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The fickle P value generates irreproducible results
Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

The reliability and reproducibility of science are under scrutiny. However, a major cause of this lack of 
repeatability is not being considered: the wide sample-to-sample variability in the P value. We explain 
why P is fickle to discourage the ill-informed practice of interpreting analyses based predominantly on 
this statistic.

Reproducible research findings are a cor-
nerstone of the scientific method, providing 
essential validation. There has been recent 
recognition, however, that the results of 
published research can be difficult to repli-
cate1–7, an awareness epitomized by a series 
in Nature entitled “Challenges in irrepro-
ducible research” and by the Reproducibility 
Initiative, a project intended to identify 
and reward reproducible research (http://
val idat ion.scienceexchange.com/#/
reproducibilityinitiative). In a recent 
meeting at the American Association for 
the Advancement of Science headquar-
ters  involving many of the major journals 
reporting biomedical science research, a 
common set of principles and guidelines 
was agreed upon for promoting transpar-
ency and reproducibility8. These discus-
sions and initiatives all focused on a num-
ber of issues, including aspects of statistical 
reporting9, levels of statistical power (i.e., 
sufficient statistical capacity to find an 
effect; a ‘statistically significant’ finding)10 
and inclusion-exclusion criteria. Yet a fun-
damental problem inherent in standard 
statistical methods, one that is pervasively 
linked to the lack of reproducibility in 
research, remains to be considered: the 

wide sample-to-sample variability in the P 
value. This omission reflects a general lack 
of awareness about this crucial issue, and 
we address this matter here.

Focusing on the P value during statistical 
analysis is an entrenched culture11–13. The 
P value is often used without the realization 
that in most cases the statistical power of 
a study is too low for P to assist the inter-
pretation of the data (Box 1). Among the 
many and varied reasons for a fearful and 
hidebound approach to statistical practice, 
a lack of understanding is prominent14. A 
better understanding of why P is so unhelp-
ful should encourage scientists to reduce 
their reliance on this misleading concept.

Readers may know of the long-stand-
ing philosophical debate about the value 
and validity of null-hypothesis test-
ing15–17. Although the P value formalizes  

null-hypothesis testing, this article will not 
revisit these issues. Rather, we concentrate 
on how P values themselves are misunder-
stood.

Although statistical power is a central 
element in reliability18, it is often consid-
ered only when a test fails to demonstrate 
a real effect (such as a difference between 
groups): a ‘false negative’ result (see Box 2 
for a glossary of statistical terms used in 
this article). Many scientists who are not 
statisticians do not realize that the power of 
a test is equally relevant when considering 
statistically significant results, that is, when 
the null hypothesis appears to be unten-
able. This is because the statistical power of 
the test dramatically affects our capacity to 
interpret the P value and thus the test result. 
It may surprise many scientists to discover 
that interpreting a study result from its P 
value alone is spurious in all but the most 
highly powered designs. The reason for 
this is that unless statistical power is very 
high, the P value exhibits wide sample-to-
sample variability and thus does not reliably 
indicate the strength of evidence against the 
null hypothesis (Box 1).

We give a step-by-step, illustrated expla-
nation of how statistical power affects the 
reliability of the P value obtained from an 
experiment, with reference to previous 
Points of Significance articles published 
in Nature Methods, to help convey these 
issues. We suggest that, for this reason, 
the P value’s preeminence16 is unjustified 
and arguments about null-hypothesis tests 
become virtually irrelevant. Researchers 
would do better to discard the P value and 
use alternative statistical measures for data 
interpretation.

Population A Population B

1

0 0.5

Figure 1 | Simulated data distributions of two 
populations. The difference between the mean 
values is 0.5, which is the true (population) 
effect size. The standard deviation (the spread of 
values) of each population is 1.np
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the misunderstanding about P
Ronald Fisher developed significance 
testing to make judgments about hypoth-
eses19, arguing that the lower the P value, 
the greater the reason to doubt the null 
hypothesis20. He suggested using the 
P value as a continuous variable to aid 
judgment. Today, scientific articles are 
typically peppered with P values, and often 
treat P as a dichotomous variable, slavishly 
focusing on a threshold value of 0.05. Such 
focus is unfounded because, for instance, 
P = 0.06 should be considered essential-
ly the same as P = 0.04; P values should 
not be given an aura of exactitude21,22. 
However, using P as a graded measure of 
evidence against the null hypothesis, as 
Fisher proposed, highlights the even more 
fundamental misunderstanding about P. 
If statistical power is limited, regardless 
of whether the P value returned from a 
statistical test is low or high, a repeat of 
the same experiment will likely result in a 
substantially different P value17 and thus 
suggest a very different level of evidence 
against the null hypothesis. Therefore, 
the P value gives little information about 
the probable result of a replication of the 
experiment; it has low test-retest reliabil-
ity. Put simply, the P value is usually a poor 
test of the null hypothesis. Most research-
ers recognize that a small sample is less 
likely to satisfactorily reflect the popula-
tion that they wish to study, as has been 
described in the Points of Significance 
series21, but they often do not realize that 
this effect will influence P values. There 
is variability in the P value23, but this is 
rarely mentioned in statistics textbooks or 
in statistics courses.

Indeed, most scientists employ the 
P value as if it were an absolute index of the 

truth. A low P value is automatically taken 
as substantial evidence that the data sup-
port a real phenomenon. In turn, research-
ers then assume that a repeat experiment 
would probably also return a low P value 
and support the original finding’s validity. 
Thus, many studies reporting a low P value 
are never challenged or replicated. These 
single studies stand alone and are taken to 
be true. In fact, another similar study with 
new, different, random observations from 
the populations would result in different 
samples and thus could well return a P 
value that is substantially different, possi-
bly providing much less apparent evidence 
for the reported finding.

Why statistical power is rarely 
sufficient for us to trust P
P values are only as reliable as the sample 
from which they have been calculated. 
A small sample taken from a population 
is unlikely to reliably reflect the features 
of that population21. As the number of 
observations taken from the population 
increases (i.e., sample size increases), the 

sample gives a better representation of the 
population from which it is drawn because 
it is less subject to the vagaries of chance. 
In the same way, values derived from these 
samples also become more reliable, and 
this includes the P value. Unfortunately, 
even when statistical power is close to 
90%, a P value cannot be considered to be 
stable; the P value would vary markedly 
each time if a study were replicated. In 
this sense, P is unreliable. As an example, 
if a study obtains P = 0.03, there is a 90% 
chance that a replicate study would return 
a P value somewhere between the wide 
range of 0–0.6 (90% prediction intervals), 
whereas the chances of P < 0.05 is just 56% 
(ref. 24). In other words, the spread of pos-
sible P values from replicate experiments 
may be considerable and will usually range 
widely across the typical threshold for sig-
nificance of 0.05. This may surprise many 
who believe that a test with 80% power is 
robust; however, this view comes from the 
accepted risk of a false negative.

To illustrate the variability of P values 
and why this happens, we will compare 
observations drawn from each of two 
normally distributed populations of data, 
A and B (Fig. 1). We know that a differ-
ence of 0.5 exists between the population 
means (the true effect size), but this dif-
ference may be concealed by the scatter of 
values within the population. We compare 
these populations by taking two random 
samples, one from A and the other from 
B. If we had to conserve resources, which 
could be necessary in practical situations, 
we might limit our two samples to ten 
observations each. In practice, we would 
conduct only one experiment, but let us 
consider the situation of having conduct-
ed four such simulated experiments (Fig. 
2). For each experiment, we use standard 

Figure 2 | Small samples show substantial variation. We drew samples of ten values at random from 
each of the populations A and B from Figure 1 to give four simulated comparisons. Horizontal lines 
denote the mean. We give the estimated effect size (the difference in the means) and the P value when 
the sample pairs are compared.

BOX 1  POWER ANALYSIS AND REPEATABILITY
A reasonable definition of the P value is that it measures the strength of evidence 
against the null hypothesis. However, unless statistical power is very high (>90%), 
the P value does not do this reliably. Power analysis combined with an either-or 
interpretation of the P value (simply either ‘statistically significant’ or ‘statistically 
nonsignificant’) allows us to estimate how often, if we were to conduct many replicate 
tests, a ‘statistically significant result’ will be found (assuming no type II errors)18. For 
instance, if the null hypothesis is false and a study has a power of 80%, then out of 
100 replicates, about 80 of them will be deemed statistically significant. In this sense, 
statistical power quantifies the repeatability of the P value, but only in terms of the 
either-or interpretation. Furthermore, in the real world, the power of a study is not 
known; at best it can be estimated. Finally, this interpretation of P is flawed because 
the strength of evidence against the null hypothesis is a continuous function of the 
magnitude of P (ref. 41). 
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statistics, such as the mean, to estimate 
features of the population from which 
the sample was drawn. In addition, and 
of more relevance, we can estimate the 
difference between the means (estimated 
effect size) and also calculate the P value 
for a two-tailed test. For the four repeated 
experiments, both the effect size and the 
P value vary, sometimes substantially, 
between the replicates (Fig. 2). This is 
because these small samples are affected 
by random variation (known as sampling 
variability). To improve the reliability of 
the estimated effect size, we can reduce 
the effects of random variation, and thus 
increase the power of the comparison, if 
we take more samples (Fig. 3). However, 
although increasing statistical power 
improves the reliability of P, we find that 

the P value remains highly variable for all 
but the very highest values of power.

Taking larger samples increases the 
chance of detecting a particular effect size 
(such as the difference between the popu-
lations), i.e., the frequency that we find a 
P < 0.05 (Fig. 4). Increasing sample size 
increases statistical power, and thus a pro-
gressively greater proportion of P values < 
0.05 are obtained. However, we still face 
substantial variation in the magnitude of 
the P values returned. Although studies are 
often planned to have (an estimated) 80% 
power, when statistical power is indeed 
80%, we still obtain a bewildering range of 
P values (Fig. 4). Thus, as Figure 4 shows, 
there will be substantial variation in the P 
value of repeated experiments. In reality, 
experiments are rarely repeated; we do 

not know how different the next P might 
be. But it is likely that it could be very dif-
ferent. For example, regardless of the sta-
tistical power of an experiment, if a single 
replicate returns a P value of 0.05, there is 
an 80% chance that a repeat experiment 
would return a P value between 0 and 0.44 
(and a 20% change that P would be even 
larger). Thus, and as the simulation in 
Figure 4 clearly shows, even with a highly 
powered study, we are wrong to claim that 
the P value reliably shows the degree of 
evidence against the null hypothesis. Only 
when the statistical power is at least 90% is 
a repeat experiment likely to return a simi-
lar P value, such that interpretation of P 
for a single experiment is reliable. In such 
cases, the effect is so clear that statistical 
inference is probably not necessary25.

95% confidence intervals (95% CIs). The range of values around a 
sample statistic (typically the mean) that will in theory encompass 
the population statistic for roughly 95% of all samples drawn.

Effect size. A measure, sometimes normalized, of the magnitude of 
an observed effect. An effect measured in a sample is an estimate 
of the true (population) effect size. Interpretation of the P value is 
usually based on the assumption that the true effect size is 0.

False negative. See “Type II error.”

Normal distribution. Also called the Gaussian distribution; 
a frequency distribution that can be mathematically defined 
(see equations in Box 3) and that is assumed to be common 
empirically.

Null hypothesis. The backbone of a substantial number of 
statistical tests. The observer assumes that there is no difference 
between the samples and thus that they could have been drawn 
from the same population. The statistical test estimates the 
likelihood that the observed values, or more extreme values, would 
have been obtained if the null hypothesis were true.

P value. Two reasonable definitions are (i) the strength of evidence 
in the data against the null hypothesis and (ii) the long-run 
frequency of getting the same result or one more extreme if the 
null hypothesis is true.

Population. A very large group that a researcher wishes to 
characterize with measures such as the mean and the spread of the 
data but that is too vast to be collected exhaustively such that an 
exact measure of the population cannot be obtained.

(Random) sample. Measures taken randomly from a defined 
population of interest, which are used to provide an estimate of 

the characteristics of the population. The bigger the sample size, 
the more accurate the characterization of the population.

Replicate. A repeat procedure using a new sample from the 
appropriate population(s).

Sample size. The number of measures (observations) in the 
sample.

Standard deviation. An estimate of the mean variability (spread) 
of a sample.

Statistical power. A measure of the capacity of an experiment to 
find an effect (a ‘statistically significant result’) when there truly 
is an effect. This depends on several features of the experiment: 
the threshold for significance, size of the expected effect, variation 
present in the population, alternative hypothesis (one or two 
sided), nature of the test (paired or unpaired) and sample size. 
Power involves considering both the size of the effect that is 
deemed important and the background variation of the measure 
that is being taken, analogously to a signal-to-noise ratio. In 
most cases, the influence of natural variation can be reduced by 
increasing the sample size. With a greater sample size, the measure 
can be assessed more reliably because the features of the sampled 
population can be gauged more accurately.

(Threshold for) significance. The value at or below which P is 
interpreted as ‘statistically significant’; this should be used only 
if the Neyman-Pearson approach to null-hypothesis testing is 
employed42.

Type II error (or ‘false negative’). Incorrectly concluding that 
there is no effect in the population when there truly is an effect. 
(A type I error is the incorrect conclusion that there is an effect in 
the population when there truly is no effect.)

BOX 2  GLOSSARY
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an additional problem with P: 
exaggerated effect sizes
Simulations of repeated t-tests also illustrate 
the tendency of small samples to exagger-
ate effects. This can be shown by adding an 
additional dimension to the presentation of 
the data. It is clear how small samples are 
less likely to be sufficiently representative 
of the two tested populations to genuinely 
reflect the small but real difference between 
them. Those samples that are less repre-
sentative may, by chance, result in a low P 
value (Fig. 4). When a test has low power, a 
low P value will occur only when the sam-
ple drawn is relatively extreme. Drawing 
such a sample is unlikely, and such extreme 
values give an exaggerated impression of 
the difference between the original popula-
tions (Fig. 5). This phenomenon, known as 
the ‘winner’s curse’, has been emphasized by 
others10. If statistical power is augmented by 
taking more observations, the estimate of the 
difference between the populations becomes 
closer to, and centered on, the theoretical 
value of the effect size (Fig. 5).

Most readers will probably appreci-
ate that a large P value associated with 
80% statistical power is poor evidence 
for lack of an important effect. Fewer 
understand that unless a small P value 
is extremely small, it provides poor evi-
dence for the presence of an important 
effect. Most scientific studies have much 
less than 80% power, often around 50% 
in psychological research26 and averag-
ing 21% in neuroscience10. Reporting 
and interpreting P values under such cir-
cumstances is of little or no benefit. Such 
limited statistical power might seem sur-
prising, but it makes sense when consid-
ering that a medium effect size of 0.5 
and sample sizes of 30 for each of two 
conditions provide statistical power of 
49%. Weak statistical power results from 
small sample sizes—which are strongly 
encouraged in animal studies for ethical 
reasons but increase variability in the 
data sample—or from basing studies on 
previous works that report inflated effect 
sizes.

alternatives to P
Poor statistical understanding leads to 
errors in analysis and threatens trust 
in research. Poorly reproducible stud-
ies impede and misdirect the progress of 
science, may do harm if the findings are 
applied therapeutically, and may discourage 
the funding of future research. The P value 
continues to be held up as the key statistic 
to report and interpret27,28, but we should 
now accept that this needs to change. In 
most cases, by simply accepting a P value, 
we ignore the scientific tenet of repeatabil-
ity. We must accept this inconvenient truth 
about P values23 and seek an alternative 
approach to statistical inference. The natu-
ral desire for a single categorical yes-or-no 
decision should give way to a more mature 
process in which evidence is graded using 
a variety of measures. We may also need 
to reflect on the vast body of material that 
has already been published using standard 
statistical criteria. Previous reliance on P 
values emphasizes the need to reexamine 
previous results and replicate them if pos-
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Figure 4 | Sample size affects the distribution of P values. We drew random samples of the indicated sizes from each of the two simulated populations in Figure 1  
and made 1,000 simulated comparisons with a two-sample t-test for each sample size. The distribution of P values is shown; it varies substantially depending 
on the sample size. Above each histogram we show the number of P values at or below 0.001, 0.01, 0.05 (red) and 1. The empirical power is the percentage of 
simulations in which the true difference of 0.5 is detected using a cutoff of P < 0.05. These broadly agree with the theoretical power.

Figure 3 | A larger sample size estimates effect size more precisely. We drew random samples of the indicated sizes from each of the two simulated 
populations in Figure 1 and made 1,000 simulated comparisons for each sample size. We assessed the precision of the effect size from each comparison using 
the 95% CI range. The histograms show the distributions of these 95% CI ranges for different sample sizes. As sample size increased, both the range and 
scatter of the confidence intervals decreased, reflecting increased power and greater precision from larger sample sizes. The vertical scale of each histogram 
has been adjusted so that the height of each plot is the same.
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In turn, power analysis can be replaced with 
‘planning for precision’, which calculates 
the sample size required for estimating the 
effect size to reach a defined degree of pre-
cision40.

The P value continues to occupy a promi-
nent place within the conduct of research, 

sible2,4 (http://validation.scienceexchange.
com/#/reproducibilityinitiative).

We must consider alternative methods of 
statistical interpretation that could be used. 
Several options are available, and although 
no one approach is perfect15, perhaps the 
most intuitive and tractable is to report 
effect size estimates and their precision 
(95% confidence intervals (95% CIs; see 
Box 3 for statistical formulae discussed in 
this article)29,30, aided by graphical pre-
sentation31–34. This approach to statistical 
interpretation emphasizes the importance 
and precision of the estimated effect size, 
which answers the most frequent question 
that scientists ask: how big is the difference, 
or how strong is the relationship or associa-
tion? In other words, although researchers 
may be conditioned to test null hypotheses 
(which are usually false34), they really want 
to find not only the direction of an effect 
but also its size and the precision of that 
estimate, so that the importance and rel-
evance of the effect can be judged17,35,36.

Specifically, an effect size gives quantita-
tive information about the magnitude of 
the relationship studied, and its 95% CIs 
indicate the uncertainty of that measure 
by presenting the range within which the 
true effect size is likely to lie (Fig. 6). To aid 
interpretation of the effect size, researchers 
may be well advised to consider what effect 
size they would deem important in the con-
text of their study before data analysis.

Although effect sizes and their 95% CIs 
can be used to make threshold-based deci-
sions about statistical significance in the 
same way that the P value can be applied, 
they provide more information than the 
P value17, in a more obvious and intuitive 
way37. In addition, the effect size and 95% 
CIs allow findings from several experiments 
to be combined with meta-analysis to obtain 
more accurate effect-size estimates, which is 
often the goal of empirical studies. Effect 
size can be appreciated most easily in the 
popular types of statistical analysis where 
a simple difference between group means 
is considered. However, even in other cir-
cumstances—such as measures of goodness 
of fit, correlation and proportions—effect 
sizes and, importantly, their 95% CIs, can 
also be expressed. Such tests and the soft-
ware needed for the 95% CIs to be calculat-
ed and interpreted are readily available38. In 
addition, modern statistical methods such as 
bootstrap techniques and permutation tests 
have been developed for the analysis of small 
samples common in scientific studies39.

When interpreting data, many scientists 
appreciate that an estimate of effect size is 
relevant only within the context of a specific 
study. We should take this further and not 
only include effect sizes and their 95% CIs 
in analyses but also focus our attention on 
these values and discount the fickle P value. 

Figure 5 | How sample size alters estimated effect size. Using the indicated sample sizes, we simulated 
a two-sample t-test 1,000 times at each sample size using the populations in Figure 1. Right panels, 
estimated effect size (y axis) and the associated P value (x axis) for each simulation. Red dots show 
single simulations, and the contours outline increasing density of their distribution. For example, for 
a sample size of 64, the simulations cluster around P = 0.01 and an estimated effect size of 0.50. Each 
right y axis is labeled with the biggest and smallest effect sizes from simulations where P < 0.05. The 
true (population) effect size of 0.50 is indicated on the left y axis. Left panels, distribution of effect 
size for ‘statistically significant’ simulations (i.e., observed P < 0.05). When the sample size is 30 
(power = 48%), the estimated effect size exceeds the true difference in 97% of simulations (shaded 
columns). For samples of 100 (power = 94%), the estimated effect size exceeds the true effect size in 
roughly half (55%) the simulations.
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and discovering that P is flawed will leave 
many scientists uneasy. As we have demon-
strated, however, unless statistical power is 
very high (and much higher than in most 
experiments), the P value should be inter-
preted tentatively at best. Data analysis and 
interpretation must incorporate the uncer-
tainty embedded in a P value.
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where ta/2 is the critical two-tailed value in the t-distribution 
for n1 + n2 – 2 degrees of freedom. There is a probability of 1 – a 
that this interval will contain the true difference between the 
population means.

Normal distribution

( )2 2/21 
2

XY e μ=   

describes the distribution of values in a normal population.

t-statistic for two independent samples

For samples with an equal number of subjects in each group and 
the null hypothesis H0: µ1 = µ2

1 2 X Xt =
s1 s2
n1 n2
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