Wife Killing: Risk to Women as a Function of Age

Todd K. Shackelford
Florida Atlantic University
David M. Buss
University of Texas at Austin
Jay Peters
University of Maine

Younger women, relative to older women, incur a Bigger risk of wifeicide—being murdered by their husbands. Some evolutionary theorists argue that this pattern is due to the evolved sexual jealousy of males. Other evolutionary theorists argue that this pattern is due to the evolved sexual jealousy of females. The study shows that (a) younger-age women incur a Bigger risk of wifeicide relative to older women; (b) younger men are overrepresented among wifeicidal perpetrators; and (c) younger women, when married to older men, still incur excess risk of wifeicide. The results challenge the notion that evolutionary explanations can account for wifeicide in light of these findings.

According to the reports of battered wives, battering husbands, and friends, the incidence of wifeicide is a complex phenomenon. The study shows that (a) younger-age women incur a Bigger risk of wifeicide relative to older women; (b) younger men are overrepresented among wifeicidal perpetrators; and (c) younger women, when married to older men, still incur excess risk of wifeicide. The results challenge the notion that evolutionary explanations can account for wifeicide in light of these findings.

The study shows that (a) younger-age women incur a Bigger risk of wifeicide relative to older women; (b) younger men are overrepresented among wifeicidal perpetrators; and (c) younger women, when married to older men, still incur excess risk of wifeicide. The results challenge the notion that evolutionary explanations can account for wifeicide in light of these findings.

273
between the sexes that sexual roles can be called forms of "strategic interference," because the woman's strategy cannot be successfully enacted without interfering with the man's strategy, and vice versa (Buss, 1989).

According to Daly and Wilson (1988), Dickemann (1981), Buss (1988), and others, men have evolved several strategies designed to deter their spouses from committing adultery, ranging from vigilance to violence. At the most abstract level, men can control their wives by confronting them, by conflicting costs, or both. Not all men possess resources that might be used to confer benefits, and so these men are predicted to be especially prone to using violence, or the threat of violence, to control their partner's sexuality.

According to Daly and Wilson (1988), there is Brooksman's use of violence, and sometimes it sits over the edge: "Men... strive to control women... women struggle to resist coercion and to maintain their choice. There is a Brooksman's use of violence in controlling the violence in this dangerous game" (p. 205). More recently, they note that "... the fatal outcome in [spousal killings] is hypothesized to be an epiphenomenal product of psychological processes that were selected for nonlethal outcomes" (Wilson, Daly, & Danziger, 1995, p. 287). According to this argument, spousal homicide per se is not an adaptation, not a designed outcome, and does not imply that the killing of one's spouse ever was adaptive. Instead, homicide is an unintended outcome of the use of violence designed for control and deterrence, not designed for death.

An alternative evolutionary theory proposes that men have evolved specific homicide modules, including a spousal homicide module (Buss & Dutton, 1998). According to this theory, there have been some historical circumstances in which killing an unfaithful spouse, or one who has defected from the relationship, might have been adaptive. An infidelity by the wife might cause a man to devote 20 or more years of effort to another man's children, and the public discovery would inflict substantial reputational damage on him. Because evolution by selection operates on a relative metric, one man's "one of a wife is an intra-sexual competitor's gain. According to Evolved Homicide Module Theory, although some instances of killing may be "slips" or "epiphenomena," most are intentional and designed product of the evolved homicide mechanisms.

The finding that younger wives tend to be killed more often than older wives poses a puzzle, especially for the "slip-up" theory of coercive control. Why would men be more inclined to kill younger women, since such women are higher in fertility and reproductive value than are older women? This finding is especially puzzling, according to the Daly and Wilson (1988) slip-up theory, in that it defies the way in which men treat all other forms of "property." Men are not more likely to "destroy" a new, expensive car than an old, cheap car, so why would "male sexual proprietorship" lead men to "kill younger wives more often than older wives? Daly and Wilson (1985, p. 206) offer the following explanation: "We propose that... men are more jealous of the younger women [presumably because of their high reproductive value] and are therefore more inclined to behave coercively toward such wives... Paradoxically, the high homicide risk involved by young women is indicative not of their low worth from the male perspective, but of precisely the opposite."

Evolved Homicide Module Theory offers a different explanation (Buss & Dutton, 1998). Younger women are killed more often than older women because the damage to the husband reflected by an infidelity or defection is commensurately greater and homicide is one way to reduce the damage. When an older woman of low reproductive value defects to a rival, little may be lost in the currency of reproduction. When a younger woman defects to
a rival, the husband's loss is compounded by the tremendous bonus that the rival gains. Thus, the greater risk of uxoricide experienced by younger women is consonant with Evolved Human Male-Female Theory.

Both of these competing evolutionary theories may be challenged by a third explanation, which suggests that younger women incur a greater risk of uxoricide not because they are so reproductively valuable, but rather as an incidental byproduct of the fact that young women happen to be married to young men. As is well known, for example, that young men between the ages of 16 and 24 commit the majority of acts of aggression, including homicide (Wilson & Daly, 1985). So it might be that the greater risk that young wives incur has nothing to do with their own age per se, but is a byproduct of a tendency of young men to use violence in general, combined with assortative mating for age which places young women into close proximity to dangerous young men. A key method for adjudicating among these competing theories is to determine whether the uxoricide rate for reproductive age women is greater than the uxoricide rate for postreproductive age women, even after controlling for husband’s age. This question can be addressed by comparing the uxoricide rate of reproductive age women with the uxoricide rate of postreproductive age women across two groups: one in which the husband is older and one in which the husband is younger. If the uxoricide rate for reproductive age women is higher than the uxoricide rate for postreproductive-age women among women married to older husbands, this would provide strong evidence that reproductive-age women are the special targets of uxoricide, and that this targeting is not attributable to the relatively youthful age of their husbands. This was the primary goal of the study.

METHODS

Database. The United States Federal Bureau of Investigation (FBI) requests information from each state on criminal homicides. Supplementary Homicide Reports (SHRs) include incident-level data on every reported homicide, including the relationship of the victim to the offender, and the ages of the victim and offender. The database analyzed for the present project includes SHRs for the years 1976-1994 (Fox, 1996), providing information on 429,729 homicides. Uxoricide rates were calculated according to relevant population estimates provided by the United States Census (available from the first author upon request).

Procedure. Of the over 400,000 cases of homicide included in the database, 13,670 were cases in which a man killed the woman to whom he was legally married. All analyses were restricted to these cases (one case was omitted due to probable coding error: A 3-year-old “wife” was murdered by her 31-year-old husband. Because of the large number of cases, the results do not change when this case is omitted). The average age of uxoricide victims was 39.4 years (SD = 15.4 years), ranging from 15 to 95 years. The average age of uxoricide perpetrators was 43.3 years (SD = 15.7 years), ranging from 16 to at least 98 years (ages 98 and older were coded in the database as 98 years; 3 such cases were coded for men).

RESULTS

Figure 1 shows uxoricide-per million married women per annum as a function of the age of the murdered wife. The uxoricide rate is highest for teenage women who have the greater reproductive value, as has been found in smaller samples (Daly & Wilson, 1988). The uxoricide rate for teenage women is about two times greater than that for women aged 20 to 24.
years. The suicide rate for women 20 to 24 years is about 1.5 times greater than for women aged 25 to 29 years. This clear trend is for the suicide rate to decrease with the reproductive value of the woman. Older, post-reproductive age women are killed by their husbands at much lower rates than are younger, reproductive age women. This trend shows a slight reversal at the oldest age category, for women who are 55 or older, a finding also reported by others and possibly reflecting "necro killings" of wives with terminal illness.

We next investigated whether younger men were overrepresented among suicide perpetrators. Figure 2 shows suicides per million married men per annum as a function of the age of the married male husband. Consistent with previous work, relatively younger men inflict suicides at greater rates than do relatively older men. The highest suicide rate is for men in their early 20s. Paralleling the suicide victimization rates for women, the clear trend in suicide perpetration rates for men is a decrease with age, from the early 20s to the early 60s. Also consistent with previous work, the suicide rate appears to increase suddenly for men who are 85 years and older.

We next conducted a test to discover whether women married to much older men incur an elevated risk of suicide. To facilitate future work on the relationship between suicide rate and spousal age discrepancy, we constructed Table 1 (cf. Wilson, Daly, & Wright, 1995) of the marital contribution to the suicide rate of women who were married at any age and relatively older men with the suicide rates of women married at any age and relatively younger men. Women at the greatest risk of getting killed are under the age of 25 and married to men between 45 and 54 years (95.9 suicides
confirmed wife, an that for the repor hed husband vs a slight spo by nicide per motion in men. We rate is men, the early appears to incar an in incidence 993, for a paring the of women of getting nicides.

![Figure 2. Uxoricides per million married men per annum as a function of age of uxoricial husband.](image)

<table>
<thead>
<tr>
<th>Age of uxoricial husband</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>20-24</td>
<td>25-34</td>
<td>35-44</td>
<td>45-54</td>
<td>55-64</td>
<td>65-74</td>
<td>75-84</td>
<td>85+</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Uxoricides per Million Married Couples per Annum, By Husband's Age and Wife's Age

<table>
<thead>
<tr>
<th>Husband</th>
<th>Wife</th>
<th><25</th>
<th>25-34</th>
<th>35-44</th>
<th>45-54</th>
<th>55-64</th>
<th>65-74</th>
<th>75-84</th>
<th>85+</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>N/A</td>
<td>41.88</td>
<td>36.05</td>
<td>62.27</td>
<td>33.64</td>
<td>N/A</td>
<td>N/A</td>
<td>10.00</td>
<td>N/A</td>
</tr>
<tr>
<td>25-34</td>
<td>N/A</td>
<td>39.75</td>
<td>18.27</td>
<td>18.38</td>
<td>30.04</td>
<td>55.64</td>
<td>10.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>35-44</td>
<td>N/A</td>
<td>81.23</td>
<td>23.17</td>
<td>9.73</td>
<td>10.10</td>
<td>26.32</td>
<td>32.00</td>
<td>10.00</td>
<td>N/A</td>
</tr>
<tr>
<td>45-54</td>
<td>N/A</td>
<td>76.91</td>
<td>61.68</td>
<td>13.64</td>
<td>6.44</td>
<td>11.42</td>
<td>19.47</td>
<td>16.25</td>
<td>N/A</td>
</tr>
<tr>
<td>55-64</td>
<td>N/A</td>
<td>61.02</td>
<td>61.48</td>
<td>29.08</td>
<td>11.55</td>
<td>6.26</td>
<td>13.51</td>
<td>13.13</td>
<td>19.1</td>
</tr>
<tr>
<td>65-74</td>
<td>N/A</td>
<td>22.00</td>
<td>48.18</td>
<td>49.02</td>
<td>12.80</td>
<td>7.90</td>
<td>7.61</td>
<td>15.99</td>
<td>14.35</td>
</tr>
<tr>
<td>75-84</td>
<td>N/A</td>
<td>22.00</td>
<td>13.11</td>
<td>13.13</td>
<td>14.64</td>
<td>7.33</td>
<td>9.25</td>
<td>19.44</td>
<td>N/A</td>
</tr>
<tr>
<td>85+</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>14.35</td>
<td>N/A</td>
<td>20.83</td>
<td>13.81</td>
<td>24.15</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: N/A = Population estimate is zero, therefore, uxoricide rate could not be computed.
Figure 3. Unexpected per million married couples per annum as a function of marital age difference in categories. "1" indicates a 1-category difference between the age of husband and age of wife, "2" indicates a 2-category difference, and so on. Positive values refer to categorical differences in which the husband is older than the wife, whereas negative values refer to categorical differences in which the wife is older than the husband. "0" refers to cases in which husband and wife are in the same age category. Categories are as follows, in years: 25-0, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and older, per million per annum). Women who are married (at the end of their reproductive years, between the ages of 35 and 64, and married to men in the 45-54 age brackets, incur only one-seventh the risk of being killed, with an annual rate of 1.5. Other age groupings show similar trends.

Figure 3 is constructed from the data in Table 1 and shows statistics per million married couples per annum as a function of marital age difference, in categories. In this figure, "1" indicates a 1-category difference between the age of the husband and the age of his wife, "2" indicates a 2-category difference, and so on. Positive values refer to categorical differences in which the husband is older than the wife, whereas negative values refer to categorical differences in which the wife is older than her husband. "0" refers to cases in which the husband and wife are in the same age category. The age categories are as follows, in years: 25-0, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, and 85 and older. Figure 3 shows that exorticide rates for women married to relatively older men are higher than expected rates for women married to same-age men and relatively younger men. The exorticide rate for women
Figure 4. UXoricide per million couples per annum as a function of husband’s age and wife’s reproductive status. Reproductive age women are less than 45 years old, whereas postreproductive age women are 45 years and older.

married to men who are older by three age categories is almost four times higher than the UXoricide rate for women married to same-age men, and almost three times higher than the UXoricide rate for women married to men who are younger by three age categories.

A critical test of the hypothesis that reproductive age women are at special risk of UXoricide is to compare the UXoricide rates for reproductive age women and postreproductive age women across two groups: women married to younger men and women married to older men. If reproductive age women are special targets of male sexual coerciveness, then reproductive age women should be murdered by their husbands at a higher rate than postreproductive age women, and this should be true for women married to younger men and women married to older men. This is precisely what Figure 4 reveals.

Figure 4 is constructed from the data in Table 1 and shows UXoricide per million couples per annum as a function of husband’s age and his wife’s reproductive status. The UXoricide rate for reproductive age women (younger than 45 years) is higher than the UXoricide rate for postreproductive age women (45 years and older) for marriages to younger men and for marriages to older men. Among women married to younger men, reproductive age women are killed at 1.5 times the rate of postreproductive age women. Among women married to older men, reproductive age women are killed at 3.5 times the rate of postreproductive age women. These rate differentials across husband age categories provide strong evidence that reproductive age women are special targets of UXoricide and that this excess risk is not attributable to their husbands’ age.
DISCUSSION

Using a sample of nearly a half million homicides, we selected for analysis the 13,670 cases in which a man killed the woman to whom he was legally married. We documented that:

1. reproductive age women incur an excess risk of uxocide;
2. relatively younger men are overrepresented among uxicide perpetrators; and
3. women married to much older men incur an excess risk of uxocide.

These findings replicate with a much larger sample the findings of Daly and Wilson (1988), which were based on Canadian homicides.

A key contribution of the present research is a novel test of the hypothesis that reproductive age women incur excess uxicide risk because they are solely attributable to their husbands’ age. Because relatively young, reproductive age women tend to be married to relatively young men, and because younger men are overrepresented among homicide perpetrators in general, the elevated risk of uxicide incurred by reproductive age women could be attributable to marriage to men who are overrepresented among homicide perpetrators. We compared the uxicide rate of reproductive age women with the uxicide rate of pre-reproductive age women across two groups: women married to younger men and women married to older men. Across both groups, the uxicide rate of reproductive age women was higher than the uxicide rate for pre-reproductive age women. Reproductive age women are a special group of uxicide, and the special targeting cannot be attributable solely to marriage to relatively youthful men.

The current findings in principle are compatible with both evolutionary theories of wife killing—at the “slip-up” theory, which suggests that young women elicit more jealousy and more intense mate feelings of sexual proprietarians (Daly & Wilson, 1988), and the Evolutionary Homicide Model Theory, which suggests that most wife killings are intentional and designed (Buss & Duntley, 1998). Nonetheless, we note that the slip-up theory, which posits a mate psychology that tends women as “property,” strains credibility in that men typically do not destroy other forms of valuable “property” just they “own.” To the contrary, it’s too great lengths to protect the property they own, and the more valuable the property, the more effort they expend to protect it. The fact that men kill wives who are more reproduc-tively valuable directly contradicts the view that men treat such women as prized property. In contrast, it is precisely what is predicted by the Evolutionary Homicide Model Theory, because a spouse’s infidelity or outcast detection from the relationship constitutes the double-selective effect of one’s own loss bringing an extramarital rival’s gain. Future research must be conducted that directly pit the competing evolutionary theories on mate killings against each other, with the above qualifications in mind.

Two additional findings are worthy of comment—the increase in the uxicide victimization of women age 85 and older and corresponding perpetrators rates in the oldest age category (85 years and older). These wife killings may represent “merry killings” in which an elderly mate kills a sick, elderly wife who is suffering in her last weeks or months of life. If homicides in this oldest age category are “merry killings,” we might expect the murder to occur by the most painless methods, such as lethal injection or gassing, rather than by more painful methods such as bludgeoning that accompanies the rage and anger typical of homicides of younger men or women who are suspected of infidelity (see Daly & Wilson, 1995). Future research could profitably address homicides in this oldest age group, particularly given the backdrop of an aging western population.

Wife killing is an abhorrent crime, not all wives are equal risk of being killed. Identifying a risk factor associated with the victims—in this case the age of the wife, and of the perpetrators—young men married to young women—much older men married to younger
women, represents a first step toward developing a theory of homicide with tangible practical implications for intervention. Future research could profitably explore other risk factors, as well as safety factors that might lower a woman's risk of being killed. The presence of extended kin of the woman, for example, might deter her husbands who are otherwise enraged about a wife's infidelity or deflection (Figueroed, 1995; Figueroed et al., 1999). As another example, the availability and accessibility of a community shelter may provide refuge for a bantering husband for a woman attempting to exit an abusive and potentially lethal relationship (Dobash & Dobash, 1979; Wilson & Daly, 1993). In this sense, the current study represents a step toward understanding the baffling phenomenon of uxoricide.

REFERENCES

Acknowledgments. Martin Daly, Viviara Wekesa-Stackelford, and Margo Wilson provided helpful comments that improved this article.

Oiprints. Requests for offprints should be directed to Todd K. Stackelford, Florida Atlantic University, Division of Science—Psychology, 2012 College Avenue, Davie, FL 33314.