the alloca-
tion of attention. 0 2001 Academic Press

Motion occupies a privileged position among perceptual attributes by vir-
tue of the sengitivities that humans and other mammals have for optic flow.
Optic flow patterns are not typically processed in local bits and pieces, but
rather are subject to a massively parallel reduction that leads to a number
of important computational achievements. Parallelism in motion anaysis
allows animals to steer themselves, it permits the acquisition of depth infor-
mation from motion parallax, it supports motion camouflage breaking, and
it makes the tracking of moving objects a fairly effortless exercise in most
circumstances. The mammalian visual system is evidently exquisitely at-
tuned to motion and this observation has naturally led to more general inquir-
ies into the logic of motion analysis, its realization in neural tissue, and to
more complete inventories of the psychophysics of detection and discrimina-
tion of motion fields (e.g., Blake & Aiba, 1998; Freeman & Harris, 1992;
Harris, Morgan, & Still, 1981; Morrone, Burr, & Vaina, 1995; Nakayama,
Silverman, Macleod, & Mulligan, 1985; Regan & Beverly, 1978; Sekuler,
1992; Watamaniuk & Sekuler, 1992; Werkhoven & Koenderink, 1991).

One of the first pieces of evidence that motion sensing might not always
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proceed in aparallel fashion concerned the segmentation of motion fields by
rotation sign (Julesz & Hesse, 1970). In these experiments observers viewed
ensembl es of rotating needles that were divided into two regions on the basis
of sign, counterclockwise or clockwise. Although the regions were well
marked out and had simple boundaries, these boundaries were quite difficult
to discern and there was no grouping on the basis of the sign. It is simply
not possible to gain a collective percept of a common direction of rotation
when the individual elements are independently distributed in space. The
implicationisthat direction differences among rotating elements are not pro-
cessed in paralel. These results are in clear contrast with what is observed
when the needles are replaced by patches of drifting texture. Ensembles of
local patches of drifting texture segment effortlessly on the basis of sign.
Not only are region boundaries quite salient, but the regions of common
sign separate into distinct depth planes. The percept of depth is, of course,
a consequence of motion parallax, but the point is clear; the direction of
drifting texture is processed in parallel. This conclusion has been substanti-
ated by the lack of set size effects in standard visual search (Nakayama &
Silverman, 1986).

Theories of attention are not sufficiently well developed to provide a fun-
damental explanation for why rotation direction and translation direction oc-
cupy different categories of attentional process. However, the methods of
attentional assessment we employ are sufficiently powerful to address the
simpler question of what level of motion description is appropriate for de-
scribing the different ways attention is allocated. In this article we consider
two distinct levels of motion representation: an image-based level of repre-
sentation governed by distinctions in optic flow and a scene-based level of
representation governed by distinctionsin distal object motion. An empirical
analysis can decide which scheme matches the attentional limitations that
are actually observed during direction discrimination. If attention operates
solely on image-based representations of motion, then direction discrimina-
tion will belimited by theliteral structure of the optic flow field (i.e., whether
one dynamic pattern of light can be efficiently distinguished from another
dynamic pattern of light). On the other hand, if attention has access to scene-
based representations, then direction discrimination may be based instead on
perceptions about what objects are doing distally (i.e., whether one type of
displacement can be distinguished from another displacement). Once we
know what level of description is relevant for describing attentional bottle-
necks, we will be able to attack the more difficult questions concerning why
certain motions and not others permit efficient and parallel direction acquisi-
tion. We begin with a discussion of the geometric character of optic flow
fields and areview of what is known about the neural processes that accom-
plish direction selectivity.

In physical or environmental terms, rigid objects execute only two kinds
of motion—tranglations and rotations. There are, however, anumber of basic
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FIG. 1. Stimulus configuration and types of flow fields examined in the multiple target
search paradigm. Target and distractor motion directions appeared in at least one of four circu-
lar regions and empty regions were filled with dynamic random noise. White lines are included
to indicate motion flow and boundary and were not present in the actual displays. The flow
fields on the right include arrows representing target direction for each motion condition.

types of optic flow that are induced by the projections of these motions on the
retina. These flows are defined by the differential structure of their associated
vector fields and are crudely represented in Fig. 1. Homogeneous flow is
produced by trandation in the fronto-parallel picture plane (e.g., a right-to-
left displacement), curl flow is produced by rotations about the line of sight
(clockwise or counterclockwise displacement within the picture plane), and
divergence flow is produced by trandations along the line of sight and is
characterized by the inflow (contraction) or outflow (expansion) of texture
from a vanishing point.! Homogeneous flow is unique by virtue of its infor-

1 Both curl and divergence arise in the vector analysis of the optic flow field F through the
application of the differential operator

Note that bold symbols denote vector quantities. The operation 0 [F yields a measure of
divergence at each point in the flow field (i.e., the dot product of 0 and F, a measure roughly
corresponding to the rate of flow radiating in or out of a small region of space), whereas [
X F yields a measure of curl at each point in the flow field (i.e., the cross product of O and
F, a measure roughly corresponding to the rate of flow circulation about a small region of
space). The optic flow field F, induced solely by projection of translating object texture has,
by definition, constant velocity at every point, and subsequently both O [F; and [0 X F, vanish
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mational redundancy; direction analysis at any point suffices to specify the
direction of the entire field. In contrast, the other types of optic flow have
position dependent directions that are arranged about a point or line. Expan-
sions are distinguished from contractions, for example, not by velocity differ-
ences at a single point, but by how the flow is globally arranged. From here
on we denote both divergence (expanding/contracting) and curl (rotational)
as complexin light of the fact that these types of flow require representations
of gpatial layout, whereas the class of simple homogeneous flows does not.

The distinction in geometry between simple and complex flow motivates
one of the major questions posed by this article: Does the representation
of spatia information required for computation of direction determine how
attention gets allocated? There is a large body of evidence suggesting that
discriminations based on the relative position of *‘features’’ require effortful
and focused attention (Enns & Rensink, 1990; Logan, 1994; Moore, Egeth,
Berglan, & Luck, 1996; Palmer, 1994; Poder, 1999; Saarinen, 1996; Thorn-
ton & Gilden, 2000; Wolfe & Bennett, 1996; but see Heathcote & Mewhort,
1993). These findings are relevant here because complex flow direction can
be cast in terms of the relative positions of local motion vectors (see Sekuler,
1992; Takeuchi, 1997). For example, both clockwise and counterclockwise
rotation have leftward and rightward moving components—what uniquely
distinguishes clockwise motion is that its rightward component is organized
above its leftward component. Again, it is the need for relations like
‘*above’’ that make descriptions of curl and divergence flow more elaborate
than descriptions of homogeneous flow. If complex flow direction is repre-
sented through particular conjunctions of local motion ‘‘features,’” we
should expect its discrimination to be an attentionally intensive undertaking.
There are several lines of psychophysical evidence which support this view.
Using rotary-based textures, Julesz and Hesse (1970) provided strong evi-
dence that the sensing of curl sign is attentionally demanding—there was
little to no segmentation of regions containing clockwise motion from re-
gions containing counterclockwise motion. Braddick and Holliday (1991)
extended these limitationsto the sensing of divergence sign. Using astandard
visual search methodology they showed that response times to find an ex-

everywhere implying an irrotational field with zero divergence. It is in this sense that we
denote F, as a homogeneous flow field (for a review see Koenderink, 1986).

In addition to homogeneous, divergence, and curl, there is one other basic class of optic
flow we have not mentioned. Deformation flow is produced by rotationsin depth and is charac-
terized by inflow along one axis and outflow along an orthogonal axis. In this work we have
chosen to focus exclusively on homogeneous, divergence, and curl flow fields and will not
examine the attentional limitations that attend the analysis of pure deformation flow. There
are two major reasons which support such an omission: First, there is a considerable legacy
of work in the psychophysics providing a comparative analysis of translation, expansion/
contraction, and rotational motions; second, at present there appears to be little physiological
or psychophysical evidence for explicit mechanisms analyzing deformation flow.
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panding ‘‘target’’ among contracting distractors rose sharply as the number
of distractorsincreased, a pattern generally thought to signal aserial or highly
capacity-limited search (see Takeuchi, 1997, for an opposed finding). These
results suggest that textures made from local patches of divergence flow
would not segment on the basis of direction, and such is the case (Gilden &
Kaiser, 1992).2

The geometric distinction we have drawn between simple and complex
optic flow is reiterated in the physiology of motion sensing. Local transla-
tional motion isanalyzed invisual cortex vianeurons that act as spatiotempo-
ral filters (Adelson & Bergen, 1985; Reichardt, 1957; van Santen & Sperling,
1984; Watson & Ahumada, 1985). These filters are commonly referred to
as Reichardt detectors and are tuned only to spatial displacement over time.
They cannot represent direction in curl or divergence flows because they
lack the power to define axes of rotation or vanishing points. Filters that can
define curl and divergence direction require arepresentation of spatial layout.
Although neuroanatomical understandings of such filters are crude, mecha-
nisms that sense complex flow (rotation and expansion/contraction) are con-
ceived to do so by spatial integrations over appropriate configurations of
Reichardt units (Morrone et al., 1995; Saito, Y ukie, Tanaka, Hidosaka, Fu-
kada, & lwai, 1986; Simoncelli & Heeger, 1998; Tanaka, Fukada, & Saito,
1989).

There are additional aspects of neural motion sensing that support the
division of homogeneous flow from curl and divergence flows. In the earliest
levelsof striate cortex, neurons are selective only for local trandationswithin
the frontal plane (see Movshon, Adelson, Gizzi, & Newsome, 1985, for a
review). It isnot until reaching extrastriate areasM T and M STd that neurons
selective for divergence or curl flow begin to show up in the single cell
demographics (Tanaka et al., 1989; Tanaka & Saito, 1989); though even at
these levels in the motion processing hierarchy there still remain more cells
selective for homogeneous flow than for complex flow (Saito et a., 1986;
Tanaka & Saito, 1989). Evidence of neura linking between divergence and
curl flow has also been found in cellsuniquely tuned to spiral motions (Grazi-
ano, Anderson, & Snowden, 1994; for psychophysical evidence see Snow-
den & Milne, 1996). This finding suggests that divergence and curl flows
may in fact be neurally represented as special casesin the more general class
of spiral motion (but see Burr, Ross, & Badcock, 2000).

Despite the apparent coherence of the physiology and the psychophysics,
the empirical foundations are not solid. First, most of the relevant studies
that have treated motion sign have characterized processing quality using

2We have conducted many informal observations of textures whose regions differ only in
motion sign. For both divergence and curl textures, sign-based segmentation is virtually absent
and qualitatively different from the strong segmentation percepts produced by homogeneous
textures.
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the theoretically weak paradigm of singleton visua search (Braddick & Hol-
liday, 1991; Takeuchi, 1997). This method of search, though a favorite
among attention researchers, is flawed in a number of ways that undermine
a clear assessment of attentional limitation (Carrasco & Y eshurun, 1998;
Palmer, 1994; Townsend, 1990). Second, recent psychophysical work has
raised questions about the nature of processing during discrimination of di-
vergence direction. Using a set of motion stimuli superior to those used in
earlier assessments, Takeuchi (1997) found little evidence of capacity limita-
tion during search for an expanding target among contracting distractors.
This result runs counter to the study by Braddick and Holliday (1991), and
is an isolated piece of evidence suggesting that attention may respect scene-
based representations of motion. Finally, straightforward links between mo-
tion physiology and perception have been slow in coming; we still do not
have a complete understanding of neural circuits and consequently the impli-
cation of single cell recordings is unclear.

While divergence and curl flow fields appear to be naturally associated in
terms of computation and physiology, it must be remembered that distally,
the motion that induces divergence flow isapure translation that just happens
to be along the observer’sline of sight (movement toward or away from the
observer). In terms of distal object motion, it is homogenous and divergence
flows that are associated because they have a common etiology (i.e., transla-
tional displacement). For this reason divergence flow is key to inferring the
level of representation used by attention in acquiring the information that
specifies direction. Specifically, if it is the case that attention uses image-
based representations bound to the line of sight, then the acquisition of direc-
tion in divergence flow fields should be similar to curl, i.e., seria-like or
highly capacity limited. However, if attention uses scene-based representa
tionsthat are invariant over the line of sight, then direction analysisin diver-
gence flow fields should be similar to homogeneous flow, i.e., paralel with
little capacity limitation.

In this work we reexamine the attentional constraints of direction percep-
tion using two independent paradigms that have the power to distinguish
between types of attentional |oad. Furthermore, we systematically investigate
a set of flows that is sufficient to determine whether attentional allocation
is guided by image-based or scene-based descriptions of motion. The first
paradigm employs multiple target search and is specifically designed to re-
veal spatial parallelism in the presence of inefficient, capacity limited pro-
cessing (Snodgrass & Townsend, 1980; Townsend, 1990; van der Heijden,
LaHeij, & Boer, 1983). The second paradigm makes the same distinctions
in terms of serial correlations in accuracy during signal detection (Gilden &
Wilson, 1995). By incorporating a set of converging operations into our in-
quiry we hope to generate a consistent principle governing the logic of atten-
tion, recognizing that any given method may rest on questionable assump-
tions (Garner, Hake, & Eriksen, 1956).
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Multiple-Target Search

Excluding early work in texture segmentation, most previous research ex-
amining perceptual acquisition of motion sign has relied exclusively on sin-
gleton search (Braddick & Holliday, 1991; Takeuchi, 1997). This method
represents the workhorse of the attention field and consists of the speeded
discrimination of displays containing a single target element hidden among
n distractor elements from displays containing only distractor elements. Re-
sponse time (RT) to signal target presence is measured as a function of dis-
tractor number (set size), and the rate at which RT increases with set size
is used to categorize search as either serial or parallel in nature (for a com-
prehensive review, see Wolfe, 1998hb). Despite the empirical and theoretical
simplicity of the approach, standard visual search is known to have serious
methodological flaws given itsinability to distinguish serial processes from
parallel processes that are limited in capacity—both types of processes are
capable of producing linear increases in RT with set size (Townsend, 1972,
1974; Wolfe, 1998a). Further, a clear interpretation of the usage of atten-
tional resources based solely on RT by set size slopes is difficult given that
low-level eccentricity and density effects are often confounded with set size
(Carrasco & Y eshurun, 1998; Duncan & Humphreys, 1989; Geisler & Chou,
1995; Palmer, 1995; Palmer, Ames, & Lindsey, 1993). To circumvent such
shortcomings we use a hybrid search paradigm. Like standard visual search
methods, this composite paradigm focuses on variation in RT as set sizeis
manipulated over trials. However, unlike previous methods, this paradigm
is equipped to distinguish between various types of resource allocation by its
inclusion of a redundant—target condition (Biederman & Checkosky, 1970;
Snodgrass & Townsend, 1980; van der Heijden, La Heij, & Boer, 1983).
Specifically, multiple target trials are randomly interleaved with the single
and no-target trials familiar to singleton search designs while subjects make
speeded decisions as to the presence or absence of atarget. Decreasing RT
with increasing target number is evidence of parallelism, most notably for
the case in which only targets occur in a display and comparisons are made
across target number (Townsend, 1990). We denote trials in which a display
contains only target elementsas ‘‘pure’’ target trials. These trials are central
to our design because they alone unambiguously signal the serial or parallel
nature of search. A comparison of pure—target conditions is diagnostic in
this regard precisely because there is no need to search a display containing
only targets. A serial search predicts that pure—target RTs will be invariant
acrosstarget number. In contrast, when searchis parallel in nature the predic-
tionisthat RT should decrease with target number, owing either to statistical
considerations (‘‘race gains'’) or spatia pooling (see Miller, 1982).

In Fig. 2 we show predicted single and pure—target RTsfor three different
models of search processing. The leftmost panel represents the predicted
pattern of RTs when search is based on a serial process; the center panel
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FIG. 2. Patterns of predicted RT using the multiple-target search method. The lines
marked ‘‘single target’’ refer to trials in which only a single target is displayed among a
variable number of distractor elements. The lines marked ‘‘pure targets’ refer to trials in
which displays contain only targets. These pure-target trials are central to the multiple-target
method because they have the power to distinguish serial processes from those that are parallel
and of limited capacity. The gray, triangular regions shown in the center and right panels of the
figure denote redundancy gains (i.e., faster target *‘present’’ RT as target number increases), a
pattern of pure-target responding uniquely associated with parallel search. Whenever there
arereliable redundancy gainsin the pure-target conditions, serial processing can be effectively
ruled out.

represents the predicted pattern of RTs when search is based on a parallel,
limited capacity process; and the right panel represents the predicted pattern
of RTs when search is parallel, unlimited capacity. In each panel the solid
lines marked ‘‘single target’’ denote hypothetical RTs for trials in which a
single target is present among a variable number of distractors (set size in-
creases from left to right). The dashed lines marked *‘ pure targets’ denote
RTsfor trialsin which only targets appear in a display (increasesin set size
here correspond to increases in target numerosity). The figure highlights the
shortcomings inherent in the use of ‘‘single target’”’ data—there simply is
not enough structure available to discriminate serial processes from those
that are parallel and of limited capacity. Figure 2 clearly shows that this
distinction can only be made by considering the pure-target response times,
whenever there are decreases in response time with pure-target number (i.e.,
redundancy gains), serial models of search can be effectively ruled out in
favor of spatial parallelism.

Though redundant target manipulations are not new, the work reported
here represents one of the first attempts to incorporate these manipulations
into a standard search methodology. Much of the previous work that has
used similar manipulations has been primarily interested in the mechanism(s)
by which target redundancy improves performance (Diederich & Colonius,
1991; Egeth, Folk, & Mullin, 1988; Fournier & Eriksen, 1990; Miller, 1982;
Mordkoff, Miller, & Roch, 1996; Mordkoff & Yantis, 1991; Schwarz, 1994,
Townsend & Nozawa, 1995, 1997). Generally, the focus has been on using
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estimates of the single and double target RT cumulatives to distinguish
whether redundancy gains arise from statistical facilitation (Rabb, 1962) or
from coactivation of sensory channels (Miller, 1982, 1986, 1991). Because
the basic focus has been on the etiology of the redundancy gain itself, much
of the previous research has used simple target detection tasks, has fixed set
Size to be no more than two, and has designated targets arbitrarily (for exam-
ple, atone and a simple visual marker may both be ‘‘targets’ in a single
experiment). The redundant target method used here employs a set of differ-
ent techniques. First, because we are primarily interested in capacity limita-
tion, we investigate discrimination performance as a function of set size.
Second, our methodology defines a target as a single unique thing—when
displays contain more than one target they aways contain multiple repeti-
tions of this onething (Egeth & Mordkoff, 1991; Mordkoff, Yantis, & Egeth,
1990; van der Heijden et a., 1983). Finally, we remain neutral concerning
how redundancy gains arise and are solely concerned with characterizing the
circumstances under which they are observed.

Correlated outcomes in signal detection

Our second methodology uses an atogether different approach for assess-
ing alocation of attentional resources. With this method we replace the anal -
ysis of average RT that forms the basis of traditional search methods with
an analysis of performance fluctuations during repeated discrimination. Spe-
cificaly, we examine the statistics of trial-to-trial accuracy for a single mo-
tion stimulus fixed at threshold. By measuring the degree to which outcomes
(being correct or incorrect) acquire tempora correlations during direction
discrimination, we gain insight into the underlying attentional constraints
that limit the acquisition of motion sign. Though this type of technique is
relatively novel, it promises to be a potentialy powerful means of distin-
guishing attentive from preattentive processing and has preliminary empiri-
cal support (Gilden & Wilson, 1995).

This method capitalizes on the observation that correct responses tend to
cluster in time when discriminations are made near threshold (Gilden & Wil-
son, 1995). Outcome clustering is informally termed ‘‘streakiness”’ when
there is a positive sequential dependency across a trial sequence such that
correct judgments tend to follow correct judgments. One of the principle
findings of Gilden and Wilson (1995) was that all preattentive discrimina-
tions generated an equivalent and extreme magnitude of correctness cluster-
ing as measured by the runs z score (negative runs z scores indicate cluster-
ing; positive runs z scores indicate greater outcome alternation than expected
by chance, see streak analysis later). In every case, preattentive discrimina-
tions produced an average runs z score of —1. A variety of attentionaly
demanding discriminations were also assessed and it was found that these
neatly dissociated from their preattentive counterparts, producing clustering
much more consistent with Bernoulli expectation (i.e., a runs z score closer
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to 0). In sum, the empirical situation provided by the work of Gilden and
Wilson (1995) is consistent and straightforward: Seguences from atten-
tionally demanding tasks are not very streaky, although they can be distin-
guished from those produced by a Bernoulli process; sequences associated
with preattentive discrimination are al of one kind and are maximally
streaky. We propose to use this simple tool to distinguish varieties of atten-
tional load on the basis of fluctuations in discrimination accuracy.

The theoretical basis for streak formation was discussed thoroughly in
Gilden and Wilson (1995) and Gilden (2001). The problem addressed in
both articles was what aspect of performance leads to positive sequential
dependencies where hits segregate from misses. Gilden and Wilson (1995)
used Monte Carlo simulations to show that learning, intermittency in effort,
and simple forms of conditionalization (success breeds success) cannot de-
scribe the sequence structure produced by people engaged in repeated dis-
criminations. In Gilden (2001) streak formation was shown to be part of a
much broader phenomenon involving the production of 1/f noise (see Gilden,
1997; Gilden, Thornton, & Mallon, 1995). This unification implies that the
ontogeny of streaksisareal problem and not onethat is going to be explained
away with facile arguments; 1/f noises are often observed in the temporal
fluctuations of complex systems and their etiology is one of the main un-
solved problems in statistical mechanics.

In this article we are not as concerned with the existence of streaks aswe
arewith the observation that attentional demand predictsthelevel of intertrial
correlation. The linkage between streaks and attention has to be understood
in terms of the temporal dynamics that produce 1/f noises. 1/f noises are
theorized to be natural outcomes in systems that are able to self-organize
and reach critical states (Bak & Chen, 1991; Bak, Chen, & Creutz, 1989;
Bak, Tang, & Wiesenfeld, 1987). In this way we are led to consider how
attention could modify the dynamics of a self-organizing critical system.
Gilden (2001) gave evidence that 1/f fluctuations arise as a consequence of
an internal dynamic involved in the formation of representations. Attention
appears to operate relatively independently of this dynamic and acts rather
as a source of disruptive perturbation. The empirical data indicate that the
level of perturbation is monotonically related to the magnitude of attentional
demand (Gilden & Wilson, 1995). Perturbations act on the system to drive
it away from the critical state where it can emit 1/f noises and so cause the
entire process to decorrelate in time. Where attentional usage is minimal,
say as for luminance or orientation discrimination, an unperturbed view of
the critical state can be measured. The unperturbed view is the situation
whererunszscoresare —1, and it isfor thisreason that preattentive discrimi-
nations form an equivalence class in hit clustering.

We want to emphasize here that the theory and empirical work linking
attention to outcome clustering, though somewhat novel, is not at odds with
any of the existing psychophysics. While the theory holds that attentive pro-
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cessing disrupts an endogenous source of correlated noise, it is entirely neu-
tral regarding how attention affects the overal signal-to-noise ratio. This
relation has been thoroughly investigated elsewhere and continues to fuel
an active debate regarding how attention influences discrimination perfor-
mance in the mean; that is, how it influences psychometric functions and
filter bandwidths (Dosher & Lu, 2000; Lu & Dosher, 1998; McAdams &
Maunsell, 1999; Prinzmetal & Wilson, 1997; Treue & Maunsell, 1999). The
method we use here has no relation to any of these issues insofar as al our
conditions generate roughly equivalent psychometric functions (see Streak
methods). We are only concerned with temporal correlation; the way that
hits and misses are distributed over time.

Streak analysis has several advantages over texture and search methodolo-
gies, which likewise attempt to distinguish preattention from focused atten-
tion. First, the streak paradigm places al stimulus discriminations near
threshold and in so doing minimizes stimulus differences across tasks, a con-
found which has undermined the clear analysis of singleton slopes across
typical visual search experiments (Duncan & Humphreys, 1989; Palmer,
Ames, & Lindsey, 1993; Wolfe, 1998a). Second, low-level confounds such
aseccentricity and density effects are eliminated because only asingle stimu-
lusispresented at fixation. Finally, the analysisand interpretation of outcome
clustering reguires none of the variance or distributional assumptions of stan-
dard signal detection theory, nor does it mandate any additional theory re-
garding how information is accumulated toward decision. To import this
techniqueinto the motion domain we fix direction discrimination at threshold
levels of performance and examine the degree of streakiness that results
across a block of trials. It is then simply a matter of comparing observed
levels of streakiness to baseline measures obtained for tasks known to be
preattentive.® This comparison is possible precisely because we are able to
interpret specific points along the runs z score continuum. Following Gilden
and Wilson (1995), we now know that there are two regimes of streakiness:
(1) discriminations that are minimally demanding of attentional resources
yield average runs z scores that are shifted 1 standard deviation below Ber-
noulli expectation (i.e.,, mean z = —1) and (2) discriminations that suffer
high capacity limitationsyield runs z scores that are significantly less streaky,

% Though evidence has begun to emerge to question whether any discrimination can truly
be called *‘ preattentive’’ (e.g., Joseph, Chun, & Nakayama, 1997), we have chosen to retain
the term preattentive in this article as ameans of nominally categorizing the set of psychologi-
cally simple discriminations for which stimulus differences (or similarities) are available in
parallel, with little to no capacity limitation. Such preattentive discriminations impose minimal
costs on search time as distracting information is increased and support effortless texture seg-
mentation. This denotation is not meant to imply a strict absence of attention, but rather that
the attentional requirements are qualitatively distinct from those stimulus discriminations re-
quiring focused attention (i.e., discriminations that yield large costs in RT with increases in
distraction and do not support effortless texture segmentation).
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with an average z near —.3. The importance of z = —1 bears repeating; in
this theory it is the value that anchors the attention-clustering mapping by
defining a lower bound of attentional usage.

A crucia step in validating the integrity of our method is to insure that
preattentive discrimination of motion sign does produce an average runs z
of —1. Discrimination of the sign of homogeneous flow is the appropriate
benchmark in this context because it is a paradigmatic example of a preatten-
tive discrimination—there would be no depth from motion parallax were it
not for this perceptua fluency. If we find that this discrimination fails to
meet the point prediction set by preattention (i.e., average runs z = —1), the
interpretation of all other results becomes problematic.

METHODS

Multiple-Target Search

In our first experiment a total of 36 naive participants searched for a ‘‘target’” direction in
one of four basic flow conditions with 9 participants each assigned randomly to either homoge-
neous, expansion, contraction, or curl conditions. For the homogeneous and curl conditions
participants searched for rightward, translational motion, or clockwise rotary motion, while
for divergence flow we examined search for both expanding and contracting targets in separate
experiments. This choice was motivated in part by previous findings of an anisotropy between
expanding and contracting motion in the physiology and psychophysics (Ball & Sekuler, 1980;
Edwards & Badcock, 1993; Graziano et al., 1994; Harriset al., 1981; Reinhardt-Rutland, 1994;
Takeuchi, 1997).

Participants in each condition viewed a variable number of animated noise textures that
either translated unidirectionally within the frontal plane (left/right), translated along the line
of sight in motion orthogonal to the frontal plane (expansion/contraction), or rotated within the
plane (clockwise/counterclockwise). Individual animations consisted of sequences of random
texture that were constructed to have the same power spectra as natural landscapes (Burrough,
1981; Keller, Crownover, & Chen, 1987; Sayles & Thomas, 1978; van der Schaaf & van
Hateren, 1996; Voss, 1988). Single frames for each animation were created by repeatedly
applying a motion transformation to an underlying field of randomly colored black and white
dots (density was maximal in that every pixel participated in the motion transformations;
individual dots subtended ~2 arc min). For translational motion, dots were shifted to the left
or right across frames; for expanding/contracting motion, dots were displaced radially toward
or away from the center of each frame; for rotary motion, each dot was displaced along a
virtual circle, such that its distance from the center of the frame remained constant across
frames. For the expanding/contracting and rotary displays, local dot velocities were propor-
tional toradial distance so asto maintain redlistic, solid body motion. After creating a sequence
of moving black/white dot fields, each frame in the sequence was spatially smoothed to pro-
duce the cloudlike structures seen in Fig. 1. This was done by convolving a 2D exponential
weighting function with the underlying black/white dot fields (essentialy, the decay rate
of the exponential weighting function was chosen so as to exclude pixels faling outside a
6 x 6-pixel neighborhood). All animations supported the percept of continuous motion and
were presented until response against a matched background of uncorrelated dynamic noise.
The phenomenal experience of these animations was that of coherent motion occurring within
apertures defined by a noisy surround. Single frames from example stimuli are shown in Fig.
1. All stimuli were equated across motion type for spatial extent (3° visual angle), contrast,
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spatial frequency content, and average dot speed (~1.5°/s). Viewing distance was fixed at
approximately 57 cm by means of a chin rest.

For multiple element search, any given trial contained one, two, or four moving noise tex-
tures that appeared within circular apertures configured symmetrically about a central fixation
point. The number of trials for each set size was balanced, and across set size, animations
containing at least one target motion direction occurred as frequently as those containing no
target motion direction. In pure-target conditions all apertures contained the target motion
direction (i.e., number of targets = set size) and the number of trials was balanced across
target number within each set size. The remaining trials contained all possible permutations
of target and nontarget mixtures, and in all cases empty apertures were replaced with filtered
background noise. In this experiment a participant’s task was simply to make speeded ‘‘yes'’/
‘‘no’”’ decisions as to whether at least one target direction was present while maintaining
accuracy above 90%. Each participant received ablock of 288 practicetrials before completing
two additional blocks for atotal of 576 trials. Prior to analysis we excluded all trials on which
errors had occurred (<10% of the data), and then computed both within-subject medians and
standard errors for al conditions.

In any assessment of visual attention, care must be taken to distinguish attentional limitations
from simply being unable to see the stimulus elements due to loss of resolution off the fovea.
We verified that the direction of individual homogeneous and curl stimulus fields were equally
discriminable at al eccentricities using an approach similar to Geisler and Chou (1995). By
reducing contrast and presentation time, we measured accuracy using single interval sign dis-
crimination to obtain psychometric functions as a function of stimulus eccentricity. Perfor-
mance for single element homogeneous and curl displays was identical over the limits of our
viewing apparatus (i.e., up to an eccentricity of 25° of visual angle). Performance parity across
motion type in terms of single element detection/discrimination has support from a number
of psychophysical studies (see Ahlstrom & Borjesson, 1996; Bell & Lappin, 1979; Blake &
Aiba, 1998; Morrone et a., 1995; Werkhoven & Koenderink, 1991).

Streak Formation in Signal Detection

In our second experiment, five practiced observers made repeated discriminations of direc-
tion for homogeneous flow (left/right trandlation), divergence flow (expanding/contracting
motion), and curl flow (clockwise/counterclockwise rotation). All three flow conditions were
administered to each participant in an order that was counterbalanced.

The streak methodology requires that discrimination occur near threshold; where there are
no errors there are no streaks. In order to achieve threshold levels of performance we con-
structed random dot displays that differ in two principle ways from those described in the
search methods. First, the stimuli used here have inherently weaker motion signals because
only a subset of the dots moves coherently from frame to frame (the remaining ‘‘noise’’ dots
are randomly relocated across frames). In contrast, the dot displays used in our search experi-
ment are 100% coherent because every dot participates in the motion signal. Second, the
random dot fields used in this experiment are not spatially filtered. The primary reason for
this is that there is a distinction between filtering a coherent signal and filtering a largely
incoherent signal. Filtering a fully coherent input signal leads to a fully coherent output signal
(i.e., anaturalistic motion texture); filtering a largely incoherent input leads to an output that
is difficult to characterize and, moreover, difficult to control. We chose to use unfiltered,
random dot fields because they can be exactly specified and have a long history in the study
of threshold level motion phenomena (Bell & Lappin, 1979; Gilden, Hiris, & Blake, 1995;
Morrone et al., 1995; Snowden & Milne, 1996; Watamaniuk & Sekuler, 1992; Williams &
Sekuler, 1984).

On each trial a single, black/white random dot field appeared within a circular aperture
presented at fixation (subtending 3° visual angle at a distance of 57 cm). A motion signal was
created by constraining a small percentage of the total number of dots in each display to move
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coherently in one of two chosen directions amid remaining noise dots that were replaced
randomly from frame to frame (dot size was ~2 arc min; dot density was maximal). The
percentage of coherent dots was chosen individually for each observer to maintain an average
accuracy of about 75%. Thresholds were estimated using the method of constant stimuli.
Through maximum likelihood fits of a generalized Weibull function it was verified that the
psychometric functions were similar across motion type [average 75% threshold (percentage
of coherent dots): 3.2 for homogeneous, 3.8 for curl; average slope of psychometric: 1.223 for
homogeneous, 1.227 for curl]. For divergence direction discrimination, instead of computing
psychometric functions we achieved similar levels of performance (around 75%) by choosing
an appropriate coherence level for each observer from afixed set of premade animation ensem-
bles (average percentage of coherent dots chosen across observer was 2.4).

Average speed and dot displacement were equated across the three motion conditions. In
thissingleinterval discrimination task, each tria consisted of an 800-ms presentation followed
by aresponse. The probability of encountering any particular motion direction was balanced
over trials and stimulus ordering was randomized for each run. A block of trials consisted of
240 discriminations of a single type of motion at a fixed percentage of coherent dots. Tria
presentation was continuous and fast paced and no feedback was given. Each observer pro-
vided eight blocks of data in each motion condition.

Streak Analysis

Each individual sequence of 240 successive discriminations was analyzed in terms of trial-
to-trial outcome (correct or incorrect). Outcome clustering was measured by counting the
number of runsin agiven sequence, where arun is defined as a subsequence of like outcomes.
For example, consider the following binary-valued sequence in which correct and incorrect
decisions are represented as “‘1"’sor *‘0"’sasfollows: 111000 1 0 0 1. This sequence of
hypothetical outcomes has exactly five runs (111, 000, 1, 00, 1) and a hit rate of 50%. Once
we know the hit rate and run count of a sequence, the probability of obtaining that number
of runsor fewer can be computed under the null hypothesis that trial outcomes are the result of
astationary Bernoulli process. This probability isthen converted to arunszscore by inverting a
standard Gaussian cumulative. As a statistic the runs z scoreis virtually identical to the Fisher
z of the serial correlation and quantifies departure from trial independence.* Specifically, a
negative runs z score implies that there are fewer runsin a sequence than expected for a given
hit rate. Negative runs z scores indicate outcome clustering in which correct decisions tend
to segregate from incorrect decisions. In contrast, when there is a positive runs z score there
are more runs in a sequence than expected. Positive runs z scores are associated with discrimi-
nation sequences in which correct decisions tend to aternate with incorrect decisions. The
magnitude of outcome clustering for each motion type was computed simply by forming the
average runs z score.

RESULTS

The inductive power of the method of converging operations derives from
the independence of the various assessment tools. In thisregard, the methods
we have used to characterize resource allocation are optimal: They have

4 There exist a number of different statistics that effectively capture sequence nonstationar-
ity, and the associated advantages and disadvantages of these various measures have been
discussed in detail elsewhere (Gilden & Wilson, 1995; Gilden, 2001). In short, we have opted
to use the runs z statistic in these analyses because it necessarily factors out contributions of
overall sequence hit rate to within-sequence *‘ streakiness.”’
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virtually nothing in common. The search method employs suprathreshold
stimuli and an analysis based on traditional cell meansin which the residuals
do not enter into the theory. The streak paradigm employs threshold-level
stimuli and an analysis based solely on fluctuating quantities in which the
cell means (hit rates) are irrelevant. Any convergence in interpretation that
may result from the application of two such highly independent methods is
unlikely to be a fortuity.

Multiple-Target Search

Average median reaction times and error rates for direction search are
shown in Fig. 3. Results are plotted for each target/distractor combination
as a function of set size for homogeneous flow, curl flow, and both diver-
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FIG.3. Resultsof the multiple-target search experiment. Means of median response times
for correct trids are plotted with average within-participant standard errors. Points connected
by solid lines represent trials in which target number was fixed across variation in set size.
Open circles denote means for trials in which a singleton target was presented among zero,
one, or three distractors depending on set size. Open triangles denote means for trialsin which
two targets were presented among zero or two distractors. Open squares denote means for
trias in which all four elements presented were targets. Points connected by dashed lines
indicate means for pure-target trialsin which all presented elements were targets. Redundancy
gains in milliseconds (RT 4ages - RT11age) @reinset for each flow type. The corresponding error
rates averaged over participants are plotted below the response time functions.
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gence flow conditions.> Within each graph points lying on the same solid
line represent those conditionsin which distractor number varied while target
number was fixed. The dashed lines within each graph signify average RTs
for trials in which every presented element underwent target motion. Recall
that for these so called pure—target trials, increases in set size are also in-
creases in target redundancy.

The resultsfor trials connected by solid lines show a similar pattern across
al four direction searches in so far as target ‘‘present’’ responses were
slower on average with increases in distractor number. We have estimated
the rate at which single target RT increases with set size for each observer
in each condition using standard regression techniques. Both homogeneous
and divergence flow conditions have average RT by set size functions much
shallower than that found for curl (homogeneous. 20 ms/item; expansion:
16 ms/item; contraction: 13 ms/item; curl: 56 ms/item). Positive increments
in response time as a function of set size suggest capacity limitation, and it
is evident from the figure that (a) these limitations appear to be present for
al flow conditions and (b) they are much greater in the case of the curl
condition.

Single target functions in the context of redundant target search are gener-
ally not diagnostic of processing style because all discriminations, including
those based on variation along a single feature dimension (e.g., orientation,
color), yield nontrivia increases in RT with set size (Thornton & Gilden,
2000). There are three reasons why even ‘‘pop-out’’ discriminations may
show some set size effectsin the context of this method. First, search perfor-
mance is typically not measured at a set size of one. It may be that this
condition is qualitatively different from larger set sizes by virtue of the fact
that there is no need to ‘‘search’’ a display containing a single element.
Second, in order to deconfound attentional and eccentricity effects, we use
aredundant target method that limits set size to no more than four elements.
The majority of previous search experiments have included large set sizes
that may in fact improve discriminability by increasing local target/distractor
contrast (Nothdurft, 1985; Rubenstein & Sagi, 1990). Finally, there are re-
cent proofsthat a parallel, unlimited capacity search model can yield modest
set size effects when error rates are held constant across set size (see
Palmer & McLean, 1995).

Although all of the one-target functions have positive slopes and are there-

® Reaction times in target absent conditions are generally not included in demonstrations
of attentional process because they are known to be corrupted by various termination strategies
(Wolfe, 1998b). We have accounted for our target absent conditions using a modified random
walk model and find that response criteria are relaxed monotonically as set size increases
(Thornton & Gilden, 2000). Other than this relatively obscure effect, the target absent data
do not speak to the issue of resource allocation.
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fore ‘‘seria-like’’ (in the sense motivated by feature integration theory;
Treisman & Gelade, 1980), the curl slopes are significantly larger than those
in the homogeneous and divergence conditions (all ps <.0001 using Fisher's
PLSD). This is the first piece of evidence that curl search is unique in its
usage of attentional resources. The real power of this method, though, derives
from the analysis of the pure—target trials and it is here that we find more
conclusive evidence that in the analysis of flow direction, only curl search
has al of the features of a truly ‘‘serial-like’’ process.

Consider then the pure—target response times; those points connected by
dashed lines in Fig. 3. When search is for a homogeneous, expanding, or
contracting target, increases in target redundancy lead to faster target *‘ pres-
ent”’ response times, and these benefits in responding provide strong evi-
dence of spatial parallelism (see favored positions analysis below). For ho-
mogeneous flow there is a significant response benefit of 29 ms when pure-
target number is increased from one to four [F(1, 16) = 8.1, p = .006].
Despite a dlight offset in terms of absolute reaction time, both divergence
searches produced nearly identical gains under target redundancy, and in
general the entire pattern of median RTs was remarkably similar for both
expanding and contracting targets. For both divergence flow directions there
was a moderate benefit of approximately 15 ms for four targets relative to
one target. Our failure to find a search asymmetry between expanding and
contracting targets is inconsistent with earlier claims (Takeuchi, 1997).
Given that we found no distinction between expansion and contraction for
the pure—target conditions [F(2, 32) <1], we have combined the data from
both experiments. A subsequent linear trend analysis confirmed that the re-
dundancy gain for pooled divergence flow was significant [F(1, 32) = 4.93,
p = .017].

Search for a specific direction of rotation revealed an altogether different
pattern of data. For curl flow, increases in target redundancy provided no
benefit in response time; there was a nonsignificant increase in response time
of 4 ms as target number increased from one to four. Such a pattern implies
little or no spatial parallelism, and any benefit in responding that might arise
from the presentation of multiple rotating targets appears to be outweighed
by the concomitant demands made on attentional resources. Taken together
these data suggest that direction discrimination for homogeneous and diver-
gence flows is a paralel, limited-capacity process, while the perception of
curl direction appears to be serial-like in nature.

Figure 3 also shows associated error rates averaged over participants plot-
ted for each condition and each flow type. Despite the fact that accuracy was
loosely constrained in the collection of these reaction times, the pattern of
error across conditions is virtualy identical to those obtained for response
time. Discriminations of the direction of homogeneous and divergence flow
are made with increased fidelity as pure—target number increases, while curl
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discrimination error rates are roughly flat across pure—target conditions.® The
pattern of errors provides further assurance that the redundancy gains for the
homogeneous and divergence conditions are not due to a speed/accuracy
trade-off. Any adjustment of the RTs based on the observed trends in error
rate would only serve to reinforce the observed effects.

Introduction of occluding edges in rotation. The previous search experi-
ment was constructed to eliminate static cues as potential influencesin search
efficiency (e.g., changesin size or absolute position). Our goal wasto equate
the pictorial characteristics across animations so that perceptual differences
could be uniquely attributed to motion. This was accomplished by using the
same class of aperture-bounded textures across flow conditions. However,
the various motion transformations that are applied to these texturesto create
curl, homogeneous, and divergence flow fields necessarily impose different
relationships between the moving texture patch and the noise surround. For
homogeneous and divergence motions there is accretion and deletion of ob-
ject texture due to outflow and inflow within the circular aperture defined
by the noise surround. In the case of curl flow, thereislittle if any accretion
or deletion of background at the aperture border because the entire area cir-
cumscribed by the aperture is in rotation. Insofar as this dynamic cue may
explain why only the curl data looks serial-like, it must be removed if we
wish to interpret our results in terms of motion per se and not in terms of
how particular motions happen to interact with the apertures. For this reason
we have conducted an ancillary experiment that introduces accretion and
deletion cues into a rotating stimulus. If this new rotary stimulus manifests
signs of parallelism (i.e., pure—target redundancy gains), we will have impli-
cated accretion and deletion as a possible source of the dissociation seen in
Fig. 3.

The stimuli for this experiment are shown in Fig. 4 and consist of black
hourglass shapes (rotors) that rotate over a static noise background. These
types of rotary displays are a natural choice because they repeatedly occlude
and reveal the static background texture as they spin, thus providing a strong
set of accretion and deletion cues. The rotor stimuli were matched to our
previous experimentsin terms of duration, dimension, and interelement spac-
ing. All aspects of the design of this experiment were identical to our previ-
ous search methods, with nine participants searching for clockwise rotation

¢ Given that the curl error rates are uniformly near zero for the pure—target conditions, there
remains the possibility that the floor is obscuring decreases in error with target number. Such
a decrease might implicate a trade-off of speed for accuracy as target number is increased.
We have replicated the pattern of RT and error found in our initial curl condition with nine
additional observers under an instruction set in which speed was further emphasized (pure—
target error rates were slightly higher and flat, but still near floor). We also found remarkably
similar results in a separate experiment in which nine observers searched for rotating stimuli
with occluding edges (see ‘* Introduction of Occluding Edges in Rotation’’ under Results).
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FIG.4. Representative stimuli and resultsfrom the rotor-based curl experiment. The white
arrows depict stimulus motion and were not included in the actual displays. The right panel
plots means of medians as afunction of set size and target number for nine subjects. Associated
errors, averaged over subject, are plotted below for reference.

(the *‘target’” direction) among a variable number of rotors that moved in
either the target or distractor direction.

The results from the rotor experiment are plotted on theright in Fig. 4. In
the case of rotor-based curl we again find evidence consistent with capacity
limitation in that there are sharp increases in response time for single and
double target conditions as the number of rotors moving in the distractor
direction is increased (set size effect: 61 ms/item; indistinguishable from
texture-based curl, t < 1). In keeping with our previousfindings for aperture-
bounded curl, we see no evidence of redundancy gainsin RT as the number
of elementsundergoing the target motion direction isincreased. In fact, there
is a substantial slowing of response time by 36 ms for the case in which
four target motions were presented relative to the single-target baseline [F(1,
16) = 27.66, p < .0001]. Redundancy losses of this magnitude are difficult
to explain in the context of idealized serial models which predict invariant
RT across target number and provide additional evidence that acquisition of
rotary sign in multielement displays is highly demanding of attention. In-
creases in RT with pure-target number are not entirely unusual in the use
of the multiple-target search method; we have seen this particular data pattern
for attentionally demanding discriminations of relative position (Thornton &
Gilden, 2000).

As in our previous study, the pattern of RT is reinforced by an analysis
of error making a speed/accuracy trade-off account of these data unlikely
(seeFig. 4). That thereislittle evidencein this data set to support an efficient,
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paralel process extends our earlier results with aperture-bounded rotation.
More importantly, this experiment effectively rules out the possibility that
the observed dissociation among flow types seen in multiple-target search
is the product of stimulus-specific accretion/deletion relations.

Favored positions analysis. The power of multiple target search isin the
inclusion of pure—target trials, wherein redundancy gains in RT can signal
spatial parallelism in the presence of inefficient processing. Unfortunately,
there is a confound associated with this method that must be addressed if
we are to reliably link redundancy gains to parallel processing. It has been
pointed out previously that associated decreases in RT with target redun-
dancy can conceivably ariseif observers have implicitly or explicitly adopted
some ‘‘favored’’ spatial position across trials (Egeth & Mordkoff, 1991,
Mullin, Egeth, & Mordkoff, 1988; van der Heijden et al., 1983). Such an
explanation in no way invokes spatially parallel processing and holds that
a favored positions effect, in conjunction with a serial process, can mimic
redundancy gains. Theideahereisthat if, on any given trial thereis a spatial
position that receives privileged attentional processing, then on trias in
which multiple targets are presented, there will be an increased likelihood
that any one target element will fall within the favored location. There are
several reasons to doubt such an explanation for the effects we report here.
First, we have conducted individual observer analyses of response time as
afunction of location for trials in which only a single target was presented.
In every case, results from these analyses reveal no reliable effect of position
on RT, suggesting that in our experiments observers did not have a static,
spatial bias. Second, and moreimportantly, any simplefavored position argu-
ment would have to incorporate a motion contingency in that we do not find
redundancy gains for all motion types.

While an analysis of single-target RTs by position may rule out fixed,
favored positions models, it does not suffice to rule out the possibility that
favored positions or attentiona fixations are chosen randomly over trials (see
van der Heijden et al., 1983). One possible method for evaluating a random,
favored position model centers on a comparison of variahility as pure—target
number increases. |f the observed redundancy gains are the result of random
positional preferences, then variability should decrease as target number in-
creases. When only asingletarget is present in the display, the random selec-
tion of spatial locationswill necessarily lead to a mixture distribution defined
by relatively fast response times (i.e., when a random attentional fixation is
near the target element) and a higher percentage of relatively slow response
times (i.e., when the fixation is farther from the target element). Although
the exact mixture of fast and slow response times depends intimately on the
distribution of attentional fixations, as target number increases the proportion
of fast response times will grow relative to the proportion of slow response
times by virtue of the increased likelihood that any given fixation or spatial
preference will be near atarget element. By this account, increasing the num-
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ber of targets biases the mixture distribution toward fast response times at
the expense of slow response times. This effectively decreases both the vari-
ability and mean of the overall response time for multiple target displays
relative to single-target displays. Thus the prediction for amechanism driven
by random spatial biases is RT, < RT, < RT, and 03 < 03 < 0%, where
the subscript represents pure-target number.

To test our data against this prediction we examined the degree to which
the mean and variance for the observed pure—target conditions changed with
set size for al motion types. In Fig. 5 we have plotted change in response
time for the two- and four-target conditions (ART) against the associated
change in variance (Avariance) for homogeneous, expanding, contracting,
and curl flows (characteristic standard error bars are inset in the upper left
for reference). Changes in response time and variance have been normalized
across flow type by subtracting the respective one-target mean and variance
from the means and variances of the one-, two-, and four-target conditions.
In such aplot all one-target means and variances are brought into alignment
a the origin. If the effects reported here are the result of random spatial
biases, then all the data points in the plot should fall in the lower left quad-
rant. This gray region depicts the regime where both the mean and variance
have decreased relative to the one-target baselines. Asthe figure makes clear,
thereisvery little difference in variability across pure—target conditions, and
the majority of reliable differences are clearly in the wrong direction. Such
increases in variance as target number increases are inconsistent with a ran-
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FIG.5. A plot of normalized changein variability (A variance) against normalized change
in response time (ART) for the pure-target conditions [inset numbers (2 and 4) refer to target
number, h is homogeneous, e is expansion, ¢ is contraction, c—a is aperture bounded curl,

c— refers to the rotors]. The gray region in the lower left quadrant denotes the region where
the data should fall if there are favored positions or random attentional fixations across trials.
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dom spatial bias account, providing further evidence that the redundancy
gains we report are the product of spatial parallelism.”

Streak Formation in Sgnal Detection

The analysis of outcome fluctuations in signal detection provides further
support for the notion that direction analysisof curl fieldsisuniquely difficult
and resource consuming. Figure 6 shows the ensemble average runs z scores
for homogeneous, divergence, and curl flow fields along with their 95% con-
fidence limits plotted in black. The lower portion of the figure shows the
individual runs z scores for each participant in each condition. Recall that
negative z scores in this context arise when sequences of discrimination out-
come have fewer (and therefore longer) runs than would be expected if dis-
crimination were actually a statistically stationary Bernoulli process. All
three flow types show some streakinessin that they have distributions shifted
below z = 0, the null specified by stationary outcome probability and trial
independence. However, the distributions for homogeneous and divergence
sequences are shifted a full standard deviation (M= —1.07, M = —1.24).
The corresponding deviation from Bernoulli expectation is half as large in
the case of curl (M = —.52). Paired comparisons were conducted and no
significant differences were found between the homogeneous and divergence
ensembles. However, both homogeneous and divergence flows were signifi-
cantly different from curl in terms of the magnitude of outcome clustering
[t(4) = —3.405, p < .05; t(4) = —2.29, p < .05]. This statistical result is
reiterated visualy in Fig. 6: We see that the 95% confidence limits for both
the homogeneous and divergence conditions do not overlap with the confi-
dence limits obtained for curl. In addition, the homogeneous and divergence
confidence limits overlap substantially with each other, and both include the
point prediction for preattentive discrimination of —1.

These results are best appreciated when put in context with the ensemble
of studies conducted by Gilden and Wilson (1995). Figure 6 shows how
psychologically ‘‘simple’’ discriminations segregate from more demanding
discriminations along the runs z-score continuum. Homogeneous and diver-
genceflow are grouped with luminance, orientation, flash, and other preatten-

"We have also carried out extensive analyses of our data in the context of the race-model
inequalities (Miller, 1982). Though this form of analysisistypically used to rule out separate
activation accounts of redundancy gains in favor of coactivation models, it has also been
suggested as a test of randomly varying favored positions in that serial models necessarily
assume independent and separate processing of targets (see Mordkoff, Yantis, & Egeth, 1990).
Analyses were carried out separately for each observer in the homogeneous, expansion, and
contraction conditions. Results revealed small, but consistent effects of violation ranging from
the 5th to 25th percentiles for those observers in which large redundancy gains were present.
Though violation at any percentile provides evidence against both serial-based models and
paralel, separate-activation models, it is important to realize that violations at these levels
are driven primarily by a handful of relatively rare response times.
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FIG. 6. Results of fluctuations in outcome (correct versus incorrect) during repeated dis-
crimination. The top half of the figure shows ensemble averaged runs z scores (solid black
symbols) and the associated 95% confidence limits for each of the three motion flow types.
The lower portion of the figure shows the runs z score as a function of hit rate for each of
the 120 individual sequences of 240 trias. The gray symbols included in the figure are taken
from Gilden and Wilson (1995) and denote ensemble averages and 95% confidence limits for
avariety of discriminations known to be either preattentive (a—d) or demanding of resources
(e—i) [a = luminance; b = orientation; ¢ = side missing; d = flash; e = 2 fractdl; f = 1
fractal; g = tone 2IFC; h = ovateness; i = distance ratio]. See Gilden and Wilson (1995) for
a complete exposition of these experiments.

tive dimensions of discrimination. Curl is isolated from the other flows and
is associated with those discriminations requiring complex judgments of po-
sition (for example, fractal roughness, ovateness, and distance ratio).

DISCUSSION

Multiple target search and analysis of the fluctuations in discrimination
outcome provide consistent evidence that both homogeneous and divergence
flow fields support parallel acquisition of sign with little capacity limitation.
This evidence comes in the form of redundancy gains with multiple targets
and outcome clustering in sign discrimination that isafull standard deviation
from the expectation of trial independence. In contrast, the perception of
signin curl fields appearsto be attentionally demanding; there was no benefit
in search times with target redundancy, and rotation sign discrimination pro-
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duced alevel of outcome clustering that was on a par with other tasks requir-
ing focused attention. These differences cannot be explained in terms of
the inherent visibility of the various targets. We have explicitly shown that
single-element curl and homogeneous stimuli were equally discriminable
over eccentricity (see ‘‘Multiple-Target Search’’ under Methods), and all
motions were placed at threshold in the streak studies (on average about
75% accuracy). The differences found are interpretable only in terms of how
attention is allocated in the different motion domains.

Our work, while limited to relatively small numbers of motion elements,
suggests that the visual system is implicitly tuned to distal motion and not
to proximal flow. The attentional protocols wherein curl is segregated from
homogeneous and divergence flow appear to be related to scene-based as
opposed to image-based representations. In space, an object displacement
can produce both homogeneous and divergence flow depending on the line
of sight, and it is this equivalence that apparently underlies the common
parallelism that was found. While these results are at variance with an earlier
visual search study (Braddick & Holliday, 1991; but see Takeuchi, 1997),
and are somewhat counterintuitive in terms of the physiology, we have found
exactly the same distinctions in explicit memorial processes. Price and
Gilden (2000) found that observers could only recognize rotation direction
at chancein an *‘old/new’” memory paradigm, while they were quite accu-
rate in recognizing the directions of trandating and expanding/contracting
objects.

Despite the convergence that has emerged here, we are left with the prob-
lem of reconciling parallelism as it appearsin visua search and parallelism
asit appears in texture segmentation. One of the defining perceptual charac-
teristics of a parallel process is the formation of boundaries that are aligned
with regional differencesin stimulus quality. It isthe case that textures com-
posed of tranglating structure segment on the basis of local sign, while tex-
tures composed of diverging flows do not. That homogeneous and divergence
show similar levels of parallelism in multiple target search and streak forma-
tion implies that parallelism is not just one thing with unique perceptua
consequences. Whileit istrue that for most stimulus discriminations, texture
segmentation and visual search converge to provide a common measure of
attentional load, recent work has revealed a specia class of discriminations
for which these methods disagree. This class consists of conjunctively de-
fined stimulus differences that support spatially parallel visual search, but
presumably do not produce effortlessly segmenting regions (e.g., Rensink &
Enns, 1995; Snowden, 1998; Wolfe, 1992).

There are a number of potential differences between search and texture
segmentation tasks that may explain how thisincongruity arises. One differ-
ence that seems especialy relevant here concerns the extent to which each
task makes use of spatial integration. The global region formation that occurs
during visual processing of atexture requires massive spatial parallelism as
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well as integration of the various outputs produced by such paralelism. In
contrast, redundancy gainsin a visua search task can arise from target evi-
dence, that despite being acquired in parallel fashion, need not be integrated
over space (see Raab, 1962, for such a model). There is a growing body of
work that highlights the different roles that spatial pooling plays in search
and texture segmentation tasks by cataloging the effects of irrelevant varia-
tion on performance (Callaghan, Lasaga, & Garner, 1986; Pashler, 1988;
Snowden, 1998; Treisman, 1988; Wolfe, Chun, & Friedman-Hill, 1995). The
general consensus that has emerged from this work is that texture segmenta-
tion tasks appear to require spatial pooling of local outputs, whereas visual
search tasks do not. Spatial pooling leads, in the case of homogenous flow
fields, to the grouping rule known as common fate as well as to a salient
impression of depth ordering. The parallelism that isrevealed in visual search
for divergence does not involve pooling and merely reflects a simultaneous
awareness of different directions.

It isthe case that not all object motions have the same importance relative
to the goals and activities of humans. It matters where objects are in the
environment and the motions that take them from place to place are clearly
something that any successful animal is going to have to pay attention to.
Equally clear isthat rotations confer little of interest to predation, avoidance
behavior, or any activity that involves object positioning—for two reasons.
First, the orientations of objects are themselves generaly of little conse-
guence. But more importantly, there is an underlying symmetry in rotation
that is not present in trandation; any orientation can be realized by either a
clockwise or counterclockwise motion. The history of arotation is thus lost
in the final position, whereas the history of a general trandlation is not. The
logic of attentional alocation revealed here, though unexpected in terms of
motion physiology and complexity, is consistent with these basic boundary
conditions imposed by our ecology (Proffitt, 1993). Though there has been
little evidence to suggest an ecological division of maotion typesin the litera-
ture to date, the work reported here is based on converging support from
two independent paradigms and provides the first substantive demonstration
that the ecological significance of motion determines how attentional re-
sources are used.
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