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Maternal behavior is shaped and challenged by the changing developmental needs
of offspring and a broad range of environmental factors, with evidence indicating
that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed
within cellular and molecular systems, including both intra- and intercellular signaling
processes as well as transcriptional profiles. This experience-associated plasticity may
have significant overlap with the mechanisms controlling memory processes, in particular
those that are activity-dependent. While a significant body of work has identified various
molecules and intracellular processes regulating maternal care, the role of activity-
and experience-dependent processes remains unclear. We discuss recent progress
in studying activity-dependent changes occurring at the synapse, in the nucleus, and
during the transport between these two structures in relation to maternal behavior.
Several pre- and postsynaptic molecules as well as transcription factors have been
found to be critical in these processes. This role reflects the principal importance of
the molecular and cellular mechanisms of memory formation to maternal and other
behavioral adaptations.

Keywords: synapse, maternal care, gene tanscription, synaptic transport, depression, postpartum, postpartum
depression, microtubules

OVERVIEW

Parental care is an example of social affiliative behavior that is critical for the survival of offspring
through its role in reproduction. Parental care exists in a wide range of animals, from invertebrates
to fish and higher vertebrates, being abundantly present in birds and mammals. Parental care
plays a fundamental role in keeping offspring safe and healthy (Numan and Insel, 2003; Numan
et al., 2006). This role requires a high degree of physiological and behavioral plasticity in response
to changing environmental cues and threats that are facilitated by changes in brain systems that
regulate social behavior, stress responsivity, fear responses, and learning and memory. Lab-based
studies of maternal behavior have explored these systems using rats and mice, with measures of
maternal care including nest building, pup retrieval, pup licking, nursing, and defense of the young
(Numan and Insel, 2003; Kuroda et al., 2011; Gammie, 2013). This literature has highlighted the
behavioral transitions that females undergo following parturition and/or exposure to pups that
results in a shift from pup aversion to pup-directed behavior (Cosnier, 1963; Rosenblatt, 1967;
Fleming, 1989; Lonstein and De Vries, 2000; Numan et al., 2006; Kuroda et al., 2011; Stolzenberg
and Mayer, 2019).
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However, these behavioral transitions may come with a cost.
Pregnancy and postpartum are associated with an increased
risk of developing depressive symptoms (Woody et al., 2017;
Qiu et al., 2020). Postpartum mental disorders in humans and
maladaptive maternal behavior in animals are associated with
significant adverse and long-term effects for both mother and
offspring. Postpartum mental disorders, such as postpartum
depression (PPD), are characterized by anxiety, depression, and
poor maternal care. PPD is an episode of major depressive
disorder (MDD) but has its own unique characteristics, including
differences in the manifestation of depression with onset during
pregnancy vs. postpartum onset (Gavin et al., 2005; Gaynes
et al., 2005; Meltzer-Brody, 2011; Pawluski et al., 2017; Qiu
et al., 2020). PPD affects 15%–25% of mothers worldwide. The
impact of maintaining and improving a healthy mental state of
the mother following the delivery is profound and far-reaching.
The design of pharmacological and behavioral treatments of
PPD would greatly benefit from a better understanding of
the neurobiological mechanisms of maternal care (Numan and
Insel, 2003; Qiu et al., 2020). This major gap in knowledge
is partially due to the limited number of animal models of
PPD, linked to either genetic or environmental causes (Pawluski
et al., 2017; Qiu et al., 2020). While we know some of
the molecular and cellular events as well as neural circuits
involved in normal maternal care, the specific changes that
underlie maternal dysfunction in animals and PPD in humans
remain unclear.

Integrating the mechanisms that underlie the plasticity
associated with learning and memory and the behavioral
transitions associated with maternal behavior may generate
unique insights into this critical reproductive behavior. In this
review, we explore the hypothesis that experience-dependent
signaling networks that control synaptic and nuclear function
may be an important component of the molecular basis of
maternal care. This activity-dependent signaling may occur:
(1) at synapses, affecting the localization of pre- and postsynaptic
receptors and other synaptic proteins as well as changes in
the post-translational modifications of synaptic proteins; (2) at
the level of the bidirectional transport between synapses and
the nucleus; and (3) at the level of gene transcription in the
nucleus (Figure 1). The molecular and cellular mechanisms
underlying maternal care are very diverse, which is illustrated
by the fact that maternal dysfunction in animals and PPD
in humans are clearly multifactorial, with several genes
associated with disrupted maternal care (Numan and Insel, 2003;
Brummelte and Galea, 2010b; Di Florio and Meltzer-Brody,
2015; Gammie et al., 2016; Li and Chou, 2016; Stolzenberg
and Champagne, 2016; Feldman et al., 2019; Froemke and
Young, 2021). Importantly, a significant number of these
genes are known to be part of activity-dependent signaling,
synaptic function, and changes in transcription in various
systems and behaviors, particularly in memory processes.
With some exceptions (e.g., long-term potentiation and social
learning), we propose that activity-dependent and memory-
associated intracellular signaling pathways, but not memory
processing per se, serve as critical mechanistic regulators of
maternal care.

BRAIN ANATOMY OF MATERNAL
BEHAVIOR

Here we discuss the molecular mechanisms of maternal care in
mice and rats, as the neurobiology of parenting behavior has
been primarily studied in mothers of these two common model
organisms (Kuroda et al., 2011; Dulac et al., 2014; Stolzenberg
and Mayer, 2019). The molecular and cellular changes that are
the focus of this review occur within the context of specific
brain regions that have been implicated in maternal behavior.
Experience-dependent changes have been described in specific
brain areas during maternal care, including the medial preoptic
area (mPOA) of the hypothalamus, ventral bed nucleus of
stria terminalis (BNST), ventral tegmental area (VTA), nucleus
accumbens (NAc), ventral pallidum, lateral septum and medial
amygdala (Champagne et al., 2001, 2003, 2004; Francis et al.,
2000, 2002; Numan and Insel, 2003; Tsuneoka et al., 2013; de
Moura et al., 2015; Ray et al., 2015; Stamatakis et al., 2015;
Gammie et al., 2016; Alsina-Llanes and Olazábal, 2020; Qiu
et al., 2020). The mPOA-VTA-NAc network, which is part
of the motivational circuit, is regulated by projections from
the paraventricular nucleus of the hypothalamus (PVN), lateral
habenula (lHb), and the dorsal raphe nucleus (Kohl et al.,
2017). These brain regions are part of the excitatory system
of maternal behavior (Numan and Insel, 2003). The medial
amygdala has been implicated in maternal behavior through
its inhibitory role in pup approach behavior (Cosnier, 1963;
Rosenblatt, 1967; Numan and Insel, 2003; Lévy and Keller, 2009;
Stolzenberg and Mayer, 2019). Olfactory cues from the pups
are processed by the accessory and main olfactory bulbs which
increase the activity of the medial amygdala in virgin females and
promotes pup avoidance.

Cortico-limbic and in particular threat-related brain areas
involved in anxiety and depression in humans and in affective
disturbances in rodents also exhibit significant influence on
maternal behavior; however, the neural mechanisms of this
regulation remain obscure. In rodents, recent work suggests that
the hippocampus (HPC), medial prefrontal cortex (mPFC), and
basolateral amygdala (BLA) are involved in regulating maternal
care (Fleming et al., 1980; Fleming and Korsmit, 1996; Walsh
et al., 1996; Lee et al., 2000; Mattson and Morrell, 2005; Afonso
et al., 2007; Lee and Brown, 2007; Pawluski and Galea, 2007;
Maguire and Mody, 2008; Martel et al., 2008; Leuner and
Gould, 2010; Numan et al., 2010; Pereira and Morrell, 2020).
In humans, functional magnetic resonance imaging (fMRI) has
shown that postpartum anxiety and depression in mothers
are characterized by abnormal functional connectivity in both
resting state and in response to infant cues in several brain
regions, including the amygdala, anterior cingulate cortex, PFC,
and HPC (Silverman et al., 2007; Leuner et al., 2010; Moses-
Kolko et al., 2010; Meltzer-Brody, 2011; Schiller et al., 2015;
Pawluski et al., 2017). Moreover, the HPC, amygdale, and PFC
are some of the overlapping brain regions involved in memory,
postpartum states, and depression in humans (Leuner and Shors,
2006, 2013). Importantly, even though only a few animal models
of peripartum affective disorders exist, they show changes in

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 March 2022 | Volume 15 | Article 844295

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Fuentes et al. Experience-Regulated Events in Maternal Behavior

FIGURE 1 | Experience-dependent signaling in maternal behaviors. Evidence discussed in this review indicates that experience- or activity-dependent signaling
may occur (1) at synapses, affecting the localization of pre- and postsynaptic receptors and other synaptic proteins as well as changes in the post-translational
modifications of synaptic proteins, such as GABA, BDNF, oxytocin (OXT), and dopamine (DA); (2) at the level of the bidirectional transport between synapses and the
nucleus, which involves microtubule and microtubule-regulating proteins, such as stathmin and MAP6/STOP; and (3) at the level of gene transcription in the nucleus,
which involves, for example, CREB as a transcription factor and FosB and BDNF as gene targets. (P) in ERK-P and CREB-P denotes protein phosphorylation. For
other abbreviations see the main text.

synaptic structure, synaptic plasticity, synaptic proteins, and
nuclear function (gene transcription) in same brain areas that
have altered fMRI activity in mothers with PPD compared with
healthy mothers (Pawluski et al., 2017). Maternal care impacts
neuro genesis as well as dendritic spine morphology in the HPC
and several other brain areas (Pawluski et al., 2016; Duarte-
Guterman et al., 2019). Hippocampal long-term potentiation
(LTP) is increased in mothers, an effect that is abolished by
gestational stress (Pawluski et al., 2016). Moreover, GABAA
receptors, whose expression in the HPC is modulated during
pregnancy, are involved in pup retrieval and affective behaviors
in the postpartum but not in virgin females (Maguire and Mody,
2008), suggesting a specific role for the HPC and cortico-limbic
threat circuits in maternal behavior.

CELL-TYPE SPECIFICITY OF
ACTIVITY-REGULATED EVENTS IN
MATERNAL BEHAVIOR

While it may be challenging to distinguish between cells that
are ‘‘merely’’ activated by general activity and cells inducing a

behavior, significant progress has been made in establishing the
causal role of specific cells and circuits in behavior. Systems
neuroscience has evolved with powerful methods of studying
brain circuits by fast and slow time scale manipulation (e.g.,
optogenetics, chemogenetics) and imaging in vivo (Aston-Jones
and Deisseroth, 2013; Bruchas and Roth, 2016; Kim et al., 2017;
Nectow and Nestler, 2020). It is worth noting that if a group
of cells is activated by a behavior but the manipulations used
on these cells do not produce an effect on the behavior, this is
not necessarily evidence that the cell population is not important
for this particular behavior. Rather, it is likely the case that our
approaches to testing the functionality of these cells are not
sensitive enough to fully understand the processes underlying
their function. To address these issues, a more nuanced
approach might be necessary, which in addition to probing
the circuitry-level activity and electrophysiological properties of
cells, also examines the mechanisms of transcription, translation,
receptor function, trafficking, and other intracellular processes
(Shen et al., 2022). Combining these approaches will allow
modern neuroscience to distinguish between molecular cause
and effect in brain function and various behaviors, including
maternal care.

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 March 2022 | Volume 15 | Article 844295

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Fuentes et al. Experience-Regulated Events in Maternal Behavior

Immediate early gene (IEG) activation following a mother’s
interaction with pups have contributed to mapping brain regions
involved in maternal care in rodents (Lonstein et al., 2000;
Numan, 2007; Tsuneoka et al., 2013), but the identity of the
cell types has only recently been explored. In the mPOA more
than 75% of the cells that become active during maternal
care are GABAergic (Tsuneoka et al., 2013). These GABAergic
cells express estrogen receptor alpha, galanin, neurotensin, and
tachykinin2 (Lonstein et al., 2000; Tsuneoka et al., 2013).
Chemo- and optogenetic approaches have recently shown that
the activation of mPOA cells expressing the estrogen receptor
alpha induces pup approach and retrieval (Fang et al., 2018;
Wei et al., 2018). The activation of galanin-expressing cells that
project from the mPOA to the peri aqueductal gray matter or
VTA promotes grooming and motivation to seek pups (Kohl
et al., 2018). Interestingly, ablation of the galanin-expressing cells
in the mPOA leads to the reduction of several forms of maternal
care but activation of these cells improves pup grooming only,
suggesting a complex role of these cells in maternal care (Wu
et al., 2014). GABAergic mPOA cells, different from those
expressing the estrogen receptor alpha, might be involved in nest
building behavior but their identity is unclear (Li et al., 2019).
Outside of the mPOA, inhibitory neurons in the arcuate nucleus
of the hypothalamus that express the agouti-related neuropeptide
(AGRP) form synapses on mPOA cells and their activation
decreases nest building (Li et al., 2019). In the medial amygdala,
the activation of GABAergic cells, but not of glutamatergic ones,
promotes pup grooming and to a lesser extent pup retrieval
(Chen et al., 2019).

Similar to chemo- and optogenetic studies, fiber photometry
illustrates that pup sniffing or grooming increase intracellular
calcium in galanin-expressing mPOA cells while pup approach
and retrieval increase calcium signal in mPOA cells expressing
the estrogen alpha receptor (Fang et al., 2018; Kohl et al., 2018;
Wei et al., 2018). Intracellular calcium in GABAergic cells in the
medial amygdala is also increased during pup grooming (Chen
et al., 2019).

MATERNAL BEHAVIOR AND LEARNED
RESPONSES

The maternal brain, as we have learned from human and rodent
studies, is highly dynamic and susceptible to both internal
and external influences (Olazabal et al., 2013a; Stolzenberg and
Champagne, 2016; Stolzenberg andMayer, 2019). The expression
of maternal behavior relies on the hormonal state of the mother
and sensory cues coming from the offspring. The maternal brain
is continuously processing external sensory information and
must adjust its activity to meet the demands of the offspring
(Olazabal et al., 2013a,b). This plasticity is displayed at both
intra- and intercellular levels. Activity-dependent genes and
proteins may play an important role at the early stages following
initiation of neuronal activity elicited by the mother-offspring
interaction and later provide the intracellular mechanism for
encoding these experiences into long-term memory. Therefore,
it may be instructive to compare activity-regulated processes
emerging in maternal care to those that are well-established

in memory. Memory processing is dynamic and plastic. In a
somewhat similar manner, motherhood enhances the plasticity
of the female brain, affecting neurogenesis, dendritic spine
morphology, synaptic proteins, gene transcription, LTP, and
memory (Pawluski and Galea, 2006; Leuner and Sabihi, 2016),
and these processes are affected during perinatal stress and
affective disturbance in animals and in peripartum depression
in humans (Qiu et al., 2020). Activity-dependent synaptic and
nuclear events have been described quite extensively for learning
and memory, with several in-depth reviews on this topic (Klann
and Dever, 2004; Alberini, 2009; Mayford et al., 2012; Nonaka
et al., 2014; Ch’ng et al., 2015; Yap and Greenberg, 2018).

To begin an exploration of possible plasticity events occurring
during maternal care, it is important to examine the role of
synaptic plasticity including LTP. LTP is a widely accepted
model of the cellular mechanisms of activity-dependent synaptic
plasticity leading to memory formation (Bliss and Lomo, 1973;
Siegelbaum andKandel, 1991;Malenka andNicoll, 1997; Stevens,
1998; Martin et al., 2000; Poo et al., 2016). Activity-dependent
genes are critical for both LTP and memory processing and
somewhat similar links can be expected between genes, synaptic
plasticity, and maternal care. With daily pup exposure, virgin
females learn to engage in the full repertoire of maternal care
(Fleming and Rosenblatt, 1974). The sensory cues elicited by
pups change the neural activity in the female brain. In particular,
learned responses to pup’s auditory cues are critical for efficient
maternal care. There is evidence for the role of maternal
physiological state (virgin females vs. mothers) in creating a
memory for ultrasonic vocalizations from pups (USVs; Lin
et al., 2013). Previous experience with progeny may transform
and shape initial stereotypical maternal care responses into a
learned behavior, making these responses more adaptive to the
current situation surrounding themother and her progeny. In the
postpartum period, the representation of pup calls in the primary
somatosensory cortex increases and is later refined, likely due
to activity-dependent plasticity elicited during nursing. Pup calls
produce a stronger activation of the auditory cortex in mothers
compared to virgin females, and the balance between excitation
and inhibition is changed (Valtcheva and Froemke, 2019). The
temporal association cortex receives inputs from the auditory
cortex and exhibits activity-dependent changes that improve the
discrimination of pup calls in mothers compared with females
(Tasaka et al., 2020). Auditory-driven plasticity has also been
found in the temporal association cortex (TeA) in mothers in
response to USVs from pups. Tasaka et al. (2020) suggest that
TeA processes USVs to support the memory of pup cries by the
parents, somewhat similar to how TeA processes information for
auditory memory in fear conditioning (Romanski and LeDoux,
1992; Quirk et al., 1997). Other work also indicates that maternal
experience-dependent cortical plasticity is involved in the ability
to retrieve pups (Lau et al., 2020). Plasticity is also related to a
gene knockout of the Mecp2, which loss-of-function mutations
cause the neuro developmental disorder Rett syndrome that has
autistic features (Amir et al., 1999). Following up on this initial
evidence that synaptic plasticity may be involved in maternal
care, it would be important to study various forms of synaptic
plasticity in relation to maternal experience.

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 March 2022 | Volume 15 | Article 844295

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Fuentes et al. Experience-Regulated Events in Maternal Behavior

Changes in dendritic spine morphology are another
important activity-dependent cellular event. Changes in
dendritic spines are believed to be a critical part of memory
processing (Rogerson et al., 2014; Bailey et al., 2015; Dent,
2017). These changes are also consistently found during normal
motherhood as well as in animal models of maternal stress and
affective behaviors in the postpartum (Workman et al., 2013;
Glasper et al., 2015; Pawluski et al., 2016; Duarte-Guterman
et al., 2019; Sheppard et al., 2019). In addition, neurogenesis is
affected, as cell proliferation and survival are decreased during
gestation and early postpartum, and exogenous treatment with
corticosterone reduces proliferation even further.

In addition to mother’s own experience in nursing, learned
adaptations that improve maternal care include learning by
‘‘social transmission’’ from other experienced mothers (Schiavo
et al., 2020; Carcea et al., 2021). Learning maternal care
from more experienced females would improve survival of
the progeny, and both wild and laboratory mice as well
as rats prefer to rear their young in communal nests and
nurse their own and other mothers’ pups (Branchi, 2009;
Heiderstadt and Blizard, 2011; Weidt et al., 2014). This process
is perhaps somewhat similar to the role of memory processes
in generating social learning (Basu and Siegelbaum, 2015;
Leblanc and Ramirez, 2020).

In addition to the similarities between the molecules
regulating memory and maternal behavior, there is evidence
that spatial memory is affected peripartum (Perani and Slattery,
2014). Pregnant rats perform better than virgin females in spatial
memory tasks during the first two trimesters of pregnancy (Galea
et al., 2000). However, maternal memory is impaired in the last
trimester of pregnancy and after the delivery (Galea et al., 2000;
Darnaudery et al., 2007), somewhat similar to studies in humans,
showing that some memories are diminished during pregnancy
and after parturition (Glynn, 2010). Therefore, it is possible that
an increase in memory processes devoted to maternal care takes
a toll on other brain functions, including spatial memory, as
pregnancy, giving birth and caring for the progeny require and
consume significant energetic resources.

WHY ARE ACTIVITY-REGULATED EVENTS
AT THE MOLECULE LEVEL IMPORTANT
FOR MATERNAL BEHAVIOR?

Learning and memory depend on neuronal plasticity originating
at the synapse following an exogenous stimulus and requiring
gene transcription in the nucleus to persist. RNA and protein
products following these transcription events are transported
back to synapses strengthening synaptic connections. While
we are beginning to understand activity-regulated processes
and how synapse-nucleus communication supports long-term
neuronal plasticity as well as learning and memory, the role of
these processes in maternal behavior remains unclear. Synaptic
and nuclear changes, as well as microtubule-mediated transport
connecting them, are known to be activity-regulated, these
processes however are just some of many activity-regulated
intracellular events. Other processes include changes in the

blood flow, spine dynamics, synaptic connections, intracellular
movement of organelles via synaptic and nuclear trafficking,
and changes in protein structure and function. This is clearly
not a full list as we are learning that some of the molecular
and cellular events that were once considered stable are in fact
dynamic in the adult mature brain [for example, neurogenesis
and microtubule stability (see Section ‘‘Microtubule-Mediated
Transport in Maternal Care’’)]. It is important to note that it is
challenging to completely separate the basal processes at synapses
and in the nucleus from activity-dependent events, as most of
the genes and proteins involved are active not only as a result
of activity but to a certain degree also in the basal ‘‘naïve’’ state.
Alternative explanations for the molecular basis of maternal care
are also important to consider, such as dysregulation of synaptic
function in general, impairment of neurotransmission (which
may influence activity-dependent signaling) and changes in early
development.

In the following sections, we will review some examples of
activity- and experience-dependent changes at synapses, in the
nucleus and in microtubules, which mediate the synapse-nucleus
communication.

SYNAPTIC MOLECULES IN MATERNAL
CARE

Complex behaviors and memory are guided by the interaction
of molecules in the pre- and post-synaptic sites of neurons
(Bailey et al., 2015; Chanaday and Kavalali, 2018; Monday et al.,
2018). Biochemical changes at the level of neurotransmitters and
neuromodulators would be expected to occur during pregnancy,
the postpartum period and interactions with the progeny.
Indeed, pup approach, sniffing, retrieval and grooming increase
intracellular calcium in the mPOA and medial amygdala (Fang
et al., 2018; Kohl et al., 2018; Wei et al., 2018; Chen et al.,
2019). Together with work showing that ERK phosphorylation
(ERK kinase is involved in the transmission of signals from
synapses to the nucleus) is increased following the interaction
with pups (Kuroda et al., 2007), these studies suggest that
maternal care initiates calcium-dependent signaling cascades,
which often lead to activity-dependent intracellular changes as is
well documented for memory processes. Overall, the mechanism
by which maternal motivation happens may be explained by the
interaction between hormones and neurotransmitters, with both
regulated in experience-dependent manner.

Neurotransmitters Involved in Maternal
Behavior and Postpartum Period
The flexibility of neuronal networks includes both the plasticity
of excitatory and inhibitory synapses (Barberis, 2020). Changes
in neurotransmitter release happen during pregnancy and
the postpartum period. Glutamate is the most common
excitatory neurotransmitter, it binds to the receptors for NMDA
(N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid). Activated NMDA
receptors flux calcium, thereby inducing multiple calcium-
dependent signaling pathways, including calcium-dependent
kinases (CaMKII and CaMKIV), protein kinase A (PKA),
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mitogen-activated protein kinases (MAPKs) and calcium-
dependent phosphatase calcineurin, which phosphorylate or
dephosphorylate their substrates at the synapse or in the nucleus.
Glutamate and γ-aminobutyric acid (GABA) are critical for
memory processing (Luscher and Malenka, 2012). They were
also shown to be involved in maternal care (Zhao and Gammie,
2014). Glutamate and GABA are upregulated in the mouse
lateral septum postpartum (Zhao and Gammie, 2014). mRNA
of the GluA3 and GluN2B of AMPA and NMDA receptors is
increased in rat mothers and injections in the mPOA of CNQX,
an AMPA receptor antagonist, and MK-801, an NMDA receptor
antagonist, reduce maternal behavior in rat mothers (Okino
et al., 2020).

GABA Receptor and Postpartum-Specific Maternal
Behavior Deficits
Plasticity in mothers starts in pregnancy, and the δ subunit
of the GABAA receptor subtype (GABARδ) is involved
in experience-dependent changes peripartum (Maguire and
Mody, 2008). Mothers with a knockout of the GABAARδ

(Gabrd-/-), which leads to a deficiency in synaptic function
in the dentate gyrus of the HPC, neglect pups and have
a decrease in pup survival. There are naturally occurring
changes in GABAR plasticity during pregnancy; whole-cell
patch recordings performed on the dentate gyrus granule
cells show that tonic inhibition is decreased in wildtype
pregnant mice compared to virgins and mothers. However,
tonic inhibition in mice lacking the GABAAR δ subunit
shows no changes across virgin, pregnant, and postpartum
females. These data highlight the importance of changes in
neuronal activity across different stages of the peripartum
period since Gabrd-/-mice show behavioral deficits at the
postpartum. Gabrd-/-mice exhibit depressive-like behavior and
inability to take care of their progeny while no changes
are observed in virgin Gabrd-/- mice. The neurosteroid
allopregnanolone, a positive allosteric modulator of GABA’s
action at GABAAR (Pinna, 2020), has helped to determine
the role of GABARδ subunit through the peripartum period.
Because of the presence of the GABAAR δ which allows
neurosteroid sensitivity, allopregnanolone can enhance the tonic
GABAergic inhibition mediated by GABAARs. Deletion of
GABARδ leads to altered neuronal excitability due to lack
of sensitivity to allopregnanolone (Maguire et al., 2009). This
suggests a mechanism for how GABARδ exerts a homeostatic
effect on neuronal activity during the peripartum period
(Maguire et al., 2020).

Similar to the Gabrd-/- mice described above, deficient
maternal care and affective (anxiety- and depressive-like)
behaviors are observed in postpartum but not virgin female
mice that lack the K +/Cl- co-transporter 2 (KCC2) specifically
in neurons expressing the corticosterone-releasing hormone
(CRH; Melon et al., 2018). Among several roles of KCC2, its
increased expression in mature neurons lowers [Cl-]i, leading
to an influx of Cl- ions and hyperpolarizing responses upon
GABAAR activation. KCC2 is important for the GABAergic
regulation of CRH neurons in the paraventricular nucleus of the
hypothalamus (PVN), as mice lacking KCC2 specifically in the

CRH-positive neurons exhibited abnormal postpartum affective
and maternal behaviors.

Dopamine (DA), Reward, and Maternal Behavior
DA has been intensively studied in maternal care and found to
be important for the function of several major maternal brain
areas, including the mPOA, ventral pallidum, and NAc (Numan
et al., 2005a). As part of the reward system, DA is involved in
how mothers respond to their offspring and find their young
rewarding (Numan and Stolzenberg, 2009; Pereira and Morrell,
2010; Rincon-Cortes and Grace, 2020). DA is synthesized in both
the VTA and substantia nigra and then transported by neuronal
projections to the NAc, mPFC, and amygdala. Extracellular DA is
increased in the mother rat NAc associated with pup licking and
grooming (Champagne et al., 2004). DA transporter binding and
DA receptors D1 and D3 are also increased. Transcription of the
tyrosine hydroxylase (TH) and possibly other DA-related genes,
is activity-dependent and is regulated by changes in membrane
potential and intracellular Ca2+ (Aumann and Horne, 2012).
Activity- and Ca2+-dependent regulation of TH expression is
critical, as this protein activity is the rate-limiting enzyme in
DA synthesis and is, therefore, a key orchestrator of cellular
DA levels. An interesting possibility exists that dopamine may
regulate AMPAR trafficking, as activation of dopamine receptors
leads to synaptic insertion of the AMPAR (Wolf, 2010). Although
studies on the hormonal and non-hormonal basis of maternal
behavior have focused primarily on hypothalamic regions such
as the mPOA, extensive neural circuitry contributes to all
complex behavioral phenotypes. It has been suggested that the
reward system is involved in the process by which the mother
establishes and maintains a relationship with pups (Hauser
and Gandelman, 1985). Indeed, it was shown that some of
the neurons activated during nurturing behavior in the mPOA
project to the VTA, which plays a central role in the reward
system in the brain (Numan and Numan, 1997). Furthermore,
dopaminergic neurons that project from the VTA to the NAc
are known to be involved in the control of the expression
of maternal behaviors (Keer and Stern, 1999; Numan et al.,
2005b; Numan and Stolzenberg, 2009) and contribute to the
elicitation of pleasure associated with the expression of behaviors,
thereby supporting the enhancement andmaintenance of further
behaviors. It has been reported that the number of c-Fos positive
cells in the VTA increases during maternal behaviors (Numan
and Numan, 1997; Matsushita et al., 2015), and pathway-
specific manipulations have also revealed that dopaminergic
cells in the VTA are activated during approach and retrieval
of pups (Fang et al., 2018). As mentioned above, dopamine
release in the ventral striatum and NAc is elevated in nursing
females interacting with pups (Hansen et al., 1993; Champagne
et al., 2004), and dopaminergic projections from the VTA to
NAc are strengthened in females providing a high level of
maternal care (Shahrokh et al., 2010). These activity-dependent
changes following neuroplasticity may support the long-term
strengthening of maternal behavior.

Other neuromodulators known to be released in activity-
dependent manner, such as norepinephrine, which is a ligand of
the adrenergic receptor, are also involved in maternal behavior.
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Disruption of the dopamine beta-hydroxylase (Dbh) gene that
does not allow synthesis of the norepinephrine and epinephrine
leads to lower pup survival rate and poor ability of Dbh-/-
mothers and virgin females to retrieve pups to the nest (Thomas
and Palmiter, 1997). In rats manipulating norepinephrine
release in vBNST and mPOA leads to deficits in pup retrieval
(Smith et al., 2012).

Hormones and Peptides
Sustained maternal care is critical for the survival of the progeny
and hormonal changes help to trigger maternal motivation
during pregnancy and postpartum. In mammals, maternal
behavior is highly regulated by hormonal changes that fluctuate
significantly during the peripartum period (Pawluski et al.,
2017). In general estradiol, progesterone, and corticosterone
increase during pregnancy and decrease around the time of
labor or parturition (Duarte-Guterman et al., 2019). In humans,
pregnancy and giving birth bring about not only physiological
but also psychological changes, which are dependent on
hormonal regulation of the peripartum (Olza et al., 2020;
Thul et al., 2020). Studies in rodents show that estrogen and
progesterone play a critical role in triggering maternal responses
and interfering with their function impairs pup retrieval, licking,
and nursing (Stolzenberg and Champagne, 2016).

Prolactin is also involved in maternal care, and progesterone
and prolactin may interact in the mPOA to mediate maternal
behavior. To study the role of hormones in motherhood, a
treatment with pregnancy-like regimen of progesterone can be
useful to mimic the natural process of hormone release during
peripartum period. Treating female rats with this progesterone
regimen for 10 days causes a reduction in the expression of
the prolactin receptor mRNA in the mPOA (Bridges and Hays,
2005). Deletion of prolactin receptors from GABA neurons leads
to impairment in maternal motivation; prolactin receptor gene
knockout mothers become slower in pup retrieval, suggesting
a link between hormones and GABAergic neurons in maternal
behaviors (Swart et al., 2021).

The peptide oxytocin is another critical molecule for maternal
care. It is synthesized in the hypothalamic neurons, packaged into
dense-core vesicles, and transported into dendrites and axons for
release (Froemke and Young, 2021). Oxytocin increases during
pregnancy with a peak during and immediately following birth
to support uterine contractions and initiate milk ejection during
nursing (Rilling and Young, 2014; Thul et al., 2020). Oxytocin
also plays a major role in the psychological experiences in the
maternal state of women. Oxytocin together with dopamine
activates specific neural pathways, to stimulate nurturing and
bonding with the progeny. A systematic review of the human
literature on mothers with PPD shows that most of the studies
suggest an inverse relationship between plasma oxytocin levels
and depressive symptoms (Thul et al., 2020). Oxytocin is released
in an activity-dependent manner both in the brain and blood
stream: birth and suckling in the lactating animal trigger oxytocin
release inside various brain regions, which has been extensively
studied (Jurek and Neumann, 2018; Grinevich and Neumann,
2021). In addition to oxytocin, oxytocin receptor, upon binding
to oxytocin (as a result of an activity or experience), can activate

multiple intracellular signaling cascades to promote de novo
RNA and protein syntheses (Grinevich and Neumann, 2021).
A recent study showed the role of the oxytocin expressed in
cells expressing another hypothalamic neuropeptide, melanin
concentrating hormone (MCH), in the control of maternal care
and affective behaviors (Phan et al., 2020). The oxytocin receptor
gene knockout limited to the MCH-expressing neurons increases
depressive-like behavior in sexually naïve females and decreases
depressive-like behavior in mothers. These behavioral changes
seem to be associated with synaptic plasticity in the reward and
fear circuits based on Arc expression, providing another example
of experience-dependent changes in maternal care.

CRH and corticosterone are also important to consider when
describing experience-dependent changes in maternal behavior.
In addition to the KCC2 gene knocked out specifically in the
CRH-positive cells described earlier in this review (Melon et al.,
2018), work in prairie vole mothers suggests the role for the CRH
system in the experience-dependent development of affective
postpartum behaviors (Bosch et al., 2018). Abnormal changes in
the level of corticosterone during pregnancy and the postpartum
may contribute to PPD, and chronic corticosterone treatment
has been used to induce postpartum malfunction in rats and
mice, leading to deficits in neurogenesis and spine formation,
dynamic cellular events that are experience-dependent
(Brummelte et al., 2006, 2012; Brummelte and Galea, 2010a;
Maguire and Mody, 2016).

Brain-Derived Neurotrophic Factor
Neurotrophins are well established stimulators of neuronal IEG
response and they play a major role in memory and depression
(Yang et al., 2020). Synthesis and release of the brain-derived
neurotrophic factor (BDNF) is regulated by neuronal activity
(Lu, 2003; Cunha et al., 2010), therefore activity-dependent
events may involve this neurotrophin during mother-progeny
interactions. Indeed, maternal care strongly modulates BDNF
expression in rodents (Liu et al., 2000; Branchi et al., 2013).
The disruption of the BDNF signaling in the oxytocin neurons
leads to reduced maternal care in mice (Maynard et al., 2018).
Bdnf deletion decreases maternal behaviors in virgin females and
mothers; knock-out females show harmful behaviors towards
the pups including biting (Maynard et al., 2018). The authors
suggest that BDNF could be a modulator of sex-specific social
behaviors and be a new activity-dependent molecule critical
for oxytocin neuron function (Maynard et al., 2018). Chronic
unpredictable stress (CUS) applied after giving birth produces
affective (depressive-like) behaviors, which are accompanied by
a decrease in the Bdnf mRNA and protein levels in the mPFC
of mothers (Liu et al., 2020). The Bdnf gene knockout in
the mPFC also leads to changes in FoxO1 expression, which
was previously implicated in major depressive disorders (Liu
et al., 2020). As CUS and other stress procedures are known
to alter maternal behavior (Leuner et al., 2014; Maguire and
Mody, 2016), it is probable that the reduction in Bdnf and
FoxO1 might also be involved in these behavioral disturbances.
Moreover, female rats exposed to opium during pregnancy
showed reduced maternal behaviors in the postpartum period
that were accompanied by decreased BDNF expression in
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the HPC (Rezaei et al., 2021). Supporting the hypothesis
that activity-dependent events produced by bouts of maternal
care involve BDNF, mothers that spent more time grooming
and licking pups have higher levels of BDNF in the HPC
and NAc (Zhang et al., 2020). Oxytocin-induced regulation
of BDNF may mediate the observed behavioral differences.
BDNF binds the TrkB receptor to mediate many aspects of
neural plasticity and behaviors (Lu, 2003). Disruption of the
BDNF-TrKB signaling in oxytocin neurons leads to reduced
maternal care in female mice, suggesting that BDNF could
be a modulator of sex-specific social behaviors and be a
new activity-dependent molecule critical for oxytocin function
(Maynard et al., 2018). Human studies showing a relationship of
genetic variations and methylation of Bdnf with parental rearing
behaviors (Suzuki et al., 2011; Unternaehrer et al., 2015; Avinun
and Knafo-Noam, 2017) highlight the necessity of more basic
studies addressing the activity-dependent role of Bdnf during
maternal care.

Other Synaptic Proteins
Ephrin-A5 is another synaptosomal protein deletion of which
leads to a decrease in maternal behavior and pup retrieval
(Sheleg et al., 2017). In primary neurons Ephrin-A5 suppresses
BDNF-induced ERK activity and BDNF-evoked neuronal IEG
response, suggesting a role of Eph receptors in modulating gene
expression. Opposite to IEGs, long-term ephrin-A5 application
induces cytoskeletal gene expression of tropomyosin and
actinin (Meier et al., 2011). These data suggest a possibility
that Ephrin-A5 can regulate activity-regulated cellular and
transcriptional changes in maternal behavior. Interestingly,
another member of the Ephrin family, Ephrin-A2, is on the
axon guidance ontology list in a DNA methylation study of PPD
patients (Nakamura et al., 2019).

Experience-dependent maternal behavior can be regulated
by proteins that act at the presynaptic active zone of the
neuron. The presynaptic active zone protein CAST, which is a
presynaptic release machinery-protein that acts as an anchor for
neurotransmitters and neuromodulators was examined for its
role in maternal behavior, using CAST knockout primiparous
and multiparous females (Hagiwara et al., 2020). Primiparous
CAST knockout females showed a decrease in crouching and
nest building which were significantly improved with their
second litter. CAST knockout virgin females failed to learn
maternal behavior even after repeated exposure to newborn pups.
The authors also found changes inaffective behaviors (sucrose
preference) in pregnant but not virgin females. The CAST
protein is distributed in the posterior pituitary, suggesting that it
might regulate the release of oxytocin through the hypothalamus
magnocellular neurons. However, there were no differences in
oxytocin serum levels, suggesting that a different mechanism,
other than hormonal pathway, is affecting CAST-dependent
maternal behavior.

Neurotransmitter action is regulated by various molecules
including the heterotrimeric G proteins of the Gq/11 family.
Mice that lack the α-subunit in the forebrain show reduced nest
building, pup retrieval, crouching and nursing (Wettschureck
et al., 2004). The deficiency in maternal behavior is not due

to a decrease in oxytocin release or prolactin production, since
pituitary function is normal in Gαq/11 deficient mice.

However, other transmembrane proteins, such as
glycoproteins, can act via oxytocin release and affect the
maternal experience. For instance, the CD38 transmembrane
glycoprotein with ADP-ribosyl cyclase activity is involved in
maternal behavior through regulation of oxytocin secretion
(Jin et al., 2007; Young, 2007). CD38 knockout multiparous
female mice retrieve pups faster than CD38 knockout
primiparous females. Both wildtype and CD38 knockout
experienced mothers have an increase in oxytocin release from
hypothalamus, however the basal level of plasma oxytocin
of wildtype experienced dams is only slightly higher. Thus,
CD38 regulation of oxytocin plays an important role in plasticity
in experienced mothers.

A recent report has identified a new player in maternal
care, the T-cell death-associated gene 51 (TDAG51).
TDAG51 is a member of the pleckstrin homology-like
domain family and was first identified as a pro-apoptotic
gene in T-cell receptor-mediated cell death (Park et al.,
1996). Members of this family of proteins are involved
in the regulation of p53 and AKT signaling pathways.
TDAG51 expression in pregnant mice was higher during the
prenatal, parturition and postnatal periods compared to that in
virgin female mice (Yun et al., 2019). TDAG51 knockout
dams showed reduced pup retrieval and impaired nest
building behavior, thus suggesting that the experience-
dependent TDAG51 expression could be involved in
maternal behavior.

MICROTUBULE-MEDIATED TRANSPORT
IN MATERNAL CARE

Trafficking in both directions between synapses and the nucleus
is critical for activity-dependent intracellular neuronal signaling.
While the critical role of trafficking has been shown for many
behavioral processes including learning and memory, how
important it is for maternal care remains unclear. The first step
in this process is the transmission of extracellular signals received
by synapses to the nucleus to induce the corresponding changes
in gene transcription (Cohen et al., 2015; Herbst and Martin,
2017; Uchida and Shumyatsky, 2018b; Parra-Damas and Saura,
2019). Trafficking in the opposite direction from the nucleus
and cell body supplies synapses with various cargos, including
synaptic vesicle precursors, neurotransmitter and neurotrophic
factor receptors, other synaptic proteins, mRNAs, and organelles
(Hirokawa et al., 2010).

Microtubules are one of the major cytoskeletal structures in
neurons (Conde and Caceres, 2009), and microtubule-mediated
trafficking is at the core of the signaling between synapses and
the nucleus (Hirokawa et al., 2010). Recent work has shown
that microtubules in the mature brain are dynamic, changing
their stability in response to external events including those that
lead to memory processing (Shumyatsky et al., 2005; Conde and
Caceres, 2009; Jaworski et al., 2009; Fanara et al., 2010; Uchida
et al., 2014; Uchida and Shumyatsky, 2015; Martel et al., 2016;
Dent, 2017; Yousefzadeh et al., 2020). Similarly, the microtubule-
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associated machinery may be critical for experience-dependent
intracellular changes during maternal care. Several studies have
reported that proteins in the microtubule network are changed
during pregnancy and the postpartum.

Expression of microtubule-associated protein 2 (MAP2),
tau and glial fibrillary acidic protein (GFAP), and tau
phosphorylation change in the rat hypothalamus, mPOA, HPC,
frontal cortex, and cerebellum during pregnancy and the
postpartum (Gonzalez-Arenas et al., 2012, 2014). Following pup
exposure in both primiparous and multiparous female rats,
the GFAP, a major molecule of the cytoskeleton network in
astrocytes, is increased in mPOA astrocytes, whereas there is
a decrease of GFAP in the medial amygdala and habenula
(Featherstone et al., 2000).

The stathmin family of proteins are negative regulators of
microtubule formation (Chauvin and Sobel, 2015). Stathmin
in its unphosphorylated form binds tubulin dimers and, once
phosphorylated, releases tubulin allowing microtubules to be
formed. Stathmin has been shown to regulate innate and
learned threat responses (Shumyatsky et al., 2005; Martel et al.,
2012). Stathmin may serve as a molecular link between threat
assessment and maternal behavior, as stathmin-/- mothers and
virgin females are deficient in nest building, pup retrieval, and
choosing a safe location for the nest in an open field (Martel
et al., 2008). Stathmin phosphorylation changes in response to
learning, in turn, causing microtubules to change their stability
and synaptic microtubule-mediated transport (Uchida et al.,
2014; Martel et al., 2016). It is possible therefore that stathmin
may change its binding to tubulin, microtubule-destabilizing
activity, and regulate microtubules in response not only to
learning but also maternal events: pregnancy, the postpartum as
well as maternal care, such as nest building, pup retrieval, and
grooming.

Microtubule stabilizerMAP6/Stable Tubule Only Polypeptide
(STOP) is another microtubule-associated protein. It binds
to and stabilizes microtubules and induces nocodazole
resistance and tubulin detyrosination (Bosc et al., 2003).
Similar to MAP2, STOP/MAP6 stabilizes microtubules by
bridging the binding between adjacent microtubules, which
is regulated by calmodulin binding (Lefevre et al., 2013).
STOP/MAP6 regulates synaptic function and maternal behavior
providing another link between microtubules and maternal
care (Andrieux et al., 2006). Whether STOP/MAP6 can
change its activity during pregnancy and the postpartum is
unknown but because it is regulated by calmodulin, it may be
involved in experience-dependent intracellular events during
maternal behavior.

In addition, a proteomics study on the mPFC in postpartum
rats found that microtubule-related proteins represented 10%
and those involved in microtubule-mediated synaptic transport
and plasticity represent 19% of all proteins identified in the study
(Volgyi et al., 2017).

Because of the critical role microtubules have in axon
guidance (Gu et al., 2020), it is interesting to note that genes
involved in axon guidance were among four ontology terms
related to PPD that were found in a case control study of a DNA
methylation analysis of PPD (Nakamura et al., 2019).

NUCLEAR EVENTS IN MATERNAL CARE

The nuclear events may alter social behaviors, such as
maternal experience. Transcription factors can play a role
in maternal behavior as they do in learning and memory
as well as being disturbed in neurodegenerative and mental
disorders (Deisseroth and Tsien, 2002; Greer and Greenberg,
2008; Ebert and Greenberg, 2013; Poo et al., 2016; Uchida
and Shumyatsky, 2018a,b; Yap and Greenberg, 2018;
Parra-Damas and Saura, 2019).

Extracellular regulated kinase (ERK)-mediated signaling is
one of the best examined synapse-to-nucleus signal transduction
networks in the central nervous system. In neurons, synaptic
inputs activate the ERK cascade and in turn stimulated
ERK can phosphorylate a variety of proteins which are
involved in synaptic plasticity [i.e., LTP and long-term
depression (LTD)], synaptogenesis as well as transcriptional
and translational regulation (Kelleher et al., 2004; Thomas
and Huganir, 2004), including IEG (see, for example, the
ERK-FosB link below) as well as learning and memory (Impey
et al., 1999; Sweatt, 2001; Satoh et al., 2011b). ERK was also
found to play a critical role in regulating maternal behavior,
with brain-specific ERK knockout mice (Erk2 CKO mice)
exhibiting deficiency in time spent crouching over the pups
(Satoh et al., 2011a).

Transcriptional Regulation
CREB
Since the discovery of the role of FosB in maternal care,
several lines of evidence have shown an important role of
transcription factors in maternal behavior. The cyclic adenosine
monophosphate (cAMP) responsive element-binding protein
(CREB) is one of the most studied transcription factors in
memory and there is growing evidence for its role in maternal
care. CREB regulates the expression of many genes and is
involved in activity-regulated gene transcription (Deisseroth and
Tsien, 2002; Cohen et al., 2015; Yap and Greenberg, 2018).
CREB phosphorylation (pCREB) is critical for its transcriptional
activity (West et al., 2002). The levels of pCREB in the mPOA
are directly correlated to the strength of licking/grooming in
lactating rats (Parent et al., 2017). Moreover, the number of
cells immunostaining for pCREB (on Ser133) in the mPOA
significantly increases in wildtype mice following exposure to
pups but not to novel objects (Jin et al., 2005). Pups born to mice
lacking the two major CREB isoforms, α and ∆ (Creb-α∆-/-)
died within several days of birth, but the Creb-α∆-/- females were
capable of rearing pups whose maternal care was initiated by
wildtype females, demonstrating the complex role of CREB in
maternal function.

TheMecp2 gene that plays an important role in the repression
of gene transcription was also linked to maternal behavior.
The MECP2 protein binds to methylated DNA and controls
transcriptional programs by modifying chromatin structure
regulating plasticity in development and adulthood (Chahrour
et al., 2008). Female heterozygous mutants of the Mecp2 gene
failed to show maternal retrieval when exposed to pups (Lau
et al., 2020). Given that MECP2 is suggested to be involved
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in the behavioral response to chronic stress and in ketamine’s
antidepressant effects (Uchida et al., 2011; Kawatake-Kuno
et al., 2021; Kim et al., 2021), MeCP2 dysfunction may also be
associated with PPD.

Immediate Early Genes
Neuronal activation-dependent molecular signals must be
relayed from active synapses to the nucleus to initiate activity-
dependent gene transcription (Greer and Greenberg, 2008;
Panayotis et al., 2015). Neuronal activity causes rapid expression
of IEGs that are crucial for experience-driven changes in
synapses and at the nucleus which are part of long-term
intracellular changes ultimately leading to learning and memory.
Some of these processes may very well be employed during
social behaviors, such as maternal care. IEGs are the first
genes to be activated following environmental stimulation. The
transcription of IEGs is induced rapidly without a requirement
for new protein synthesis (Yap and Greenberg, 2018). It however
requires a neurotransmitter-induced influx of extracellular
calcium into the neuron. The resulting increase in cytoplasmic
calcium stimulates a cascade of signaling events, including the
activation of the Ras-mitogen-associated protein kinase (MAPK),
calcium/calmodulin-dependent protein kinases (CaMKs), and
calcineurin-mediated signaling pathways. The first IEG shown
to be involved in maternal care was fosB (Brown et al., 1996).
FosB is an AP-1 transcription factor homologous to c-fos, and
FosB knockout female mice showed reduced retrieving behaviors
and a majority of the pups died before weaning (Brown et al.,
1996). Similar to the c-Fos, FosB expression is also induced in the
mPOA neurons during parenting (Brown et al., 1996; Kalinichev
et al., 2000; Kuroda et al., 2007). Moreover, ERK phosphorylation
and FosB induction in the mPOA were significantly attenuated
by pharmacological blockade of ERK signal, suggesting that the
ERK-FosB signaling has an important role in the initiation of
parental behavior (Kuroda et al., 2007). Thus, maternal nurturing
may require the fine tuning of the ERK-FosB signaling in
the mPOA.

Transcriptomic profiling has demonstrated that similar to
the learning processes, hundreds of genes are activated during
pregnancy and the postpartum period (Kinsley et al., 2008; Ray
et al., 2015; Gammie et al., 2016). Several hundred mouse genes
were found to undergo transcriptional changes during pregnancy
and the postpartum period compared to virgin females in several
major brain areas responsible for maternal care, including the
mPOA (Driessen et al., 2014), mPFC (Eisinger et al., 2014),
lateral septum (Eisinger et al., 2013), and NAc (Zhao et al.,
2014). Transcriptional changes in several hundred genes were
also found in the hypothalamus, HPC, neocortex and cerebellum
in pregnant and postpartum female mice compared to virgin
females (Ray et al., 2015).

CLINICAL IMPLICATIONS

PPD is a type of major depression that emerges in the perinatal
period and can persist after the baby is born for several months.
The depressive symptoms that occur in the peripartum period
have detrimental effects for the mother and the development

of the child. Studying the molecular and cellular mechanisms
in animal models of maternal care and its dysfunction has
important implications for the rational design of psychological
and pharmacological treatments. As described in this review,
there is accumulating evidence from work on experience- and
activity-dependent events in maternal behavior in rodents that
suggests that similar processes may be at work in humans in
the peripartum.

The critical importance of the synapse-nucleus connectivity
and the role of the microtubule cytoskeleton to mental disease
in humans are seen in clinical studies and animal models
(Marchisella et al., 2016). Changes in tubulin expression
are found in the HPC and prefrontal cortex of psychiatric
patients. Genetic linkage studies associate tubulin-binding
proteins with an increased risk of developing schizophrenia
and bipolar disorder. For many years, altered immunoreactivity
of microtubule associated protein-2 (MAP2) has been a
hallmark found in the brains of individuals with schizophrenia.
Single nucleotide polymorphisms (SNPs) and increased mRNA
have been identified for MAP6/STOP in the prefrontal
cortex of patients with schizophrenia (Shimizu et al., 2006).
Because MAP6/STOP gene knockout female mice demonstrate
deficits both in maternal care and behaviors related to the
‘‘schizophrenia-like’’ phenotype, there is a possibility that this
gene might also be involved in human maternal care.

Moreover, the analysis of the top 700 maternal genes against
genes from autism, bipolar disorder and schizophrenia databases
found overlapped genes for each of these three disorders
(Eisinger et al., 2014; Gammie et al., 2016). Importantly, there is
an increased incidence of bipolar disorder in mothers (Spinelli,
2009). Given that these disorders include social deficits, these
genes warrant a follow up in both animal and human studies.
However, while many molecules have been found to be changed
in the peripartum, only a few have been studied in detail in
maternal care. This demonstrates that the in-depth molecular
and cellular studies of maternal care are in their infancy.

As discussed in the previous sections, GABARs are among
the few genes that have been examined in significant detail
and shown to have a critical role in maternal care and its
dysfunction both in rodents and humans. Changes in GABARs
are associated with neuroendocrine disruptions during PPD,
and neuroactive steroids such as allopregnanolone can affect
GABAergic signaling by modulating GABAA receptors (Walton
and Maguire, 2019). Lower levels of serum allopregnanolone
can predict symptoms of PPD in women (Osborne et al., 2017)
and the relationship between the GABA and allopregnanolone
is important in the pathophysiology of PPD (Deligiannidis
et al., 2019). The discovery of the GABAR deficiency and its
connection to progesterone has allowed the development of a
drug that is approved to use for PPD by the FDA (Mody, 2019).
The first FDA-approved drug to treat PPD is allopregnanolone
(Brexanolone), a naturally occurring neurosteroid which is made
from the progesterone. Women with PPD on Brexanolone
display a reduction of the depressive symptoms compared to
the placebo group (Kanes et al., 2017; Meltzer-Brody and Kanes,
2020). In addition to pharmacological approaches, the knowledge
gained from the molecular and cellular studies can be employed
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in development of sophisticated new designs of psychotherapy.
More research is needed on specific trafficking, synaptic and
transcriptional mechanisms to find better treatments of maternal
dysfunction.

CONCLUSION

We discussed in this review evidence that activity-dependent
intracellular mechanisms known to control memory processes
(Kandel et al., 2014; Poo et al., 2016) may also be critical for
maternal care. The mechanisms underlying memory processes
have also been suggested to regulate the behavioral adaptations
found in autism spectrum disorders (ASD), drug addiction and
social learning (Ebert and Greenberg, 2013; Nestler, 2013; Basu
and Siegelbaum, 2015; Leblanc and Ramirez, 2020). Indeed,
some of the genes regulating maternal care overlap with
genes involved in ASD, reward and drug addiction (Gammie
et al., 2016)—which is not surprising since offspring are highly
rewarding to mothers, maternal care is a social behavior and
changes in social behavior are a hallmark of ASD.While progress
is being made to investigate molecular and cellular mechanisms,
there has been no systematic approach to examine possible
experience-dependent molecular events supporting maternal
behavior. An additional level of complexity is that these activity-
dependent mechanisms might be different depending on the

brain regions involved. For example, genes enriched in core
maternal regions regulating pup retrieval may not overlap with
those enriched in cortico-limbic threat-related regions regulating
affective postpartum behaviors. Future studies will be necessary
to delineate how activity-dependent intracellular events regulate
maternal behavior.
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