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INTRODUCTION: Stress-related disorders arise
from the interplay between genetic suscepti-
bility and stress exposure, occurring throughout
the lifespan. Progressively, these interactions
lead to epigenetic modifications in the human
genome, shaping the expression of genes and
proteins. Prior postmortem brain studies have
attempted to elucidate the molecular pathol-
ogy of posttraumatic stress disorder (PTSD)
andmajor depressive disorder (MDD) compared
with neurotypical controls (NCs) in a single-omic
manner, revealing genomic overlap, sex differ-
ences, and immune and interneuron signaling
involvement. However, without integrative sys-
tems approaches, progress in understanding
the molecular underpinnings of these preva-
lent and debilitating disorders is hindered.

RATIONALE: To tackle this roadblock, we have
created a brain multiregion, multiomic data-
base of individualswithPTSDandMDDandNCs
(77 per group, n = 231) to describe molecular al-
terations across three brain regions: the central
nucleus of the amygdala (CeA),medial prefrontal
cortex (mPFC), and hippocampal dentate gyrus
(DG) at the transcriptomic, methylomic, and pro-
teomic levels. By using this multiomic strategy
that merges information across biological layers

and organizational strata and complementing
it with single-nucleus RNA sequencing (snRNA-
seq), genetics, and blood plasma proteomics
analyses, we sought to reveal an integrated-
systems perspective of PTSD and MDD.

RESULTS:We found molecular differences pri-
marily in themPFC,with differentially expressed
genes (DEGs) and exons carrying the most
disease signals. However, altered methylation
was seen mainly in the DG in PTSD subjects,
in contrast to the CeA inMDD subjects. Repli-
cation analysis substantiated these findings
withmultiomic data from two cohorts (n = 114).
Moreover,we foundamoderate overlap between
the disorders, with childhood trauma and sui-
cide being primary drivers of molecular varia-
tions in both disorders, and sex specificity being
more notable in MDD. Pathway analyses linked
disease-associated molecular signatures to im-
mune mechanisms, metabolism, mitochondria
function, neuronal or synaptic regulation, and
stress hormone signalingwith low concordance
across omics. Top upstream regulators and tran-
scription factors included IL1B, GR, STAT3,
and TNF. Multiomic factor and gene network
analyses provided an underlying genomic struc-
ture of the disorders, suggesting latent factors

and modules related to aging, inflammation,
vascular processes, and stress.
To complement themultiomics analyses, our

snRNA-seq analyses in the dorsolateral PFC
(n = 118) revealed DEGs, dysregulated path-
ways, and upstream regulators in neuronal and
non-neuronal cell-types, including stress-related
gene signals. Examining the intersection of brain
multiomics with blood proteins (in >50,000 UK
Biobank participants) revealed significant cor-
relation, overlap, and directional similarity be-
tween brain-to-blood markers. Fine-mapping
of PTSD and MDD genome-wide association
studies’ (GWASs’) results showed a limited over-
lap between risk and disease processes at the
gene and pathway levels.
Ultimately, prioritized genes with multire-

gion, multiomic, or multitrait disease associa-
tions were members of pathways or networks,
showed cell-type specificity, had blood bio-
marker potential, or were involved in genetic
risk for PTSD and MDD.

CONCLUSION: Our findings unveil shared and
distinct brain multiomic molecular dysregu-
lations in PTSD and MDD, elucidate the in-
volvement of specific cell types, pave the way
for the development of blood-based biomark-
ers, and distinguish risk from disease processes.
These insights not only implicate established
stress-related pathways but also reveal potential
therapeutic avenues.▪
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Systems biology dissection of PTSD and MDD. The interplay between genetic susceptibility and stress exposure, occurring both early and later in life, contributes
to the pathogenesis of stress-related disorders and their progression after diagnosis until death. Our integrative systems approach combines multiregion, multiomic
analyses with single-nucleus transcriptomics, blood plasma proteomics, and GWAS-based fine-mapping to provide deeper insights into molecular mechanisms
associated with risk and those involved in the disease process.
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The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic
study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the
central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC).
Genes and exons within the mPFC carried most disease signals replicated across two independent
cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones.
Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus
RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and
non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were
conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies
to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in
both disorders and propose potential therapeutic targets and biomarkers.

T
he development of stress-related disor-
ders, such as posttraumatic stress disorder
(PTSD) and major depressive disorder
(MDD), involves complex interactions
between genetic susceptibility and expo-

sure to traumatic stress. Over the last two
decades, substantial efforts have focused on
identifying the underlying risk factors and
molecular mechanisms as well as tackling the

high rates of comorbidity and disorder heter-
ogeneity associated with PTSD and MDD.
Genome-wide association studies (GWAS) re-

vealed the heritability, polygenic architecture,
and genetic overlap of PTSD and MDD (1–6).
Previous work profiling molecular alterations of
stress-related mental disorders in blood (7–13)
has implicated the innate immune response
and regulation by stress hormones such as

glucocorticoids (GC), but conclusions have been
limitedowing to lack of direct access to the brain
and its cell types. The availability of new, large,
well-characterized postmortem brain collections
of PTSD and MDD subjects and neurotypical
controls (NCs) (14) enabled the investigation of
brain-based molecular alterations. Genome-
wide transcriptomic and methylomic studies of
prefrontal cortex (PFC) subregions (15–19)
and amygdala (AMY) nuclei (17) in PTSD and
MDD revealed a moderate genomic overlap
and sex differences, confirmed immune dysreg-
ulations, and implicated both interneuron- and
glia-based signaling. These studies converged
with parallel functional analyses of GWAS loci
(20, 21). Targeted transcriptomic and proteomic
postmortem analyses also focused on disease
associations with expression of immune- and
stress-related genes (22). Single-nucleus RNA se-
quencing (snRNA-seq) suggested someneuronal
and non-neuronal cell types related to risk loci,
stress pathways, and/or sex differences (23–25).
Despite recent progress, reductionist single-

omic approaches, although valuable, likely miss
a comprehensive picture. Multiomic approaches
combining data from genetics, transcriptomics,
epigenomics, and proteomics, among others,
may unveil an integrative systems view of stress-
related diseases (26, 27). In this work, we pro-
vide a systematic characterization of a large
multiregion, multiomic dataset of PTSD and
MDD generated by the PTSDBrainomics Pro-
ject of the PsychENCODE Consortium (PEC)
Phase 2 (Fig. 1). The dataset consists of three
brain regions [medial PFC (mPFC), dentate
gyrus (DG) of the hippocampus (HIP), and
central nucleus of AMY (CeA)] from 231 sub-
jects with PTSD and/or MDD versus NCs split
over twocohorts.We interrogateddisease-specific
molecular changes at four transcriptomic lev-
els [~22,000 genes, ~335,000 exons, ~140,000
exon-exon junctions (jxs), and ~198,000 tran-
scripts (txs)], one methylated DNA (mDNA)
level [~740,000 cytosine-phosphate-guanine
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sites (CpGs)] and two proteomic levels [~6200
proteins and ~60,000 peptides]. Replication
was tested in equivalent datasets from up to
114 additional subjects. Analyses were com-
plemented by a rigorous exploration of down-
stream pathways, multiomic latent factors,
and gene networks. In parallel, we tackled cell-
type specificity by conducting snRNA-seq anal-
ysis of 118 dorsolateral PFC (dlPFC) samples
(23–25), and evaluated blood-based protein
biomarkers in >50,000 UK Biobank (UKBB)
participants. Lastly, PTSD and MDD risk was
captured by the largest currently available
GWAS datasets (5, 6), allowing investigation of
the overlap of GWAS-based risk genes with our
postmortem brain-based disease process genes
[defined in (28)]. Our results suggested that
multiregion, multiomic mechanisms underlie
shared and distinct brain pathology in PTSD
andMDDand that they overlapwith cell type–

specific, blood-based and genetically mediated
mechanisms.

Multiregion, multiomic signatures
in PTSD and MDD

Discovery cohorts 1 [“Disc.1,” 50/group (150
total) (table S1A-1)] and 2 [“Disc.2,” 27/group
(81 total) (table S1A-2)] were initially ana-
lyzed separately. No significant differences
were found between disease groups and NCs
in cell-type proportions, as estimated from
RNA genes or CpGs (tables S1B-1 and S1B-2).
We then meta-analyzed the results from both
cohorts and revealed multiregion, multiomic
alterations for both disorders (PTSD, Fig. 2 and
table S2A, 1 to 21;MDD, Fig. 3 and table S2B, 1 to
21). Most differential gene expression (DGE) sig-
nals passing the 5% false discovery rate (FDR)
levelwere found inmPFC for bothPTSD (Fig. 2A)
andMDD (Fig. 3A), with differentially expressed

genes (DEGs) and exons leading, followed by
jxs in PTSD, and txs inMDD. In the other brain
regions, genes and exons in MDD showed a
substantial number of FDR-significant signals
(FDR-adjusted P < 0.05). We found many dif-
ferentially methylated positions (DMPs) in the
DG in PTSD (Fig. 2B) and less inMDD (Fig. 3B).
Similarly, differentially methylated regions
(DMRs)weremainly observed in theDG inPTSD
(95) (Fig. 2B and table S2C) and the CeA (17) and
DG (13) in MDD (Fig. 3B and table S2C). PTSD
had slightly less differentially expressed pro-
teins (DEPs) and peptides (Fig. 2C) compared
with MDD (Fig. 3C). These findings were con-
firmedbycountingFDR-significantdistinct genes
in both PTSD (Fig. 2D) and MDD (Fig. 3D).
We ranmega-analyses and sensitivity analy-

ses focused onmultiancestry composition (fig. S1)
and RNA quality to ensure the robustness of
our results. Results were strongly correlated

Fig. 1. Overall study design. We generated a
large multiregion, multiomic postmortem brain
database of PTSD (n = 77) and MDD (n = 77)
compared with NC (n = 77) over two discovery
cohorts (Disc.1 and Disc.2). Three brain regions
(mPFC, DG, and CeA) were assessed for bulk
RNA expression (of genes, exons, exon-exon
junctions, and transcripts), DNA methylation
(CpGs and regions), and protein expression
(proteins and peptides). Primary analyses
included differential transcriptomic, methylomic,
and proteomic disease-specific interrogation,
followed by pathway, multiomic factor, and gene
coexpression network analyses and identification of
top genes. Subanalyses were performed within
traits (i.e., biological sex, childhood trauma, and
suicide completion), across traits (PTSD-or-MDD
versus NC) and between traits (PTSD versus
MDD) to assess contributing factors, disease
specificity, and overlap. For replication, we
(i) generated a newmultiregion, multiomic dataset
of samples from 73 subjects (Rep.1), reanalyzed
data from prior studies (Rep.2) consisting of
41 additional samples from ventromedial PFC
(vmPFC), and (ii) conducted meta-analysis
of these two independent cohorts (nmeta-analysis =
114). In parallel, we (i) acquired two snRNA-seq
datasets (Sc.1, n = 47; Sc.2, n = 71) from dlPFC
in two batches each to explore disease-associated
cell type–specific transcriptomic signatures
by conducting meta-analysis across batches
(nmeta-analysis = 118), (ii) assessed the blood
plasma protein–based biomarker potential in
>50,000 subjects of the UKBB, and (iii) fine-
mapped the PTSD and MDD risk loci using
GWAS datasets and investigated the overlap of
GWAS-based risk genes and pathways with
disease process genes. The extensive generated
data enabled us to identify genes significantly
involved in both disorders. Dx, diagnosis.
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Fig. 2. Transcriptomic, methylomic, and proteomic analyses of PTSD in
three brain regions. (A to C) Plots of the meta-analysis of 231 subjects in
mPFC, DG, and CeA. [(A) and (C)] Volcano plots of differentially regulated
transcriptomic (A) and proteomic features (C). Colored dots denote nominally
significant genes (P < 0.05), with the darker ones passing FDR-adjusted P <
0.05. Five features with the lowest P in each direction and the replicated ones
[see details in (F)] are named. (B) Manhattan plots of the CpGs interrogated
for differential methylation (x axis, genomic location; y axis, –log10P). DMPs
passing FDR-adjusted P < 0.05 are denoted in purple. CpGs that belong to a DMR
(>2 CpGs, Šidák P < 0.05) are red, and within those, the CpGs with FDR-adjusted
P < 0.05 are green. (D) Scatterplot denoting the number of distinct genes
corresponding to FDR-significant features (size coded) per feature type per brain
region. The percentage of FDR-adjusted features over the N of features is labeled
next to the respective point. (E) Boxplot of r corresponding to correlations
of effect sizes (log2FC or beta) in discovery meta-analysis (“Disc”) and Rep.1
cohort analysis (“Rep”) across brain regions. Three significance thresholds were

used: “genome-wide” (no threshold), considering all features; “nom Disc,”
considering only nominally significant (P < 0.05) features in Disc; and “nom Disc
+Rep,” considering overlapping nominally significant features in Disc and Rep.
(F) Lollipop plots of the number of replicated features per omic type with their
respective gene and protein annotations and direction of effect (upward black
arrowheads, increased; downward black arrowheads, decreased). (G) (Left)
Multiregion boxplots depicting the range of r corresponding to correlations of
effect sizes between PTSD differential analyses of each brain region for
each feature. (Middle) Boxplots depicting the range of r between PTSD differential
analyses results with results from subanalyses, including sex specificity,
childhood trauma, and suicide completion, across brain regions. (Right) Boxplots
of r between PTSD differential analyses results with results from MDD primary
analysis and PTSD-or-MDD and PTSD versus MDD subanalyses. In (D) to
(G), colors denote different omic features and shape different brain regions. In
(E) and (G), horizontal dotted lines denote minimal (r < 0.1), moderate (0.3 <
r < 0.6), and high (r > 0.6) correlation.
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with those from the discovery meta-analysis
[fig. S2A; for details, see (28)].

Replication analyses

We analyzed data from two replication cohorts
[“Rep.1,” 24/group (table S3A, 1 and 2); “Rep.2:”
14/group (table S3B, 1 and 2)] with details de-

scribed in (28). The majority of the correlations
of discovery meta-analysis with Rep.1 results
were moderate to high (Spearman's r = 0.3 to
0.6), indicating concordant associations (Figs.
2E and 3E and fig. S2B). The correlation drivers
were feature type (F test, P = 7.36 × 10–8; RNA >
protein >mDNA), brain region (F test,P= 7.91 ×

10–7; DG > mPFC > CeA), and statistical thresh-
old (F test, P = 5.30 × 10–6). FDR-significant
features in discovery meta-analyses showed
beyond-chance rate of concordant direction
and nominal significance (P < 0.05) in Rep.1
results (PTSD, table S3C, 1 to 21; MDD, table
S3C, -22 to -42; enrichment tests, table S3D),

A B C

D E F
G

Fig. 3. Transcriptomic, methylomic, and proteomic analyses of MDD in
three brain regions. See legend of Fig. 2 for detailed description. (A and C)
Volcano plots of differentially regulated transcriptomic (A) and differentially
expressed proteomic features (C). (B) Manhattan plots of CpGs with genomic
loci on the x axis and –log10P on the y axis. Red, Šidák P–significant DMRs;
purple, FDR-significant DMPs; green, DMPs within DMRs. (D) Scatterplot
denoting the number of distinct genes corresponding to FDR-significant features
(size coded) per feature type per brain region, with the respective percentage
labeled. (E) Boxplot of correlation coefficient r of effect sizes (log2FC or beta)
in discovery meta-analysis (“Disc”) and Rep.1 cohort analysis (“Rep”) across
brain regions and three significance thresholds. (F) Lollipop plots of the number

of replicated features per omic type with their respective gene and protein
annotations and direction of effect (upward arrowheads, increased; downward
arrowheads, decreased). (G) (Left) Boxplots of correlation coefficient r of effect
sizes between MDD analyses of each brain region for each feature. (Middle)
Boxplots depicting the range of r between MDD primary analyses with
subanalyses across brain regions. (Right) Boxplots of r between MDD differential
analyses results with results from PTSD primary analysis and PTSD-or-MDD and
PTSD versus MDD subanalyses. In (D) to (G), colors denote different omic
features and shape different brain regions. In (E) and (G), horizontal dotted lines
denote minimal (r < 0.1), moderate (0.3 < r < 0.6),
and high (r > 0.6) correlation.
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which included 43 replicated features (11 PTSD
and 32 MDD) with FDR-adjusted P < 0.05 in
Rep.1 mapped to 28 distinct genes (table S3,
E and F). For Rep.2 (fig. S2B), we confirmed
stronger correlations at the gene level com-
pared with methylation. Meta-analysis of Rep.1
and Rep.2 revealed concordant replicated DEGs
to discovery cohorts in PTSD (binomial P =
2.42 × 10–184) and MDD (binomial P = 4.33 ×
10–91), adding three replicated RNA genes for
each trait (table S3, E and F).
Out of 49 replicated features, 43 had the same

direction as thediscoverymeta-analysis (Figs. 2F
and 3F). Out of 14 PTSD replicated features (10
genes), 12 were found in the mPFC, and 29 of
35 MDD replicated features (16 genes) were
found in the CeA. PTSD replicated genes were
more related to brain cell types (notable exam-
ples include up-regulation of EPHA2 and PIRT,
ARHGAP24 hypermethylation, and increased
GLUD1protein expression; table S3E) compared
with replicated MDD genes reflecting elevated
cytokine signaling (table S3F).

Between-region correlations

Within the primary PTSD and MDD analyses,
we found weak to moderate between-region
correlations of effect sizes (r range 0.3 to 0.6)
across omics. Moderate correlations were found
at the gene, protein, MDD peptide and exon
across-region pairs, PTSD exons at the CeA-DG
pair, PTSD peptides at the DG-mPFC pair, and
MDD CpGs at the CeA-DG pair (Figs. 2G and
3G, left).

Correlations of primary analyses with subanalyses

We performed subanalyses distinguishing (i)
biological sex and (ii) cases with childhood trau-
ma or death by suicide. We reportedmoderate
to strong (r > 0.6) correlations of primary analy-
ses. Female-specific analyses for both disorders
demonstratedmoderate correlations with their
respective primary analyses. By contrast, male-
specific analyses in PTSD showed moderate
correlations with the primary analyses of PTSD,
whereas those in MDD exhibited strong cor-
relations with the primary analyses of MDD.
Additionally, analyses focusing on childhood
trauma and suicide within both disorders dis-
played strong correlations with their respec-
tive primary analyses. Proteins and peptides
had the lowest correlations among all these
analyses (Fig. 2G and 3G, middle). Such ob-
servations confirm the role of these factors in
the overall disease effects and suggest that
distinct multiomic features may underlie both
PTSD and MDD disease processes in females.

Correlations with other trait, across-trait,
and between-trait analyses

Most cases with primary PTSD diagnosis had
secondary depression (table S1A, 1 and 2),
whereas none of the MDD cases had a second-
ary PTSD diagnosis. The correlation between

PTSD and MDD primary analyses was mod-
erate except for high correlations at the gene,
exon, and jx level of mPFC, as well as low corre-
lations of CpGs in the mPFC, which emphasized
the importance of epigenetic data in distinguish-
ing the twodisorders (Fig. 2Gand3G, right).We
also conducted additional analyses comparing
(i) all cases (“PTSD-or-MDD”/combined) to NCs
and (ii) PTSD cases to MDD cases. The cor-
relation of the primary analysis with combined
analysis was high, with mPFC data (especially
genes and exons) showing the highest corre-
lations (Fig. 2G and 3G, right). The correlation
of PTSD primary analysis with the PTSD ver-
sus MDD analysis was moderate, whereas the
correlation of MDD analysis with the absolute
(PTSD versus MDD) analysis was weak (Fig.
2G and 3G, right).

Functional annotation of multiregion,
multiomic signatures

To identify disease-associated pathways, we
performed gene set enrichment analysis (GSEA)
based on gene ontology (GO) across omics (table
S4A, 1 to 18). Ranking pathways on the basis of
significance per modality revealed clustering of
omic layers in both traits (Fig. 4A). Immune-
related biological processes were up-regulated
at the transcriptome level, whereas adaptive
and innate immunity subsets were down-
regulated at the proteome level. Methylomic
signatures mostly related to nervous system,
axon, and synapse development. Biological
processes related to RNA metabolism and
transcriptionwere up-regulated at the proteome
level. Regarding cellular components, ribo-
somes were up-regulated at the transcriptome
level and down-regulated at the proteome level.
Down-regulated proteomic signatures were
associated with presynaptic cellular components,
whereas methylomic signatures of MDD related
to neuron-to-neuron synaptic functions.
Within brain regions, pathways showed ab-

sent toweak correlationsbetweenomics (Fig. 4B).
The highest correlations (r >0.25)were observed
between RNA-protein and RNA-methylation
in the DG of PTSD and RNA-methylation in
the CeA of MDD. Between-region correlations
ranged from weak to high (Fig. 4C) with tran-
scriptomic pathways showing higher correla-
tions (r >0.60) comparedwith that of proteomic
(0.2 < r < 0.40) andmethylomic (0.05 < r < 0.45)
pathways. RNA pathways had the highest cor-
relations between traits (Fig. 4D). These analy-
ses thus suggest that different omic signals are
involved in distinct pathways and that, within
omics, transcriptomic-based pathways tend to
be most conserved between regions (Fig. 4C)
and traits (Fig. 4D).
We repeated pathway analyses using Rep.1

results to assess replication of our discovery
pathways. Discovery pathways correlated with
Rep.1 pathways considerably at the transcrip-
tomic level followed by the proteomic and

methylomic levels (fig. S3). PTSD pathways
replicated more than MDD pathways (573
versus 91; table S4A-19), most of which were
from mPFC RNA (389), DG mDNA (85), and
CeA RNA (83). For MDD, replicated pathways
were from CeA and DG RNA (35 and 23, re-
spectively) and DG and mPFC mDNA (14 and
12, respectively).
Canonical pathway (CP) enrichment in PTSD

andMDDDEGs andDEPs across regions (table
S4B) revealed sharedDEG-driven up-regulation
of immune pathways related to extracellular
matrix (ECM) organization including activin
and inhibin, hepatic fibrosis, cytokine storm
signaling, and STAT3 signaling pathways,
mostly in themPFC for PTSD (Fig. 4E) andDG
for MDD (Fig. 4F). MDDDEGs in CeA and DG
pointed to the down-regulation of liver X re-
ceptor (LXR) and retinoid X receptor (RXR)
regulatory pathways, and PTSD DEPs in DG
implicated the complement system.
To identify regulatory changes in PTSD and

MDD, we identified upstream regulators (URs)
of the RNA signals (table S4C). IL1B, TNF, IFNG,
CREB1, TGFB1, and OSM were the most promi-
nently activated URs in both disorders, where-
as immunoglobin G, SCD, mir-155, PPARGC1A,
DICER1, and glutamine were the most deacti-
vatedURs (Fig. 4G, table S4C).We then identi-
fied enriched transcription factor (TF) binding
on the genes of our disease-associated features
(table S4D)with lowest enrichment Fisher’s exact
test (FET) P seen inESR1,ELK3,NR3C1 [glucocor-
ticoid receptor (GR)],RELB, andRUNX1 (Fig. 4H).

Spatial registration of transcriptomic and
proteomic signatures

We spatially registered the DEGs and DEPs
within cortical layers 1 to 6 (L1 to L6) and
white matter. We found meningeal and L1
enrichment of DEGs in PTSD and MDD (fig.
S4A) but deeper L4 to L5 enrichment of DEPs
in MDD (fig. S4B). Leptomeninges and L1 con-
tain mostly non-neuronal cells, whereas deeper
cortical layers contain mostly neuronal cells
(29), highlighting the importance of decipher-
ing cell-type specificity.

Prioritizing top genes and pathways
from multiregion, multiomic signatures

To identify key genes associated with stress-
related disorders, we integrated FDR-significant
signals across omic features, brain regions, and
traits amounting to 4469 genes (2677 PTSD,
2970 MDD, and 1178 shared; fig. S5 and table
S5A). Demanding a signal in at least half the
features within each omicmodality for a given
trait, we found 1690 genes (table S5B); 1016
were related to PTSD, 1043 toMDD, and 369 to
both. These genes were categorized on the basis
of the omic layer of their disease-associated
signal (1355 RNA, 146 mDNA, and 223 pro-
tein),with 34 genes having signal in twoomic
layers. Notably, these 1690 genes were also
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distributed across brain regions (394 in CeA,
441 in DG, 1239 in mPFC, and 292 in all re-
gions). We prioritized top genes from this pool
based on at least one of the three following
criteria: i) multiregion, ii) multiomic, and iii)
multitrait overlap. This qualified 367 genes,
henceforth called “top genes” (table S5B). Among
the top genes, 280 were associated with PTSD
(fig. S5A), 360withMDD(fig. S5B), and273were
shared. Gene breakdown per criterion can be
found in (28) (fig. S5, C to D). PTSD and MDD
top genes were significantly enriched in repli-
cated genes (FET, P = 2.34 × 10–11 and 1.04 ×
10–21, respectively).
Following an analogous procedure, we iden-

tified 2330 top pathways (2040 in PTSD, 2293
in MDD, 2003 shared; table S5C). Seven top
genes (EDN1,FGF2, IL1B,RAC1,TGFB2,TGFBR1,
and STAT3) were represented in an outlying

number of PTSD top pathways, and five (EDN1,
FGF2, IL1B,RAC1, andTGFB2) were represented
in MDD top pathways (table S5D).
PTSD and MDD top genes were enriched in

GC-associated DEGs (FET, P = 3.54 × 10–24 and
2.41 × 10–32, respectively) identified in induced
pluripotent stem cell (iPSC)–derived neurons
after a 4-hour treatment with GR agonist, dexa-
methasone (DEX) (24). Using data from iPSC-
derived cerebral organoids treated for 12 hours
with DEX (30), we found PTSD and MDD top
genes’ enrichment in DEX-associated DEGs of
nonneural progenitors (FET, P = 3.10 × 10–9

and 9.67 × 10–11, respectively), neural progenitors
(FET, P = 1.40 × 10–8 and 1.19 × 10–10, respec-
tively), and neurons (FET, P = 5.18 × 10–3 and
4.42 × 10–3, respectively) (table S5E) from our
top genes in GR signaling, shedding light on
their roles across cell types.

Multiregion, multiomic views
Multiomics factor analysis [MOFA (31)] (Fig. 5A)
reduced dimensionality by inferring 30 la-
tent factors that captured variance (R2) of the
three omic layers from every brain region (nine
views). We observed factors focusing on (i) a
single view,namely factor 1 onmPFCmethylome
and factors 5 to 7 on CeA, DG, and mPFC pro-
teomes, respectively; (ii) a single-omic view in
multiple regions, such as factor 2 capturing
variance for transcriptome across brain re-
gions; and (iii) multiomic views within one
region, including factor 15 on CeA and factor
17 on DG (Fig. 5B). Notably, factor 13 was the
only factor with high R2 values across all nine
views, and it showed strong correlation with
age (Fig. 5C). This factor may be amultiregion,
multiomic “clock.” Factor 13 scores differed
between diagnoses (F test, P < 9.88 × 10–5;

BA C D

G H

FE

Fig. 4. Transcriptomic-, proteomic-, and methylomic-based gene set enrichment
analysis across brain regions and disorders. (A) Heatmap depicting –ln proportional
rank of each pathway per omic in each brain region across disorders (18 analyses).
Within each analysis, pathway proportional rank was calculated based on FDR-
adjusted P divided by the number (n) of pathways in the analysis. The five most
significant pathways per analysis are shown here. GO categories include biological
processes (BP), cellular components (CC), and molecular functions (MF).
Upward arrows, positive normalized enrichment scores (NES); downward arrows,
negative NES; circles, methylation-related entries (direction unknown). The full name
of third pathway from the top is “adaptive immune response based on somatic
recombination of immune receptors built from immunoglobulin superfamily
domains.” (B to D) Boxplots depicting the range of r values corresponding to
correlations of pathways’ logit(Ps) between omics (B), regions (C), or traits (D).

(E and F) Bubble plots of CP enrichment in the DEGs (blue-green outline) and DEPs
(red outline) in PTSD (E) and MDD (F). A pathway can belong to multiple
categories. Points are sized based on –log10 (FDR-adjusted P). Shape fill denotes z
scores. The most significant pathways are labeled: in (E) and (F), * is used to
annotate the STAT3 pathway, and #, for HMGB1 signaling. (G) Heatmap of URs
enriched in DEGs per brain region in both traits. Significant URs (FDR-adjusted P <
0.05) were ranked based on absolute z scores (28), and the first 50 URs for
each disorder were selected. The exogenous chemicals and drugs categories were
excluded from plotting. Gray color indicates nonexistent data. UR categories
are shown on top. PTSD DG did not have significant URs. Abbreviations of non-gene
terms: LPS, lipopolysaccharide; E2, b-estradiol; Ig, immunoglobulin. (H) Heatmap
of the TF binding enrichment (–log10 FET P). Not all analyses showed significant
enrichments; # and *, FDR-adjusted P < 0.05.
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Fig. 5. Multiregion, multiomic integration. (A) Nine (three × three) views provided by
transcriptomic (T-), methylomic (M-), and proteomic (P-) profiles of each brain region
were integrated into thirty latent factors by using MOFA. We used the same input to
additionally create coexpression modules for each omic type across brain region using
WGCNA. (B) Heatmapof variance explained in each of the nine views by eachMOFA factor.
(C) Coefficients of correlation (r) ofMOFA factors’ scoreswith age at death. (D) Scatterplot
of MOFA factor 13 scores (y axis) with age at death (x axis). Locally estimated
scatterplot smoothing trendlines are fitted within the diagnosis group. (E) Box-and-
whisker plots of MOFA factor 14 scores by diagnostic group: data are represented as
median ± 1.5 interquartile range (IQR). Individual factor 14 scores are indicated by
vertical line markers. In (D) and (E), gray color is used for NCs, blue-green for MDD, and

red for PTSD. (F to H) For three transcriptomic and/or proteomic features per brain
region, the enrichment of the respective differentially expressed (DE) features from the
PTSD and MDD analyses as well as of the top PTSD and MDD genes (top genes) is
depicted [(F) CeA; (G) DG; (H)mPFC]. The x axis represents the enrichment significance
(–log10P), the size of the point denotes the number of features enriched, and the shape
the gene set under interrogation in each analysis (DE, circle; top genes, triangle). (I to
K) The 10 most significant GO terms (color coded) associated with the CeA-pink (I),
DG-tan (J), and mPFC-red (K) modules. (L) PPI network of the mPFC-red module. The
nodes are filled in green if the protein is a PTSD and/or MDD top gene, and the shape of
the node indicates whether it is a hub gene (diamond). DEX genes are annotated in purple.
Ten GO terms are shown as partially filled donuts around each node according to (K).
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Tukey's post-hoc P < 0.001 for each group ver-
sus NC) (Fig. 5D), which suggests a “multiomic
age acceleration” associated with MDD and
PTSD. Factor 14 captured the transcriptome of
all brain regions, with scores higher in both
disorders compared with that of NCs (F test,
P < 1.24 × 10–5; Tukey's post-hoc P < 0.001 for
each group versus NCs) (Fig. 5E) and with the
factor loadings having moderate correlations
with DGE effect sizes (fig. S6A).
Next, we used weighted gene coexpression

network analysis (WGCNA) (Fig. 5A) to inves-
tigate gene network correlates of MOFA factors.
In NC samples, we constructed modules at every
omic level per region (table S6A). We high-
lighted three modules from each region enriched
in disease-associated features and top genes
(Fig. 5, F toH). Themodules (CeA-pink, DG-tan,
and mPFC-red) with lowest enrichment P val-
ues also had the strongest association with
factor 14 (fig. S6B). Functional annotation of
thesemodules showed shared immune system
processes, inflammatory response, and vascu-
lature development– or angiogenesis-related
pathways (Fig. 5, I to K, and table S6B). No-
tably, themPFC-redmodulewas associatedwith
response to stress and GCs and exhibited the
most significant enrichment with GC-responsive
genes (33/181; FET, FDR-adjusted P = 1.47 ×
10–19; table S6C), including FKBP5. Protein-
protein interaction (PPI) network visualization
of the three modules (Fig. 5L and fig. S6, C and
D) emphasized their hub gene (table S6D) en-
richments in both PTSD (FET, P = 8.48 × 10–24)
and MDD top genes (FET, P = 1.60 × 10–27).

Single-cell transcriptomics

To explore cell type–specific transcriptional
signatures in both disorders, snRNA-seq data
from 118 subjects were analyzed [single-cell
cohort 1, “Sc.1” (24); single-cell cohort 2, “Sc.2
(25)] (Fig. 6A and table S7A). As described (24),
Sc.1 batch 1 contained362,996nuclei post quality
control (Fig. 6B), and Sc.1 batch 2, 137,230 nu-
clei (Fig. 6C), clustering in eight broad cell types
[excitatory (Ex) and inhibitory (In) neurons,
astrocytes (Astro), microglia (Micro), oligoden-
drocytes (Oligo), oligodendrocyte-precursor
cells (OPC), endothelial cells (Endo), and peri-
cytes (Per)] and several subtypes (fig. S7, A and
B). Cell subtype annotation similarities be-
tween the Sc.1 batches were confirmed (fig. S7,
C andD and table S7B-1). Sc.1 batch1 clustering
annotations were projected on Sc.2 (~160,000
nuclei), and ~35,000 nuclei were removed be-
cause of displaying ambiguous neuronal or non--
neuronal profiles. The remaining 125,890 nuclei
were reannotated with the Sc.1 batch 1 cell sub-
type labels (Fig. 6D; fig. S7, E and F; and table
S7B-2). Further, we compared cell type propor-
tions of each disorder across the relevant batches
(table S7C, -1 and -2) and reported differences
in Micro and OPC in MDD (table S7C-3) [sup-
plementary text (28)].

We performed batch-level cell type–specific
DGE analysis, adjusting for confounders (28),
followed bymeta-analysis. For PTSD, themeta-
analysis of the broad cell types contained data
from 16 PTSD and 16 NCs (table S8A). On the
basis of the batch-specific nuclei contribution
to each cell type in Sc.2 (fig. S7F), we meta-
analyzed all batches for Astro, Ex, In, and
OPC (52 MDD and 50 NCs; table S8B, 1 to 4)
and excluded the Sc.2 male batch from the
meta-analysis of Endo, Micro, and Oligo (35
MDD and 34 NCs; table S8B, 5 to 7).
In PTSD, we reported 58 FDR-significant

DEGs (Fig. 6E and table S8A), with 79% in
Ex (46), 17% in In (10), and ~3% in Astro (2).
Of these 58 DEGs, 31 overlapped with PTSD
DEGs identified when only analyzing the Sc.1
cohort (24) [supplementary text (28)]. In MDD,
we reported 839 FDR-significant DEGs across
six cell types (Fig. 6F and table S8B). Astro had
the most DEGs with 376 (45%), followed by Ex
(26%, 217) and In (24%, 199). The remaining
DEGs were found in Oligo (4%, 39), OPCs (1%,
8) and Endo (<1%, 3). Among the MDD DEGs,
18 overlapped with Chatzinakos et al. (24), 45
overlapped with Maitra et al. (25), and 716 were
newly reported [supplementary text (28)].
Four genes in the PTSD-associated 17q21.31

locus (6) were prominent DEGs in neurons and
Astro in PTSD (ARL17B, LRRC37A2, LINC02210-
CRHR1, and KANSL1). ARL17B was a DEG in
neurons (FDR-adjusted P < 4.6 × 10–9) and Astro
(FDR-adjusted P < 9.9 × 10–4) with a consistent
marked increase of approximately two log2-
fold change. InMDD,we reportedup-regulation
of FKBP5, a GC-responsive gene, in neurons
and Oligos, expanding previously reported up-
regulation in Inneurons (24). Further intersecting
GC-responsive genes (26) with disease-associated
cell type–specificDEGs revealedup-regulationof
CDH3, TAF1C, and SLC16A6 in Ex in PTSD and,
among other 66 genes (table S8B), up-regulation
of STAT3 inOligo anddown-regulation ofNR4A1
in Endo and Ex inMDD. Themultitrait DEGs in
the samecell typeswere limited todown-regulation
of SRSF6, an alternative splicing regulator and
top PTSD gene from the bulk analysis, in Ex and
up-regulation of TMPRSS9 in In.
In PTSD, Ex and In correlated moderately

with each other (r = 0.41) but weakly with glia
cell types (r = 0.06 to 0.26). Endo exhibited no
correlation with other cell types (Fig. 6G). In
MDD, we detected moderate correlations be-
tween neuronal types (r = 0.53) andwithOligos
(r = 0.34), whereas Astro were moderately cor-
related with OPCs (r = 0.34) (Fig. 6H). The
between-diagnosis cell type–specific correlation
ranged from weak to moderate but was lower
than in bulk (mPFC, r = 0.79), highlighting the
importance of studying cell type–specific sig-
nals to distinguish pathophysiologically sim-
ilar disorders (Fig. 6I).
GSEA of cell type–specific PTSD and MDD

profiles revealeddown-regulated synaptic path-

ways in neuronal and non-neuronal cell types
(table S9A),whichwereparticularly pronounced
in MDD Ex neurons, Astro, and Endo (Fig.
6J). Ribosome-related processes were down-
regulated in Oligo in both disorders. In MDD,
these processes were down-regulated in In
neurons, Micro, and OPC, whereas they were
up-regulated in Endo and Micro but down-
regulated in PTSD Astro. Metabolic and mito-
chondrial processes were down-regulated in
In neurons and Oligo in both disorders and
Micro, Oligo, and OPC in MDD. Inflamma-
tory pathways were up-regulated in PTSD and
down-regulated in MDD, suggesting differen-
tial immune-signaling regulation in each dis-
order. Furthermore, adhesion and extracellular
transport pathways were down-regulated in
Astro and Endo in MDD. Notably, glia-related
pathways were down-regulated inMicro and Ex
neurons inPTSDand Inneurons inMDD,where-
as they were up-regulated in OPCs in MDD.
We further identified activated cell type–

specific URs in MDD (fig. S7G and table S9, B
and C). STK11, UR of the stress-activating AMPK
pathway, was differentially activated in Astro
and neurons. PSEN1 was activated in both In
neurons and Astro, whereas APP and TGFB1
were deactivated. CPA confirmed strong deac-
tivation of oxidative phosphorylation and ATP
processes inneurons inMDDandmitochondrial
dysfunction and Sirtuin signaling pathway ac-
tivation, especially in In neurons. Non-neuronal
cell types involved the inhibition of the stress-
hormone complex in Astro, STAT3, and RAC
signaling along with the activation of epithelial
adherence–related pathways inOligo andNotch
signaling in Endo and OPC (fig. S7H table S9,
D and E). PTSD DEGs of In neurons were en-
riched in THOP1 neuroprotection and the
metabolism of amine-derived hormones (in-
cluding norepinephrine).

Top genes in live blood plasma

To evaluate blood-based biomarkers of PTSD
and MDD, we analyzed 1463 plasma proteins
in 54,219 UKBB subjects (32). PTSD, defined
as a binary indicator and a continuous score
(~1300), andMDD, defined broadly and strict-
ly (~3500), were compared with healthy sub-
jects (~15,000).We foundmore FDR-significant
proteins associated with MDD compared with
PTSD (fig. S8 and table S10A), especially when
using the electronic medical record (EMR)–
based and help-seeking definitions of MDD.
GO pathway analysis of blood DEPs detected
ECM organization, response to GCs, various
interleukin signaling pathways, neuron projec-
tion, and synapse assembly pathways for both
disorders (table S10B). FDR-significant CPs and
URs for both disorders converged in alterations
in transcription regulation and nuclear recep-
tor and cytokine signaling (table S10, C and D).
Blood DEPs’ effect sizes had stronger cor-

relations with brain DEGs’ effect sizes from all
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Fig. 6. snRNA-seq study of PTSD, MDD, and NCs in dlPFC. (A) Analytic strategy
for snRNA-seq datasets. (B and C) Sc.1 was composed of two batches: batch 1 with
362,996 (B) and batch 2 with 137,230 nuclei (C). Representative tSNE plots of the
eight broad cell types are shown. (D) tSNE plot of 125,890 nuclei from the two integrated
batches of Sc.2 (male and female batches included) annotated to match the identity
of the clustering from S.c1. (E and F) Volcano plots of the DGE in PTSD (E) and MDD
(F) across seven cell types (color coded). The dots are colored to denote nominally
significant genes (P < 0.05) in the respective cell types, and the darker colored
dots represent genes with FDR-adjusted P < 0.05. Up to five of the most significant
(FDR-adjusted P < 0.05) cell type–specific DEGs per direction of regulation are labeled
along with GC-responsive (*) and PTSD-MDD shared DEGs (#). The number of DEGs

passing 5% FDR level per cell type is shown below. (G and H) Correlation of the DGE
effect sizes between cell types in PTSD (G) and MDD (H). Data are represented as
median ± 1.5 IQR, whereas the individual points denote the correlation for each cell type.
(I) Correlation of the cell type–specific DGE effect sizes between PTSD and MDD. Data are
represented asmedian± 1.5 IQR,whereas the individual points denote the correlation for each
cell type. The black dot annotates the correlation of PTSD and MDD in the bulk mPFC
tissue. In (G) and (I), horizontal dotted linesdenoteminimal (r <0.1),moderate (0.3<r <0.6),
and high (r > 0.6) correlation. (J) Heatmap demonstrating the fivemost significantly enriched
GO pathways in each cell type per disorder. The terms have been clustered based on their
NES. The color gradient denotes negative to positive enrichment and the asterisk-annotated
pathways have an FDR-adjusted P < 0.05. GO categories used included BP, CC, and MF.
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brain regions compared with the correlations
with brain DEP effect sizes, with the strongest
detectedbetweenMDD(EMR-based) bloodDEPs
and MDD or PTSD CeA DEGs (fig. S9). Notably,
the EMR-based diagnosis was comparable to
the definition of MDD and PTSD from postmor-
tem medical records. PTSD and MDD top genes
were enriched in PTSD blood DEPs (24 genes,
FET P = 3.91 × 10–16) and MDD blood DEPs
(52 genes, FET P = 1.26 × 10–28), respectively
(fig. S10A and table S10E-1), with 23 shared
across the two disorders in brain and blood.
Out of these 23, 19 weremultiregion top genes,
including EPHA2 and TNFRSF1A/12A. Among
the 29 top genes that exclusively overlapped in
MDD blood and MDD brain, 22 were multi-
region [supplementary text (28)].
Forty-three PTSD-associatedGOpathways in

the brain overlapped with pathways in blood
(fig. S10B and table S10E-2), whereas 121 path-
ways in the MDD brain overlapped with MDD
blood [supplementary text (28)]. Twenty-two
pathways in brain and blood for both disorders
related to lipid processes, immune response,
and corticosteroid response. The majority were
RNA-derived in brain (95% in PTSD, 69% in
MDD). Twenty-one pathways, exclusively over-
lapping in PTSD brain and PTSD blood, were
RNA-derived in the brain and included those
related to neuroinflammatory response and
ECM organization. Of 99 pathways that exclu-
sively overlapped in MDD brain and blood, 31
that included synapse process and axonal guid-
ance originated from methylation in brain.
We noticed that certain pathways, such as

axonal guidance, were detected in both brain
and blood, involving one omic layer of brain
molecular data, whereas their gene members
shared between the brain and blood could
implicate another brain omic layer.
Brain RNA–based CPs showed overlap with

blood CPs. Twelve pathways exhibited multi-
trait characteristics in both blood protein
and brain RNA and protein, including hepatic
fibrosis cell activation and LXR and RXR reg-
ulation (fig. S10C and table S10E-3). Further-
more, we observed enrichment of brain with
blood URs in MDD (fig. S10D and table S10E-4)
without substantial overlap of URs in PTSD
across brain and blood [details in supplemen-
tary text (28)].

Multiregion, multiomic view of risk genes
and pathways

We estimated that PTSD and MDD GWAS sin-
gle nucleotide polymorphism (SNP)–based
heritability were highly correlated [genetic cor-
relation Rg = 0.887 ± 0.013; methods (28)].
Polygenic risk scores (PRS) for each disorder
were calculated for 304 subjects across Disc.1,
Disc.2, andRep.1 cohorts. ComparedwithMDD-
PRS, the PTSD-PRS had higher associations
with both diagnoses in the respective target
population (fig. S11) (28).

Fine-mapping of the latest GWAS identified
76 PTSD loci with 68 having one to three cre-
dible sets each, and 98MDD loci with 92 having
1 to 10 credible sets each (tables S11A, -1 and -2,
and S11B, -1 and -2, respectively). Local heri-
tability calculations revealed loci in PTSD and
MDD that exhibited significant heritability for
both disorders (tables S11A, -3 and -4, and
S11B, -3 and -4). We observed variability in lo-
cal genetic correlations as well, particularly with
loci involving the 6p22.1/22.2, 17q21.31, and
22q13.1 cytogenetic bands, with the lowest cor-
relations (fig. S12).More details can be found in
supplementary text (28).
We used quantitative trait locus (xQTL) pan-

els to conduct transcriptomic, methylomic, and
proteomic summary-based mendelian random-
ization (xSMR:TSMR,MSMR,andPSMR, respec-
tively; fig. S13and tableS11C), aswell asSNP-based
multiomic imputation to conduct transcriptome-,
methylome-, and proteome-wide association
studies (xWAS: TWAS, MWAS, and PWAS, re-
spectively; fig. S14 and table S11D). PFC-based
TSMRandTWAS revealedmore PTSDandMDD
risk genes compared with AMY- or HIP-based
analyses (PTSD, fig. S13, A and B; MDD, fig. S14,
A and B), which was consistent with our bulk
RNA-seq results. TSMR andTWAS analyses dis-
covered more risk genes than methylomic- and
proteomic-based analyses (PTSD, fig. S13, C and
D; MDD, fig. S14, C and D). More details can be
found in supplementary text (28).
We detected intersection of 36 TSMR- and

TWAS-based PTSD risk genes and the respec-
tive DEGs, 10 of which were top genes (Fig.
7A). Similarly, 31 mPFC and 3 DG TSMR- and
TWAS-basedMDD risk genes overlapped with
respective DEGs (FET, P = 5.22 × 10–6), 6 of
which were top genes (Fig. 7B). Only five risk
genes of each trait with multiregion, multiomic,
and/or multitrait characteristics overlapped
with the respective top genes (PTSD, fig. S13E;
MDD, fig. S14E).
Using a TWAS pathway method (33), we

detected TWAS pathways for all three tissues
and PWAS pathways for PFC (table S11E, 1 and
2). Contrary to the xWAS gene analysis, HIP
had the most risk pathways for both disorders
(292 and 551, respectively) compared with
AMY (11 and 14, respectively) and PFC (77
and 102, respectively). Pathways shared be-
tween brain regions (PTSD, 23, fig. S13F; MDD,
32, fig. S14F) were mostly neural- or neuronal-,
trafficking-, organelle-, and metabolism-related.
Neuronal and synaptic pathways were over-
lapping in TWAS and PWAS of both disorders
(PTSD, 6; MDD, 32).
The overall correlation between risk path-

ways and respective bulk tissue–based path-
ways were low (PTSD, range –0.08 to 0.06;
MDD, range –0.1 to 0.13). Immune, synaptic,
and developmental pathways were shared
between risk and disease process pathway
sets (Fig. 7, C to D). Notably, DG RNA gene

pathways were significantly enriched in HIP
TWAS pathways in both disorders (PTSD, FET
P = 3.08 × 10–2, MDD: FET P = 1.99 × 10–10),
with 46/48 found in PTSD and 179/180 inMDD
top pathways.

Molecular outcomes of gene-by-environment
interactions and molecular mediation of risk

We investigated the molecular impact of SNP-
by-childhood trauma interactions on TSMR-
identified SNP-gene pairs [methods (28)]. In
PTSD(fig. S15AtableS11-F1),manycis–expression
quantitative trait loci (eQTLs) effects passed an
FDR 5% significance level (61/138 inmPFC, 21/30
in DG, and 19/27 in CeA]. Only rs62060768 (not
part of a credible set of 17q21.31) showedanFDR-
significant interaction effect on DG LRRC37A4P
expression, and the same interaction nominally
affected CeA LRRC37A4P expression. There were
two additional 17q21.31 SNPs, both within a cre-
dible set, with nominal interaction effects. FDR-
significant childhood trauma–only effects were
seen formPFCexpressionof the topgeneLIMK2.
In MDD (fig. S15B and table S11-F2), many cis-
eQTLspassed anFDR5% level (45/146 inmPFC,
12/15 in DG, and 8/9 in CeA]. We observed only
five nominal SNP-by-childhood trauma inter-
actions.One of the SNPs in theLRRC37A4PCeA
analysis was the same as in the PTSD dataset.
FDR-significant childhood trauma–only effects
were seen for mPFC LINC00461 and CNPPD1.
In the blood plasma dataset, we had power

to distinguish the type of abuse and neglect (fig.
S16, A and B, and table S11, -F3 and -F4). We
observed SNP effects on plasma proteins for
many brain-based eQTLs. For the PTSD and
MDD genes, we observed childhood trauma ef-
fects in plasma for 20 (including HLA-E top
gene) and 14 genes, respectively.
We explored the mediation effect of gene ex-

pression in the SNP-to-diagnosis effects (Fig. 7E
and table S11G).We found that four SNP-to-PTSD
diagnosis effects weremediated thoughmPFC
expression of ATP23, CYP2D6, and ZSCAN29,
as well as CeA expression ofLINC02210.We also
found two mediation effects for MDD diag-
nosis through mPFC expression of STAG3L2
and TIPIN.

Multi–cell type view of PTSD and MDD risk

Using a brain cell type annotation (34), we
detected neuronal enrichment of MDD and
PTSD risk genes (fig. S17, A and B). We also
determined enrichment of risk genes in dlPFC
cell type–specific markers of Sc.1. In- and Ex-
neuronal and OPC markers were enriched in
risk genes of both disorders (fig. S17, C and D),
whereas Oligo markers were enriched only in
PTSD. Incorporating gene-level statistics with
cell-to-cell heterogeneity (35), we found a stron-
ger signal of risk genes in Ex and In neurons and
OPCs for MDD than PTSD (Fig. 7F). We then
conducted single-cell T SMR (scTSMR) for PTSD
and MDD at the dlPFC cell type level, finding

RESEARCH | DECODING THE BRAIN

Daskalakis et al., Science 384, eadh3707 (2024) 24 May 2024 10 of 16

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of T

exas A
ustin on January 27, 2025



cell type–specific risk genes predominantly in
Exneurons andOligo in both disorders (Fig. 7, G
and H, and table S11H, -1 and -2). In PTSD, neu-
ronal PTSD risk genes were significantly en-
riched in neuronal DEGs (LINC02210-CRHR1

andTTC12, FETP=1.92×10–3), andnon-neuronal
PTSDriskgenes, innon-neuronalDEGs (ARL17B,
FET P = 2.69 × 10–3). In MDD, only ANKRD36
overlapped between non-neuronal MDD DEGs
and risk genes.

Integration
For full integration, we aggregated and ranked,
in tiers of evidence, signals related to top genes
across all levels of analyses (table S12A), including
(i) PTSD and MDD replication, (ii) membership

[BP]  ESTABLISHMENT  OF  TISSUE  POLARITY[BP]  ESTABLISHMENT  OF  TISSUE  POLARITY
[BP]  MORPHOGEN  OF  A  POLARIZED  EPITHELIUM[BP]  MORPHOGEN  OF  A  POLARIZED  EPITHELIUM
[BP]  NON-CANONICAL  WNT  SIGNALING  PATHWAY[BP]  NON-CANONICAL  WNT  SIGNALING  PATHWAY
[BP]  REG  OF  ANIMAL  ORGAN  MORPHOGENESIS[BP]  REG  OF  ANIMAL  ORGAN  MORPHOGENESIS

CA

DB

E G H

F

Fig. 7. Identification of GWAS-based risk genes and pathways for PTSD and
MDD. (A and B) Venn diagrams of xSMR- or xWAS-based risk genes overlap-
matched with FDR-significant (FDR-adjusted P < 0.05) disease process genes and
with top genes for PTSD (A) and MDD (B). sTSMR, splicing TSMR. (C and D) Venn
diagrams of xWAS-based risk pathways overlap-matched with FDR-significant
(FDR-adjusted P < 0.05) disease process pathways and top pathways for PTSD (C) and
MDD (D). GO categories used included BP, CC, and MF. (E) Heatmap of mediation
effects of PTSD or MDD risk genes in the association of GWAS SNPs with diagnosis (Dx)
through gene expression alterations. SNP-gene pairs were qualified by brain TSMR

analyses of PTSD and MDD GWAS. The first two columns contain the cytogenetic band
and the rsID of the qualified GWAS SNP. The mediating gene along with the tissue
can be seen in the third column. The –log10P of the average causal mediation effect
(ACME) was the measure of the significance of mediation and is provided as a number
and red color intensity. (F) Heatmap depicting each cell type–disease association
with PTSD and MDD. Numbers indicate FDR-adjusted P of the cell type–disease associations.
Heatmap color denotes the proportion (%) of significantly associated cells (FDR-adjusted
P < 0.1) with the trait. *: FDR-adjusted P < 0.05. (G and H) Upset plots of scTSMR-based
risk genes for PTSD (G) and MDD (H) at the level of cell-types in the dlPFC.
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in top pathways, (iii) acting as hub genes in
disease-associated networks, (iv) blood asso-
ciations, (iv) association with childhood trau-
ma in brain or blood, (vi) snRNA-seq analyses,
(vii) brain-based genetic analyses, and (viii) GC
regulation. Top genes showed high overlap
across these dimensions, whichwas supported
by FDR-significant FET-based enrichments.
We visualized the 30 top genes with most con-
vergent evidence (Fig. 8 and fig. S18).
We similarly ranked the top pathways (table

S12B) to reveal comparable overlaps and en-
richments but with weaker enrichment of plas-
ma pathways and more significant enrichment
of cell type–specific pathways. We visualized
the top pathways with the most convergent
evidence (fig. S19), highlighting the following
functional themes: i) neuronal signaling and
regulation, ii) immune and inflammatory re-
sponses, iii) tissue development and mainte-
nance, and iv) metabolic processes.

Discussion

In this multiregion, multiomic postmortem
brain study of PTSD and MDD conducting

discovery and replication analyses, we found
both shared and distinct molecular signa-
tures in both disorders. The most robust al-
terations were captured by genes and exons
occurring within the mPFC. PTSD had more
regional molecular differences than MDD.
mDNA changes for PTSD and MDD were
mostly localized in the DG and CeA, respec-
tively. Childhood trauma and suicide were
the main drivers of signal in both disorders,
whereas sex differences were more apparent
in MDD. Top genes qualified on the basis of
multiregion, multiomic, and/or multitrait im-
portance and by showing robustness through
replication, gene networks, snRNA-seq, blood,
and/or genetic analyses. Detailed discussions
of top genes can be found in the supplemen-
tary text (28).
Each omic layer implicated distinct biological

processes. Notably, we revealed an RNA-based
up-regulation,butprotein-baseddown-regulation
of immune-related pathways across regions
and disorders. These enriched pathways im-
plicatedmembers of the TNF receptor super-
family, namely, the top gene TNFRSF1A, which

is GC-regulated in neural cells (24). IL1b and
TNFa, the most prominent URs, are triggered
by stress in the brain and periphery (36–38)
and have been previously associatedwith PTSD
and MDD (8, 15, 39–42). Relatedly, the MOFA
factor mostly associated with both diagnoses
was RNA-based and related to immune RNA
modules.
Our multiomic analysis revealed distinct in-

volvement of neuronal and non-neuronal cell
types in both disorders. DEGs highlighted im-
mune and ECM pathways, predominantly in
non-neuronal external cortical layers and
leptomeninges. In MDD, protein alterations
were more prominent in neuron-rich deeper
layers (29), whereas methylation pathway al-
terations affected neuronal processes in both
disorders. Furthermore, our snRNA-seq anal-
ysis demonstrated significant transcriptomic
changes in both neuronal and non-neuronal
cell types, uncovering previously unreported
alterations (23–25). Underlying cell type–specific
pathways showed potential in differentiating
between the two disorders. Although both
disorders exhibited enrichment in neuronal

ZKSCAN7

GLYCTK
OSMR

EPHA2

TNFRSF1B

TNFRSF10B 

BAG3 COL4A1

IL4R

LDLR

ICAM1

ITM2A

TIMP1

LIMK2

Plasma

Top genes
Top pathways-High
Replication
Hub genes
sc_Neurons
sc_Non-neurons

TSMR/TWAS
MSMR/MWAS
scSMR_Non-neurons

DEX

Genes  PTSD  MDD

RAC1

MPPED2

HLA-E

CDKN1A

EDN1

FGF2 

LTBR

TNFRSF1A

EMP1

ITGA5

PXN
GLTP

METAP1D

GPC1

STAT3

Childhood
trauma

Fig. 8. Integration of results. Top genes were ranked based on accumulating
statistical evidence across analyses in tiers (table S12A). Chromosomal locations
of top genes with the highest amount evidence are visualized. Six genes are
localized on chromosome 12, followed by three genes on chromosome 6. Red
squares indicate PTSD top genes, whereas a purple outline indicates membership
in PTSD top pathways. Blue-green squares indicate MDD top genes, whereas
a purple outline indicates membership in MDD top pathways. Purple squares
indicate replication in PTSD analysis, whereas purple circles indicate replication
in MDD analysis. Red squares indicate PTSD blood DEPs, and red circles indicate
MDD blood DEPs. Purple triangles indicate association with childhood trauma

analysis in the brain analyses, whereas red triangles indicate association
with childhood trauma in the blood analyses. Purple diamonds indicate genes
that are module hubs, whereas yellow diamonds indicate GC regulation
(DEX) in iPSC-derived neurons (26). Double squares and circles represent single-
cell (sc) findings for PTSD and MDD, respectively; neuronal (Neu) versus
non-neuronal (NonNeu) distinction is made by the yellow fill (Neu, not filled;
NonNeu, filled). In relation to genetic analyses, blue shapes represent TSMR and
TWAS, and blue shapes with gray fill represent MSMR and MWAS. The double
blue circle with gray fill represents significance in a scTSMR analysis of a
non-neuronal cell type.
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and non-neuronal cell types, this enrichment
appeared more pronounced in MDD. Lastly,
scTSMR identified risk genes inExneurons and
Oligo in both disorders.
Dysregulated ECM-related pathways con-

tained top genes such as ICAM1 (multiomic in
PTSD) and COL4A1 (multiregion and multio-
mic in MDD), which were replicated in plasma
DEPs. The interstice between ECM and neuro-
nal or synaptic plasticity is covered by axonal
guidance molecules such as EPHA2, an RNA-
based top gene that is replicated and altered in
blood and is GC-regulated, which has also been
associatedwith blood-brain barrier (BBB) hyper-
permeability (43) and suicidality (44). Stress-
induced BBB hyperpermeability (45, 46) would
allow peripheral inflammation, as detected by
our large blood proteomics analysis, to enter
brain parenchyma.
The robust correlation between PTSD and

MDD in GWAS contrasted with the moderate
toweakcorrelations identified inbulkmultiomic
and snRNA-seq data. Additionally, the limited
overlap in both disorders between the genes
and pathways implicated in GWAS and those
identified in brain molecular data underscored
the disparity between disease risk and under-
lying disease processes. By contrast, greater over-
lap was seen between disease-associated genes
and pathways in brain and blood. Whereas our
brain measurements were independent from
blood measurements, animal models of individ-
ual stress differences have supported shared ef-
fects for some pathways (47–49). Considering
the challengeswith accessing antemortembrain
tissue to profile the disease in real time, our find-
ings support the development of brain-informed
blood biomarkers.
Integrating results from various analyses

related to the stress system revealed distinct
genetic loci but shared downstreammolecular
signatures. For example, the 17q21.31 locus,
which exhibits one of the lowest correlations
between PTSD and MDD, has consistently
appeared in PTSD GWAS studies (6, 21), with
our fine-mapping pointing to CRHR1, among
other genes. We discovered indications of me-
diation involving LINC02210, whereas the
fusion gene of LINC02210 with CRHR1 was
identified as a neuronal scTSMR-based risk
gene and a neuronal DEG for PTSD.
In MDD, GR-encodingNR3C1 did not appear

in a locus of low correlation between PTSD
andMDD but was identified solely as anMDD
risk gene in PFC TWAS. GR also emerged as a
prominent TF across omics for both disorders,
targeting ~20% of the top genes. FKBP5, which
encodes an inhibitory protein for GR function
(50, 51), exhibitedDGE in themPFC for PTSDand
in Ex and In neurons and Oligo for MDD. Addi-
tionally, it was a genemember of themost prom-
inently disease-associated module in the mPFC.
Furthermore, top gene STAT3 showed DGE

in the CeA and mPFC for both traits and in

Oligo for MDD and was involved in several
top pathways associated with PTSD related to
wound healing, mitochondrial function, in-
flammation, and synaptic plasticity in neu-
rons (52–54). STAT3 activation in mPFC was
also evident for both disorders. Notably, STAT3
is GC responsive in iPSC-derived neurons (26),
acts as a GR coactivator (55), and has recently
been linked to depressive-like behavior in ani-
mal models (56, 57).
The dynamic interplay between genetic sus-

ceptibility and downstream biology evolves
across the lifespan. Our investigation unveiled
enduring effects of childhood trauma on risk
loci linked to both disorders alongside insights
into the influenceof aging.MDDandPTSDshare
mechanistic pathways with neurodegenerative
conditions (58). Notably, the PTSD-associated
17q21.31 locus, including thegene encodingMAPT
and MDD-associated APOE in Astro, both im-
plicated inneurodegeneration,underscores these
connections (59). Moreover, factor 13, a multi-
omic “clock” indicative of age acceleration in
stress-related disorders, aligns closely with find-
ings from epigenetic-specific clocks based on
blood and brain samples (60–63).
Study limitations primarily stem from in-

herent biases in postmortem brain research
around population selection (including ances-
try), clinical assessment, comorbidities, and
end-of-life state. The current large study is con-
strained in power at variable levels across var-
ious molecular modalities, tissues, and cell
types. We also did not comprehensively char-
acterize the epigenetic landscape and did not
fully capture all cell subtypes and states. The
description of our results focused primarily on
convergent signals across regions or omics or
traits, and ancillary studies could explain sig-
nal contrasts across the molecular, biological,
and clinical dimensions. Detailed limitations
can be found in supplementary text (28).
Our data suggest that a systems biology ap-

proach is necessary to understand the complex-
ity of molecular alterations in brain circuitry
underlying stress-relateddisorders suchasPTSD
and MDD. Merging multiomics from multiple
brain regions with other molecular data can
result in the identification of specific genes and
regulatorymechanisms. Capturing thesenuances
is critical when aiming to develop informative
biomarkers and discover potential therapeutic
strategies.

Materials and methods summary

The PTSDBrainomics Project (PEC Phase 2) gen-
erated a multiomic dataset from the mPFC, DG,
andCeA of 231 subjectswith PTSD and/orMDD
andNCs from two cohorts (nDisc.1 = 150, nDisc.2 =
81). Samples were i) genotyped with Omni2.5
BeadChip and imputed with TOPMed service;
ii) ribo-zero RNA-sequenced with TruSeq v2
and processed with SPEAQeasy (64) to extract
transcriptomic features at gene, exon, splice junc-

tion, and transcript levels; iii) methylation pro-
filed with EPIC BeadChip and processed with
minifi package (65); and iv) protein assayed with
tandemmass tag isobaric labeling followed by
liquid chromatography coupled to tandemmass
spectrometry and proteomic features (proteins
and peptides) were searched against UniProt
database. Data were normalized and analyses
were adjusted for confounds, cell-type propor-
tions, global ancestry, demographics, and clinical
characteristics. We assessed the association of
diagnosis across omics and regions and con-
ducted subanalyses using the limma package (66).
Results were meta-analyzed across discovery co-
horts [metafor (67)]. DMRs were detected with
ENmix::comb-p (68). We replicated our findings
by generating Rep.1 (same genomic features as
Disc. cohorts, n = 73) and reanalyzing Rep.2
[contained RNA-seq and mDNA data from a
prior study, n = 41 (14, 17)] separately and as a
meta-analysis of common features (n = 114).
GSEAwasperformedwith fgseaandmethylGSA

packages (69, 70). We used ingenuity pathway
analysis to identify CPs and URs. For tran-
scription factor–binding enrichment, we used
Enrichr (71). For spatial registration of disease
signatures, we used spatialLIBD (72). Multio-
mic integration of DGE results was performed
with MOFA (31).
We leveraged publicly available dlPFC snRNA-

seq datasets from 118 individuals (23–25), ensur-
ing cell type and subtype alignment using
Seurat (73). We analyzed batches separately
and then meta-analyzed. Functional anno-
tations were interrogated with GSEA and CP
and UR analyses. Protein-based biomarkers
were evaluated in plasma from >50,000UKBB
participants (32). We performed association
testing (limma) and pathway analysis [cluster-
Profiler (74)].
We used the largest available PTSD and

MDD GWAS datasets (5, 6). With LDSC (75),
we estimated global SNP-based heritability
and genetic correlation between the disor-
ders, whereas with LAVA (76), we estimated
local heritability and correlation. For fine map-
ping, we used a combination of FUMA (77) with
SusieR (78, 79). GWAS-based risk genes were
identified with SMR using bulk-tissue cis-xQTL
databases matching the omics and brain re-
gions of our bulk tissue studies (58, 80, 81) and
cell type–specific cis-eQTLs matching the cell
types of our snRNA-seq studies (82). Risk genes
were also identified with xWAS (83) [imple-
mented by JEPEGMIX2-P (33) with pretrained
molecular imputationmodels (84–86)matching
the omics and brain regions of our bulk tissue
studies]. For cell-type enrichment, we used par-
titioned heritability (87, 88), MAGMA (89),
and scDRS (35). SNP candidates for gene-by-
environment interactions were based on the
TSMR results. SNP-gene pairs were considered
if the target gene existed in our normalized ex-
pression dataset of the respective tissues. For
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UKBB plasma proteomics, we used the same
genepairs but further reduced it to SNP-protein
pairs if the target protein was expressed in plas-
ma. For environment variables, we used child-
hood trauma. Additive and interaction models
were tested. To test mediation effects of gene
expression in the SNP-to-diagnosis effects, we
used statsmodels (90).
Full materials and methods can be found

in the supplementary materials (28).
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